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Kurzfassung

Mit zunehmender Autonomie von Fahrzeugen ist die Gewahrleistung der Sicherheit zu einem
vorrangigen Anliegen geworden. Eine grundlegende Aufgabe dabei ist die Lokalisierung, die fir
einen sicheren Betrieb unerlasslich ist. Zur Quantifizierung der Sicherheitsanforderungen wurde
das Konzept der Integritat eingefiihrt. Die Integritat beschreibt die Fahigkeit des Systems
rechtzeitig und korrekt zu warnen, wenn ein sicherer Betrieb nicht mehr gewahrleistet werden
kann. Um jedoch die Funktionsfahigkeit des Systems abschatzen zu kdénnen, muss unter
anderem die Unsicherheit der Lokalisierung bewertet werden.

In der Literatur existieren zwei vorherrschende Ansatze — die Wahrscheinlichkeitstheorie und
die Mengenzugehdrigkeitstheorie, die mathematische Werkzeuge zur Bewertung der Unsicherheit
zur Verfligung stellen. Probabilistische Ansatze liefern oft gute Ergebnisse, neigen aber dazu
den Fehler zu unterschatzen. Bei mengentheoretischen Ansatzen hingegen wird die Unsicherheit
zuverlassig bewertet, der Fehler jedoch tendenziell iiberschatzt. Wahrend die Unterschatzung des
Fehlers zu gefahrlichen Systemausfallen ohne Vorwarnung fiihren kann, machen zu pessimistische
Schatzungen das System unbrauchbar.

Das Ziel dieser Dissertation ist es, die symbiotische Beziehung zwischen mengenbasierten und
probabilistischen Lokalisierungsansatzen zu untersuchen und sie zu einem einheitlichen, hybriden
Lokalisierungsansatz zur Fehlerabschatzung zu kombinieren. In dieser Arbeit wird eine neue
Lokalisierungsmethode vorgestellt — die sogenannte Hybrid Probabilistic- and Set-Membership-
based Coarse and Refined (HyPaSCoRe) Lokalisierung. Diese Methode lokalisiert einen
Roboter in einer Gebaudekarte in Echtzeit und berlicksichtigt zwei Arten der Hybridisierung.
Einerseits werden mengenbasierte Ansatze verwendet, um probabilistische Ansatze in ihrem
Loésungsbereich einzuschranken und somit die Robustheit zu erhdhen. Andererseits werden
probabilistische Ansatze verwendet, um den Pessimismus mengentheoretischer Ansatze zu
reduzieren, indem zusatzliche probabilistische Bedingungen hinzugefiigt werden.

Die Methode besteht aus drei Modulen: visuelle Odometrie, grobe Lokalisierung und
verfeinerte Lokalisierung. Die HyPaSCoRe Lokalisierung konzentriert sich auf die Lokalisierung
in stadtischen Gebieten, in denen GNSS-Daten ungenau sein konnen. Das Modul fiir die visuelle
Odometrie berechnet die relative Bewegung des Fahrzeugs. Die grobe Lokalisierung schrankt die
Menge der moglichen Posen mit einem mengenbasierten Ansatz ein und erweitert die Schatzung
mit einer probabilistischen Methode, um die wahrscheinlichsten Losungen innerhalb der Menge
zu bestimmen. Das Modul fiir die verfeinerte Lokalisierung prazisiert das Ergebnis, indem es
den Pessimismus der mengenbasierten Unsicherheitsschatzung durch weitere probabilistische
Bedingungen reduziert.

Die experimentelle Untersuchung zeigt, dass die Integritat der Unsicherheitsabschatzung
gewahrleistet ist, wahrend prazise Lokalisierungsergebnisse in Echtzeit geliefert werden. Die
Einfiihrung dieses neuen hybriden Lokalisierungsansatzes stellt einen Beitrag zur Entwicklung
sicherer und zuverlassiger Algorithmen im Kontext des autonomen Fahrens dar.

Schlagworte:
Autonomes Fahren, Lokalisierung in Gebaudekarten, Hybride Interval-Probabilistische Lokalisie-
rung, Mengenbasierte Fehlerabschatzung, Intervallarithmetik, Probabilistische Fehlerabschatzung
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Abstract

Ensuring safety has become a paramount concern with the increasing autonomy of vehicles and
the advent of autonomous driving. One of the most fundamental tasks of increased autonomy
is localization, which is essential for safe operation. To quantify safety requirements, the
concept of integrity has been introduced in aviation, based on the ability of the system to
provide timely and correct alerts when the safe operation of the systems can no longer be
guaranteed. Therefore, it is necessary to assess the localization's uncertainty to determine the
system's operability.

In the literature, probability and set-membership theory are two predominant approaches that
provide mathematical tools to assess uncertainty. Probabilistic approaches often provide accurate
point-valued results but tend to underestimate the uncertainty. Set-membership approaches
reliably estimate the uncertainty but can be overly pessimistic, producing inappropriately large
uncertainties and no point-valued results. While underestimating the uncertainty can lead
to misleading information and dangerous system failure without warnings, overly pessimistic
uncertainty estimates render the system inoperative for practical purposes as warnings are fired
more often.

This doctoral thesis aims to study the symbiotic relationship between set-membership-based
and probabilistic localization approaches and combine them into a unified hybrid localization
approach. This approach enables safe operation while not being overly pessimistic regarding
the uncertainty estimation. In the scope of this work, a novel Hybrid Probabilistic- and Set-
Membership-based Coarse and Refined (HyPaSCoRe) Localization method is introduced. This
method localizes a robot in a building map in real-time and considers two types of hybridizations.
On the one hand, set-membership approaches are used to robustify and control probabilistic
approaches. On the other hand, probabilistic approaches are used to reduce the pessimism of
set-membership approaches by augmenting them with further probabilistic constraints.

The method consists of three modules — visual odometry, coarse localization, and refined
localization. The HyPaSCoRe Localization uses a stereo camera system, a LiDAR sensor, and
GNSS data, focusing on localization in urban canyons where GNSS data can be inaccurate.
The visual odometry module computes the relative motion of the vehicle. In contrast, the
coarse localization module uses set-membership approaches to narrow down the feasible set
of poses and provides the set of most likely poses inside the feasible set using a probabilistic
approach. The refined localization module further refines the coarse localization result by
reducing the pessimism of the uncertainty estimate by incorporating probabilistic constraints
into the set-membership approach.

The experimental evaluation of the HyPaSCoRe Localization shows that it maintains the
integrity of the uncertainty estimation while providing accurate, most likely point-valued solu-
tions in real-time. Introducing this new hybrid localization approach contributes to developing
safe and reliable algorithms in the context of autonomous driving.

Keywords:
Autonomous Driving, Localization in Building Maps, Hybrid Interval-Probabilistic Localization,
Set-Membership-based Uncertainty Models, Interval Analysis, Probabilistic Uncertainty Models
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Introduction

In 2021, 2.3 million traffic accidents were registered in Germany — 258 987 of them involved
human injury. Human error was by far the most frequent cause: 88.0 % of the accidents were
caused by driver misconduct, according to the German Federal Statistical Office. [1, 2]

Due to the increasing maturity of driver assistance systems in modern vehicles, the number of
accidents generally decreases, suggesting that more technical assistance during driving improves
traffic safety [1]. One goal of increasing vehicle autonomy is to further reduce the number of
accidents caused by driver misconduct and thereby increase road safety. The ultimate objective
in the field of highly automated driving is still to achieve full autonomy [2]. In our society, the
expectation that these systems will have fully deterministic, comprehensible, and safe behavior
is very high [3, 4]. Nevertheless, the question remains: Is it possible to achieve this ideal goal
from a technical point of view?

Driving a vehicle involves many different tasks. For example, obstacles must be detected,
and the vehicle must determine whether it may collide with the objects. Is the detected
obstacle just a leaf from a tree, or is it a living creature the vehicle could harm in case of a
collision? Object detection is, therefore, one of the critical tasks to be solved. Localization
poses another fundamental problem: The vehicle needs to localize itself on a map to plan a
trajectory and navigate from the starting point to the destination. Is the vehicle on the road or
too close to the sidewalk where potential pedestrians may be at risk? Are the driver assistance
functions authorized in the localized area of the map? These are just a few examples of
different tasks that combine different research areas where we need to analyze the determinism,
comprehensibility, and safety of the sensors and algorithms. Within the scope of this thesis, we
will restrict ourselves to the localization problem as a small but fundamental part.

We have already alluded to terms such as safety and reliability. As stated in [5], safety is
defined as the absence of unacceptable risk. Risk, however, is defined as "[...] a combination of
the probability of fault occurrence and the severity of corresponding consequences” [4, 6]. Fault
occurrence is conceptually tied to the reliability: The higher the fault occurrence, the lower the
reliability. As a result, safety considers both the probability of a fault and its consequences. A
system can only be called safe if faults with severe consequences only occur with an acceptably
low probability [4]. To quantify the requirements for safety, the term integrity has to be
introduced.
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Figure 1.1: Integrity levels in the Stanford-ESA Integrity Diagram based on [4, 7]. The
horizontal axis measures the true error, and the vertical axis the estimated error.
The alert limit defines the five regions that correspond to the integrity levels.

1.1 Integrity

The integrity of a system is a "[...] measure of the trust that can be placed in the correctness
of the information supplied by the total system [...]" [4]. Furthermore, the integrity of a system
includes the ability to provide timely and valid alerts to the user in case that the system must
not be used for the intended operation [4]. Hence, regarding localization, the vehicle must be
able to warn the passengers if the localization uncertainty exceeds an alert limit. The integrity
of a system is usually classified into integrity levels, which are visualized in the Stanford-ESA
Integrity Diagram in Figure 1.1 based on [7].

While the horizontal axis defines the true position error, which is usually unknown during
regular operation, the vertical axis represents the estimated upper bound of the true position
error provided by the localization system. An ideal localization system would provide perfect
estimates of the localization error where all pairs of true and estimated errors lie in the diagonal
line. Operating the system in the upper left triangle with green areas allows the safe operation
of the localization system because the estimated error is greater than or equal to the true
error. Consequently, the system has high integrity as the results are trustworthy. However,
operation in the lower right triangle with red regions defines unsafe operation because the
localization system underestimates the true error. The system has no integrity since the
uncertainty assessment is not reliable. [4, 7]

The alert limit defines the estimated error limit above which the system will alert the user
that the vehicle cannot be operated safely. In this case, either the passengers must take action
or the vehicle must stop. As shown in the Stanford diagram in Figure 1.1, the alert limit divides
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the diagram into five sections. At best, the localization system stays in the green region. At
worst, its estimates are in the lower right triangle. The operation is acceptable as long as the
true error is below the alert limit. However, suppose the true error exceeds the alert limit while
the estimated error is still below the alert limit. In that case, the localization system enters
the Hazardously Misleading Information region. The operation becomes dangerous because
the user is not warned as the estimated error is too optimistic even though the true error has
exceeded the alert limit.

As a consequence, estimating the error is a vital part of measuring the integrity and, therefore,
the safety of a system. The estimation of the possible error is known as risk assessment. How
can we compute the risk? This question leads us to the problem statement and the research
questions this thesis addresses.

1.2 Problem Statement and Research Questions

In the literature, different methods exist to assess the risk of a localization estimate. The
central idea is to propagate the uncertainty of the measurements to the estimate. In contrast
to other works [8, 9], we use the term uncertainty as a measure of fuzziness of measurements
and states. Consequently, we will use the terms risk and uncertainty synonymously throughout
this work, assuming events to occur with measurable probability.

The most commonly used uncertainty models are probabilistic models that consider the
uncertainty by a probability distribution. The uncertainty of the localization estimate is assessed
by propagating the error distribution from the sensor readings to the localization estimate.
However, the first problem that arises with probabilistic approaches is the selection of the
appropriate probability distribution. By appealing to the Central Limit Theorem [10], and due
to convenient mathematical properties of the Gaussian function, most probabilistic localization
approaches assume pure offset-free normally distributed errors for the measurements. Although
in many cases, probabilistic approaches provide good results and have low computational
weight, the uncertainty of the localization estimate is often severely underestimated. The
problem with probabilistic approaches is that the error propagation from the sensor readings to
the localization results under the Gaussian assumption involves linearization that introduces
incorrect approximations in the uncertainty computation. The linearization point significantly
influences the uncertainty assessment. Furthermore, the true error distribution usually deviates
from the normal distribution, again introducing approximation errors leading to too optimistic
uncertainty estimations. Regarding the Stanford-ESA Diagram, underestimating the true error
leads to the unsafe operation in the bottom right triangle in Figure 1.1. Hence, an overly
optimistic uncertainty estimate means the localization system raises fewer alerts, although the
true error may exceed the alert limit. [4, 11, 12]

An alternative model to asses the uncertainty is to use set theory. In this thesis, we will
use interval analysis which is a part of set theory and provides convenient tools to work with
box-like sets. The basic idea of set-membership approaches is to initially start with a large
region where the vehicle is localized and to gradually dismiss infeasible and inconsistent parts
in such a way so that we only obtain a set that satisfies the set of applied constraints. The
advantage of interval-based approaches is that we do not need to know the distribution of the
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sensor errors — but we need to know the upper bounds of the error. If those upper bounds
are satisfied, interval-based approaches provide well-defined sets that guarantee to enclose
the correct location of the vehicle. However, the main disadvantage of those methods is
their pessimism leading to wide sets providing large uncertainties as only worst-case scenarios
are modeled by the bounds. Furthermore, no point-valued results are provided by purely
set-membership-based methods. The pessimistic uncertainty estimation is assigned to the top
left triangle in the Stanford-ESA Diagram in Figure 1.1. The methods highly overestimate the
error, although the true error may be significantly smaller. Hence, the system is unavailable for
the same alert limit as the user is always warned that it cannot operate since the uncertainty is
too high. [4, 11, 12]

In summary, probabilistic approaches often provide good results but tend to underestimate
the uncertainty. Interval approaches are promising in the uncertainty assessment but can be
very pessimistic, due to which the localization approach may provide inappropriately large
uncertainties and not provide point-valued results. Consequently, both approaches have
complementary properties. Hence, this observation raises the central research question of this
thesis:

» |Is there a symbiotic relationship between set-membership and probabilistic
approaches that can be exploited to improve the robot localization estimation
and the uncertainty assessment?

If so, the symbiotic relationship should lead to a mutual improvement of each approach
compared to the case they are applied individually. Consequently, two further questions arise
that we will focus on in this work:

» How can set-membership approaches be used to robustify probabilistic ap-

proaches?

» How can probabilistic approaches be used to reduce the pessimism of set-
membership approaches?

In complement to well-founded mathematical theories such as Possibility theory [13-15] and
Dempster-Shafer theory [16, 17], this thesis aims to show different practical ways to combine
interval and probabilistic approaches to solve the robot localization problem by providing a
unified hybrid approach.

1.3 Solution Approach and Contributions

This work introduces our novel Hybrid Probabilistic- and Set-Membership-based Coarse
and Refined (HyPaSCoRe) Localization approach. The HyPaSCoRe Localization combines
probabilistic and set-membership approaches into one unified method that localizes a robot
in a building map in real-time. The method is composed of three modules: visual odometry,
coarse localization, and refined localization. Figure 1.2 shows the method overview.

Our method uses a stereo camera system, Light Detection And Ranging (LiDAR), and
Global Navigation Satellite System (GNSS) data. Note that we assume the sensors to be
calibrated and synchronized. The HyPaSCoRe Localization focuses on the localization in urban
canyons. The main problem of urban regions is that GNSS data can become highly inaccurate
as multi-path effects corrupt the GNSS-based location estimates. Consequently, the uncertainty
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Figure 1.2: Method overview to the HyPaSCoRe Localization pipeline. In gray we specify
which parts are given, optimized, extended and new.

of the GNSS measurements is very large, which poses a problem when the localization is
initialized. As the vehicle's location is unknown, we must assume that the vehicle is placed
anywhere on the map. Although GNSS data provides a first estimate, we can only partially
rely on the GNSS data. Our approach can cope with those large uncertainties. It can provide a
feasible set of poses that encloses the correct pose and provides a maximum likely pose that
best fits the local LIDAR measurements to the building map.

As shown in Figure 1.2, the visual odometry module uses stereo images and LiDAR data to
compute the relative motion of the vehicle. The coarse and refined localizations use the relative
motion information. The coarse localization module is colored orange and has a set-membership
and probabilistic part. The set-membership part uses basic but globally valid constraints to
narrow down the feasible set of poses. Such basic constraints include, for instance, that
the vehicle cannot be located inside a building. The feasible set is then forwarded to the
probabilistic approach. A green region illustrates the feasible set in Figure 1.2. Using a novel
bounded Monte Carlo Localization (MCL) with an aggressive resampling procedure, the coarse
localization's probabilistic part provides the most likely poses inside the feasible set.

The bottom blue part of Figure 1.2 illustrates the refined localization module that further
refines the coarse localization result. Since the coarse localization approach does not consider
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the direct associations of the locally captured data to the building map, the feasible set is
comparatively pessimistic. The refined localization aims at reducing the pessimism of the
uncertainty estimate. Therefore, the probabilistic part of the refined localization chooses the
best fitting particle of the bounded MCL of the coarse localization. Based on the point-valued
pose estimate, the local LiDAR data is associated with the building facades on the map. We
illustrate this procedure with black dots for the LiDAR points and black lines for the facades.
The association is forwarded to the set-membership part of the refined localization as we can
draw local association constraints. Those association constraints considering the building map
uncertainty and the LIDAR measurement uncertainty are used to determine the consistent set.
The bottom arrow from the set-membership approach to the probabilistic approach indicates
that the consistent set provides bounds for a novel modified bounded optimization approach that
determines the most likely pose within the smaller consistent set. The consistent set determined
by the set-membership approach prevents the probabilistic approach from significantly diverging
by limiting the solution space.

Note the most right arrow in Figure 1.2 that connects the consistent set of the refined
localization with the pessimistic coarse localization: In the case of high reliability of the
consistent set, we contract the feasible set to the consistent set to reduce the pessimism of the
uncertainty estimate. This contraction automatically reduces the exploration region for the
bounded MCL in the probabilistic part of the coarse localization and thereby conditions and
robustifies the bounded MCL. From the HyPaSCoRe Localization, we obtain a feasible set as
the uncertainty estimation and the most likely pose as the best point-valued localization result.
The HyPaSCoRe Localization is real-time capable and is operable in different environments as
long as enough buildings are visible.

The core contributions of this work are:

» Investigation of the symbiotic relationship between set-membership-based and probabilistic

localization methods to overcome the shortcomings of the individual approaches.

= Development of the novel visual odometry that combines windowed bundle adjustment
with an interval-based odometry computation. The probabilistic approach provides
the probabilistic constraints, while the set-membership approach implements the error
propagation.

» Design of the novel coarse localization method that can cope with large GNSS uncer-
tainties combining a set-membership method with a probabilistic approach in a hybrid
fashion.

» Development of the novel refined localization that improves the localization estimates
reducing the pessimism by introducing probabilistic maximum likely association and
interval bounded optimization.

» Design of the novel HyPaSCoRe Localization pipeline that localizes a vehicle in publicly
available building maps using the coarse localization and refined localization.

» Evaluation of all modules, including visual odometry, coarse and refined localization in an
ablation study. Furthermore, we extensively evaluate the HyPaSCoRe Localization with
real author-collected and publicly available benchmark datasets.

» A software package that implements the method is made publicly available here:
https://github.com/AaronEhambram/hypascore_localization.
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1.4 Structure of the Thesis

Figure 1.3 shows the graphical overview of this thesis containing the different modules de-
veloped in this work. Throughout this document, we will use this figure to put the different
methodological chapters into the overall HyPaSCoRe Localization context. While Chapter 2
introduces the required basics for this work, Chapter 3 summarizes the State of the Art for
robot localization.

In Chapter 4, we introduce the first module of the HyPaSCoRe Localization system. The
corresponding block in Figure 1.3 is presented on the left. As indicated, it provides the relative
motion information. Chapter 5 describes the coarse localization. As illustrated in Figure 1.3 it
uses the relative motion information to provide a coarse localization estimate considering large
uncertainties. It is the first part of the localization block. The refined localization in the bottom
part of the localization block in Figure 1.3 refines the coarse localization results and is explained
in Chapter 6. The full system architecture that combines the relative motion estimates
with the real-time localization in the HyPaSCoRe Localization is detailed in Chapter 7 and
illustrated by the bottom left block in Figure 1.3.

The experimental evaluation based on different benchmark datasets and the comparison of
our approach and selected State of the Art approaches is provided in Chapter 8. In Chapter 9,
we discuss the results obtained in this work. Furthermore, we identify open research questions
and suggest future work. Finally, Chapter 10 summarizes and concludes this thesis.



