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Abstract
We present a semi-supervised method for panoptic segmentation based on ConsInstancy regularisation, a novel strategy
for semi-supervised learning. It leverages completely unlabelled data by enforcing consistency between predicted instance
representations and semantic segmentations during training in order to improve the segmentation performance. To this
end, we also propose new types of instance representations that can be predicted by one simple forward path through a
fully convolutional network (FCN), delivering a convenient and simple-to-train framework for panoptic segmentation. More
specifically, we propose the prediction of a three-dimensional instance orientation map as intermediate representation and
two complementary distance transform maps as final representation, providing unique instance representations for a panoptic
segmentation. We test our method on two challenging data sets of both, hardened and fresh concrete, the latter being proposed
by the authors in this paper demonstrating the effectiveness of our approach, outperforming the results achieved by state-of-
the-art methods for semi-supervised segmentation. In particular, we are able to show that by leveraging completely unlabelled
data in our semi-supervised approach the achieved overall accuracy (OA) is increased by up to 5% compared to an entirely
supervised training using only labelled data. Furthermore, we exceed the OA achieved by state-of-the-art semi-supervised
methods by up to 1.5%.

Keywords ConsInstancy training · Semi supervision · Panoptic segmentation · Instance representations · Concrete aggregate

1 Introduction

Today, concrete is the most dominant building material
worldwide. Up to 80% of the concrete’s volume consists of
fine and coarse aggregate particles (normally sizes of 0.1–
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32mm) which are dispersed in a cement paste matrix. The
size distribution of the aggregates as well as the spatial dis-
tribution of the particles within the binder paste matrix are
two criteria that substantially affect the quality characteris-
tics of concrete. These include the concrete’s stability and
its workability in the fresh state, as well as the mechanical
properties in the hardened state. The ability to automatically
extract aggregate particles from visual data of concrete opens
up new opportunities of large-scale quality control, which
is key in civil engineering to assess the quality of building
components and to ensure the safety of building structures.
Towards this goal, we propose a CNN-based method for the
panoptic segmentation [1] of concrete aggregate in images
of both, hardened and fresh concrete.

While a panoptic segmentation of images of hardened
concrete delivers indications, e.g. about the sedimentation
stability of built components by considering the homogene-
ity of the particle distribution in the concrete, a panoptic
segmentation of fresh concrete can be leveraged to derive
workability characteristics and quality indicators of themate-
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Fig. 1 Overview of our framework for semi-supervised panoptic seg-
mentation. Sharing a common encoder E , a segmentation decoderDseg

is used to produce a semantic segmentationmap and an instance decoder
Dinst produces a three-dimensional orientation map Iθ as intermediate,
and two complementary distance transform maps Iδ+ and Iδ− as final
representation. TheConsInstancy loss enforces consistency between the
instance representations and the semantic segmentation map leveraging
unlabelled data

rial prior to its placement in the formwork. This, therefore,
allows room for corrective or preventive measures, already
during the construction process. In [2,3] deep learning-based
approaches for the semantic segmentation of aggregate parti-
cles are proposed.While these approaches predict a semantic
class (aggregate or cement paste matrix) for each pixel, we
additionally determine a unique instance ID for each pixel,
enabling the differentiation between individual particles, an
extension which is especially relevant in the case of overlap-
ping or neighbouring particles. However, a large amount of
labelled training data for supervision is typically required for
deep networks to learn the mapping of images to a semantic
segmentation. In the case of instance-aware segmentation of
many, small, and potentially densely distributed objects, such
as concrete particles, annotating large amounts of training
data is immensely tedious. In this paper,we therefore propose
a semi-supervised framework (cf. Fig. 1) which leverages
unlabelled data for the training process of a panoptic segmen-
tation network in order to reduce the demand of annotated
data and, thus, to improve performance. Our approach is
applied to images of hardened concrete and, to the best of
our knowledge, we are the first to propose the segmentation
of aggregates also in images of fresh concrete.

One successful line of work on semi-supervised semantic
segmentation in the literature uses consensus regularisa-
tion during training by enforcing consistency between the
predictions of a semantic segmentation of two or more
decoder branches on unlabelled data [2,4–7]. However, these
approaches do not infer predictions at instance level. In [8],
a weakly supervised approach for panoptic segmentation
is proposed, which leverages bounding box annotations in

order to learn a segmentation at instance level. However, the
requirement of bounding boxes for training adds additional
annotation effort to the learning procedure. The question of
how to best incorporate entirely unlabelled data to the learn-
ing of a panoptic segmentation is currently an open and active
problem in research.

Building upon the concept of consensus regularisation [5,
9], we make the following contributions in this paper:

(1) With a 3D instance orientation map and two com-
plementary semantic instance-aware distance transform
representations, we propose novel instance represen-
tations that can be predicted in one path by a fully
convolutional network (FCN), allowing the derivation of
a panoptic segmentation of the input by one simple for-
ward path.

(2) In order to leverage unlabelled data to improve seg-
mentation performance and to reduce the requirements
of labelled data, we propose a ConsInstancy regularisa-
tion, a novel semi-supervised training approach enforcing
consistency between semantic instances and a semantic
segmentation map predicted by a multi-task FCN.

(3) We demonstrate on two data sets that our proposed
method leads to superior results for the criteria of both,
semantic and panoptic segmentation tasks, compared to
state-of-the-art approaches. In this context, we propose
our own and, to best of our knowledge, first data set of
instance-wise annotated aggregate particles in images of
fresh concrete, encouraging vision based research efforts
towards precautionary, instead of retrospective, quality
control of concrete.1

2 Related work

This section gives an overview of related work on instance
representation andoncurrent approaches for semi-supervised
image segmentation.