Basics

In robotics, many problems can be generalized to state estimation problems. For instance, the
robot localization problem is a typical state estimation problem, where the state we seek to
estimate is the vehicle's pose. The core difficulty is that we typically do not have an accurate
sensor to measure the pose directly. Instead, the robot is equipped with sensors that perceive
the environment locally so that by associating the local measurements to the map, we aim to
deduce the robot's state. However, local measurements are not perfect. Depending on the
sensors the robot is equipped with, we have to deal with measurement errors which we try to
model with uncertainty representations. How do the uncertainties of the local measurements
affect the state that we deduce from them? We must propagate the local measurement
uncertainties to the state to answer this question by applying the state equations.

The details of the uncertainty propagation depend on the uncertainty model. In this work,
we present two fundamentally different approaches — namely, the classical probabilistic and the
interval-based model. In Section 2.1 we introduce the fundamental basics of probability theory
and in Section 2.2 interval analysis. Furthermore, this chapter will also present the working
principle of the used sensors and their sensor models in Section 2.3. We conclude this chapter
with the structure of building maps in Section 2.4 that are used in this work.

2.1 Probability Theory

The key concept in probabilistic robotics is to represent uncertainties using probability theory.
While earlier works in the field typically tried to come up with single best guesses, probabilistic
approaches focus on constructing the probability distribution over a set of solutions [18]. In the
robotics community, probabilistic approaches have found broad acceptance since they represent
the concept of risk in a mathematically sound way, assuming that certain assumptions are met.
Although probabilistic robotics, in its basic concept, is indeed a mathematically elegant way
to handle uncertainties, concrete implementations are fraught with significant shortages and
problems. This thesis aims to partially overcome those problems by combining probabilistic
approaches with interval analysis.

We briefly introduce some basic probability theory to understand the problems that prob-
abilistic approaches may run into and how we can use interval analysis to counteract such
problems. Afterward, concrete and well-known implementations of probabilistic approaches are
evaluated, pointing out the weaknesses. The following notions and definitions are taken from
Sebastian Thrun's book [18].
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2.1.1 Basic Notions and Concepts

The central idea of probabilistic robotics is to portray quantities such as sensor measurements,
controls, the states of the robot (e.g. the pose), and the environment as random variables.
The strategy to harness random variables to propagate information from one set of random
variables to another is based on fundamental probability theory. Consider a random variable X.
Definition 2.1.1

A random variable X is a measurable function X : {2 — E from a sample space () as a set of
possible outcomes to a measurable space (Borel space) E. The probability that X takes on a
value in a measurable set S C E is written as

P(X € S) = P({w € QX (w) € S}). (2.1)

Example 2.1.1. For example, rolling a dice can be modeled as a random process, where a
random variable defines the state of the dice. The state of the dice can be represented by
the side that is upward facing after rolling. In this case, the random variable can take values
between 1 and 6.

When the image of X countable, the random variable is called discrete random variable as
it is the case in Example 2.1.1. Its distribution is a discrete probability distribution described
by a probability mass function. However, if the image of X is uncountably infinite, then X is
called a continuous random variable. Its distribution can be described by a probability density
function (PDF).

First, let us consider the discrete case. We denote x as a specific value the random variable
X might assume. The probability that X has value z is denoted by P(X = z). Considering
Example 2.1.1, the probability that X takes one value between 1 and 6 is equally distributed in
the case of a fair dice, and the probability is P(X = 1) = ... = P(X = 6) = ¢. The random
variable has to take a value among the possible events. This means, for Example 2.1.1, the
probability that the dice will take one of the states 1 to 6 is 1. Mathematically speaking, the
sum over all probabilities among all values that a random variable can take always sums to 1:

S P(X =2)=1. (2.2)

Note that probabilities are always non-negative.

For the sake of simplicity, we want to rewrite P(X = x) by P(x). While Example 2.1.1
introduces the model of a discrete event space with an equal probability distribution among all
events, continuous spaces are characterized by random variables that can take on a continuum
of values. The mapping function

p(z) : R —[0,1]. (2.3)

defines the probability density among the continuous spaces. In the scalar case it can, for
instance, be x € R. If the event space is continuous, we need to adapt (2.2) by taking the
integral into account

/mp(x)d:c = 1. (2.4)
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Figure 2.1: One-dimensional normal distribution. The size of the confidence intervals of defined
confidence probabilities depends on the standard deviation o, while the mean u
determines the probability peak. The distribution is symmetrical to the mean.

A PDF can generally have an arbitrary shape as long as the properties mentioned above
are fulfilled. However, dealing with arbitrary PDFs is often burdened with high computational
efforts when it comes to inference — that means if we want to deduce the probability of
the events in question. Fortunately, there are also PDFs that have convenient mathematical
properties that make efficient inference possible. For example, the normal distribution has such
convenient properties. Additionally, as in robotic applications the measurement error is often
composed of many independent additive errors, the Central Limit Theorem [10, 19] legitimates
the employment of the normal distribution and has proven to be a good choice for uncertainty
modeling in robotics.

The normal distribution is characterized by the first two moments — the mean p and the
variance 0. The Gaussian function defines the normal distribution

1 _@=w?
p(x) = W%ﬁ 207 . (2.5)

Figure 2.1 visualizes the one-dimensional normal distribution. Note that this PDF is fully

determined by the two parameters ;1 and 0. One of the nice properties the normal distribution has
is that so-called confidence intervals can easily be constructed. Confidence intervals determine
an interval of values the random variable X might take for a defined confidence probability. As
illustrated in Figure 2.1, the width of such confidence intervals is determined by the standard

deviation o. Hence, the probability that X takes a value in the interval [y —1-0,u+ 1 0]
+1-0

f
has a confidence probability of p(z)dxr = 68.26 %, while a wider interval like for
pn—1l-c

instance [ — 3 -0, u+ 3 - o] has a confidence probability of /MTS.Up(x)dx =99.73%. As
we will see later in this work, confidence intervals will be the ke; tdogcombining interval-based
set-membership and probabilistic approaches.

(2.5) describes the normal distribution in the one-dimensional case. However, often x will
be a multi-dimensional vector. Normal distributions over multi-dimensional vectors are called
multivariate. The multivariate normal distribution is described by the density function

p(X) = 71 . eié(xfﬂ)TZ_l(xfy')_ (26)

\/det(27X)



2.1. Probability Theory 11

Note that (2.6) is a strict generalization of (2.5). While p is the mean vector, ¥ is the so-called

2

covariance matrix directly linked to ¢~ in the one-dimensional case.

Let us turn our attention to discrete probability distributions again. The joint distribution
of two random variables is given by P(x, z), which describes the probability, that the random
variable X takes the value x and Z the value z. Conditional probabilities are described by
P(z| z), which provides the probability of the occurrence of x for X given we know that Z's
value is z. Joint and conditional probabilities are linked with each other by

Pz, 2)

P(z|z) = PC)

(2.7)
Now we can introduce Bayes rule, which plays a predominant role in probabilistic inference

in robotics. It relates a conditional probability of the type P(z|z) to its "inverse" P(z|x).

The rule
P(z|z)- P(x)

P(z)
requires P(z) > 0. We name P(z) the prior probability distribution, = represents the quantity

P(z|z) = (2.8)

we want to infer (e.g. pose of the robot), and z represents the sensor measurement. The
distribution P(z) describes our knowledge before incorporating the sensor measurements z.
The probability P(x|z) is the posterior probability distribution that interests us the most
since it describes the probability of x given the specific sensor measurements. The Bayes rule
provides a convenient way to compute this probability using the inverse conditional probability
P(z|x) and the prior probability distribution P(x). The inverse conditional probability P(z|x)
describes the probability of sensor measurement z given the robot state x. Since the probability
describes how a specific state x of the robot causes sensor measurements y, this probability is
determined by the sensor model known a priori and the prior knowledge on x.

In our context, the state vector x can contain static landmarks in the environment and/or
the poses of the robot at different times. We denote a state at time ¢ by x;. Furthermore, we
define z; as the sensor measurements at time ¢. Usually, in robotics, we also have access to
the control commands u; at time ¢, providing valuable information that can be used to infer
the robot's state x;. The goal in robotics is to estimate the current state of the robot z; given
all previous states x1.,_1, all previous sensors measurements z;.;_; and control commands u1.;.
As a consequence, we want to determine the PDF of p(x; | 21,41, 2141, U124)-

Historically, in localization and mapping, two paradigms mainly influenced the field. Filter
approaches mainly defined the first paradigm. The core assumption here is that the modeled
states are complete: That means that knowledge of past states, measurements, or controls
do not provide additional information to help us predict the future more accurately than the
last state. We only need to know the previous state and can forget everything that happened
before. We call such temporal processes Markov chains. The Bayes Filter is the most general
algorithm that calculates the probability distribution of the current state of the robot based
on the previous state, the measurements, and control data. The Gaussian implementation
of the Bayes Filter is the Extended Kalman Filter (EKF). Since the general Bayes Filter and
the EKF are not directly relevant to our work, we provide a brief summary in the appendix in
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X

Figure 2.2: Particle representation of distributions based on [18]. The PDF of the input variable
x is Gaussian distributed. Instead of representing the distribution in its parametric
form, the particle filter approximates the distribution by particles visualized by blue
dots. The particle filter performs the propagation through the non-linear function
g(x) by evaluating each particle individually. This makes the particle filter well
applicable to arbitrary distributions and non-linear functions. The distribution of the
particles of the output random variable well approximates the PDF, as illustrated
on the left.

Section A.1 and Section A.2. The particle filter introduced in Section 2.1.2 is a non-parametric
form of the Bayes Filter and will play an essential role in the HyPaSCoRe Localization pipeline.
The hallmark of the second paradigm is optimization — sometimes also called smoothing.
The approaches perform batch optimization and typically rely on least-square error minimization
[20]. In contrast to filtering approaches, optimization methods do not assume states to be
complete. As a result, older states, measurements, and control data are also involved in the
computation of the current robot state [21]. A non-linear least squares approach is used to
determine the posterior probability distribution, which is introduced in Section 2.1.3.

2.1.2 Particle Filter

The particle filter is a non-parametric implementation of the Bayes Filter. Non-parametric means
that the underlying but unknown PDFs are not represented by a set of parameters. Instead,
the particle filter represents a distribution by a set of samples drawn from the distribution.
Although this representation is approximate, the non-parametric description makes the particle
filter applicable to a broader family of PDFs. Figure 2.2 illustrates this for the same example
shown in Figure A.1 for the EKF in the appendix.
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Samples of a distribution are called particles and are denoted by X; = {z},..., 27} forn € N
particles. Particles can be seen as a actual hypothesis of the state at time t. The intuition
behind particle filters is to sustain the belief bel(x;) by a set of particles X;. As illustrated in
Figure 3.2, the denser particles populate a subregion, the higher the probability that the true
state lies in this subregion. Just as all Bayes Filter algorithms, the particle filter constructs the
belief of the current state bel(x;) recursively from the belief of the previous state bel(z;_1).
Therefore, the particle filter also performs a prediction and correction step. A simple form of
the particle filter algorithm is shown in Algorithm 1.

Algorithm 1: Particle Filter
Data: X;_q, u, 2
Result: X}
1 yt =X =g,
// Prediction step
for all zi_| in X, do
sample T¢ from p(x; | ug, 2t 1);
wi=pla|T);
add {7}, wi} to Xy;
end
// Correction/Resampling step
for m =1 ton do
draw i with the probability w?;
add T@ to A};
10 end

S O s, W N

o ~N

Typically starting with a uniform distribution of the particles as a first approximation, the
true picture of the PDF emerges as the result of an iterated prediction and resampling process,
which takes into account the weights of particles induced by the fitness of local measurements
to the particle location in the map.

The prediction step generates new particles Z! from the old particles z! ; by randomly
updating the old particles based on the control u;. For example, in the robot localization
problem, the prediction step is typically implemented as the particle update step that applies
the odometry measurements to the old particles. In line 4, the predicted particle is evaluated,
considering the sensor measurement z;. The evaluation provides an importance weight for the
predicted particle Ti. The higher the weight, the better the sensor measurements comply with
the predicted state. Hence, the particle is evaluated as very likely if the weight is high.

In the correction step, the "trick" of the particle filter happens. Note that we only use the
term correction to maintain the link to the general structure of the Bayes Filter. However, in the
case of the particle filter, the correction step is a resampling step where we randomly resample
from the predicted set of particles X'; another set X, of n particles. The resampling procedure
is implemented as an importance sampling where the importance of a particle is determined by
its weight, which we computed in the prediction step. That means if a particle Z! is evaluated
as likely, the particle’s weight will be high. Accordingly, the probability that this particle is
resampled from X, is higher. Consequently, after the filtering step, only those particles will
be considered for the next iteration step that are evaluated as very likely. By incorporating
the importance weights into the resampling process, the distribution of the particles changes.
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While before the resampling step, the particles are distributed according to bel(z;), after the
resampling, they are distributed approximately according to the posterior bel(z;).

In contrast to the EKF, the particle filter can deal with arbitrary distributions and non-linear
functions. However, the accuracy of the calculated posterior probability critically depends on the
number of particles. The more particles are used for the approximation, the more accurate the
approximation will be. Nonetheless, more particles directly imply higher computational effort
since each particle needs to be evaluated individually. As a result, a trade-off between accuracy
and computation effort is necessary. Moreover, due to the random resampling procedure,
an unfortunate sampling sequence can lead to particle depletion. This problem happens if
particles cluster in regions with low probability, and the resampling can lead particles to vanish
or diverge from the correct solution. To overcome the problems, many different approaches
were suggested in the literature, and the interested reader might consult [18].

2.1.3 Optimization

While filtering approaches model the localization and mapping problem as an online state
estimation, where the system consists of only the current robot pose and the map, optimization
approaches estimate the entire trajectory of the robot from the complete set of measurements.
Hence, optimization approaches rely on least-square error minimization techniques instead of
incrementally updating the state as filters do.

A graph-based formulation of the problem has proven to be intuitive for localization and
mapping tasks. Especially in the context of SLAM problems, graph-based approaches for
optimization have become the State of the Art. While SLAM is not our focus here, the
graph-based formulation will play an essential role in this work. Therefore, this section provides
an introduction to graph-based SLAM. Graph-based SLAM solutions solve the full SLAM
problem consisting of estimating the posterior probability of the robot's whole trajectory
21, and the map m of the environment given all the measurements and the initial pose z:
p(x1.6,m | 214, U1, To). This is the core difference to filtering approaches that only consider
the last state, ignoring the trajectory before.

In graph-based SLAM, poses of the robot and the position of landmarks are modeled by
nodes in a graph. Spatial constraints between poses and landmarks resulting from odometry
measurements u,; or landmark observations z; are represented by edges between the respective
nodes. Figure 2.3 shows an exemplary SLAM-graph. Solving a graph-based SLAM problem can
be decoupled into two subtasks. The first subtask consists of the constructing the graph from
the raw measurements. This step is usually called the front-end. The second subtask, given
the edges of the graph, the most likely configuration of the poses and landmarks is determined.
This step is called back-end.

The front-end typically performs the data association and relates the raw measurements with
edges in the graph that constrain nodes. ldeally, this step involves the modeling of a full-fledged
random process. Yet, this strategy typically encounters a stumbling block: The modeling of
the data association gets mired in a combinatorial explosion. That is why usually, the data
association takes the shortcut of the maximum likely association, suppressing lower probability
associations. The goal in the back-end of the graph-based approach is to approximate the
posterior over the robot trajectory and the map. Under the assumption that the observations
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Figure 2.3: Exemplary SLAM-graph. Poses and landmarks represent the parameter blocks that
need to be determined. Those parameter blocks are represented in the graph by
nodes. Grey nodes with the car symbol visualize pose nodes, and blue star-shaped
nodes represent the landmarks. The edges between the nodes are measurements
that represent constraints between the connected nodes. The blue edges illustrate
observation constraints between pose and landmark nodes. The orange edges
illustrated odometry constraints between consecutive pose nodes.

are affected by Gaussian noise only and the data association in the front-end is correct, the
mean of the Gaussian that describes the posterior that we are interested in can be determined
by computing the configuration of the nodes that maximizes the likelihood of the observations.
Since we assume Gaussian observation uncertainty, the Maximum Likelihood Estimation (MLE)
of the configuration can be cast into a least-squares minimization problem that sophisticated
numerical solvers can cope with. While the front-end depends on the type of sensors we are
using, the back-end performs the probabilistic estimation process based on the abstract graph
representation. We will examine the back-end in the following to understand the strengths and
drawbacks of graph-based optimization approaches.

T
n

Let x = (xlT, o X )T be a vector of parameters, where each x; represents a generic
parameter vector. The parameter vector may represent, for instance, the robot's pose at a
certain time step or a landmark that we inserted into the graph in the front-end. For example,
if we consider a 6DOF pose, six parameters need to be considered, and in the case of a point
landmark, three parameters are considered by x;. Let z;; and Qi_jl represent respectively the
mean and the covariance of a measurement that relates x; and x;. While we interpret the
raw sensor measurements as mean values, the sensor manufacturer provides the measurement
uncertainty described by covariances. Typically, x; is a pose and x; a landmark. In that case,
z;; describes how the landmark x; was seen from the pose x; and Qi_jl describes the uncertainty
of the observation provided by the sensors. However, both nodes may also describe poses.

Then, z;; would be the odometry measurement. As a consequence, z;; can be seen more
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generally as a constraint between x; and x;, and the accuracy of the constraint is defined by
Q

ij-

The error function e(x;, X, z;;) measures how well the parameters x; and x; satisfy the
constraint z;;. Therefore, the error function computes the difference between the expected
observation Z;; for the given x; and x; and the real observation z;;. Note that the expected
observation Z;; comes from the sensor model that we defined for the EKF and the particle

filter as h(z;) (cf. Subsection A.2 and 2.1.2). As a result, the error is defined by
e(xi, X, Zij) = Zj; — 2ij(xi7 Xj). (29)

Since the e(x;,x;,z;;) relates to a measurement z;; with the covariance matrix QZ_Jl the
contribution of this error to the objective function that we seek to minimize is

Fij = e(xi, x5, Zij)TQije(Xi>Xj7 Zij). (2.10)

The quadratic formulation of the error in (2.10) results from the goal to determine the
distribution of p(x1.4, m | 21,4, u1.4, o). A satisfactory way to achieve that is the MLE. As shown
in [10], if all related random variables of a problem are Gaussian distributed, the MLE problem
becomes a least squares problem. Consequently, the quadratic formulation of the error in (2.10)
is only valid if we assume Gaussian uncertainties for the measurements. That means the core
assumption of the optimization approach is the Gaussian distribution of all related variables.

The full objective function is the sum of all quadratic errors that are considered in the graph
encoded as observation constraints in the edges

(i,7y€C

The goal in the back-end of the graph-based optimization approach is to find a set of parameters
x* that minimizes the objective function so that

x* = argmin F(x). (2.12)

So far, we just considered how the graph optimization problem can be formulated. The following
will examine how this least-squares problem in (2.12) can be solved. If a good initial guess x is
known that is comparatively close to the optimal solution x*, the numerical solution of (2.12)
can be obtained by using popular Gauss-Newton or Levenberg Marquardt (LM) algorithms [22].
The idea of such numerical solvers is to iteratively minimize the error by applying gradient
descent. Therefore, the error function is approximated by its first order Taylor expansion — as
introduced in the EKF — around the current initial guess x

e(X; + Ax;, X; + Axj,z;;) =: e;;(X + Ax) (2.13)
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The Jacobian J;; of e;;(x) is computed in X. Substituting (2.14) in the error term F;; in
(2.10) leads to

Fij ()v( + AX) = eij()vc + AX)TQijeij ()v( + AX) (215)
~ (eij + J,’jAX)TQZ'j<eij + JUAX> (216)
—— —_—— ————
Cij bijT H;;
= Cjj + Qb;l;AX + AXTHZ‘J'AX. (218)

For sake of simplicity we abbreviate e;;(X) by e;;. If we substitute the local approximation of
F;; in the full objective function (2.11) that considers all edges in the graph, we obtain

Fx+Ax) = Y Fy(x+ Ax) (2.19)
(i,5)eC

~ Y o+ 2b[Ax + AxTH;;Ax (2.20)
(i.j)ec

= c+2b"Ax + Ax"HAx. (2.21)

By setting ¢ = Zcij' b = Zbij and H = ZHU we obtain the quadratic form of the
linearized error as presented in (2.21). Since we aim to minimize the error, we seek to find the
increment Ax that minimizes (2.21). The optimal value of Ax is determined by solving linear
system

HAx = —b. (2.22)

The obtained solution for Ax is just an increment that improves the initial guess of the values
of the involved variables by reducing the error term. The new guess is x + Ax. However, the
new guess is not necessarily an acceptable solution. As a consequence, the whole procedure of
linearizing at X+ Ax (cf. (2.21)) and solving the linear system (2.22) needs to be repeated until
a defined termination criterion is met (Gauss-Newton algorithm). That means the optimization
approach computes incremental update steps and linearizes point-wise for each iteration. The
best solution for the problem defined in (2.12) is obtained by adding all increments Ax* to the
initial guess

x" =%+ Ax". (2.23)

A more elegant way to solve the linear system in (2.22) is to solve the damped version
(H—- A)Ax = —b. (2.24)

This solver extends the Gauss-Newton method and is called the Levenberg-Marquardt (LM)
method. The factor A introduces further damping and backup actions to the basic Gauss-
Newton to control the convergence. For more information on the LM method, consult [23,
24].