2.1 Instance representation

A very common representation of instances in computer
vision applications are bounding boxes [10], typically rep-
resented as rectangular and axis aligned boxes, enclosing the
instance. In [11], bounding boxes are enriched by an instance
mask, delivering a pixelwise encoding of those pixels which
are associated with the instance and, which are not. However,
the approaches [10,11] allow bounding boxes as well as the
segmentation masks of different instances to overlap, render-
ing them unsuitable for the task of panoptic segmentation, in

1 Source code is made publicly available here: https://github.com/
MaximilianCoenen/ConsInstancy.git.
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which it is necessary to assign every pixel to only one unique
instance.

In [12], instances are represented by two-dimensional
vectors associated with each pixel and pointing to the near-
est centroid of an object. While this representation allows
to determine object centroids and consequently, enables
locating and counting instances, it does not provide an
instance-wise segmentation of the input. To this end, the
authors of Dijkstra et al. [13] enrich the centroid represen-
tation by an additional pixelwise representation of vectors
pointing to the nearest object boundary. Similarly, the authors
of Xie et al. [14] propose a polar mask as instance represen-
tation, which defines each instance by the centre point of
the object. In order to obtain the outline of the instance, a
number of rays, sampled in uniformly distributed angular
intervals, encode the distance to the closest boundary pixel
along the respective ray. Likewise, in [15,16], a star-convex
polygon is proposed to provide an instance representation.
There, each pixel belonging to an object instance is allocated
to the distances to the object’s boundary along a set of prede-
fined equidistant radial directions. In these representations,
the instance boundaries are implicitly contained as polyg-
onal shapes defined by the radial rays and the associated
length of each ray. Similarly, by proposing a complemen-
tary distance transform map in this paper, we also employ
an implicit encoding of the instance boundaries, however,
providing a much simpler representation compared to the
polar mask and the star-convex polygon. In [17], the authors
propose to predict a deep watershed transform, which corre-
sponds to a discretised distance transform map, for the task
of instance segmentation. Furthermore, as an intermediate
representation, the authors make use of a two-dimensional
direction map in order to guide the learning process of the
watershed transform. In this map, each pixel is associated
with a 2D unit vector pointing in the direction of the closest
boundary point to that pixel. However, since pixels belong-
ing to non-object classes do not possess instance boundaries
and, therefore, cannot be assigned to a meaningful direction
vector, this procedure requires a semantic segmentation map
in order to be able to discern pixels belonging to an object
class (things) from pixels belonging to non-object classes
(stuff ). In this paper, we built upon the proposed representa-
tion of Bai and Urtasun [17], but overcome the requirement
of an a-priorly known semantic segmentation by proposing a
three-dimensional, instead of a two-dimensional, orientation
map as intermediate instance representation, providing the
flexibility to also represent non-object pixels by associating
unit vectors pointing into the third dimension.

2.2 Semi-supervised segmentation

Research on semi-supervised segmentation focusses on the
question of how unlabelled data, which is typically easy to

acquire in large amounts, can be used together with small
amounts of labelled data to derive additional training signals
in order to improve the segmentation performance.

One strategy for making use of unlabelled data is based
on entropy minimisation [18,19], where additional training
signals are obtained by maximising the network’s pixelwise
confidence scores of themost probable class using unlabelled
data. However, this approach introduces biases for unbal-
anced class distributions, in which case, the model tends to
increase the probability of the most frequent, and not neces-
sarily of the correct classes.

In a semi-supervised segmentation setting using adver-
sarial networks, the segmentation network is extended by
a discriminator network that is added on top of the seg-
mentation and which is trained to discriminate between the
class labels being generated by the segmentation network and
those representing the ground truth labels. Byminimising the
adversarial loss, the segmentation network is enforced to gen-
erate predictions that are closer to the ground truth and, thus,
they can be applied as additional training signals in order
to improve the segmentation performance. In this context,
the discrimination can be performed in an image-wise [20]
or pixelwise [21,22] manner. Since the adversarial loss can
be computed without the need for reference labels once the
discriminator is trained, the principles of adversarial segmen-
tation learning are adapted for the semi-supervised setting to
leverage the availability of unlabelled data [21,22]. Similar
to the pixelwise adversarial learning procedure of Souly et
al. [21] and Hung et al. [22], the authors of Mendel et al. [23]
propose a correction network which is also added on top of
the segmentation network and which learns on labelled data
to distinguish between correct and incorrect class predic-
tions. In the semi-supervised setting, the correction network
is then used to produce additional supervision from unla-
belled data based on the predictive certainty of the network.
However, learning the discriminator and the correction net-
work, respectively, adds additional demands for labelled data
and, therefore, may not reduce the need for such data in away
other strategies do.

Closest to our approach is the line of research on semi-
supervised segmentation based on the consensus principle. In
this context, the authors of Ouali et al. [5] train multiple aux-
iliary decoders on unlabelled data by enforcing consistency
between the class predictions of the main and the auxiliary
decoders. Similarly, in [6] two segmentation networks are
trained via supervision on two disjunct data sets and addition-
ally, by applying a co-learning scheme in which consistent
predictions of both networks on unlabelled data are enforced.
In [2], consistency training is additionally enriched by an
auto-encoder branch, following the approach of auto-encoder
regularisation [24,25] for semi-supervised learning. Another
approach based on consensus training is presented in [7,26],
where unlabelled data is used in order to train a segmenta-
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tion network by encouraging consistent predictions for the
same input under different geometric transformations.While
these approaches tackle the task of semantic segmentation,
we extend the idea of consensus regularisation to a panoptic
segmentation task by proposing theConsInstancy loss,which
enforces consistency between semantic instance representa-
tions and semantic segmentation maps. In [27], a contour
prior is introduced for instance-wise segmentation by assum-
ing that the instance-segmentation boundaries should align
with strong image gradients. However, expecting large image
gradients at instance boundaries is a rather strong hypothesis
which does not necessarily hold true for all scenes, particu-
larly in the case of our fresh concrete data set (cf. Sect. 4.1).
Moreover, important to note is that in contrast to Hao et al.
[27] and other approaches for weakly supervised instance
segmentation, as e.g. in [8,28] where weak annotations in
the form of bounding boxes are needed for a weakly super-
vised training, no additional annotations are required in our
work.

3 Methodology

3.1 Overview

On an abstract level, encoder–decoder networks for semantic
segmentation learn a function f : X → Y which maps the
input images X to pixelwise class predictions Y , such that
Y = Dseg(E(X)). In this setting, an encoder E(X) computes
a latent feature embedding z from the input data and a seg-
mentation decoderDseg(z) is used to produce the label maps
Y from z. Typically, Y contains i = 1...NC channels, one for
each semantic class Ci ∈ C, whose entries contain the pix-
elwise class-scores for the respective class Ci . In a panoptic
segmentation setting, the semantic label set C distinguishes
between subsets CSt and CTh, corresponding to stuff and
thing classes, respectively, such that C = CSt ∪ CTh. In this
definition, things comprise classes of countable objects (here:
the concrete aggregates) whereas stuff comprises classes of
amorphous appearance and of similar texture or material
(here: the cement suspension). The task of panoptic seg-
mentation extends the objective of semantic segmentation by
mapping each pixel p belonging to the subset CTh not only
to its semantic class CTh

i but in addition, also to an unique
instance id o ∈ O, enabling the differentiation of individual
instances, with O denoting the set of all object instances.

Given a data set X = {Xl , Xu}, this paper presents a
novel strategy to leverage unlabelled data Xu along with
labelled data Xl for the training of a segmentation network in
order to improve its performance compared to only using the
labelled data. Specifically, we propose an instance decoder
Dinst which is trained to predict individual object class
instances andwhich is added to the segmentation architecture

while sharing the encoder E with the segmentation decoder
Dseg (cf. Fig. 1). In this paper, we show that the proposed
instance decoder serves multiple purposes. On the one hand,
by formulating the simultaneous prediction of semantic seg-
mentation maps and instance representations as a multi-task
framework, hence exploiting the complementary information
of both disentangled but correlated tasks, the discrimina-
tive capability of the intermediate feature representations
is improved and therefore leads to enhanced segmentation
results. On the other hand, we demonstrate how to bene-
fit from largely available unlabelled data, incorporating it
into the training procedure by enforcing consistency between
the predicted instance representations and the segmentation
maps in order to produce additional self-supervised training
signals and, thus, to significantly improve the performance of
the network. Lastly, wemake use of the inferred instance rep-
resentations to separate clustered objects, enabling a panoptic
segmentation by generating instance-level semantic segmen-
tation results.

3.2 Semantic segmentation

Based on the latent feature embedding z produced by the
encoder network E(X), the first output branch of our frame-
work consists of a segmentation decoder Dseg (cf. Fig. 1)
which predicts a pixelwise semantic segmentation Y .

The encoder and segmentation decoder architecture used
in this work correspond to the Residual depthwise Separable
convolutional Network (R-S-Net) proposed in [2]. This
network consists of four encoder and decoder blocks, respec-
tively. Each encoder block consists of a residual convolution
module, in which two intermediate representations are com-
puted. The first representation is produced by a convolutional
layer using a stride of 2, and the second one is computed by
a sequence of a convolutional layer followed by a depthwise
separable convolution layer and max-pooling. As output of
the encoder block, the elementwise sum of both intermedi-
ate representations is returned. Similar to that, the decoder
block processes the input in a two-stream path and returns the
element-wise sum of the output of both streams. In the first
stream, the input is upsampled by a factor of 2, followed by a
convolutional layer. The second streamconsists of a sequence
of one convolutional layer followed by a depthwise separable
convolution and an upsampling layer. For more details, we
refer the reader to [2].

For the supervised training of the segmentation decoder,
labelled data Xl and associated reference labels are used to
compute a pixelwise categorical cross-entropy loss LCE.

3.3 Learning instance representations

In this section, we describe the instance representations that
are proposed in this paper to represent instances of the thing
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(a) Example image (b) Binary segmen-
tation mask Y

(c) Instance bound-
aries

(d) Instance orien-
tation map Iθ.

(e) Instance-aware
dist. transform map
Iδ
+.

(f) Complem. dis-
tance transform
map Iδ

−.

Fig. 2 Example images with its annotated segmentation and instance
boundary masks (top row) together with their proposed instance repre-
sentations (bottom row)

classes. Examples of our representations are shown in Fig. 2.
In particular, we train the instance decoder Dinst to pre-
dict the two instance-aware distance transform maps Iδ+ and
Iδ− for each class in CTh as final output (cf. Sect. 3.3.1).
Furthermore, we propose what we denote as instance orien-
tation map Iθ as class-agnostic intermediate representation
(cf. Sect. 3.3.2). In our framework, this intermediate repre-
sentation acts as additional guidance for predicting the final
distance transform maps (cf. Sect. 3.3.3).

3.3.1 Distance transformmaps

The head ofDinst is designed to produce instance-aware dis-
tance transform maps. More specifically, as shown in Fig. 1,
we propose the prediction of two outputs.