The remaining uncertainty of the obtained solution is represented by H — the information
matrix of the system. As defined above, H is obtained by summing up the matrices Jz;ﬂijJij
for each constraint. Hence, the structure of H depends on the Jacobian of the error function.
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Since the error function of the constraint only takes the values of two nodes into account, the
Jacobian for all parameters x has the form

Jj=(.. 0 A; 0 ... 0 By 0 ..} (2.25)
The terms A;; = ae%;{(,x)]x:;{ and B;; = %%ﬁhzk are the partial derivatives of the error
7 J

function concerning x; and x;, respectively. All other partial derivatives concerning the other
parameters are 0, as they play no part in the error term derived from the edge between the
graph’s i-th and j-th node.

Consequently, the H;; has a block structure with non-zero entries for the parameters that
represent the ¢-th and j-th node

H, 5 5 _ (2.26)

H,; has a very sparse structure since most entries are zero. As a consequence, the system

information H, which is the sum over all H;;, is also a sparse block matrix and is the adjacency

ijr
matrix of the graph. Figure 2.4 illustrates the structure of the matrix H.

The inverse of the system information matrix H is the covariance matrix that describes
the uncertainty of the estimated parameters. Note that the inversion of the sparse adjacency
matrix may result in a densely populated matrix. That means the inversion may become very
costly in computation for a large matrix H. While the system covariance matrix considers
the correlation between all parameters that may not be directly linked in the graph, those
correlations are often negligible. Consequently, the covariance of dedicated parameter blocks
can directly be extracted from the system covariance matrix by suppressing the correlation to
other parameter blocks (marginalization).

Optimization-based approaches also propagate the uncertainty of the measurements to the
estimated state through the Jacobian as the EKF does. Although the optimization performs a
linear approximation at each iteration step and can deal with non-linearities better than the
EKF, which only performs the linearization for the predicted state, the uncertainty propagation
is still potentially fraught with poor approximation. The optimization approach assumes —
similar to the EKF — the input and out uncertainties to be Gaussian distributed. However, this
assumption is only valid if the involved error functions (2.9) for all edges are linear with regard
to x. In general, this is not the case. Nonetheless, optimization-based approaches force the
output uncertainty to be Gaussian distributed. That is why the Jacobian needs to be used
for the uncertainty propagation, as only linear functions produce Gaussian distributions from
Gaussian input. That means, while the optimization provides a powerful method to compute
a very likely solution, it fails to provide a reliable estimate of the uncertainty of the state
parameters X.
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(c) Several steps later.

Figure 2.4: Structure of the system information matrix H of the exemplary graph in Figure 4.4
(based on [18]). The graph is visualized on the left, and the system information
matrix H is on the right. Non-zero blocks in H are colored blue, gray, or orange.
All white cells represent zero blocks. Figure 2.4a only considers the first observation
constraint. The concerning blocks are colored in H. The effect of an odometry
constraint is illustrated in Figure 2.4b. Odometry constraints populate the sub-
diagonal blocks with non-zero entries. The system information matrix for the whole
graph is shown in Figure 2.4c.
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Outlier Treatment — Robust Kernels

Outliers in the data association in the front-end are not always avoidable. Already a few
outliers are sufficient to let an optimization process diverge. The main problem caused by
outliers is that they generate significant errors. Since the error we want to minimize stems
from a quadratic objective function, the impact of outliers on the overall error may overshadow
the error of inliers. As illustrated in Figure 2.5a, the larger the measurement error, the more
significant its contribution to the overall error, so outliers will disproportionally influence the
optimization.

Hence, for optimization approaches, taking explicit care of outliers is vital. The literature
shows two popular outlier treatments in the least squares context. On the one hand, Random
Sample Consensus (RANSAC) approaches select the minimum number of measurements
required to satisfy the model, counting the total number of measurements in agreement and
repeating the process many times. The measurements are chosen randomly for each time. The
largest consensus is considered the inlier set, while the remaining measurements are discarded
as outliers. On the other hand, robust M-estimation is an alternative approach that addresses
the outlier treatment by exchanging the least squares cost function introduced in (2.10) by
a robust cost function (also called robust kernels) that decreases the influence of outliers.
According to the literature, the second method has proven to be a good choice for robotics
applications like SLAM and localization [25-29]. That is why we will stick to robust kernels to
deal with outliers in the context of least squares optimization.

The core idea of robust M-estimation is to map the quadratic error (2.10) to a weighted
error that down-weights the impact of large errors. The robust kernel determines the way
how the error is down-weighted. In the literature, different types of robust kernel functions
are suggested. In [25], a collection of robust kernels is presented and compared for different
optimization problems corrupted by outliers. To gain a general understanding of what those
kernel functions do, let us generally assume that a kernel function is described by

Fy; = p(Fy)), (2.27)
where F;; is the quadratic error from (2.10) for the measurement z;; connecting the nodes x;
and x;. The kernel function p maps the quadratic error to ]?‘ij. To reflect the weighted error in
the optimization, typically, the information matrix €2;; is updated based on a weight function
w(F;;) to obtain Qij = w(Fy;) - Q;; which replaces the original information matrix €2;;. All
the following calculations in the optimization procedure remain identical using the updated
information matrix QU

In this work, we will restrict ourselves to the Geman-McClure and Threshold error functions
out of a large family of kernel functions offered in the literature (cf. [25]). Figure 2.5a depicts
the resulting cost functions, while the weight of measurements with different errors in the
optimization is reflected in Figure 2.5b. We also plot the classical quadratic error and weight
without robustification for comparison.
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Figure 2.5: Figure 2.5a visualizes the robust cost functions and Figure 2.5b shows the cor-
responding weights. The cost function determines the impact of the error on
the optimization procedure. The weight function determines how the errors are
weighted to obtain the corresponding cost function.

The Threshold cost function — sometimes also called saturated cost function — clips all
errors that exceeded a predefined maximal error of ¢ to a maximally permitted error o and is
described by
F,; for F;; <2,

(2.28)
O'2 for Fij > t2

pr(Fij) = {
However, the saturated cost function typically sets the weight to update the information matrix
to
1 for Fij < t2,

2.29
0 for F'ij > 2 ( )

wr(Fyj) = {
Accordingly, all those measurements that exceed the error threshold are discarded from the
optimization as they do not have any impact due to zero weight. We illustrate this in Figure 2.5b.

The Geman-McClure kernel function [30] is

2.
S (230)

pem(Fyj) =

and is visualized in Figure 2.5a. In this expression, o is a parameter that defines the shape of
the cost function. This cost function weights larger errors lower than smaller errors as indicated
in Figure 2.5b. As a result, the impact of larger errors on the optimization result reduces. The
weight function is described by

0.2

(0+Fy)” (230

wem(Fij) =
The weight function is shown in Figure 2.5b and indicates that the larger the error, the closer
the weight converges to zero so that the influence on the optimization of measurements fraught
with larger error decreases. Summing up, robust kernels deal with outliers by down-weighting
the impact of large errors in the overall objective function by manipulating the information
matrix in the way sketched above.
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(a) Polyhedral. (b) Ellipsoidal. (c) Interval. (d) Subpaving.

Figure 2.6: Set membership approaches to enclose an arbitrary set S. S is colored blue and
the enclosure is colored orange.

2.2 Interval Analysis

Since the first proof of the existence of irrational numbers by the Pythagorean Hippasus of
Metapontum [31], the consideration of irrational numbers has raised the question of their
decimal representation. Using interval bounds to approximate unknown but bounded values has
been a widely and extensively used tool in mathematics. The well-known Greek mathematician
Archimedes already provided a reasonably small enclosure of the irrational number 7 [32].
By approximating the circle by an inner and outer 96-sided polygon, Archimedes concluded
Bonr< 2

With the advent of numerical computation, interval analysis gained further popularity. Due
to finite floating-point computations within computers, the representation of real numbers of
infinite precision inevitably leads to an approximation error. This prompted scientists to tackle
the question how to model the error, leading to the first notable book on interval analysis
in 1966, authored by Ramon E. Moore [33]. This work paved the way for the application
of interval analysis in various disciplines such as solving interval equation systems [34, 35],
advanced digital computer arithmetic [36, 37], recursive state estimation [38, 39], numerical
error propapgation [40, 41], and global optimization [42-45]. Although interval analysis has
been broadly applied in many different fields, this thesis will focus on the uncertainty modeling
of physical quantities. In robotics, we can determine bounds for measurement errors and
perform reliable computations. Employing interval analysis, the measurement uncertainties can
be reliably propagated to the involved physical quantities we seek to deduce from the uncertain
measurements.

Interval analysis is part of a large family of set-membership methods. Where interval
analysis applies intervals to enclose a set, other geometrical structures such as polygons [46],
ellipsoids [38, 47] or zonotopes [48] may also be used. Figure 2.6 depicts different types of
set-membership approximations of an arbitrary set S. Note that Figure 2.6d depicts a special
type of interval enclosure, where the set is represented by multiple subsets, which are intervals.
We call such a representation a subpaving. All set-membership approaches overestimate S.
We call this approximation of S the outer approximation since no region of S is outside of the
approximation. We qualify an approach to be better the less the approximation overestimates
the set we want to represent. As a result, the polyhedral and ellipsoidal enclosure seem to better
approximate S compared to the interval enclosure in Figure 2.6c. However, the computation
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with ellipsoidal and polyhedral sets can become convoluted. To solve robotic tasks, intervals
have proven to be an appropriate representation since efficient computations are possible.

Applying interval analysis to model the uncertainty of measurements and states in the context
of robotics implies fundamentally different assumptions compared to classical probabilistic
approaches. We must define a probability density function for the measurements to apply
a probabilistic approach. As explained in the previous section, a normal distribution of the
measurements is typically assumed. By propagating the probability densities via the state
equations to the density functions that describe the states, we obtain probabilities for individual
states. As discussed in the previous section, the exact propagation procedure is computationally
infeasible, due to which unavoidable approximations affect the propagation and potentially
distort the states’ probability density functions to an unacceptable extent.

In contrast to probabilistic approaches, interval approaches assume the measurement error
to be bounded. Those bounds are propagated via the state equations to the set of feasible
states represented by intervals. That means while interval approaches introduce the assumption
that the selected bounds enclose the correct measurement, probabilistic approaches define
probabilities on a set of measurements. The interval approach provides a set of feasible solutions
by applying the propagation tools, while the probabilistic approach provides probabilities for
individual solutions.

Consequently, classical probabilistic and interval analysis approaches model sensor errors
differently since they make different assumptions about the real world. Probabilistic approaches
assume the error distribution to be known, but interval-based approaches assume the error can
be bounded reliably so that the estimate encloses the correct value. However, none of those
assumptions are universally correct for the real world. The selection of the appropriate error
model always depends on what we want to compute and which assumptions fit the real world
best.

In the following, the notions and definitions are taken from Luc Jaulin’s book [49], Simon
Rohou’s Ph.D. thesis [50], and Raphael Voges' Ph.D. thesis [51]. For the numerical interval
computations, we employ the publicly available /BEX library [52].

2.2.1 Basic Notions and Operations

An interval [z] is a closed and connected subset of R. IR denotes the set of all intervals. The
interval [z] is defined by

2] =z, 7] ={reR|z<z<T}, (2.32)

where  and T set the lower and upper bounds of [z] as illustrated in Figure 2.7. The lower as
well as the upper bound can be infinite. In the case of z = T, the interval [z] is said degenerate.
Consequently, any real number can generally be considered a degenerate interval. The same
applies to the empty set &, which denotes the absence of a solution to our problems.
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Figure 2.7: Definition of an interval.

The actual but unknown value we aim to estimate — bounded by its interval estimation [x] —
will be denoted by z*. In the interval literature, the uncertainty of the enclosure [z] of the
desired value z* is given by the interval's width

w(lz]) =7 — z. (2.33)
To generate a commensurate metric that allows for direct comparison between interval analysis

and confidence intervals typical for probability theory, we will use the radius

T—T

r(le]) = = (2.34)

as a measure of uncertainty of x*. This enables the direct comparison with the standard
deviation in case of Gaussian uncertainties.

Moreover, the midpoint of an interval [z] is defined by
T+zx

mid([e]) = ==, (2.35)

The midpoint may serve as an initial approximation of z*.
Example 2.2.1. In the following, exemplary intervals, their radius, and their midpoint are
specified:

[] r(lz]) | mid(fx])
[—4, 6] 5 1
[5] 0 5

@ undefined | undefined

[—00, 00] 00 undefined

[5,00] | undefined | undefined

2.2.1.1 Operation on Sets

All operations defined in set theory are applicable to intervals. The intersection between two
intervals [z] and [y] is defined by

[]N[yl={z€R|z€[z]and z € [y] }. (2.36)

The intersection of two intervals always results in a new interval.
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The union is denoted by
[Z]U[y]={z€R|z€[z]orze[y]}. (2.37)

In contrast to the intersection, the union of two intervals is not necessarily an interval, as the
resulting set may not fulfill the connectedness property.
Example 2.2.2. [5,7] U [9, 10] is not an interval since the result is not connected.

To overcome this problem, we need to introduce the notion of an interval hull. We denote
the interval hull to the set X C R by [X], which represents the smallest interval containing all
values of X. Hence, the interval hull over [x] U[y] represents the smallest interval containing [x]
and [y]. As a consequence, ] U [y] C [[z] U [y]] holds. Note that the hull increases pessimism
in the estimate, as the hull may contain parts that are not part of the union.

Example 2.2.3. Exemplary operations are listed in the following:

= [3,5]N[4,6] = [4,5],

= [1,2]N[4,6] = @,

= [5,7]U1[9,10] = [5,10],

= 2]NO =0,

= [#] U [~00, 00] = [~00, o0]

2.2.1.2 Interval Computations

Besides set-theoretic operations, interval analysis also extends real arithmetic operators to
intervals. Let o € {4+, —,-,/} be one of the for classical operators. Applying an operator to
the two intervals [x] and [y] results in

[z]ofyl ={zoyeR |z €]y €[y }]. (2.38)

Hence, the result defines the smallest interval that contains all results for z ¢ y for every
x € [x] and y € [y]. As intervals represent a connected set, the computation of the operations
mentioned above only needs to consider the bounds. For instance, addition can be performed
by
[zl + [y =lz+yz+7] (2.39)

Definitions for the other classical operators can be found in [49].
Example 2.2.4.

= [3,5] 4+ [4,6] = [7,11],

» [1,2]00=0.

The extension of the basic operators from R to IR also leads to different properties of the

operators. For example the distributive law x - (y + z) = z -y + x - z does not apply to intervals
since

(2] - (ly] + [2]) < [a] - [y] + [2] - [2] (2.40)

holds. Further, the subtraction of an element by itself [z] — [z] # [0] does not result in
the neutral element of addition in general. Hence, dealing with intervals requires careful
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(a) Monotonic function. (b) Non-monotonic function.

Figure 2.8: Interval computation for monotonic and non-monotonic functions.

examination of the related equations, and often it is important to simplify equations to obtain
tighter intervals.

The arithmetic extension includes elementary functions such as sin, cos, and exp. Sometimes
the image of an interval [z] belonging to a function f is not necessarily an interval — as is the
case for discontinuous functions. Therefore, the evaluation of f([z]) — denoted by [f]([z]) — is
defined by the smallest interval enclosure containing all the images of [x] through f:

S1([z]) = { f(2) |2 € [2] }]. (2.41)

If f is monotonic, the interval evaluation simplifies to evaluating the upper and lower bound
as illustrated in Figure 2.8a. Since the property of a monotonic function is that it only increases
or decreases for an increasing argument, the bounds of the argument [z] are sufficient to
determine the resulting interval [f]([z]). For instance, exp is such a monotonic function for
which

lexp]([z]) = [exp(z), exp(T)] (2.42)
holds. However, treating non-monotonic functions is more complicated, as illustrated in
Figure 2.8b. For functions like, for example, sin and cos, the evaluation of the bounds only is

insufficient. Special algorithms must be considered to compute the image of such functions
[49].

2.2.1.3 Interval vectors

We define the Cartesian product of n intervals

o) = 1] % oo X [2a] = ([21] o [2a]) (2.43)

an interval vector — we also call it box — defining a subset of R™. The set of all interval vectors is
described by IIR"™. An interval vector represents an axis-aligned box, where the i-th component
is the interval that results from the projection of the box to the i-th axis. In Figure 2.9, a two
dimensional box [x] € TR? is illustrated. The already introduced operations on intervals are
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[21]

Figure 2.9: A two dimensional interval vector [x]| = [x;] X [x2] and the projected intervals.

extended to interval vectors by performing the corresponding operation on each component
of the interval vector. Similarly, interval matrices are constructed in analogy to the interval
vectors.

2.2.1.4 Inclusion functions

Let us consider an arbitrary function f : R™ — R™. If we compute the image set f([x]) for
every possible value in the input box [x], f([x]) does not necessarily result into a box. The
image set can have any arbitrary shape, contain disconnected subsets, and may also have holes,
as illustrated in Figure 2.10. The representation and computation of such complicated sets can
become computationally expensive. Therefore, we introduce the notion of inclusion functions
that approximate the complicated image sets by enclosing boxes.

We define an inclusion function [f] : TR™ — IR™ to enclose the image of [x] by f in a box
such that V[x]| € IR" : f([x]) C [f]([x]). The inclusion function aims to provide the interval
enclosure reasonably fast.

An inclusion function [f] is minimal if ¥[x], [f]([x]) is the smallest box containing f([x]).
We denote the unique minimal inclusion function as [f]*, as also illustrated in Figure 2.10. Any
non-minimal inclusion function is dubbed pessimistic since it overestimates the image set (cf.
Figure 2.10). Furthermore, we define an [f] to be thin if the image of any degenerate interval
vector [x] = x is also degenerate. [f] is said inclusion monotonic if [x]| C [y] = [f]([x]) C

[£]([y])-

Natural Inclusion Function

When the function f is composed of elementary functions such as sin, cos, \/6 and
operators +, —, -, /, the simplest way to obtain an inclusion function is to replace each variable
x; by its interval representation [z;] and each function and operator by their interval counterpart
defined on IR. We call a function [f] that is obtained this way a natural inclusion function of f.

A natural inclusion function is always thin and inclusion monotonic by construction. In general,
the natural inclusion function is not necessarily minimal because of possible dependencies
between variables and the wrapping effect (cf. Section 2.2.3). Nonetheless, if a function is
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T2

U1

Figure 2.10: Illustration of an arbitrary function f that maps a box [x] (blue) to a disconnected
image set f([x]) colored in orange. While [f]([x]) is an arbitrary inclusion function
to f, [f]*([x]) is the minimal inclusion function.

only composed of continuous operators and functions, and if each of the variables only appears
once in the equations, the natural inclusion function is minimal.

2.2.2 Constraint Satisfaction Problems (CSP)

CSPs formulate a family of problems in which we seek to find from an initial set X a subset S
that contains all values that satisfy all constraints defined in the CSP. Consider n variables
x; € R with 1 <7 < n, bound by m constraints of the form

f]'(l'l, ,l’n) = 0, ] < {1, ,m} (244)

Each variable z; belongs to an interval domain [z;]. For simplicity of notation we assemble all
variables to vector x = (ml mn)T. Hence, the prior domain for x is the interval vector
[x].

Furthermore, we arrange all constraints f;(x) = 0 to vector form so that our constraints
can be written as f(x) = 0. This corresponds to the CSP H which we formulate as

H : (f(x) = 0,x € [x]). (2.45)

The solution set S is the subset among the initial domain [x| that satisfies all constraints
defined in H.

S ={x = [x]|f(x) = 0}. (2.46)
Example 2.2.5. An exemplary CSP is given by its constraints and the initial domains of the
variable:
(5(31 — 35)2 + (l‘g - 35)2 - ’f’% =0
" f(x) =1 (v —7)*+ (22 —4.5)> —r3 =0

Tr1 — To+ b=0
1] = [1,9], 2] = [0.5,8], [r1] = [2,2.5], [ro] = [3.5,4.5], [b] = [L.5, 2.5]
(2.47)
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Figure 2.11: lllustration of how a contractor works based on the Example 2.2.5. Each constraint
of the CSP H is visualized. The first and second constraints are circles, while the
third is a stripe. The exact solution set is the intersection of all geometries and
is highlighted yellow. The contractor C contracts the initial set [x] to a smaller
subset [x'].

Figure 2.11 visualizes the CSP. The first and second constraints represent two ring areas. The
first constraint corresponds to the smaller blue area, and a green area visualizes the second
constraint. The third constraint is a stripe in the 2D space visualized in red. The solution set
of the CSP is the intersection highlighted in yellow. The initial domain for [x] is represented in
Figure 2.11 by the large black-bordered box.

Unfortunately, finding the solution set S of a CSP is generally NP-hard. To overcome this
difficulty, we use contractors to approximate the solution set with a reasonably tight enclosure
of S in polynomial time.

2.2.2.1 Contractors

A contractor C reduces the initially large domain [x] to a smaller domain [x’] C [x] such that
the solution set remains unchanged so that S C [x’] holds. In other words, only those subsets
of the initial domain [x| are dismissed by the contractor that are not part of the solution
set S. No bisections of the domains are allowed to maintain a polynomial time and space
complexity for contractors. In Figure 2.11, the general idea of a contractor is visualized for the
CSP introduced in Example 2.2.5. The contractor C takes the large initial interval box [x] as
input and contracts it to a smaller box [x'], that still contains the whole solution set, which is
highlighted yellow.
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Formally speaking, a contractor is an operator C : IR" — TRR", which is associated with a
constraint and returns a box C([x]) C [x]| without removing any value that is consistent with
the constraint. As such, a contractor is characterized by two fundamental properties:

1. Contraction: Vx| € IR", C([x]) C [x],

2. Consistency: (x € [x],C({x}) = {x}) = x € C([x]).
While the first property ensures that a contractor can only reduce but never enlarge a box, the
second property guarantees that the contractor never loses a point that satisfies the constraint.
Accordingly, a contractor can be applied to a box as often as it is deemed advisable without
losing parts of the solution subsets enclosed in the initial domain.

Often one is interested in finding the minimal contractor that manages to contract the
box [x] to the smallest box containing the solution set. In Figure 2.11, a minimal contractor
provides the smallest possible axis-aligned box that encloses the yellow region. Finding such a
minimal contractor is not trivial. However, if a contractor is found to be minimal, it allows
to efficiently determine the enclosure of the solution set by just applying it once. For the
non-minimal case, it may be required to iterate the contraction process multiple times.

Forward-Backward Contractor

One of the most important and widely used contractors is the forward-backward contractor
Cy,. It exploits that constraints are formulated as a sequence of operations involving elementary
operators and functions. Decomposing those constraints into their most basic components and
considering them for contraction in isolation, the C; is suitable to perform contractions for
non-linear constraints. We illustrate the construction of a forward-backward contractor based
on the following example.

Example 2.2.6. Let us consider the following CSP.

2 < f(x) = zy - exp(zz) + 25 =0 >' (2.48)

x1 € [x1], X9 € [13], 3 € [23]

In the forward pass, we split the function y = f(x) into the sequence of operations. Therefore,
we need to introduce intermediate variables a; for © > 0 and utilize the interval inclusion
functions for the operators:

1. [a1] = exp([z2]);

2. [ag] = [m1] - [aa];
3. as] = [x3]%
4. [y] = [ag] + [as].

Since our constraint is f(x) =y = 0, we can add the further step

5 [yl =[yIn]o].
If this process step leads [y] to be empty, the solution set of the CSP has to be empty. If not,
[y] is replaced by [0]. The final step is the backward pass, where all associated domains are
updated utilizing the inverse primitive operators and functions.
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(a) Complex shape that is hard to parametrize. (b) Approximation of the shape by a binary image.

Figure 2.12: Approximation of complex shapes by a binary image that denotes a pixel value of
1 if the respective region is part of the shape. The corresponding pixel is colored
black. Those pixels not part of the shape are colored white and have the value 0.

6. [as] = [az] N ([y] — [as)); [as] = [as] N ([y] — [az));
7. [x3] = [x3] N y/[as);

8. (o] =[] N [a] =[] 0 122;

9. [22] = [22] Nlog([ar]);

Steps 6 and 8 consist of two operations since the backward propagation is performed for binary
operators.

Generally, the forward-backward contractor is not minimal and must be applied multiple
times to obtain a reasonably small box. However, it is minimal if each variable only appears once
in all constraints. This said, the forward-backward contractor we introduce in Example 2.2.6 is
minimal.

Image Contractor

The forward-backward contractor is well applicable for those cases where we can describe
the solution set by a set of equations. However, describing an unstructured set S as depicted
in Figure 2.12a by a set of equations may become inconvenient. A parametric representation
seems inappropriate, especially if we think of arbitrary building maps of large cities. To deal
with such unstructured shapes, Sliwka et al. first introduced in [53] the image contractor.
Desrochers [54] used the contractor to solve localization tasks in unstructured environments.
Here we will stick to Desrochers’ notation in [54].

We need to describe the region by a binary image to apply the image contractor. Hence, we
need to approximate the region S by a set of pixels structured in a raster. The binary image
encodes for pixels with a non-empty intersection with S with the value 1, 0 otherwise. The
approximated binary image representation of the orange set in Figure 2.12a is colored black in
Figure 2.12b. Note that the approximation error depends on the raster size — the more pixels
the binary image contains, the more accurate the approximation will be. Furthermore, the
binary image representation of S always overestimates the region since we set all those pixels
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(a) Initial box [ny). (b) Result after applying the image contractor.

Figure 2.13: lllustration of the image contractor based on [54].

to 1 with a non-empty intersection with S. So by construction, we ensure that we never lose
any subsets of S.

The image contractor uses the so-called integral image of the binary image constructed
from the set S as explained above. The integral image is widely used in computer vision [54].
It represents and stores for each pixel the sum of pixel values located between the image's
top-left corner and the considered pixel. As a result, given a binary image i the integral image
I for the pixel position (n1,ns) is defined by

I(ni,no) = > i(n},nh) (2.49)

’ /
ny <ni, nQS”Q

The integral image has to be computed beforehand based on the binary image. Utilizing
the integral image, the number of 1-valued pixels in any rectangular region can be efficiently
computed by just four operations. Let [n| = ([nl} [nQ])T be a box aligned on the grid of a
binary image. We define the function ¢, which returns the number of 1-valued pixels in a given
box [n] by

¢([n]) = I(ny, n2) + (01, n2) — (M1, 2) — 1 (0, M3)- (2.50)

For example the box [ng] in Figure 2.13a contains three black pixels — that means ¢([ng]) = 3.
The aim of the image contractor Ciy, is to find the smallest box [n'] = Ci([no]) in the binary
image, that contains the same number of 1-valued pixels — which means that ¢([ng]) = ¢([n’])
holds. This is illustrated in Figure 2.13b. The algorithm of the image contractor Ci,([n]) = [m)]
for [n] = ([nl] [ng])T and [m]| = ([ml] [mQDT only consists of two min and two max
operations:

1. my =max <a: € [ni], ¢ G[ij]) = 0);



2.2. Interval Analysis 33

& - 5

S {Xin] S [Xout} S

(a) Initial boxes that partially i N o]
_ (b) Outer approximation (c) Outer approximation
overlap with S. The boxes .
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Figure 2.14: lllustration of a separator applied on different initial boxes in Figure 2.14a. The
contractioniresults for the set S are shown in Figure 2.14b, while the result
concerning S is shown in Figure 2.14c.

The first two operations determine the interval [m;] that defines the horizontal size of the
box. While the first operation determines the maximal lower bound = € [n;] so that the

T
box ([m, x| [n2]) does not contain any 1-valued pixels, the second operator computes the

minimal upper bound = € [ny] so that the box ([:p,nﬁ] [ng])T also does not contain any
1-valued pixels. By setting the bounds for [m;], we ensure that none of the 1-valued pixels
initially contained in [n] will be lost. The same operations are applied on the row interval [my)].

The efficiency of the image contractor mainly relies on the implementation of the min and
max operators. We implemented the operators using dichotomy, which yields logarithmic
complexity.

2.2.2.2 Separators

A contractor that is consistent to a set S replaces an input box [x]| by a smaller box [x'] so
that all of the initially contained subsets of S in [x] are preserved in [x’]. So by construction, a
contractor always provides the outer approximation of the set S. Consequently, the systematic
overestimation of S is the flipside of being sure never to lose parts of S. However, for some
applications, having the outer and inner approximation of the set S is useful. However, contrary
to the outer approximation, we do not directly compute the inner approximation. Instead, we
invert this problem to an outer approximation problem by contracting the initial box to the
complementary set S. This approach is handy since we can compute the outer approximation
using a contractor. Summing up, we apply two complementary contractors Cs and Cg on an
initial box [x] so that we obtain Cs([x]) = [xin] and Cs([x]) = [Xout|, where [x;,] defines the
outer approximation of the subsets inside S and [Xoy:] is the outer approximation of the subsets
outside S. We illustrate the complementary sets in Figure 2.14.
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Following the terminology in [54], we call the operator that separates an initial box into
two complementary subsets a separator. Thus, a separator S associated to a set S defines the
operation

S: IR" — IR" x [R" (2.51)
[x] = ([Xin]; [Xout])- (2.52)

The separator has the following properties

(i) [x] = [xin] U [Xout;
(i) [xaNS=[xINS, (2.53)
(i) [Xow) NS = [x]NS.

Note that the first property expresses the separation property, stating that the two sets are
complementary. The second property defines that [x;,] does not lose any subsets of S that
were already considered in [x]. In analogy, the third property describes that [x,,:] does not lose
any subsets of S that were already considered in [x]. Due to the separator’s properties, we can
also define it as a pair of contractors {Cs,Cg} such that for all [x] € IR" the complementarity
property

Cs(x]) U Gs(x]) = [x] (2.54)

holds. A separator that is consistent to the set S is minimal if and only if the two contractors
Cs and Cg are both minimal.

In what follows, we will use a special implementation of a separator dedicated to polygons.
This separator makes use of another separator which is the so-called boundary-based separator.
Hence, first, we will introduce the boundary-based separator and then describe the polygon
separator.

Boundary-based Separator

An alternative way to implement a separator instead of using two complementary contractors
is to consider the boundary S of the set S. If we can provide a contractor consistent to JS
and if we have a test that determines whether a given point is inside or outside S, we can come
up with a separator following the boundary approach. Let Css be the contractor consistent to
0S and Tg a test such that

Ts([x]) = (2.55)

true if [x] CS

false otherwise
that determines if [x] € R™ is inside or outside S. The boundary-based separator Sss performs
two steps. First, the separator applies Css to contract an input box [x]. That means this
operation provides a smaller box [0x], that includes the subset of JS ignoring if a subset is
inside or outside S. The resulting boxes are visualized in Figure 2.15. If we obtain [0x] C [x],
we can divide the initial input box [x] into subboxes as visualized in Figure 2.15. The number
of subboxes depends on how S and [x] are related to each other. In general, together with



2.2. Interval Analysis 35

[0x] = Css([x])

Figure 2.15: lllustration of the boundary separator based on the example introduced in Fig-
ure 2.14a. The boundary boxes [0x]| are colored blue. The boundary box divides
the initial box into multiple subsets that we call [x;] and [x3].

[0x], there can be at most five subboxes for the case that [x] fully includes S. In Figure 2.15,
the input boxes lead to three subboxes that we denote [x;], [x2] and [0x]. Since all subboxes
besides [0x]| cannot cross S — that means the remaining subboxes need to be either inside
or outside S — we can choose in each subbox besides in [0x] an arbitrary point, for instance,
the mid-point, and utilize Ts to determine if the subbox is inside or outside S. In Figure 2.15
the bottom example shows a case where [x;] is inside S and [x2] outside S. However, special
constellations such as the upper example may occur, where we obtain no interval box dedicated
to the inner part since both subboxes happen to be placed outside S. The result of the
separation for the bottom example in Figure 2.15 is given by

Sss([x]) = {[Xin], [Xout) }
{[6%] U [x1], [0x] U [xa]} (2.56)

But for the upper example [xi,] is empty and [Xo,] is determined by [0x] U [x;] U [x2]. Hence,
the union over all subboxes that are determined to be outside S and the boundary box [0x]
determines [Xou]. The union over all subboxes that are determined to be inside S and the
boundary box [dx] determines [x;,].

Polygon Separator

Closed polygons well represent structured environments such as buildings and rooms. Our
next step is to adapt the boundary-based contractor to polygons. Therefore let us consider the
border of a polygon. Since a polygon is defined as a composition of oriented line segments,
the polygon separator mirrors this configuration by multiple boundary-based contractors, each
corresponding to a different segment. Therefore, let us first consider the boundary-based
contractor dedicated to oriented line segments.
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P C{ai,bi} ([XD

\ ]

(2) Related variables to check if m lies on a line  (b) lllustration of the line segment contractor
segment. Claibi}-

Figure 2.16: The set described by a polygon is P. The connected vertices a and b span a line
segment which is a part of the boundary 0P. Figure 2.16a illustrates the related
variables involved in the constraints in (2.57). The point m does not fulfill the
first constraint since the vectors b — a and a — m are not collinear. Figure 2.16b
illustrated the line segment contractor Cya, b,1-

Let {a, b} be the line segment defined by a, b € R? as end and start point. A point m lies
on the segment m € {a, b}, if the two constraints

(2.57)
min(a,b) < m < max(a,b)

{det(b —a,a—m) =0,
are fulfilled. While the first constraint determines m to be on the line a and b span, the
second constraint checks whether m is within the segment determined by the end and start
point. We illustrate this in Figure 2.16a. In this example, vectors b —a and a — m are not
collinear, due to which m is not on the line and the first constraint is not fulfilled.

A general polygon P comprises n oriented line segments. We describe the i-th segment by
{a;,b;} for i € {1,...,n}. As a consequence, the border §P of a polygon is given by

P ={m e R*|3i € {1,...,n},m € {a;, b;}}. (2.58)

For each of the line segments {a;, b;} we define a contractor Cya, 1,3, that contracts an input
box to the boundary defined by the line segment. Therefore, we use the constraints defined in
(2.57) and build the forward-backward contractor described above. The line segment contractor
is illustrated in Figure 2.16b.
The union of all line segment contractors defines the contractor for the whole polygon
boundary:
n
Cor = | Claibir- (2.59)
i=1
The only component that remains to be added to complete the polygon separator is the test 7p,
which decides if a given point lies inside or outside the polygon. To accomplish this task, [54]
proposes to utilize the winding number test. This test is portrayed in Figure 2.17 and aims to
evaluate the total number of times the curve consisting of line segments travels around a given
point. The winding number depends on the orientation of the line segments, and therefore
we need to ensure that all segments of the polygon are consistently oriented. Considering the
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(a) The test point is inside since the sum of all ~ (b) The test point is outside since the sum of all
angles amounts to 2. angles is less than 27.

Figure 2.17: Winding number test to validate if a point m is inside a polygon P or outside.

polygon P defined by an ordered set of corner points v; € Vp, the winding number for a given
point m is defined by

1
i=1

= 21 i arctan? (det((vi - m), (Vi+1 - m)), (Vi — m)T(vH_l — m)) . (2.61)

i

If m is placed outside P, the winding number will be wn(m,P) < 1 (cf. Figure 2.17b),
otherwise if m is inside P (cf. Figure 2.17a). Note that 6; is the oriented angle from (v; — m)
to (v;41 — m). Now we have assembled all the necessary components to build the boundary-
based separator Sp for the polygon P as described above. We first apply the polygon-boundary
contractor Csp to obtain the subboxes as illustrated in Figure 2.15 and after that assign the
subboxes to the inner and outer parts by applying the in-polygon test Tp utilizing the winding
number test for an arbitrary point inside each subbox.

2.2.3 Pessimism and Wrapping Effect

One of the main challenges of applying interval analysis to robotics is pessimism, meaning an
overestimation of the uncertainty and, therefore, may end up with meaningless results. The
pessimism is mainly caused by two problems we want to discuss briefly in this section. However,
although we tend to overestimate the uncertainty, the reliability of the result is not affected.
Nonetheless, dealing with interval analysis, it is crucial to consider overcoming pessimism.

2.2.3.1 Dependencies between variables

Let us consider the following example.
Example 2.2.7. We subtract the same intervals:
[1,2] —[1,2] =[{a—bla € [1,2],be [1,2]}] =[1 —2,2—1] = [-1,1].

The subtraction is performed strictly according to the inclusion function of the subtraction
operator. We can generalize the example to the difference between two identical non-degenerate
intervals [z] — [z] = [z — Z,T — z] which is not thin. While subtracting the same element in
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R leads to the neutral element of addition 0, the interval counterpart in IR does not naturally
lead to a thin result. This example again highlights that the properties of basic operations on
intervals can differ from their equivalent in R. This issue appears if a variable is involved several
times in an expression, as in the example. The dependency between the variables directly leads
to unwanted pessimism.

A modification of the analytical expression is vital to avoid or at least reduce this effect.
We can reduce the pessimism implied by the dependency between variables by exploiting and
deleting common subexpressions to obtain a minimal expression representation. However, up
to now, there are no general methods adopted in existing interval solvers.

2.2.3.2 Wrapping effect

As illustrated in Figure 2.10, we introduce pessimism whenever we try to enclose a set that is
not an axis-aligned box since intervals and interval boxes are axis-aligned elements. We call
this phenomenon the wrapping effect. The successive evaluation of a function that suffers from
over-enclosure can cause pessimism to overgrow. To illustrate this problem, Moore introduces
in his book [33] an example where he applies consecutive rotations to a box. We give a similar
example in Figure 2.18. To overcome the wrapping effect, dividing the solution space into a
set of non-overlapping boxes (subpaving) and individually contracting those subsets is helpful.
While this approach significantly reduces pessimism, it comes with higher computation and
memory consumption costs. The following section provides more insights into that approach.

2.2.4 Set Inversion Via Interval Analysis (SIVIA)

An arbitrary solution set that may contain holes cannot be approximated by an interval vector
without introducing pessimism due to the wrapping effect. One way to cope with that problem
is to divide the solution space into multiple non-overlapping boxes and to evaluate each box to
see if it contains parts that belong to the solution set. As a result, instead of a box wrapped
around the solution set, the goal, for now, is to represent the approximation of the solution set
by a set of boxes — called subpaving. In particular, subpavings become handy for set-inversion
problems.

Why shall we consider the inversion of a function in the context of robotics? To answer this
question, let us consider, for instance, the localization problem. Let x be the unknown pose
of the robot. Further, let y be the measurements the robot perceives from its pose x in the
mapped environment m. Typically, in robotics, the measurement function f(x) = y that maps
a pose to local measurements under consideration of the map is known. This function is an
analytical description of how the utilized sensor perceives its environment m. However, in the
localization problem, the local measurements y are known, and the goal is to determine the
pose X given the local measurements y and the map m. That means, to solve the localization
problem, we need to invert the measurement function f~!(y) = x given the map m to obtain
the pose. SIVIA is an inversion approach for sets that uses subpavings. In the following, we
will introduce subpavings and the SIVIA algorithm.
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Figure 2.18: lllustration of the wrapping effect when a robot performs rotation. A black line
visualizes the robot’s trajectory, and the positions at different points in time are
illustrated with blue boxes. The robot starts the trajectory in the bottom left.
Here, the pose uncertainty is very small, shown by a red interval box. Also, for
the next pose in the trajectory, the enclosing interval box (black) is small since no
rotation was involved. However, the robot rotates between the second and third
pose, as illustrated in the figure. The axis-aligned box that encloses the rotated
black box is colored orange. Here, the wrapping effect leads the orange box to
overestimate the robot's position due to the property of an axis-aligned box. The
movement from the third to the fourth position again involves a rotation, and
further overestimation is introduced. The successive rotation of the robot leads
to a large enclosure (red box at the end) that highly overestimates the position
uncertainty.