On the one hand, the network predicts an instance-aware
signed distance transform map Iδ+ (cf. Fig. 2e). Identical to
the normal signed distance transform (SDT) [29], Iδ+ repre-
sents the transformationof a binary segmentationmaskY into
an equivalent continuous representation. However, while the
original SDT assigns to each pixel of the foreground class its
Euclidean distance to the closest point belonging to the back-
ground class, we define a slightly different representation
by proposing an instance-aware SDT. In this representation,
each foreground pixel gets assigned the Euclidean distance
to its closest instance boundary point, i.e. the closest dis-
tance to either a background pixel or a pixel associated
with another instance object. Pixels belonging to the back-
ground class are set to 0 in Idist+ . In this way, we obtain
an implicit representation of individual instances including

the instance boundaries, in addition to the binary informa-
tion, whether a pixel belongs to the semantic background or
foreground class. In comparison with a regular binary seg-
mentation mask, in this representation, each pixel implicitly
contains additional information about the spatial extent of its
associated instance. In this way, the proposed representation
enables the differentiation of individual instances even if they
share a common boundary, which is not the case in the binary
segmentation setting. As a side effect, we argue that this rep-
resentation also helps the network to learn improved latent
feature embeddings by being trained not only to predict a
semantic class but also to discern individual instances at the
same time. Important to note is, that we perform an instance-
wise normalisation of Idist+ , in which each entry is divided by
the maximum Euclidean distance inherent to its associated
instance. Formally, the entries δp,+ of each foreground pixel
p in Idist+ result in

∀p ∈ o, o ∈ O, δp,+ = minp/∈o(‖p − p‖)
maxp/∈o(‖p − p‖) , (1)

where o denotes an individual object instance within the set
O of all instances and ‖p− p‖ returns the Euclidean distance
between the instance pixel p and the non-instance pixel p.
By doing so, all values in Iδ+ are in the range of [0, 1], which
reduces the difficulty of using nonlinear activation functions
in order to model the scalar targets. Besides, the normal-
isation circumvents the effect that larger instances would
contribute with a larger weight to the loss computation due
to the appearance of larger Euclidean distances comprised
by those objects compared to smaller instances.

As second output of the instance decoder Dinst, we intro-
duce a complementary distance transformmap Iδ−. This map
is designed similar to Iδ+, except that the values for each fore-
ground pixel p in Iδ− are set to δp,− = 1 − δp,+. While the
distance transform map Iδ+ emphasises the skeleton of the
instances and, therefore, has a rather poor representation of
the instance boundaries due to the small contrast between
background and foreground pixels at the low distance levels
of the objects (cf. Fig. 2e), the proposed complementary dis-
tance transform map Iδ− introduces strong training signals
for background-foreground confusions in instance boundary
regions (cf. Fig. 2f). This representation, therefore, encour-
ages the network to learn an accurate estimation of the
instance contours.

Per definition, the relationship of the distance transform
maps Iδ+ and Iδ− and the binary label map Y results in

Y = Iδ+ + Iδ−. (2)

In the semi-supervised setting proposed in this paper, this
relationship is exploited in order to enforce consistency
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Fig. 3 Schematic visualisation of the instance orientation map Iθ . Pix-
els belonging to an instance are coloured in red. The green and blue
arrows indicate the 3D unit vectors θp

between the instance predictions and the segmentation results
of our framework (cf. Sect. 3.5).

3.3.2 Instance orientation map

Inspired by Bai and Urtasun [17], we design Dinst to predict
an instance orientation map Iθ as an intermediate instance
representation. In this representation, each pixel p of the
input image is parametrised by a three-dimensional unit vec-
tor θp as depicted in Fig. 3.

For pixels p not belonging to an object instance we define
θp as a unit vector perpendicular to the image plane. For
pixels p belonging to one of the object instancesO, θp corre-
sponds to the unit vector in the image plane pointing towards
the closest pixel not belonging to the respective instance.
Thus, according to this definition, θp of each instance pixel
corresponds to the normalised gradient of the instance dis-
tance transform map Iδ+ at the corresponding pixel position
so that

θp =

⎧
⎪⎨

⎪⎩

[
∇Iδ+

‖∇Iδ+‖ , 0

]T

for p ∈ O
[0, 0, 1]T for p /∈ O.

(3)

In this equation, ∇Iδ+ = [∇x,∇ y] denotes the two-
dimensional gradient vector containing the gradient compo-
nents in the x and y direction in image space, respectively,
and ‖∇Iδ+‖ denotes the norm of the gradient.

Note that our three-dimensional representation of the
instance orientation map is different from the one applied
in [17], where the proposed direction network produces a
map of only two-dimensional in-plane unit vectors. In that
case, meaningful directional vectors can only be defined for
instance pixels and therefore, a semantic segmentation of the
input is required beforehand in order to differentiate between
instance and non-instance image regions. In this paper, the
informationwhether a pixel belongs to an object instance (in-
plane unit vector) or to a non-object class (out-of-plane unit
vector) is implicitly encoded in the three-dimensional ori-
entation field. As a consequence, in our framework, a prior
segmentation of the input as it is done by Bai and Urtasun
[17] is not required in order to predict the instance orientation
maps. In contrast, we argue that by implicitly encoding the

Fig. 4 Architecture of the instance decoder Dinst

semantic information of the pixel associations to either the
object or non-object class in the orientationmap,we force the
network to learn to distinguish between these cases, enforc-
ing the extraction of richer and more discriminative features.
Furthermore, we leverage the property of the instance orien-
tation map to possess perpendicular vectors at the boundary
between thing instances and stuff regions as well as opposed
vectors (i.e. maximum angular differences) at boundary pix-
els between two neighbouring instance objects. We argue,
that, in thisway,we enforce the network to learn very accurate
instance boundary localisations at pixel level. In accordance
toBai andUrtasun [17],we believe that learning the proposed
orientation map Iθ , as an intermediate representation for
the instance landscape of the input image, aids the instance-
decoder Dinst in producing the distance transform maps as
the final output.