2.2.4.1 Subpaving

The approximation of an arbitrary set X C R™ with a union of non-overlapping boxes

K = {[xi], ..., [xn]} (2.62)

is usually thinner compared to a single box [x] that contains X due to the wrapping effect.
We call the set of all boxes K a subpaving. We can obtain a subpaving by applying a finite
number of bisections and selections on [x] as illustrated in Figure 2.19a. The initial box [x] is
the large box that fully contains the set X. By recursively bisecting [x] and selecting those
parts that contain the solution set, we obtain a set of subboxes as a union that approximates
X with less pessimism compared to [x]|. We call this subpaving regular. For interval boxes in
higher dimensions, the question of how to bisect those boxes may arise. Typically the widest
dimension is chosen to be bisected. This is also why the subboxes in Figure 2.19 have different
sizes. However, selecting the widest dimension is just a heuristic that has proven to provide
good results in computing a subpaving efficiently. That means another strategy to divide the
solution space is also valid and sometimes more favorable depending on the solution set we
seek to approximate.



40 Chapter 2. Basics

(a) llustration of a subpaving as a result (b) Outer and inner subpaving. While the inner subpaving X
of recursive bisection and selection. is colored orange, the outer subpaving X blue.

Figure 2.19: Visualization of regular subpavings.

Generally, two subpavings are used to approximate a set X. While the inner subpaving X
only consists of boxes that are fully included inside X, the outer subpaving defines the outer
approximation and is denoted by X. For example, the subpaving in Figure 2.19a is an outer
subpaving. As a consequence,

XCXCX (2.63)

holds. Figure 2.19b visualizes the different types of subpavings. Usually, we are interested in
the outer approximation of a set, and therefore, in this work’s scope, we will focus on the outer
subpaving.

2.2.4.2 SIVIA algorithm

The SIVIA algorithm is a set inversion approach that allows approximating the set X for an
arbitrary image set Y that are linked by a possibly non-linear function f : R® — R™ by

X={xecR"[f(x) €Y} =f'(VY). (2.64)

SIVIA is a branch and bound algorithm that utilizes the subdivision of the solution space
to compute the inner and outer subpaving enclosing the solution set. Therefore, it uses the
inclusion function [f] : IR™ — IR™. An exemplary version of the SIVIA algorithm is shown
in Algorithm 2. The algorithm needs as an input the inclusion function [f] and the image
set Y as described above. Furthermore, we need to provide an initial (possibly very large)
box [x,] that encloses the outer approximation X of the solution set X. The accuracy of the
outer approximation depends on an additional parameter ¢ that determines the minimal width
of a box that we consider for bisection. Internally, SIVIA uses a stack that stores all those
boxes that need to be evaluated. Hence, the initial large box [xo] is inserted into the stack as
depicted in line 1. We can encounter four cases for each box stored in the stack. For reader
convenience, we also provide a visual explanation of the successive steps of the SIVIA algorithm

and the different possible cases in Figure 2.20.
1. If [f]([x]) has an empty intersection with Y, then [x] does not belong to X and does not
need to be further considered as shown in Algorithm 2 lines 4 and 5 (cf. Figure 2.20b).
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(a) [f]([x]) has a non-empty intersection with Y and the width is larger than e. Hence, x| needs to
be bisected.
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(b) [£]([x]) has no intersection with Y. As a result, [x] cannot be part of the solution X and can be
discarded.
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(c) [f]([x]) is fully contained in Y. The box [x] is part of the inner subpaving X as it does not contain
any parts that are not part of the solution set.
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(d) [f]([x]) has a non-empty intersection with Y but the width of [w(z)] is smaller than e. That
means [w(z)] is not further bisected and is considered as part of the outer subpaving X.

Figure 2.20: Visual explanation of the successive steps of the SIVIA algorithm with the different
possible cases.
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Algorithm 2: SIVIA
Data: [f], [xo], Y, €
Result: X, X
// Initialize the stack S.
1 S.push([xo]);
2 while S # @ do
3| [x] =top(5);
4 if [f]([x]) Y = @ then
// [x] cannot be part of the solution set.
5 continue;
Ise if [f]([x]) C Y then
// [x] is an inner subset of X.
X=XU[x]
X =XU[x];
Ise if w([x)] < € then
// [x] partially overlaps with X but too small for bisection.
10 X =XU[x];

o
0]

o

11 else
// [x] partially overlaps with X, needs to be bisected.
12 ([x1], [x2]) = bisect([x]);
13 S.push([x1]);
14 S.push([x2]);
15 end
16 end

2. If [f]([x]) is entirely in Y, then [x] belongs to the solution set X and needs to be inserted

to X and X as presented in Algorithm 2 lines 6 to 8 (cf. Figure 2.20c).

3. If [f]([x]) partially overlaps but is not entirely in Y and if the width of the box is lower

than ¢, then it is not bisected and is determined to be only part of the outer approximation
X as described in Algorithm 2 lines 9 and 10 (cf. Figure 2.20d).

4. Otherwise, we bisect [x] and push the resulting subsets to the stack to be considered in

the successive iterations (Algorithm 2 lines 11 to 13 and cf. Figure 2.20a).

The parameter € determines the precision of the approximation of the solution set. The
smaller €, the more bisections are performed, and the smaller the boxes on the outer region of
the outer subpaving will get. Nonetheless, this comes with the cost of higher computational
effort and memory consumption. Figure 2.21 shows examples of different accuracies for the
SIVIA-based computation of a set.

The branch and bound approach that SIVIA introduces is not only handy for set inversion
problems. Also, in the case of pessimistic contractors, SIVIA can increase the accuracy of the
result by applying the contractor on subsets of the initial box. Algorithm 3 shows a simple
version of the SIVIA algorithm, which utilizes a contractor C. Notice that the contractor C
is used to reduce the size of the box [x] in line 4 before it is bisected. As a result, coupling
the SIVIA algorithm with contractors decreases the time complexity since potentially fewer
bisections become necessary for a fixed accuracy e. Although applying a contractor in the SIVIA
algorithm provides more accurate results, the computational effort and memory consumption
increase compared to the contractor-only approach. Unfortunately, the computation time
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(a) Low accuracy since € is large. (b) High accuracy since € is small.

Figure 2.21: Representation of a set by subpavings computed by SIVIA with different accuracy

levels. The outer subpaving is colored blue and the inner subpaving is colored
orange.

Algorithm 3: SIVIA with contractor

a b~ W N =

(=]

10
11
12
13
14

Data: C, [x(], €
Result: X

//

Initialize the stack S.

S.push([xo]);

whi

end

le S+ @ do

[x] =top(S5);

x] = C([x));

if [x] = @ then

// [x] cannot be part of the solution set.

continue;

Ise if w(x) < € then

// [x] partially overlaps with X but too small for bisection.
X =XU[x];

else

// [x] partially overlaps with X, needs to be bisected.
(Bxal, [xa]) = bisect([x]);

S.push([x1]);

S.push([x2]);

o

end
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increases exponentially with the dimension of x. If we have fewer dimensions, utilizing SIVIA to
improve the results is a good choice. However, the more dimensions we consider for bisection,
the more subsets must be evaluated. So, in the case of more dimensions, it is worth prioritizing
the dimensions and only bisecting those (hopefully) few dimensions mainly affected by the
pessimism of the contractor.

2.2.5 Relaxed intersection

The core assumption for the application of interval analysis is that the correct value x* is
contained in the interval [x|. That means if we have n measurements that we use to construct
n measurement intervals [x;] with i € 1, ..., n taking the measurement uncertainty into account,
we assume that all measurement intervals enclose the true value x* that we would obtain if we
would have a perfect error-free measurement. The selection of the error bounds of [x;| need to
be carefully chosen. If we account for large errors that might happen on rare occasions, the
interval widths will inflate significantly, and we will obtain large meaningless intervals. On the
other hand, if we choose the bounds too tight, the assumption that x* has to be contained in
[x;] can be violated. That means choosing the interval bounds as tight as possible and as wide
as necessary is vital for interval-based approaches.

Since gross errors like outliers are rare, considering those large errors in selecting the error
bounds often leads to large meaningless intervals. Furthermore, in many cases, it is not even
possible to provide error bounds on outliers. That means we need to take such gross errors
differently into account. Therefore, we introduce the notion of relaxed intersection in this
section.

Let us consider a simple example.

Example 2.2.8. Let the four intervals [z1] = [-1,1], [z2] = [-2,0], [x3] = [-1,3] and
[x4] = [1, 2] be the measurements of same value. However, the intersection of all intervals is
empty

[z1] N [xe] N [x3] N [24] = @. (2.65)

To allow outliers in our interval-based computations, it is possible to perform a g-relaxed
intersection [55]. This robust intersection approach tolerates maximum ¢ outliers while all

other intervals have to overlap. Therefore, we need to specify the number ¢ that reveals how
{q}
many outliers we encounter. We denote the g-relaxed intersection by ﬂ [x;].
1<i<n
Figure 2.22 visually illustrates the relaxed intersection for different values for ¢q. Considering

Example 2.2.8, the 1-relaxed intersection results into

{1}
ﬂ [Xz} = [_1’0]7 (266)

1<i<4
while the 2-relaxed intersection is
{1}

N x]=[-1.2). (267)

1<i<4
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Figure 2.22: lllustration of the g-relaxed intersection.

2.3 Sensor Models

In this section, we introduce the sensors we employed in this work. The introduction includes a
general overview of the operating principle and a model of each sensor. Since this work focuses
on robot localization, our sensors can generally be categorized into global and local. While
global sensors provide information about the global location of the vehicle, local sensors provide
information about the vehicle's immediate environment. While the cameras and LiDAR sensors
provide local data, GNSS sensors provide global positioning data. First, we will introduce stereo
cameras and LiDAR sensors in Subsection 2.3.1 and 2.3.2. Finally, the global GNSS sensor is
introduced in Subsection 2.3.3.

2.3.1 Stereo Cameras

In this work, we use a stereo camera system that combines rich projective image information and
provides depth data. First, we introduce the monocular pinhole camera model in Part 2.3.1.1.
Based on the monocular camera model, we will consider the multi-view stereo vision case and
provide a summary of the epipolar geometry in Part 2.3.1.2, which is the basis for interval-based
feature reconstruction.

2.3.1.1 Monocular Camera Model

A figure of a camera that we used in our experiments and a schematic structure are shown in
Figure 2.23. In contrast to LiDAR sensors, optical cameras are typically passive measurement
systems. An optical lens system first focuses visible light passing through the camera aperture.
Figure 2.23b illustrates the lens system by a simplified single lens. The bundled light is refracted
to a focal point, called the projection or optical center. The actual sensor is installed behind the
projection center. The imaging sensor consists of several tiles, referred to as pixels. The tiles
are coated with semi-conductive materials. When visible light hits the tiles, a voltage difference
is generated due to the photoelectric effect, which is measured electronically. The higher the
intensity of the light, the higher the generated voltage. The most commonly used imaging
sensors are Charged-Coupled Devices (CCD) and Complementary Metal-Oxide Semiconductor
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(a) FLIR camera with a lens system.

(b) Simplified illustration of the operation of a projective
camera.

Figure 2.23: Figure 2.23a shows a FLIR Grasshopper3 camera equipped with a Fujinon lens.
Figure 2.23b depicts a simplified schematic of a camera’s operation.

(CMOS) sensors. As a consequence, the imaging process performs a discretization of the
continuous environment to a discretized image plane. The image resolution is determined by
the number of pixels on the imaging sensor.

To mathematically describe the mapping between the 3D environment and the 2D image,
the pinhole camera model is used [56]. Although in the actual camera system, as shown in
Figure 2.23, the focal point is generated by the lens system, the pinhole model approximates
the projection by idealizing the camera aperture by a point that coincides with the projection
center and defines the origin of the optical camera frame C. Note that the approximation
neglects the lens's distortion behavior, and that is why the pinhole model needs a distortion
correction which we will introduce later. Figure 2.24 shows the pinhole model. To simplify the
schematic figure, the image plane (depicted in gray) is projected in front of the pinhole. In
reality, however, it is placed behind the projection center resulting in an image that is rotated
by 180°. Thus, we exploit the point-symmetry of the camera projection. Based on the pinhole
model, the projection of a 3D point onto the 2D image plane is defined by

[p Pz fac 0 ¢ Pz
A ( . ) =X p, =10 f ||| =K “p. (2.68)
1 0 0 1 Cp,

T

The 3D point “p = (Cpx “p, sz) is described in the camera frame that is shown in
T

Figure 2.24. The image pixel point is described by p = (Ipx Ipy) and defines the pixel

position in the image frame /. The focal lengths f,, f, and the principal point (Cw cy>T
are intrinsic camera parameters that define the projection matrix K. The intrinsic camera
parameters are determined by a calibration procedure beforehand, and we assume to know
those parameters in the scope of this work. Note that the projection of a 3D point to the 2D
image plane is invariant to scale. That means if “p is located at a different distance concerning
the camera center along the observation ray, the same pixel is captured. As a result, it is
impossible to reconstruct a 3D point unambiguously only from its pixel point in the image.
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Figure 2.24: lllustration of the pinhole camera model. The figure is adopted from [51].

That is why in (2.68) on the left side, the unknown scale factor A is introduced. Note that A
determines the distance of the measured point to the projection center. Since the camera does
not capture this information, the camera only provides bearing information for points detected
on the image plane.

Using the pinhole model, we have neglected the distortion of the lens system up to this point.
In the literature, typically, the radial and tangential distortions are considered. To compensate
for the distortion, the image pixel positions must be corrected, often called undistortion or
rectification. After removing the distortion, the pinhole model becomes applicable. To remove
the distortion, the radial and tangential distortion parameters ki, ks, k3, p1, and ps need
to be determined during the camera calibration. The correction of a pixel 'p = (x y)T is
determined by

7’2 — .CE2 + yQ’ (269)
v = (1 + kyr? + kor® + ksr®) + 2p1oy + po(r? + 22%), (2.70)
Y = y(1+ kyr? + kor® + ksr®) + pi(r® + 29°) + 2poay. (2.71)

T :
The new pixel position p’ = (a:’ y’) is the distortion-free pixel position and satisfies the
pinhole model. In the scope of this work, we assume that the distortion parameters are
determined by the calibration accurately so that we rectify the images before further processing
them.
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Figure 2.25: Epipolar geometry for two cameras. The gray cones represent cameras. The
image planes are facing forward so that the FoV of both cameras overlap. The
epipolar geometry describes the correspondence between the left and right image
points.

2.3.1.2 Stereoscopic Model — Epipolar Geometry

A monocular camera only provides bearing information as the depth information is lost due
to the projection of the scene to the image plane. To reconstruct the depth information,
depth sensing technologies like LiDAR can be utilized as suggested in [57]. However, LiDAR
sensors provide a relatively sparse representation of the scene compared to cameras. Another
way to determine the scale is to use another camera that sees the same scene from another
perspective. If the calibration parameters and the relative transformation between the cameras
are known, the depth of the commonly observed 3D point can be determined from triangulation
as illustrated in Figure 2.25a. However, initially, we do not know which image points of the left
and right image correspond to the same point in the 3D scene. Stereo matching is a non-trivial
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(a) The stereo cameras are almost parallel. (b) The cameras are perfectly parallel.

Figure 2.26: The more similar the camera’s orientations are, the more parallel the epipolar
lines become since the epipoles are shifted further apart. For the stereo-rectified
setup, the epipoles are shifted to an infinite distance, due to which the epipolar
lines degenerate into horizontal lines.

problem with a long research history in computer vision [56]. To determine if a point in the
left corresponds to a point in the right image, we use feature detectors that extract distinct
features in the images and determine so-called descriptors. Descriptors represent a formal
description of a feature point and are unique. By comparing the descriptors of feature points
in the left and right images, we can match the features with the most similar descriptors. As a
result, based on the feature matching, we know which points on the left image correspond to
points in the right image that captures the same 3D point in the scene.

Now that we know which image points correspond, we can continue with the geometric
reconstruction of the 3D point. Therefore, let us consider again the pixel point in the left
image. As the pixel point spans an observation ray on which the observed 3D point has to
lie (cf. Figure 2.25b), the observation ray of potential positions generates a line of potential
corresponding pixel locations in the right image. This line is the so-called epipolar line.
Furthermore, the projection centers of both cameras and the 3D point span the so-called
epipolar plane (blue plane in Figure 2.25¢). The epipolar plane inherits the baseline between
both cameras. The intersection of the epipolar plane with the image planes defines the epipolar
lines. As illustrated in Figure 2.25d, all epipolar lines intersect at one point because all epipolar
planes inherit the baseline. This point is the so-called epipole.

The epipolar geometry between two cameras is solely determined by the relative pose of
the cameras. Figure 2.25 demonstrates the epipolar geometry for an arbitrary orientation
between the cameras. Since matched image points lie on corresponding epipolar lines, obtaining
a convenient orientation of the epipolar lines is favorable to accelerate the stereo feature
matching. Figure 2.26 depicts the epipolar lines for different relative orientations of the
cameras. The edge case where the cameras are oriented exactly parallel represents the most
convenient configuration at which the epipolar lines degenerate to parallel horizontal lines in
the image plane. This configuration is, in particular, convenient for stereo feature matching, as
corresponding features are located on the same image row, simplifying the feature matching.

However, in practice, obtaining a perfect parallel orientation of the left and right cameras
is impossible. That is why in stereoscopic vision, often a stereo-rectification is performed.
The core idea of the stereo-rectification is that if we have almost parallel cameras that are
slightly rotated with respect to each other, to correct the images in such a way that we obtain
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(a) The Velodyne HDL-64E is an exem-
plary mechanical LiDAR with 64 scan-
lines. [58]
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Figure 2.27: A mechanical LiDAR has mechanically rotating parts that cover a large FoV.

images that are identical to images that perfectly parallel cameras would have taken. The core
ingredient of the stereo-rectification is to apply a so-called homography that rotates the images
accordingly. This type of transformation maps points from one plane to another plane — in our
case, a slightly rotated plane to obtain the stereo-rectification. The stereo camera calibration
determines the homography matrix. While the monocular camera calibration determines the
intrinsic camera parameters, the stereo calibration determines the relative transformation
between the stereo camera pair used for the stereo-rectification. In the scope of this work, we
assume that the calibration parameters are accurately known. Furthermore, before applying
our algorithms to the stereo images, we stereo-rectify them to fulfill the assumption of parallel
cameras.

2.3.2 Light Detection And Ranging (LiDAR) sensors

Light Detection And Ranging (LiDAR) sensors are laser scanners classified as active optical
measurement systems. LiDAR sensors rely on the Time of Flight (ToF) principle. The distance
between the sensor and the reflecting target is determined by measuring the time delay between
the emission and reception of the light signal and by considering the speed of light. The
wavelength of the emitted light depends on the field of application. However, infrared light
with 905 nm is typically used in the automotive sector and robotics. In recent years, new LiDAR
technologies have been developed. Besides the traditional pulsed mechanically rotating LiDAR,
new ranging mechanisms, beam generation, and deflection technologies are becoming State of
the Art. We want to briefly summarize here and focus on the LiDAR technologies utilized in
the scope of this work.

LiDAR sensors are typically categorized concerning the ranging technology and the mechanical
structure. The ranging technology defines how the depth information is deduced from the
emitted and received signal. Therefore, different ranging technologies employ different types
of light signals. The LiDAR ranging technologies can be categorized into three different
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Figure 2.28: A MEMs LiDAR works with microelectromechanically controlled mirrors for beam
deflection. Using mirrors, different scan patterns can be driven. Typically, Lissajous
patterns are used.

ToF principles: the pulsed ToF, Amplitude-Modulated Continuous Wave (AMCW) ToF, and
Frequency-Modulated Continuous Wave (FMCW) ToF [59].

» The most widely used ToF principle is the pulsed ToF which sends a light impulse that is
diffusely reflected on the target and is perceived by the sensors receiver diode. The time
delay between the emission and reception of the very short impulse determined the range
measurement.

» Compared with pulsed ToF LiDARs, AMCW ToF LiDARs use the intensity-modulated
optical signal rather than the pulsed optical signal for sensing. To determine the range,
the AMCW analyzes the phase difference between the transmitted modulated and received
light. While the pulsed ToF principle is suitable for long-range distances, the AMCW
ToF is better suitable for moderate distances and provides more accurate distance
measurements.

» FMCW LiDARs emit a frequency-modulated light signal and compare frequencies of the
reflected signal. While the time delay reveals the target's distance similar to the pulsed
ToF principle, the frequency modulation makes detecting the Doppler effect possible.
Consequently, in addition to the distance of the target, its relative velocity is determined.
The FMCW ToF principle traditionally comes from the FMCW Radar signal processing.
Applying the FMCW ToF principle to nm-wavelength signals requires expensive and
dedicated hardware.

In the automotive sector and robotics, mainly pulsed LiDARs are utilized due to their simple and
cost-effective ToF principle. Nonetheless, FMCW LiDARs were comparatively new when this
manuscript was written and represent a promising alternative to the rather simple pulsed version
since dynamic objects can be detected and distinguished in just a single measurement. [59]
Regarding the mechanical structure, LiDARs are distinguished between mechanical and solid-
state LiDARs. Mechanical LiDAR sensors traditionally use a mechanical rotation mechanism
to achieve a wide FoV scanning. As illustrated in Figure 2.27, mechanically rotating parts such
as tilting mirrors deflect the light signal. While such LiDARs have a large FoV, the mechanical
structure makes the sensor bulky and sensitive to vibrations. In contrast, solid-state LiDARs do
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not have any mechanical components. At present, different topologies are used to implement
solid-state LiDARs. The most widely used schemes are Flash-based, Microelectromechanical
systems-based (MEMs), and Optical Phased Array-based (OPA) LiDARs:

» Flash LiDARs use a single light flash to illuminate the measured scene simultaneously.
With a working principle similar to a camera flash, the sensor measures the distance
of surrounding targets by recording the reflected light at different times. The main
disadvantage of this technology is its sensitivity to retroreflective materials. [59, 61, 62]

» MEMs LiDARs substitute the mechanical part of the mechanical LiDARs with electrome-
chanically controlled mirrors. By cascading multiple microelectromechanically tiltable
mirrors to adjust the emission angle of the laser beam, 3D depth perception is possible,
enabling miniaturized LiDAR sensors. Figure 2.28 illustrates the schematic structure of
MEMs LiDARs. [59, 61]

» OPA LiDARs make use of a microarray of independent emitters. By controlling the
timing between the signals transmitted by each antenna, the beam direction is controlled
without a mechanical rotation [59, 62].

In the scope of this work, we use a traditional mechanical and a solid-state MEMs LiDAR
sensor presented in Chapter 8.

Independent of the LiDAR principle, each laser beam provides the distance r to the reflecting
target. Depending on the LiDAR topology, the polar (vertical) angle a and the azimuthal angle
[ as exit angles with respect to the LiDAR reference frame are determined for each laser beam.
Computing the exit angles depends on the intrinsic calibration of the sensor. We compute the
3D coordinates of any measured point by converting the spherical coordinates r, o and 3 to

Cartesian coordinates
x r-sina - cos 3
p=|y|=]|r-sina-sing|. (2.72)
z 7. Cos o

However, the intrinsic calibration of the sensor is not perfect. As a consequence, deviations
can occur to all three spherical coordinates. Those deviations are modeled as uncertainties
of the measurement. Classical probabilistic approaches model the uncertainty by a Gaussian
distribution. In contrast, in this work, we will account for those deviations by defining
interval bounds on the uncertainty of the spherical coordinates as suggested in [51, 57]. The
core idea is to inflate the spherical coordinates by the maximum possible errors A,, A,,
and Ag, specified by the manufacturer. Thus, we obtain the intervals [r] = [r — A, r + A, ],
[a] = [a — Ay, a0+ A, and [B] = [ — Ag, 5+ Ag|. By extending (2.72) to interval operators
and using the spherical interval parameters, we obtain a box [p’] as illustrated in Figure 2.29. As
stated in [51], the interval-based error model up to this point only considers imperfect intrinsic
calibration and potential environmental impacts such as humidity and changing reflectance of
surfaces. However, the initial footprint of the laser beam is not considered. In the scope of
this work, we will neglect the minor impact of the initial footprint.
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Figure 2.29: Transformation from spherical interval coordinates to the Cartesian coordinate
frame leads to an inflated box. Hence, each measurement point p is inflated to
box [p’] that encloses the correct target position p*. The figure is adapted from
[57].

2.3.3 Global Navigation Satellite System (GNSS)

GNSS is a system for positioning and navigation on Earth and in space using signals emitted by
satellites that orbit the Earth. The term GNSS generally covers all existing and future global
satellite systems. To date, there are four different fully operational GNSSs:

= The Navigational Satellite Timing and Ranging — Global Positioning System (NAVSTAR

GPS), often abbreviated by GPS, is the most widely used system developed and operated
by the United States Space Force. Currently, 32 satellites exist, of which 24 are used in
the core constellation to maintain good coverage.

= The Global'naya Navigatsionnaya Sputnikovaya Sistema (GLONASS) is a Russian GNSS

operated by Roscosmos. GLONASS also uses a constellation with 24 satellites, while 26
satellites are orbiting.

= The European Union Agency operates the European Galileo GNSS for the Space Pro-

gramme (EUSPA) and the European Space Agency (ESA). Currently, there are 30
satellites, of which 24 are active and six are spare.

» The Chinese GNSS BeiDou is operated by the China National Space Administration

(CNSA). BeiDou uses 30 satellites, while 35 are orbiting the Earth.
Furthermore, different supplementary systems exist that augment the GNSSs. [63]

Although different GNSSs exist, the basic principle of all systems relies on multilateralism
based on the distances of the measured point to the observed satellites. Figure 2.30a illustrates
the principle of satellite-based positioning. Each satellite broadcasts an electromagnetic signal
that consists of multiple components. The physical layer defines the carrier frequency as
the high-energy carrier signal on which further information is modulated (phase modulation).
Two further data layers are modulated onto the carrier frequency that convey the information
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Figure 2.30: The general principle of how GNSSs works is depicted in Figure 2.30a. The
GNSS-related coordinate systems are shown in Figure 2.30b. The GNSS receiver
typically provides the spherical coordinates in the ECEF. We transform the position
to a local tangential UTM coordinate system.

necessary for positioning the receiver. The ranging code layer provides information on the
propagation time. It is a periodic modulated signal that is strictly synchronized to the satellite
time system and the data messages to enable time synchronization of the receiver. The data link
contains, among other things, the transmission time and satellite ephemerides (satellite position)
[64]. Consequently, the receiver must first decode the information from the electromagnetic
signal. The ephemerides decoded from the signals reveal the exact position of each satellite
relative to the earth’s center (geocentric coordinate frame). If the receiver employs a clock
precisely synchronized to the GNSS time, the geometric distance to each satellite could be
accurately measured by recording the run time required for the satellite signal to reach the
receiver. Thus, here again, the distance measurement relies on a time of flight measurement
similar to the LiDAR — with the difference that the signal travels a long distance and the time
synchronization has to consider relativistic effects due to the speed and gravitational difference
between the receiver and satellite. That means ranges to only three satellites would suffice
since the intersection of three spheres, as illustrated in Figure 2.30a yields the three unknowns
(e.g. latitude, longitude, and height). However, modern receivers apply a slightly different
technique. As low-cost receivers use inexpensive crystal clocks, set approximately to system
time, the time may be offset. As a result, the distance measured to the satellite also differs from
the geometric range. Therefore, the measured quantities are called pseudoranges since they
represent the geometric distance plus a distance correction resulting from the receiver clock
error that defines a further unknown. Consequently, we now obtain four unknowns (latitude,
longitude, height, and time offset) that are fully determined by four satellite signals instead of
only three.
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Up to this point, we only introduced the basic principle of GNSSs. In the scope of this
work, we will also consider different global coordinate frames that we want to summarize in
the following briefly. The receiver position is determined in a geocentric coordinate system,
also known as the Earth-centered, Earth-fixed coordinate system (ECEF). The ECEF is a
conventional 3D right-handed system. The fixation of the ECEF coordinate system (the origin
with respect to the earth) is determined by the so-called geodetic datum. For example, the
WGS84 is such a datum that is used for NAVSTAR GPS. The WGS84 models the earth as
an ellipsoid, and the origin of the ECEF coordinate frame in WGS84 is the earth’s center of
mass. As shown in Figure 2.30b, the z-axis faces northward, while the = and y axes are in the
equator plane. The z-axis faces to 0° longitude to the prime meridian, and the y-axis faces
towards 90°E longitude. The GNSS receiver provides the position in WGS84 by longitude,
latitude, and altitude coordinates (spherical coordinates) as shown in Figure 2.30b. Note that
the altitude is referenced in the WGS84 earth ellipsoid. However, the building map we want to
localize the vehicle is defined in the so-called Universal Transverse Mercator (UTM) coordinate
system. In contrast to WGS84, which has its origin in the center of mass of the earth, the
UTM coordinate system is a planar projected coordinate system defined on the surface of the
earth as shown in Figure 2.30b. To obtain such a tangential coordinate system and minimize
the projection’s approximation error, the earth is divided into 60 UTM zones with different
origins for the Cartesian UTM coordinate system. There are two possibilities to describe the
orientation of the UTM coordinate system for a zone on the earth’s surface: The East-North-Up
(ENU) defines the z-axis to be oriented to the east. In contrast, the y-axis faces to the north,
and the z-axis defines the height as illustrated in Figure 2.30b. An alternative orientation is
the North-East-Down (NED) convention which we mention here only for completeness. To
transform from the global position described in WGS84 to the UTM coordinate system in ENU
convention, we utilize the Proj4 library [65] that performs the projection. [66, 67]

Since GNSS signals are sensitive to external effects, the position can be error-prone. As
the signal passes a long distance through multiple atmospheric layers, the signal is refracted
on the phase transition of different layers. Although the refraction can be compensated in
the positioning, the refraction model can only approximate the complex dynamic behavior of
atmospheric layers [68]. As this atmospheric effect cannot be fully eliminated with a single
receiver, the error needs to be considered as further uncertainty in the positioning. Another
problem of GNSS is the multipath effect: The transmitted GNSS signal may not always reach
the receiver directly. If the receiver is placed close to large buildings or other objects, the signal
may be reflected on the surface of the objects and may reach the receiver indirectly. Due to the
reflection, the signal travels a longer distance, corrupting the position estimation. Especially
in urban regions, the multipath effect may severely corrupt the position estimate [68]. This
work aims to cope with the large uncertainty the GNSS positioning provides and improve the
uncertain position with a local LiDAR sensor to building map association.

2.4 Building Maps

In this work, we introduce a novel building map-based localization pipeline. An efficient
representation of the building is necessary to perform the localization in the building map. In
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(a) LOD2 City Model. (b) OSM inflated to 3D.

Figure 2.31: The CityGML LOD2 model is shown in Figure 2.31a and the 3D inflated OSM
building map is shown in Figure 2.31b

the scope of this work, we use the CityGML Level Of Detail 2 (LOD2) city model [69] and
OpenStreetMap (OSM) [70]. While the LOD2 city model is only available for dedicated cities,
OSM provides worldwide geospatial data.

A portion of the LOD2 city model of Hanover is shown in Figure 2.31a. The generalized 3D
model of the buildings is based on cadastral information and data from airborne laser scanning.
Only dedicated cities provide such publicly available building maps. For the two author-collected
datasets recorded in Hanover, the LOD2 maps are available and officially maintained and
distributed by the city government’s planning and urban development department. The main
advantage of the LOD2 city model is its precision since airborne laser scanning provides highly
accurate data. Nonetheless, the LOD2 model generalizes complex facade shapes to simple
planes, introducing generalization errors in the building map. Since also cadastral data is
considered within the LOD2 models, the uncertainty is comparatively small, with standard
deviations between 2 to 10cm. The LOD2 map also provides generalized roof shapes as
shown in Figure 2.31a. However, in the scope of this work, we assume the vehicle to move on
the streets so that the roofs are generally not captured by the sensors and therefore do not
contribute to the localization.

In contrast to the LOD2 model, OSM is a publicly maintained map where everyone can
contribute to the map. Consequently, the OSM database provides maps worldwide and combines
different information like street names, building numbers, and restaurant locations. Although
the maps provide rich environmental information, OSM only provides 2D building footprints.
However, for some buildings, the height information is also available. Figure 2.31b shows a
3D inflated OSM building map of the same region as in Figure 2.31a. Note that the roofs are
visualized flat since no information on the roof shape is available in OSM.

One of the main problems with OSM data is its reliability. Although the OSM database is
frequently updated and corrected, different contributors are equipped with different measuring
instruments with different accuracies. As a result, generally, it is not possible to quantify the
uncertainty of the map. However, we found that we could reliably bound the maximal error
motivating the use of interval-based approaches for the maps we used for the different datasets.

Since neither the LOD2 nor OSM provides information on the ground terrain, the building
map-based localization cannot constrain the elevation of the vehicle. Furthermore, to ensure
the global applicability of our approach by maintaining compatibility with OSM that only
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(a) All walls available in the building maps.  (b) Only visible walls are considered in queries.

Figure 2.32: The building footprints also contain hidden walls between directly connected
buildings, as shown in Figure 2.32a. We only consider outer walls for map queries,
which are visible as shown in Figure 2.32b.

provides 2D maps, we perform the localization in 2D. We only use the building footprints
illustrated in Figure 2.32a.

The footprint of buildings also contains hidden walls that the sensors cannot see. Such hidden
walls are, for instance, between connected buildings within a series of buildings. Especially in
urban environments, such dense building structures are ubiquitous, as shown in Figure 2.32a.
As we are only interested in the visible walls, we only consider the outer building walls in a
map query. The footprint submap that only contains the visible walls is shown in Figure 2.32b.

Consequently, we assume a map consisting of building footprints with uncertainties for which
we can give an upper and lower bound. A building is modeled by multiple facades where each
facade forms a line segment in the map and connects the corner points of a building. That
means each building is represented by a closed polygon in the map, defined by a series of corner
points. A line segment is defined by a pair of building corner points ?a; and ™ a, described in
the map frame M as visualized in Figure 2.34. We further represent the line by its implicit

form

nh, -Ma—dy = (cos(aM) sin(aM)) . <A]\jzx> —dy =0. (2.73)

Y

The orientation of the facade is described by the angle ay;, while the distance of the line to the
origin of M is defined by dj; as shown in Figure 2.33a. As we assume interval uncertainty for
the facades, each corner point inflates to a box, and the line parameters also inflate to intervals.
Consequently, the i-th facade in the map is fully described by F; = {[Ma], [May), [an], [da]}-
To ensure efficient map queries like radius or nearest neighbor searches, we employ an additional
KD-Tree representation of the building footprint map. Since the KD-Tree organizes a set of
points for efficient search, we need to represent the building map by a set of points. Therefore,
we homogeneously subsample points from the 2D projected facades, taking the start and
end-points into account as illustrated in Figure 2.33b. Since the map queries are performed
from local measurements provided by the sensors, we only represent the outer visible buildings
walls, omitting hidden walls, in the KD-Tree representation. Further, for each point, we also
store the information to which facade it belongs. During the radius search, points near the
search point are selected. As each point is associated with the corresponding facade, we
determine the facades associated with the points in the vicinity.
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Figure 2.33: Exemplary map to illustrate the facade parameters (Figure 2.33a) and the sampling
of points for the KD-Tree (Figure 2.33b).

Figure 2.34: The convex polygon hull defines the border of the map. Black-filled polygons

visualize the buildings. The map corresponds to the evaluation dataset KITTI
0018.

Although the building map can be arbitrarily large, our localization pipeline relies on closed
building maps. As shown in Figure 2.34, we choose the convex polygon hull as the map's
border. We assume the vehicle is only operated in the closed region inside the map.

The OSM and LOD2 city model is defined in UTM. Since we only use datasets acquired
in Germany, we stick to the 32N zone. Nonetheless, the corner points of the buildings have
large coordinate values since the origin of the 32N zone is several 100 km away. That is why
we define a local coordinate system with the same orientation as the UTM frame but only

offset in translation to a nearby point. This point defines the origin of our map frame M. The
localization is performed in M.



State of the Art

Robot localization has been researched for decades, and many approaches have been proposed.
The goal of this chapter is to provide a summary of the historical development of robot
localization algorithms. Since in the HyPaSCoRe Localization a hybrid interval-probabilistic
visual odometry module utilizing a SLAM-graph is introduced, we also provide for the interested
reader State of the Art visual odometry and SLAM approaches in the appendix Chapter B.

Three types of robot localization problems are distinguished in the literature — namely robot
tracking, global localization, and kidnapped robot problem. Robot tracking assumes the robot's
initial pose to be known. However, this information can be corrupted by noise and uncertainties.
In contrast to the global localization problem, the initial pose uncertainty is rather small. Hence,
the tracking problem is local since the uncertainty is small and the initial estimate is close to
the correct pose.

Unfortunately, this initial information is not always well known. Especially in urban canyons,
global positioning systems may provide very inaccurate pose estimates due to occlusions and/or
multi-path effects. In the worst case, no global information on the robot’s initial pose is
available. While tracking approaches rely on the assumption that the pose error is small, for the
global localization problem, this assumption is not always valid, as the initial pose uncertainty
is rather large.

The kidnapped robot problem is a variant of global localization, where the robot can get
kidnapped and moved to another location during the operation. In the scope of this work, we
only focus on robot tracking and global localization, as those types of problems are the most
relevant ones in the context of autonomous driving. In the literature, a large variety of different
approaches have been suggested to those types of problems. The approaches differ regarding
the map, the sensors used, and the uncertainty representation of the involved variables. We
introduce and discuss relevant State of the Art probabilistic, interval-based, and hybrid robot
localization approaches in the following.

3.1 Probabilistic Approaches

Probabilistic approaches model the observations and states by probabilities. Probabilistic
localization algorithms are variants of Bayes filters. The application of Bayes filters to the
localization problem is called Markov localization. Markov localization approaches mainly differ
concerning the underlying state space representation [71, 72]. While the Extended Kalman
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Filter (EKF) represents the state space by the first and second moment of the belief, grid-based
techniques apply histogram filters. The most prominent Monte Carlo Localization applies the
particle filter approach to solve the localization problem. Maximum Likelihood Estimation
(MLE) approaches have recently gained more popularity due to mature numerical optimization
techniques. The Gaussian assumption enables the formulation of the MLE approach as a
least-squares problem that robust optimization techniques can solve [23, 29].

3.1.1 Extended Kalman Filter

The EKF is one of the most classical probabilistic state estimation approaches. Leonard and
Durrant-Whyte present in [73] one of the first applications of the EKF to the localization
problem. The authors first match the locally observed geometric beacons to the beacons on the
map. Utilizing the matches, the authors determine the robot's pose on the map with an EKF
that models the pose as the state parameters. The prediction step uses the control input of the
robot. The locally observed beacons are extracted from the sonar data to perform the update
step. As the authors assume that to accurately know the robot'’s initial pose, the matching of
the local sensor data to the map beacons boils down to the nearest-neighbor association. By
applying the EKF for each iteration step, the authors successfully track the robot in the simple
artificial map.

locchi et al. [74] extend the EKF-based tracking to line-like and circular structures in the
environment. Therefore, the authors introduce a Hough Transformation [75], aggregating the
locally measured point into the Hough space. The sets of points that form line-like structures
generate local maxima in the Hough space. The map features are also transformed into the
Hough space which means lines in the map become points in the parameter space. As the
authors assume to know the initial pose, the local maxima are closely located to the feature
points in the Hough space. Hence, the authors can match the local data to the map features
by employing a simple nearest-neighbor association. Using the matches, the authors correct
the predicted robot pose in the EKF.

Teslic et al. [76] use the EKF to localize a four-wheeled mobile robot equipped with encoders for
the wheel and a 2D LiDAR. The authors assume the robot moves in a structured environment
with well-defined and mapped line-like walls. In the prediction step, the pose estimate
is determined by simulating the robot's kinematic model. The pose is then corrected by
minimizing the difference between the local and global line segments. Local line segments
are matched to the global map lines in a nearest-neighbor fashion. Hoang et al. [77] present
the EKF-based localization with additional sensors such as a compass and an omni-directional
camera. Like the classical EKF approach, the authors use wheel encoders to predict the robot's
pose. In the correction step, the authors improve the state estimate by fusing the compass data
and omni-directional camera images into the computations. While the compass improves the
orientation estimate of the robot, the authors extract an artificially placed red-colored landmark
in the arena that is tracked in the image. Based on where the red landmark is detected in the
omni-directional image, the orientation of the robot is corrected.

All localization approaches that were presented are only applicable to the robot tracking
problem. Generally, linearized Gaussian techniques mainly work well if the uncertainty of
the initial estimate is small enough. That is why the tracking approaches are well modeled
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Figure 3.1: Pose candidates in a building map-based localization. The blue dots mark the valid
and the red invalid candidates. [78]

by, for instance, unimodal probability distributions. Regarding global localization, unimodal
distributions are usually inappropriate. As a result, classical EKF approaches are not generally
suitable for the global localization problem. However, there exist extensions of the EKF that
represent a belief by multiple Gaussians, like the Multi-Hypothesis Tracking (MHT), that can
be employed to solve the global localization problem.

Landsiedel et al. [78] present an MHT global localization approach that performs chamfer
matching between the locally seen building outlines and corresponding map sections. As
input data, the authors use a LiDAR scanner to extract planes projected to two-dimensional
lines. Matches between the building edges from the sensor data and the 2D building map are
computed by a template matching procedure. Appropriate candidate poses are selected and
refined by a chamfer matching method similar to [79]. Figure 3.1 depicts the exemplary result
of pose candidates. The approach can become very heavy in computation, depending on the
number of tracked candidates.