3.3.3 Instance decoder architecture

An overview on the architecture which is employed for the
instance decoder Dinst is depicted in Fig. 4.

The input to the decoder is the shared feature embedding z
produced by the encoder E for the input image X . As the seg-
mentation decoder, the instance decoder backbone applies
the decoder of the R-S-Net [2]. The backbone produces a fea-
ture map of depth 32 and of the same resolution as the input
image. A 3×3 convolutional layer with ReLU activation,
followed by a 1×1 convolutional layer with no activation, is
used to predict a three-channel feature map, allowing values
in the range [−∞,∞]. Subsequently, in order to produce the
orientation map Iθ , a normalisation layer is applied in order
to restrict the pixelwise sum of each channel’s squared output
to 1, thus, forming the three-dimensional unit vectors θp as
shown in Fig. 3. It has to be noted that the orientation map
is class agnostic, i.e. we design the network to produce one
orientation map representing all instances, regardless of their
associated classes. The prediction of the final distance trans-
form maps takes place considering the predicted orientation
maps by leveraging the orientation maps concatenated with
the output feature map of the backbone decoder as input. A
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1 × 1 convolutional layer with sigmoid activation is applied
to produce the transform maps Iδ+ and Iδ− comprising a total
of NCTh channels, one for each class in CTh.

Training: in order to train the instance decoder in a super-
vised manner, reference data for the orientation map and
the distance transform maps are required. Given the labelled
data Xl , i.e. the reference semantic instance segmentation
masks, these reference maps can directly be computed from
the instance masks, though, and do not lead to additional
labelling requirements. We define the loss for the orientation
map Iθ in the angular domain by applying the cosine sim-
ilarity loss LCOS and make use of the mean squared error
(MSE) as loss LMSE,+ and LMSE,- for the output of the dis-
tance transform maps Iδ+ and Iδ−, respectively.

3.4 Panoptic segmentation

While a semantic segmentation of the input is delivered
directly by the network as output of the segmentation decoder
(cf. Sect. 3.2), deriving the panoptic segmentation using the
proposed framework requires post-processing. In a first step,
we make use of the predicted complementary distance trans-
form map Iδ− in order to extract the outlines for the instances
of each semantic class in CTh by thresholding Iδ− using a
threshold of 0.9. Note that this is in contrast to Bai and Urta-
sun [17], where the low distance areas of a regular distance
transform map are used as energy cut, which, however, does
not define the instance boundaries as well as compared to
the complementary distance transform map proposed in this
paper. In a second step,we subtract the extracted instance out-
line map from the binary semantic segmentation map of the
corresponding class in Y , and subsequently, associate each
remaining connected component with an individual instance
ID. Finally, instance boundary pixels are allocated to the id
of their neighbouring instance, resulting in a panoptic seg-
mentation of the input image.

3.5 Semi-supervised training

In this paper, we propose a strategy to incorporate unlabelled
data Xu , in addition to the limited amount of labelled data
Xl , to the training procedure of our segmentation network in
order to improve its performance. To this end, we define the
overall training objective as to minimise the overall training
loss L with

L = LCE + LCOS + LMSE,+ + LMSE,-
︸ ︷︷ ︸

supervised

+ LCONS︸ ︷︷ ︸
unsupervised

, (4)

being composed of supervised loss functions which require
the availability of reference data and an unsupervised loss
functionwhichdoes not require any referencedata to be avail-
able. The supervised loss functions produce training signals

at the outputs of the network for the semantic segmenta-
tion mask, the orientation map, and the distance transform
maps, respectively. These signals are based on the discrep-
ancy between the predictions and the provided reference data
and are computed according to the loss functions described in
Sects. 3.2 and 3.3.3.Wewould like to point out that in order to
compute the supervised loss functions, no additional annota-
tions other than the instance-level annotations are required.
Instead, the reference data required for the individual loss
terms, i.e. the different instance representations, can directly
be derived from the instance-level annotations. As a conse-
quence, our proposedmethod does not add further annotation
efforts but instead, makes use of different representations of
existing annotations at instance level to enrich the training
procedure by formulating the supervised part of the total loss
in Eq. (4) as a multi-task learning problem.

In order to compute the unsupervised loss from unlabelled
data, we propose the ConsInstancy loss which we define as

LCONS =
NCTh∑

i=1

LMSE(Yi , Iδ+,i + Iδ−,i ). (5)

In this definition, we make use of the relationship described
by Eq. (2), namely that the sum of the two predicted distance
transform maps Iδ+,i and Iδ−,i for the thing classes Ci ∈ CTh

must result in the binary label representation Yi predicted for
that class. This relationship allows us to introduce the MSE
between the predicted labelmaps and the sumof the predicted
distance transform maps as additional unsupervised train-
ing signals, derived from entirely unlabelled data (cf. Fig.1).
By minimising this loss based on the discrepancy between
the individual outputs, we enforce consistency between the
predictions of the segmentation decoder and the instance
decoder, enabling the exploitation of the consensus principle
[9]. This principle is founded on the rationale that enforcing
an agreement between different outputs of the same network
restricts the parameter search space to cross-consistent solu-
tions and, therefore, acts as additional regularisation on the
shared encoder, thus, enhancing its feature representation and
improving its generalisation ability.Ahigh-level overviewon
the proposed framework is shown in Fig. 1 and an overview
on the training procedure of the proposed semi-supervised
segmentation approach is given in Algorithm 1.