3.1.2 Grid-based Localization

The grid-based localization is a metric variant of Markov localization. Moravec and Elfes
initiated the idea to use a certainty grid map for obstacle representation [80]. However, Burgard
et al. present in [81] one of the first approaches that use the same grid map representation for
localization. Therefore, the authors invert Elfes’ and Moravec's idea by constructing a position
probability grid where each grid represents the posterior probability that the grid includes the
robot’s current position. Similar to the EKF-based localization, the grid-based approach also
consists of two steps: First, the probability grid is shifted according to the robot's odometry
measurements, taking dead-reckoning errors into account. Second, for each cell in the grid, the
position probability is determined by combining the likelihood of the local reading — supposed
the cell is the robot's current position in the map — with the likelihood already stored in the
cell.

Fox et al. extend [81] in [82] by improving the robustness of the approach for highly dynamic and
densely crowded environments. Therefore the authors augment the grid-based localization with
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Figure 3.2: Global localization of a mobile robot using MCL with 10000 particles. The images
are adapted from [85]. The further the vehicle moves, the denser the particles
converge to the correct vehicle position.

a filtering technique that updates the position probability density using only those measurements
with high likelihood produced by known objects in the map. The presented approach was
successfully applied to tour-guide robots in the Deutsches Museum Bonn and the National
Museum of American History.

The grid-based localization is capable of solving the tracking and global localization problem.
The major drawback is the computational burden and memory consumption. While a high
resolution of the grid leads to a higher accuracy of the localization estimate, the memory
consumption and the computation time rise. A trade-off between accuracy and runtime is
necessary.

3.1.3 Monte Carlo Localization

The MCL was first presented by Dellaert et al. in [83] and represents an important milestone
in probabilistic robotics. As a classical filtering approach, the particle filter has a prediction
phase, in which the motion model is applied to each particle, and an update phase, in which
the particles are weighted based on the likelihood of the pose given the local measurements and
resampled from the weighted set. While Dellaert et al. present the basic version of the MCL,
in the following years, many different variants and extensions have been published. We only
mention a few selected variations of the MCL approach. For instance, Fox presents in [84] an
extension of the basic MCL algorithm that adapts the number of the drawn particles based on
the approximation error. The approximation error is modeled by the Kullberg-Leibler distance
(KLD). If the KLD measure is small, the particles are concentrated on a small part of the state
space, and the number of particles can be reduced in the MCL approach. Otherwise, a large
sample set is necessary if the state uncertainty is high. Thrun et al. [85] further robustify the
MCL to a Mixture-MCL by integrating two complementary ways of generating samples in the
estimation. Figure 3.2 illustrates the basic principle of the MCL.

Since the MCL represents a powerful tool, also recent works integrate the particle filter into
their localization procedure. Hentschel and Wagner [86] use MCL to localize their autonomous
vehicle in an outdoor environment using OpenStreetMap (OSM) data. The authors use MCL
only for tracking since they receive global localization information from GPS data. While
the GPS position fix is Kalman filtered with the vehicle's wheel odometry and IMU data, the
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resulting filtered pose is integrated into the MCL by adding a small number of samples drawn
from a Gaussian distribution centered at the Kalman Filter pose. The authors demonstrate
they can navigate an autonomous vehicle using the localization estimate.

Using visual odometry, Floros et al. [87] localize a robot on the road network. Using a local
history of previous poses, the trajectory is matched to the road graph by applying chamfer
matching. The localization scheme is structured in an MCL framework where each particle is
weighted based on the matching result of the local trajectory to the road graph. The approach
needs a rough initial GPS position.

Ruchti et al. [88] classify laser scans into the road and non-road measurements. The
classification is used in a corresponding observation model to weight the particles of an MCL
based on OSM data.

Yan et al. [89] globally localize a robot on OSM data using a 4-bit semantic descriptor. The
descriptor encodes information about the visibility of road intersections and building gaps.
Based on OSM data, the authors first condense the OSM data to a set of 4-bit descriptors
by computing the descriptor for all potential positions and orientations in the map. Further,
the authors perform a semantic segmentation for each 3D LiDAR scan and compute a local
descriptor. To localize the vehicle, the authors combine the expected and real observation
represented by descriptors to define the observation model for the MCL. Each particle is
weighted based on the hamming distance of the map descriptor and the local descriptor.
Chen et al. [90] perform global localization in a self-built hybrid map that consists of visual
keyframes and an occupancy map using camera data and LiDAR. A global image descriptor
matching is applied to search the referenced keyframes according to the current visual observation
and is used as the observation model of an MCL approach. After global localization with the
image descriptor matching, LiDAR-based tracking is maintained.

Chen et al. [91] perform MCL using range images generated from real LiDAR scans and
synthetic renderings of a mesh map. The difference between the range images is used to
formulate the observation model for the MCL. The authors show that a high amount of
particles is necessary to localize the vehicle successfully. That is why the authors report high
computation time before convergence.

Zhang et al. [92] augment the MCL approach by a particle swarm optimization. In contrast to
the classical MCL approach, the authors suggest optimizing the particles with a least-squares
approach. Therefore, a fitness value for each particle needs to be determined, increasing
the computational burden. However, due to the optimization step, the authors report that
fewer particles are necessary to let the estimation converge to the correct solution. While in
conventional MCL methods, each particle individually tracks the pose as the robot progresses, in
the proposed approach, particles in each sub-swarm track the robot's pose in the corresponding
hypothesis. Clusters of the most likely particles generate sub-swarms. When a new observation
is available, particles in a sub-swarm are optimized to move towards the maximal likely region.
By performing normalization and weighted resampling as in the classical MCL, unlikely pose
hypotheses and sub-swarms are eliminated gradually from the global localization results, and
the remaining particles converge to the correct pose. This approach combines MCL with
techniques of MLE approaches that are introduced in the next Subsection 3.1.4.

Recent works, as presented in [93] and [94], use learned observation models to perform particle
weighting within the MCL framework. Chen et al. propose a neural network-based observations
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model that computes the expected overlap of two 3D LiDAR scans. The learned model predicts
the overlap and the yaw angle offset between the current sensor reading and the virtual frame
generated from a pre-built map. The predicted overlap score is integrated into the particle
weighting in the MCL framework. Zhou et al. combine the MCL with matching ground-level
images to 2D cartographic maps such as OSM provides. The matching is based on a learned
embedded space representation linking images and map tiles. The matching score is piped into
the MCL as a weighting mechanism of particles.

The core of MCL-based approaches is the observation model that determines the weighting
mechanism of the particles. Note that the mentioned MCL approaches differ in the observation
model while the rest of the particle filter algorithm stays identical. While for instance, Hentschel
et al. [86] use the classical beam-end model for the observation model, Yan et al. [89] propose
an observation model based on a 4-bit semantic descriptor. Machine learning-based observation
models are presented in [93, 94]. The MCL is one of the most popular localization algorithms
in the robotics community due to two facts: Implementing the MCL algorithm is comparatively
easy, and, as it can approximate nearly any distribution, it is also one of the most potent ones
[18]. Hence, the particle filter approach applies well to the tracking and global localization
problem. However, one of the significant problems of MCL approaches is that the quality of the
localization solution heavily depends on the number of particles. If the uncertainty is very large,
many samples may be required to cover the solution space. As a result, updating and correcting
a large number of particles leads to more computation. That also means that a trade-off
between accuracy, convergence speed, and runtime has to be made for the MCL, similar to
grid localization. Another problem the MCL has to cope with is the wrong convergence of the
method caused by an unfortunate sequence of random samples [95]. As a consequence, MCL
approaches lack integrity, and often results are not repeatable, as the sampling is random.

3.1.4 Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) approaches seek to find the most likely solution within
the solution space. Therefore, the probability distribution within the solution space needs to be
determined. This probability distribution is generally defined by the probability distributions of
the local measurements, those of the given map, and the function that maps the measurements
to the solution space. The probability distribution of the set of poses is determined by
propagating the probabilities from the measurement space (the local measurements and the
map) to the solution space (the pose of the robot). Unfortunately, this propagation step is
difficult for arbitrary probability distributions and non-linear mapping functions. To cope with
that problem, different approaches and assumptions have been introduced in the literature,
briefly summarized in the following.

In [96], Olson presents a maximum likelihood map matching method, where the robot location
is determined by the pose that maximizes the agreement between the local map retrieved by
range data and the given map. Therefore, the author introduces a search strategy to locate the
most likely pose. First, an arbitrary nominal position of the robot is considered an initial position
that provides a likelihood to compare. Then, the pose space is divided into rectilinear cells.
For each cell, the likelihood of the pose is determined, and only good cells are further analyzed.
The likelihood of a pose is determined by a map similarity measure based on the locally seen
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features and features in the map. The branch-and-bound strategy determines the most likely
pose for a given search space. The presented method was successfully applied to the Sojourner
Mars rover. The main advantage of this method is that an arbitrary probability distribution
in the solutions space is well represented by the cells. This approach is very similar to grid
localization as it maintains subparts of probability histograms. However, on the downside, the
branch-and-bound search algorithm leads to a high computational burden depending on the
defined search space.

MLE approaches dealing with arbitrary probability distributions must overcome many hurdles,
often leading to a high computational burden. To avoid this problem, a very typical probabilistic
prerequisite in the literature has proven to be an elegant solution: When all major measurement
disturbances are eliminated — that means if there are no systematic errors in the measurements
— the remaining errors are formed from many small error sources. According to the Central Limit
Theorem, the probability distribution of the sum of N small independent random variables
tends to the normal distribution when IV increases. Hence, the Gaussian assumption can be a
good approximation for many independent measurements without systematic errors. Assuming
a normal distribution for all the measurement errors, it is mathematically shown in [10] that the
MLE becomes a least-squares method. This is indeed good news for probabilistic approaches,
as there exist effective and robust least-squares optimization methods [23, 29, 97] that can be
employed to solve the MLE formulation of the localization problem.

One of the most popular scan-matching — or more generally speaking scan-registration — methods
is the Iterative Closest Points (ICP) algorithm [98] that exploits the Gaussian assumption and
formulates the matching problem as a least-squares problem. The registration method can also
localize the robot in a given environment, as presented in [99]. Different variants of the ICP
algorithm, such as [100-102], mainly differ in the cost function that is minimized. Nevertheless,
the optimization problem is always formulated as a least-squares problem so that standard
optimizers can be used.

Vysotska and Stachniss [103] localize a robot with a LiDAR in building maps retrieved from
OSM data. The authors extend a standard pose graph-based SLAM formulation by relating
dedicated nodes of the pose graph with existing building map information by including prior
information to the pose graph determined by the localization procedure. The authors first filter
the range scans to localize the robot in the building map so that most non-building objects are
removed. Then, the filtered scan is matched to the building map as illustrated in Figure 3.3.
Therefore, the authors apply the standard ICP algorithm. As a result, the proposed approach
cannot be applied to global localization since the ICP approach needs a good initial guess for
the pose. The authors initialize their method with a manually specified first pose or based on
GNSS data. By integrating the localization as prior information to the pose graph, the authors
show that they can stabilize the SLAM-graph and even detect inconsistencies in the building
maps.

Similar to [103], Boniardi et al. [104] propose a scan-to-map-matching method based on
Generalized ICP [100] to localize an indoor robot in architectural CAD drawings. In contrast
to [103] and [104], that integrate the localization information as prior data to the pose graph,
Wilbers et al. [105] directly integrate third-party maps as prior knowledge about the states of
the detected landmarks. The authors consider detections of pole-like objects as landmarks and
match them to an existing third-party map. To perform the matching, a variant of the ICP
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Figure 3.3: OSM data is used to align the robot’s trajectory. The left image shows the
pointcloud before and the left after alignment. [103]

approach is used to search for associations between landmark detections and mapped landmarks.
All ICP-based map association approaches are inherently local since ICP only performs a local
search. As a result, [103-105] can only solve the robot tracking problem as they have to rely
on a good initial pose estimate.

Ratz et al. [106] and Cho et al. [107] suggest probabilistic approaches using unique descriptors
for matching. While distinctive descriptors represent the map, local descriptors are computed
and matched to the map database similar to [89]. Ratz et al. present a global localization
algorithm that uses only a single 3D LiDAR scan at a time. First, the authors extract segments
for which descriptors are computed based on a neural network. The segment descriptors are
then matched against a database representing the map. After a geometric consistency test, a
least-squares problem is solved to obtain the 6 DOF pose. The authors do not comment on
multiple feasible solutions in the case of strong symmetries. Cho et al. generate a descriptor
database for an OSM map based on the distances to buildings from arbitrary locations at a
regular angle. Further, the authors determine a descriptor for the local LiDAR scan by taking
the shortest distances to building points from the current location at a regular angle into
account. The authors can localize the vehicle by comparing the local descriptor to the database.
However, the presented method only keeps track of the most likely solution. The approaches
work well if the parts of the map are well distinguishable. In the case of strong symmetries, the
methods do not perform well, as multiple localization hypotheses are not tracked.

3.2 Interval-based Approaches

Interval-based approaches model the sensor and pose estimation uncertainties by intervals.
While probabilistic methods propagate probability distributions from the measurement space to
the state space, interval-based techniques perform the propagation utilizing interval arithmetic.
The philosophy of how the same localization problem is solved differs significantly. Probabilistic
approaches do not aim to enclose the correct solution. Instead, the goal is to determine the
probability distribution in the state space that provides the information of how likely a state
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represents the true state given the measurements. In contrast, interval-based approaches seek
to provide an enclosure represented by interval sets that guarantee to enclose the true solution
if and only if all assumptions are fulfilled. While probabilistic approaches are attracted by the
most likely solutions, interval methods seek to keep track of all feasible solutions by dismissing
infeasible parts.

Kieffer et al. [108] present one of the first interval-based static localization methods with
ultrasonic sensors for structured 2D indoor environments. The prior map consists of oriented
segments (walls) that describe the landmarks. The authors assume that within the mapped
environment, there are no other unmapped obstacles that the sonars can perceive and that
the vehicle must always be located within the map. Based on those assumptions, the authors
formulate localization tests that qualify a set of poses as feasible, infeasible, or undetermined.
The set of feasible poses for a given map and a given set of sonar readings is determined by
applying SIVIA: Starting with an initially large pose box, the set of poses is recursively divided
into subpavings individually tested by the localization tests. If the tests qualify a subpaving as
infeasible, this part of the solution will be omitted. It becomes part of the feasible solution set if
it is qualified as feasible. Otherwise, if the subpaving is apt to contain the feasible set of poses
partially, the subpaving is further bisected until the minimal interval width is reached. This
approach makes global localization possible, as multiple disconnected feasible solutions can
coexist in the estimation. However, the computation time for this testing-based SIVIA approach
is high, depending on the map size. The same authors extended their approach in [109] to
a tracking method, where they also incorporated the previous estimate and the odometry
data into the interval-based localization procedure. While initially, the same localization has
to be applied to localize on the map globally, the tracking problem is solved by an update
and correction procedure similar to the Kalman Filter architecture. In the update step, the
previous set of feasible poses is updated by the odometry data taking interval uncertainty into
account. Hence, the size of the interval estimates gets shifted and inflated. In the correction
step, the same SIVIA approach is applied. In [110, 111], concrete applications that use the
presented approach are shown. In [112], the authors extend the localization approach to a
robust method that can deal with a defined number of outliers by a g-relaxation. However, the
method can only cope with a small number of outliers. That means unmapped obstacles in
the environment will lead the technique to fail. Further, the proposed method only deals with
very few measurements and therefore is not well suited for laser scanners.

Gning and Bonnifait [113] present a localization approach that fuses dead-reckoning data
derived from wheel encoders and the angle of the driving wheel with differential GPS data.
The authors determine the vehicle's displacement using the wheel encoders, driving wheel
orientation, and the motion model. Therefore, interval errors are estimated for the encoders
and are propagated to the displacement estimate by formulating the problem as a Constraint
Satisfaction Problem (CSP). The CSP is solved by utilizing contractors. This approach makes
the error propagation very fast but possibly more pessimistic than the SIVIA approach presented
in [108]. The GPS data is used to initialize the pose estimate. In [114, 115], the authors extend
the set of sensors with an additional gyro and compare their approach with an EKF approach.
The authors show that the interval-based approach is more pessimistic but provides consistent
estimates. The EKF does not guarantee that the estimated error ellipse encloses the correct
solution and occasionally loses track of the correct vehicle pose. Lambert et al. [116] further
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evaluate the odometers, gyro, and GPS-based localization with outdoor experiments with a car
equipped with embedded processors. The interval-based localization approach is processed in
real-time and is compared with a particle filter approach. The authors come to a very similar
conclusion, as stated in [114, 115] that the particle filter is more accurate but tends to diverge
in the case of biased GPS measurements. This cannot happen to the interval approach as long
as the error bounds are satisfied. Nonetheless, the authors only consider proprioceptive and
absolute measurements. Clérentin et al. [117] extend the proposed constraint propagation
approach to exteroceptive measurements. The robot has an omnidirectional vision system, a
2D LiDAR, and two odometers. The authors seek to localize the robot in a map with high-level
primitives like corners and edges in an indoor environment. Therefore, the authors first extract
locally seen primitives from the range data and the omnidirectional images. Then, in contrast
to [108], the authors explicitly associate the locally seen primitives to the mapped primitives
by taking the constellation into account. Each matching possibility leads to a new track
represented by a subpaving. If a matching turns out to be incorrect, the constraint propagation
approach will lead to an empty set for the pose estimate, and the track will be omitted. Hence,
only feasible matchings remain and are tracked.

Sliwka et al. [53, 118] propose a robust version of an interval-based localization approach
applying the image contractor. While the previously presented approaches assumed a structured
environment that can be modeled by line segments, the authors seek to localize an underwater
robot in an unstructured marina. As a result, the approximation of the environment with line
segments becomes inapplicable, so the authors propose a binary image representation of the
environment. While the marina walls are represented by ones in the regular image grid, non-wall
parts of the map are marked with zeros. An imaging sonar sensor provides the local data
used for localization on the map. For a given set of poses, the authors propagate each sonar
beam measurement to the map frame and contract each local measurement to the marina wall
applying the image contractor. In a back-propagation step, the contracted measurements lead
to the contraction of the robot pose estimate. However, the sonar readings may be corrupted
by outliers. That is why the authors use the g-relaxed intersection approach that excludes
inconsistent measurements from the contraction. The authors successfully apply the approach
to real data acquired in a Costa Brava marina. The main problem of the approach is that for
the g-relaxed intersection, the number of outliers needs to be determined. Unfortunately, this
information is not a priori available.

Langerwisch et al. [119] present an approach for localization in a structured indoor
environment using wheel odometry and a 2D LiDAR. The authors represent the map by
line segments defined by their start and end points similar to [109-111]. However, also the
uncertainty of the line segments is considered in the map representation. While the odometry
data is used for the prediction step, as previous works also did [112, 113, 117], the update
step takes the local 2D LiDAR measurements into account. Therefore, the authors subdivide
the initial pose estimate into subsets, representing the initial set by a subpaving. The local
measurements are transformed from the sensor frame to the map frame for each subset. Due
to the uncertainty of the pose subsets, the uncertainty of the local measurements gets further
inflated in the map frame. For each transformed measurement, the authors determine the hull
among the intersections of the measurement with map line segments. Hence, the transformed
measurements are contracted to that hull. The authors can propagate this information to
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Figure 3.4: Experimental results of indoor interval-based localization. The estimated mean
trajectory is colored black, the green trajectory depicts pure wheel odometry, and
the interval boxes are painted blue for five situations. [119]

the pose by applying a forward-backward contractor. However, unmapped objects in the
environment and erroneous measurements may lead to outliers. The authors account for
that problem by introducing a g-relaxed intersection in the update step when applying the
forward-backward contractor similar to [53, 112]. Langerwisch et al. successfully apply the
tracking algorithm to an indoor robot that is operated in real-time as shown in Figure 3.4. On
the downside, the initial pose estimate must be reasonably small to make the computational
burden feasible. Further, the authors only account for a fixed number of outliers in the local
sensor data. If the number of outliers exceeds this limit, the pose estimate may become invalid
and is not guaranteed anymore.

Guyonneau et al. [120] combine the approaches presented in [53] and [119] to solve the
global localization problem in indoor environments. While the authors use the same grid-based
image-like representation of the map as presented in [53], the interval-based localization
procedure is very similar to [119]. Additionally, the authors compare the interval-based method
with a classical MCL approach. The authors report that the interval approach initially needs
more computation time than MCL. However, the computation times are comparable when the
domains are significantly reduced. On the one hand, the authors point out that MCL does not
provide deterministic results, so the MCL tends to converge to an incorrect solution for certain
runs. This does not happen with the interval approach, which — on the other hand — is more
pessimistic.