4 Experimental evaluation

In this section, we evaluate our approach on two semantic
instance-level data sets of concrete aggregates. We anal-
yse the performance on both, semantic segmentation and
panoptic segmentation tasks. In this context, we also perform
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Algorithm 1 Semi-supervised panoptic segmentation
1: Input: Data set X = {Xl , Xu} and labels Yl
2: procedure ConsInstancy Training
3: Setup network architecture
4: Initialise network weights w
5: for i in number of epochs do
6: Predict Ŷ , Iθ , Iδ+, Iδ− for Xl

7: Predict Ŷ , Iθ , Iδ+, Iδ− for Xu
8: Compute supervised losses
9: Compute unsupervised loss (LCONS)
10: Compute total loss L(w)

11: Update weights w = w − η∇L(w)

12: end for
13: end procedure

ablation studies of our proposed method in order to examine
the impact of the different constituents of our model.

4.1 Test data

We experimentally evaluate our proposedmethod on two dif-
ferent data sets of concrete aggregates. Both data sets used
in this work distinguish the classes suspension (stuff) and
aggregate (thing). The first data set is the concrete sedimen-
tation data set proposed in [2]. It consists of 612 labelled
and 827 unlabelled image tiles of hardened and lengthwise
cut concrete cylinders with a resolution of 448 × 448 px2.
Exemplary tiles of the sedimentation data are shown in the
top row of Fig. 5.

In contrast, the second data set contains images of fresh
concrete acquired and annotated by ourselves during the
standard approach for quality control of fresh concrete at
construction sites, the so called slump test [30]. It contains
1096 images of size 480 × 480 px2, manually labelled at
instance level. Furthermore, we made use of an additional
set of 2000 unlabelled images for the semi-supervised train-
ing in our experiments. Exemplary tiles of our fresh concrete
data are shown in the bottom row of Fig. 5 and an exam-
ple image, together with its corresponding reference maps,
is depicted in Fig. 6. From Fig. 5, the diversity of the appear-
ance of both, aggregate and suspension in both data sets can
be noted. In comparison to the sedimentation data obtained
on hardened concrete, the fresh concrete data is more chal-
lenging as the particles are embedded in the viscous binder
suspension, rendering parts of the instance boundaries indis-
tinct and ambiguous.

4.2 Test setup

Ablation studies: to assess the effect of the individual con-
stituents of our framework, we perform tests using different
network variants, considering different components in the
evaluation. In the Seg setting, we train a semantic segmenta-
tion network by only using the segmentation decoder, while

Fig. 5 Exemplary images of the two data sets used for evaluation in
this work. Top row: images of the sedimentation data set [2], depicting
aggregate particles in hardened concrete. Bottom row: images of our
proposed fresh concrete data set, showing aggregate particles in fresh
concrete

Fig. 6 Exemplary image of the fresh concrete data set (a) and its cor-
responding reference maps: The instance-level segmentation mask (b),
the instance boundaries (c), the orientation map (d) as well as the dis-
tance transform map (e) and its complementary representation (f) are
shown

disregarding the instance decoder during training. Conse-
quently, in this setting, we perform a purely supervised
training without the incorporation of unlabelled data. In the
Inst variant, we perform training using both, the segmenta-
tion and the instance decoder, but again, we only perform a
purely supervised training. Thus, with this setting, the effect
of multi-task learning, which is achieved by not only train-
ing the network for semantic segmentation, but at the same
time for predicting the instance representations, can be anal-
ysed. In the ConsInst variant, we make use of our complete
approachproposed for the semi-supervised panoptic segmen-
tation. Thus, in this setting, the unlabelled data are leveraged
by computing the ConsInstancy loss for a semi-supervised
training.

Training: the networks used in the different variants of the
proposed framework are trained from scratch. The convolu-
tional layers are initialised using the He initialiser [31]. The
networks are trained using theAdamoptimiser [32], using the
exponential decay rate for the 1st moment estimates β1 = 0.9
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and for the 2nd moment estimates β2 = 0.999. We apply
weight regularisation on the convolutional layers using L2
penalty with a regularisation factor of 10−5. A mini-batch
size of 8 is applied, meaning that in the semi-supervised
setting, each mini-batch consists of four labelled and four
unlabelled training images. We use an initial learning rate of
10−3 and decrease the rate by a factor of 10−1 after 25 epochs
with no improvement in the training loss. In all settings, we
make use of the same, very limited amount of labelled data
for training. In case of the sedimentation data, we use only
17 labelled images and all unlabelled images for training, as
suggested in [2]. In case of our fresh concrete data set, we
considered 150 labelled images for training of the supervised
components of the framework, and all unlabelled images for
the semi-supervised part.

Metrics: the evaluation is carried out based on all anno-
tated images that are not used for training. We report results
for different evaluation metrics. In order to evaluate the per-
formance of the approach related to the pixelwise semantic
segmentation, we determine values for the class-wise recall
(R), precision (P) and F1 scores as well as the overall seg-
mentation accuracy (OA). Additionally, since the OA can be
biased towards more frequent classes, we report the mean F1
score of the segmentation (MF seg

1 ), computed as average of
the class-wise F1 score of all classes. Furthermore, we anal-
yse the performance of the approach towards instance- and
panoptic segmentation and report results for the instance-
wise F inst

1 score to assess the performance on instance-level
segmentation and results for panoptic quality (PQ), the met-
ric for panoptic segmentation defined in [1] with

PQ =
∑

(p,g)∈T P IoU(p, g)

|T P| + 1
2 |FP| + 1

2 |FN | . (6)

In this context, p and g denote predicted andground truth seg-
ments, respectively. Furthermore, T P (true positive) denotes
correctly matched instances, FP (false positive) and FN
(false negative) represent unmatched predicted and ground
truth instances, respectively. For both, F inst

1 and PQ met-
rics, we require the segmentation masks of instances to have
an intersection-over-union (IoU) of 50% or more with a
reference instance mask to be counted as true positive seg-
mentation.

Comparison to state-of-the-art: we compare our results
with the results achieved by two current state-of-the-art
approaches for semi-supervised segmentation of Coenen et
al. [2] and Ouali et al. [5]. To enable a fair comparison,
we trained both approaches from scratch using the same
labelled and unlabelled data that was used for the training
of the proposed framework. The results achieved for the task
of semantic segmentation can directly be compared to the
results obtained by our approach. In order to compute the
evaluation metrics for the panoptic segmentation, we iden-

tify connected components in the semantic label space. From
these components we derive an instance-wise segmentation,
since both state-of-the-art methods only deliver a semantic
but no panoptic segmentation of the input. Note, that the
same is true for the defined Seg variant of our framework,
where only the segmentation branch is applied. We point
out that a comparison of the panoptic segmentation metrics
consequently is not one-hundred percent fair. However, in
case of the sedimentation data, the effect that adjacent parti-
cles have on an instance-wise evaluation is almost negligible
since an overlap of multiple particles in the profiles of the
concrete cylinders is physically impossible and the occur-
rence of directly adjacent particles is very rare. Nevertheless,
in case of the fresh concrete data set, the effect of identify-
ing instances from connected components is an issue and,
therefore, impacts the metrics for the panoptic segmentation
of the approaches, which is why the comparison in Table 4
have to be taken with caution. Still, we decided to include
the results in this paper, as they also show the contribution of
our framework of extending approaches for semi-supervised
segmentation by also predicting instance masks in addition
to the semantic segmentation mask.

4.3 Results

In this section, we evaluate the results achieved by the pro-
posed approach for semi-supervised panoptic segmentation
on the two described data sets. In this context, we analyse the
effects of the individual components of the approach, namely
the prediction of the proposed instance representations and
the usage of the ConsInstancy training.

4.3.1 Semantic segmentation

Table 1 (class-wise evaluation scores) and Table 2 (overall
accuracy and MF1 scores) contain the results for the metrics
chosen to assess the quality w.r.t. to the performance on the
semantic segmentation task.

To enable a better evaluation of the performance metrics
achieved by the different network variants, we conduct a sen-
sitivity analysis in order to assess the performance variations
of the variants resulting from different weight initialisations
and training. We do this on the example of the Inst and Con-
sInst models and the sedimentation data, by training these
models multiple (four) times from scratch, using a different
weight initialisation each time, and by computing the average
and standard deviations of the segmentation quality metrics
achieved by the models (Table 3).

As can be seen from the table, the resulting standard devi-
ations of the quality metrics are relatively small, namely
almost exclusively less than half a percent (an exception is
the F1 score for the class aggregate, with 0.64%). In the fol-
lowing ablation analysis, these values deliver indications for
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Table 1 Class-wise scores for recall (R), precision (P) and F1 for the pixelwise semantic segmentation achieved on both data sets for the classes
suspension and aggregate

Class-wise scores in [%] Sedimentation Fresh concrete

Suspension Aggregate Suspension Aggregate

R P F1 R P F1 R P F1 R P F1

Ours (Seg) 87.2 89.6 88.4 81.1 77.3 79.2 95.8 95.5 95.6 68.7 70.3 69.5

Ours (Inst) 89.3 90.9 90.1 83.5 80.7 82.1 96.7 95.1 95.9 65.9 74.1 69.7

Ours (ConsInst) 95.7 89.7 92.6 79.6 90.9 84.9 97.0 95.6 96.3 69.6 76.8 73.0

Ouali et al. [5] 98.3 86.1 91.8 70.4 95.7 81.2 97.1 95.2 96.1 66.4 76.6 71.2

Coenen et al. [2] 94.8 88.5 91.5 77.2 88.8 82.6 96.9 95.4 96.2 68.0 76.3 71.3

The maximum achieved F1 score is depicted in bold

Table 2 Overall accuracies and MF1 scores for the pixelwise semantic
segmentation achieved on both data sets

in [%] Sedimentation Fresh concrete

OA MF seg
1 OA MF seg

1

Ours (Seg) 85.1 83.8 92.4 82.6

Ours (Inst) 87.2 86.1 92.8 82.8

Ours (ConsInst) 90.1 88.7 93.5 84.7

Ouali et al. [5] 88.5 86.5 93.2 83.6

Coenen et al. [2] 88.6 87.1 93.3 84.1

The maximum achieved OA and MF1 scores are depicted in bold

Table 3 Sensitivity analysis

SD in [%] OA MF seg
1 F1 (suspension) F1 (aggregate)

Inst 0.48 0.45 0.45 0.48

ConsInst 0.47 0.48 0.41 0.64

Standard deviations for different quality metrics obtained by training
the models multiple times from scratch, using different weight initiali-
sations, on the sedimentation data set

the assessmentwhether differences between the performance
of the analysed model variations are significant or not.

The Seg variant, i.e. the semantic segmentation network
without the instance decoder trained in a purely supervised
manner, achieves an OA of 85.1 and 92.4% and a MF seg

1
score of 83.8 and 82.6% on the two evaluated data sets,
respectively (cf. Table 2).

The Inst variant adds the proposed instance decoder dur-
ing training and, thus, performs multi-task learning but still
does not use any unlabelled data. As can be seen from the
results in Table 1, only by applying multi-task learning using
our proposed instance representations, the class-wisemetrics
including the F1 scores increase for both classes on the sedi-
mentation data set by up to 2.9%. Consequently, also the OA
and MF seg

1 score increase (+2.1 and +2.3%, respectively).
Compared to the performance variations of the individual
models which are shown in Table 3 (less than 0.5% of stan-

dard deviations), these improvements are distinctly larger
than the 3σ interval and, therefore, can be evaluated as sig-
nificant. On the fresh concrete data set, improvements are
also visible but less distinct. It can be noted that especially
the precision of the class aggregate (i.e. the thing class) bene-
fits from the consideration of the proposed instance decoder.
Compared to the Seg variant, the precision for that class
increases by 3.4% on the sedimentation data and by 3.8% on
the fresh concrete data. We argue that enforcing the network
to explicitly learn the discrimination of individual instances
within certain classes leads to the extraction ofmore discrimi-
nant features, therefore enabling amore precise classification
of the respective classes.