Desrochers et al. [121] perform global localization using a terrain model as a map and a
LiDAR. By robustly contracting the robot’'s pose to the feasible and consistent portions in the
terrain model (cf. Figure 3.5) by taking the local LiDAR scans into account, the authors can
localize the robot without the necessity to move the platform. On the downside, the approach
is comparatively slow, and a good terrain model is necessary to obtain good results.

Kenmogne et al. [122] apply an interval-based localization approach to an unmanned aerial
vehicle (UAV). The UAV is equipped with a camera, IMU, and a barometer. In the environment,
mapped landmarks are placed that can be tracked by the camera. The authors localize the
vehicle by matching the captured landmarks in the images to the mapped landmarks. Therefore,
the authors exploit the Perspective-n-Point (PnP) constraints and build a forward-backward
contractor that contracts the pose taking the landmarks and the local observations in the
image into account. The contractor is applied in a SIVIA algorithm. The authors show that the
interval-based approach occasionally leads to empty sets caused by inconsistent measurements.
If such an event occurs, the authors perform a relocalization based on the seen landmarks. With
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(a) Robot equipped with a LiDAR. [121]
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Figure 3.5: The terrain model is used to contract the feasible set of poses of the robot. The
images are adapted from [121].

this procedure, the authors report a lower localization error than a classical EKF-localization
approach, which is less robust concerning outliers.

The main problems interval-based localization approaches have are pessimism and rigid
outlier treatment. One way to deal with the pessimism is to apply a SIVIA approach that
performs more bisections. Unfortunately, this leads to a higher computational burden. Hence,
a trade-off between pessimism and computational effort is necessary. Regarding outliers, all
presented methods introduce g-relaxed intersection, which can identify at most ¢ outliers. The
main problem of this robustification approach is that we need to know a priori the maximum
number of outliers. However, this cannot be known beforehand. That means selecting ¢ is not
trivial and has a tremendous impact on the solution: If ¢ is chosen too small, outliers will be
considered in the solution, and the estimated solution set is not guaranteed anymore — or even
becomes empty. Good and restrictive measurements may be omitted if ¢ is chosen too high,
and the estimation can become overly pessimistic. Due to this dilemma, Jaulin introduces the
GOMNE algorithm [49, 121] that selects the minimal ¢ for which the solution set is not empty.
However, this algorithm leads to two problems. First, the selected ¢ does not guarantee that
all outliers can be detected. Hence, the solution set can still be corrupted by outliers. Second,
the iterative nature of GOMNE makes the approach costly in computation.

3.3 Hybrid Approaches

Hanebeck and Horn introduce in [123] a mixed stochastic and set-theoretic uncertainty model.
The authors describe a measurement error composed of two additive parts. On the one hand,
stochastic noise cannot be bounded, but its probability density is well described in most cases
by a normal distribution. On the other hand, measurements can be further corrupted by
systematic biases for which rigid bounds can be defined, but the distribution is unknown. By
defining the error by two additive terms, the authors derive an estimator containing classical
probabilistic and set-theoretic estimation concepts as border cases. The authors show that this
approach can be applied to localization problems in a simulation. On the one hand, the more
measurements of one state are acquired, the smaller the stochastic uncertainty term will get.
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Nonetheless, the set-theoretic uncertainty does not depend on the number of measurements.
It does not shrink, due to which the authors show that the estimation result always includes
the correct solution. However, the authors only present a simple scalar localization problem
along one axis.

Jaulin presents in [124] a probabilistic approach that uses classical set-membership localization
methods for state estimation. The method’s main idea is to provide a lower bound for the
probability that the robot is located in the set estimated by classical set-membership localization.
Hence, instead of defining the different uncertainties as an additive term as suggested in [123],
Jaulin proposes to provide a quality measure for the interval-based estimate with probabilistic
means. Therefore, Jaulin suggests exploiting the probability of the occurrence of an outlier.
The author shows, under the assumption that the occurrence of an outlier at a specific timestep
is independent of the past, that the probability of having exactly 7 inliers among m follows
the binomial law. Hence, this approach is compatible with the fact that although a g-relaxed
set-membership-based localization provides a feasible set of poses, there is still a non-zero
probability that the robot is not inside the estimated set. This is because the occurrence of
outliers is seen probabilistically, and accordingly, more than ¢ outliers might occur — but with a
lower probability. As a result, Jaulin provides an interpretation of the g-relaxed set-membership-
based localization estimate in the context of probabilities and shows that both strategies of
modeling the error are compatible.

Nassreddine et al. [17] propose a hybrid state estimation approach that applies the Dempster-
Shafer theory. The core idea is to extend the interval representation of a set by subsets
with mass-functions that can be interpreted as probabilities similar to [124]. Hence, partial
information on the distribution of the measurements can be taken into account. Although the
authors demonstrate that the approach leads to less pessimistic results than pure interval-based
approaches, the proposed method is costly in computation since maintaining the mass-functions
for the subsets generates a computational overhead.

Ashokaraja at al. [125] present a hybrid localization approach that fuses the EKF with
an interval-based localization approach. The authors equipped the mobile robot with inertial
sensors, encoders, and ultrasonic range sensors. Since the EKF is only used to estimate the
vehicle's pose using the inertial sensors data and the encoder data, the estimate provided by the
EKF suffers from biases and drift. The interval approach is used to correct this accumulating
error: In the interval approach, the authors employ a line segments map of the environment
and the ultrasonic range measurements as suggested in [109]. As a result, the interval approach
provides a set of feasible poses on the map, considering the local measurements. In contrast,
the EKF provides a pose estimate based on inertial and wheel encoder data. Two cases can
occur to perform the adaptive fusion mechanism of both estimates. If the interval-based
estimate encloses the EKF-based pose estimate, the EKF pose is qualified as valid. However, if
the EKF pose estimate is not inside the feasible set, a pose inside the feasible set is selected
that is geometrically closest to the invalid EKF estimate. Hence, the EKF estimate gets
corrected. The authors experimentally show that the adaptive fusion mechanism of both
approaches leads to lower estimation errors than the EKF-only estimation. Additionally, the
authors not only provide a feasible set, but this fusion mechanism also provides a point estimate
of the pose that can, for instance, be used for control algorithms. Nonetheless, the proposed
approach does not exploit the full potential of the individual methods: The EKF can take the
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ultrasonic measurements for the localization into account, which will reduce the drift. Also,
the interval-based method can be improved by including inertial and encoder data in the pose
estimation relating consecutive poses to each other, thereby reducing the pessimism.

Louédec and Jaulin [126] also propose to combine an interval-based filter with the EKF.
However, instead of applying the algorithms separately on each set of sensors and fusing the
estimate at a later point in the state estimation, the core idea presented in [126] is to use
the interval-based filter to narrow down the feasible set that provides potential points for the
linearization. In this approach, the interval method helps the EKF to find a proper linearization
point. As a result, the proposed Interval EKF (IEKF) will behave as a classical EKF as soon
as the state estimate is close to the correct solution. In contrast, when the estimate is far
from the correct solution, the IEKF will benefit from the global view of the set-membership
approach. The authors apply this approach to an underwater robot localization that can sense
its distance to beacons. The authors' experimental results show that the EKF diverges if the
initial estimate is too far from the correct solution. By using the interval approach to provide
the EKF with the proper linearization points, the IEKF can converge to the correct solution
independent of the initial pose estimate.

Abdallah et al. [127] present a hybrid interval-probabilistic state estimation approach called
Box-Particle Filter (BPF). The main idea is to replace punctual states in particle filters with
boxes. Hence, instead of spreading point-valued particles, boxes are spread. This makes it
possible to significantly reduce the number of particles — since a box represents an infinite set
of point-valued particles — and to increase computational efficiency. To accomplish the BPF,
the processing steps of the particle filter need to be adapted to interval-based computations.
The prediction step can easily be adopted by applying inclusion functions to the propagation
equations. However, the weighting cannot be easily adapted to the boxes. While in the
classical particle filter the weight is determined based on the proximity between the real and
the predicted measurements given the predicted state, the BPF takes the box likelihood as a
measure of the weight. Therefore, the intersection between predicted and real measurements is
determined. The authors define the box likelihood as the ratio between the interval widths
of the intersected and predicted measurements. Hence, the larger the overlap between the
intersected and predicted measurement is, the higher the weight for this particular measurement.
As multiple measurements are associated with one box-particle, the product among all ratios
is defined as the box likelihood of the box-particle. Before resampling, the authors propose
contracting the box-particles to eliminate inconsistent parts. The same strategies used in
the classical particle filter can be applied to the weighted random resampling. The authors
apply the BPF to localization problems using GPS, gyro, and odometer data. While the gyro
and odometry data is used for state prediction, the GPS data is used for weighting. Wang
et al. extend in [128] the BPF to line features to perform localization with OSM building
footprints. The BPF is computationally more efficient than the classical particle filter but is
more pessimistic in the state estimation. The BPF also suffers from the particle depletion
problem as the classical particle filter due to the random resampling. Hence, the BPF may also
suffer from box-particle depletion.

In contrast to [127], Neuland et al. [11, 95, 129] propose to fuse the particle filter and the
set-membership approaches for localization tasks differently. While Abdallah et al. spread boxes
instead of particles, Neuland et al. spreads particles inside the feasible set of poses determined
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Figure 3.6: Evolution of the hybrid method using contractors that reduce the feasible set
combined with MCL. The black boxes represent the feasible set. The particles are
colored yellow to red depending on the weight, the blue dots are landmarks, and
the green dot is the average particle. [11]

by the set-membership approach. As a result, the authors propose a localization scheme that
consists of two steps. First, the initial pose estimate, which can be arbitrarily large, is narrowed
down to a feasible set that is consistent with the local measurements. Second, particles are
spread inside the feasible set, and the particle filter algorithm can be applied to refine the
pose estimate. Consequently, the interval-based approach helps the particle filter stick to the
feasible region, as shown in Figure 3.6. Therefore, in the first iteration of the particle filter, the
initial population of particles is only created inside the search space defined by the feasible set.
The particles are evaluated and discarded for subsequent iterations if they are located outside
the feasible set. For each discarded particle, a random particle is drawn inside the feasible set
and is added to the current population. The authors show that this approach leads to better
coverage of the uncertainty region since the interval-based method reduces the search space.
Further, wrong convergence can be detected as the interval approach guides the particle filter
to stick to the feasible solutions. The authors evaluate their approach only with simulated data.
While in [11], the authors extend the contractor-only approach for the interval-based method to
a SIVIA approach that provides tighter bounds on the feasible set, in [95], the authors further
robustify the interval approach with a g-relaxed version of SIVIA (RSIVIA). Further, in [95],
the authors introduce the global localization problem in simulation. However, experiments
with a real robot are not yet conducted with the proposed approach. Additionally, the authors
report high runtimes for the calculations, which makes their implementation inapplicable to
real-time applications.
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Figure 4.1: The visual odometry is the first module in the localization pipeline.

The first module in our HyPaSCoRe Localization pipeline is the visual odometry, as high-
lighted in the overview in Figure 4.1. The main goal of this chapter is to determine the vehicle's
relative motion. Note that this module does not require prior maps since it solely uses local
sensor data to compute the relative movement. The close-up on the visual odometry module is
presented in Figure 4.2. As input data, this module uses stereo images and LiDAR data. Based
on the input data, visual odometry is performed by constructing a SLAM-graph and solving
the graph problem by applying classical least squares optimization and interval analysis in a
hybrid fashion. A SLAM-graph is illustrated on the right side of Figure 4.2. The trajectory
is represented by a sequence of pose nodes, visualized by black boxes, and landmarks are
represented by landmark nodes, visualized by green boxes. The connecting edges visualize the
observation constraints between the poses and landmarks.
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Figure 4.2: Visual odometry. Stereo images and LiDAR data are used to determine the relative
motion of the vehicle. Therefore, a SLAM-graph is constructed and solved.

This chapter is structured as follows: First, we will introduce the assumptions and notations
in the hybrid visual odometry approach in Section 4.1. Our visual odometry module consists of
two parts. The first part is the construction of the SLAM-graph based on the incoming data
stream introduced in Section 4.2. The core idea of constructing the SLAM-graph is to structure
the measurements to represent the links and dependencies between the involved variables. This
part, also called the front-end, performs its computations in real-time, directly evaluating and
inserting the local sensor data into the graph. The second part is evaluating the graph, which
we call the back-end. The back-end process runs parallel to the front-end but with a lower
processing frequency. The goal in the back-end is to estimate the vehicle poses and the landmark
locations. The central contribution of this chapter is the preselection of consistent landmarks
in the back-end for the interval-based visual odometry computation employing a probabilistic
windowed bundle adjustment. The back-end is presented in Section 4.3. We will conclude
the chapter by putting the visual odometry module in the HyPaSCoRe Localization context in
Section 4.4.

4.1 Task Description, Notation and Assumptions

The goal of this chapter is to determine the relative motion of the vehicle. The literature
review in Appendix B reveals that visual odometry methods that simultaneously build a local
map for pose estimation provide the most accurate results. We will stick to such an approach.
Nonetheless, as we are only interested in the vehicle's relative motion, we do not incorporate
any loop closure refinements.

In the scope of this chapter, we use a stereo camera system and a LiDAR scanner. We assume
the stereo camera is calibrated, and the system provides stereo-rectified images. Furthermore,
we assume that all extrinsic calibration parameters are precisely known. The sensors provide
synchronous data. We also assume that the LiDAR data is motion-compensated.

Figure 4.3 shows the data stream we assume from the sensors on a timeline. Both images
and LiDAR scan are synchronously available at a specific time step ¢ with a specified data rate.
We define a frame F; as a collection of data synchronously acquired at time ¢. To each frame
F;, we associate a pose that we represent in the SLAM-graph by a pose node. An exemplary
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Figure 4.3: The data stream, frames, keyframes, and windows on a timeline. A window W,_..
is always defined as the set of frames between the times s and e for which keyframes
KCs and KC, are inserted. A frame F; describes the synchronized data collection
acquired at time ¢.

SLAM-graph is shown in Figure 4.4. Pose nodes are illustrated in Figure 4.4 by circular nodes
with vehicle symbols.

We obtain landmarks by detecting image features in the stereo images and by reconstructing
the 3D location of the feature incorporating the LiDAR depth information. Hence, we define
an observation as the pixel points in a frame’s left and right image, while a landmark is the
corresponding 3D location.

We define a pixel location in the left image of the frame F, by tp. While the bold p
denotes that the variable represents a general location, the top left index [;; defines in which
coordinate frame this location is described. In this case, the coordinate frame is an image
coordinate frame [ that spans the 2D image space. The indices [ and ¢ encode that the left
image corresponding to JF; at time ¢ is considered. Hence, if we want to describe the location
of a pixel in the right image at time ¢, we have to exchange the top left index by I, ;.

Similarly, landmark locations are defined by ““p,. The top left index indicates that the
location is defined in the coordinate frame Cj;, which is the left camera frame at time ¢. The
left camera frame is a 3D coordinate frame, and the location has three parameters. If we want
to describe a point in the LiDAR frame at time ¢, we will exchange the top left index by L.
Additional index notations can be found in the symbol list.

Landmarks are also represented by nodes in the SLAM-graph. In Figure 4.4, landmark nodes
are visualized by stars. Pose nodes and landmark nodes are connected via observation edges.
In our case, those edges encode the information on the pixel location in the images of the
corresponding frame. To determine the vehicle's relative motion, observing the same landmarks
across multiple frames is vital. Therefore, we track features in the images to obtain landmark
associations across multiple frames. We do not detect new landmarks in each frame F;.
However, if we enter new scenes in the environment, we will have to detect new landmarks that
we can track subsequently, as explained in Subsection 4.2.1. Therefore we introduce so-called
keyframes IC;, which are special frames at which we detect new landmarks. Note that for normal
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frames F;, landmarks are only tracked and never newly detected. As a consequence, on F;,
only landmarks are tracked that were detected in the previous keyframe C; that was inserted at
time s < t. Another consequence of this architecture is, that all frames F; with t € {s, ..., ¢}
for s,e € N and s < e between two keyframes IC,; and K. always track the same landmarks. In
the following, we will call this connected sequence of frames F; with ¢ € {s, ..., e} that starts
and ends with keyframes as a window W;_,.. In the bundle adjustment community, the window
is also called a batch. We will use both terms interchangeably. Figure 4.3 visualizes the frames,
keyframes, and a window on the timeline. In the exemplary SLAM-graph in Figure 4.4, we
visualize the windows by coloring the corresponding nodes accordingly.

The presented approach represents the vehicle's pose by intervals. As we only determine the
relative motion of the vehicle, we only store for each frame F; the relative motion CH*lTCu,
which describes the transformation between the previous frame F;_; and the currently considered
frame F; described in the left camera frame rigidly mounted on the vehicle. Internally, we
represent the relative transformation by intervals. That means the translation [“'+-'t¢, ]
consists of three intervals. The rotation described by Euler angles in the RPY-convention
[Clvtflﬁcm] also consists of three intervals. The goal is to determine the set of six intervals by
propagating the observation uncertainty of the landmarks in the stereo images augmented by
the LiDAR depth information.

4.2 Front-End — Build the SLAM-Graph

The objective of the front-end is to construct the SLAM-graph. We use the SLAM-graph as a
data structure that conveniently stores the dependencies and links between the variables. In
our case, we have two types of variable sets: pose variables and landmark variables. Since we
use natural visual features as landmarks, we first need to detect distinct and well track-able
features in the stereo-camera system as described in Subsection 4.2.1. After that, using the
tracked features in the left and right image, we perform a stereo reconstruction by extending
the epipolar geometry to interval analysis (see Subsection 4.2.2). As a result, we obtain boxes
describing the outer bound of the seen feature. To reduce the uncertainty of the feature boxes,
we further incorporate the LiDAR-data as described in Subsection 4.2.3 that provides accurate
range data. As we track visual features frame by frame, we also compute in real-time the
dead-reckoning as explained in Subsection 4.2.4 to obtain an initialization for the windowed
bundle adjustment described in the next section. Note that all processing steps are performed
in real-time. An exemplary SLAM-graph is illustrated in Figure 4.4.

4.2.1 Image Feature Tracking

Initially, no features are tracked when we start the visual odometry pipeline. Hence, the very
first frame has to be defined as a keyframe, and we need to detect new features. As described
in the State of the Art summary in Chapter B, the computer vision community provides many
different types of features. However, our application needs features that can be detected and
compared as fast as possible with less computational effort. Therefore, we have decided to use
Oriented FAST and Rotated BRIEF (ORB) features [130], which have proven to be a good
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Figure 4.4: SLAM-Graph. The vehicle poses at different points in time are represented by
circular pose nodes along the dotted trajectory that we seek to determine. Pose
nodes correspond to frames. Keyframes are highlighted with a black border.
Landmarks are represented by star-shaped nodes connected to the pose nodes via
observation edges. Nodes that belong to a specific window are accordingly color
coded. In total, three windows are illustrated.

choice according to [26, 131-134] for relative motion estimation. Since we use a calibrated
stereo-camera system that provides two stereo-rectified images, we initially detect ORB-features
in the left and right images independently. A good distribution of the features in the image is
vital for well-constrained pose estimation. Therefore, we perform feature detection in predefined
tiles of the image as proposed in [134]. As shown in Figure 4.5, the image plane is divided into
multiple tiles, and the ORB-feature detection is performed on each.

Our goal is to detect features commonly observed in the left and right images to triangulate
the feature location. Therefore, we match the left and right features. Since we have stereo-
rectified images, the epipolar lines in the images are horizontal (see Part 2.3.1.2). As a result,
corresponding features in the left and right images need to be located on the same image row.
However, due to observation uncertainties and imperfect calibration, the detected features
may not perfectly meet the epipolar constraint. Hence, we consider an uncertainty region
above and below the image row. Depending on the feature's detection scale, we adapt the
uncertainty region that defines a stripe in which we search for a given feature. Note that we
consider the left image features to query in the right image for features located inside the
search region defined by the stripe around the respective image row. We compare each left
image feature with all potential matches in the right image within the search region stripe. The
feature similarity is determined by the Hamming distance between the binary-oriented BRIEF
descriptors [130]. If the match with the lowest Hamming distance is lower than a predefined
threshold, the respective left and right features are seen as a correctly matched feature pair.
Figure 4.6 shows a frame’s left and right images with matched features. Note that each
feature can be matched independently, making parallel processing possible. We use OpenMP
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