Making use of unlabelled data in the ConsInst setting
additionally to the labelled data during training, by applying
our proposed ConsInstancy training, again, the performance
of the semantic segmentation is enhanced by a margin for
all metrics on both data sets. The MF seg

1 scores for instance
increase by a significant margin of 2.6 and 1.9%, respec-
tively, demonstrating the potential of our framework. As is
visible from Table 1, our ConsInstancy training, again, par-
ticularly favours the segmentation of the thing related pixels
of the class aggregate, as the largest improvements for the
F1 score are achieved for that class. For a visual compari-
son of the segmentation performance, qualitative results for
the segmentation masks obtained by the evaluated variants
of our framework are shown in Fig. 7. As is visible, com-
pared to the Seg and the Inst variant, the ConsInst setting
especially leads to distinctly smoother segmentations of the
instance boundaries and to a significant reduction of spurious
and erroneous false positive elements on both data sets. This
visual impression is quantitatively supported by the values of
precision achieved for the classaggregate (cf. Table 1),which
are distinctly enhanced by the ConsInst variant, indicating
the significant reduction of the mentioned false positive seg-
mentations of that class.

Compared to the state-of-the-art methods of Ouali et al.
[5] and Coenen et al. [2], whose results are also reported
in Table 2, our semi-supervised approach achieves superior
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Fig. 7 Qualitative results for the segmentation masks obtained by the
variants used in the ablation studies of our proposed framework

Table 4 Results for the panoptic segmentation metrics achieved on the
sedimentation and fresh concrete data sets

In [%] Sedimentation Fresh concrete

PQ F inst
1 PQ F inst

1

Ours (Seg) 39.0 51.1 32.3 45.0

Ours (Inst) 41.2 53.9 30.5 43.2

Ours (ConsInst) 48.2 61.9 39.0 52.6

Ouali et al. [5] 43.9 57.7 34.5 47.5

Coenen et al. [2] 47.6 61.8 33.7 46.6

The maximum achieved PQ and F1 depicted in bold

results for both, the OA and the MF seg
1 score, on both data

sets. (Note that inconsistencies between thenumbers reported
here for Coenen et al. [2] on the sedimentation data and the
numbers reported in the original paper result from the fact
that a different set of training data was used for training of
the models.)

4.3.2 Panoptic segmentation

The results for the metrics related to the performance of
panoptic and instance segmentation for both data sets are
shown in Table 4. The fully supervised approach without
consideration of the instance decoder (Seg variant) achieves
values for PQ of 39.0 and 32.3% on the two data sets, and a
F inst
1 score of 51.1 and 45.0%, respectively.
As is visible fromTable 4, learning to predict the proposed

instance representations from the limited amount of labelled
data, in addition to the semantic segmentation, increases the
results for PQ and F inst

1 score by up to 2.8%on the sedimenta-
tion data. However, regarding the fresh concrete data set, the
PQ and F inst

1 score achieved by the Inst variant are decreased
by 1.8% compared to the Seg setting. One assumption for the

cause of the latter effect is that due to the indistinctly defined
instance boundaries in the images of that data set, a prop-
erty that was already mentioned in Sect. 4.1, the network
has to learn to guess parts of the object boundaries. Since
the pixelwise instance representations proposed in this work
are defined based on the location of each pixel relative to its
closest boundary point, an implicit inference of the instance
boundaries by the network is a prerequisite in order to pre-
dict the correct instance representing maps. We assume that
the limited amount of labelled data used for training, together
with the property of poorly visible and indiscernible instance
boundaries in the images, causes the Inst variant to perform
worse on the fresh concrete data. Assumingly, the amount
of labelled training data is not sufficient for the network to
learn to infer the instance’s extent when the boundaries are
not clearly represented in the image data. However, as can be
seen from the table, when introducing additional unlabelled
data to the training process by applying our ConsInstancy
regularisation, we achieve the by far best results compared
to the variants where no semi-supervised learning is applied.
The semi-supervised variant (ConsInst) performs by up to
8.0% better compared to the purely supervised variant (Inst)
on the sedimentation data and by up to 9.4% better on the
fresh concrete data. Compared to the semi-supervised meth-
ods proposed in [2,5], our approach performs slightly better
on the sedimentation data and outperforms the approaches
by a large margin on our fresh concrete data set.

5 Conclusion

We present a framework for semi-supervised panoptic seg-
mentation based on the consensus principle. To this end,
we propose novel instance representations and a novel
semi-supervised training scheme, denoted as ConsInstancy
training, by enforcing consistency during training between
the multi-task predictions of the instance representations and
a semantic segmentation map using entirely unlabelled data.
The results on two data sets demonstrate the benefit of our
multi-task framework using the proposed instance represen-
tations as well as the semi-supervised training on both tasks,
semantic and panoptic segmentation of concrete aggregate
particles. A quantitative comparison shows that our approach
is able to outperform current state-of-the-art methods for
semi-supervised segmentation. In the future,we aim at adapt-
ing and applying our framework on scenes with very dense
instance occurrences, like piles of raw aggregate material, in
which nearly every pixel belongs to an instances within the
thing classes. Furthermore, we want to apply our framework
onmulti-class segmentation tasks by discerning between dif-
ferent aggregate types, as e.g. natural particles or recycled
material, which can deliver valuable cues for requirements
on the concrete composition and its mixture design.
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