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Abstract
We proposed a convolutional neural network (CNN)-based surrogate model to predict the nonlocal response for flexoelectric 
structures with complex topologies. The input, i.e. the binary images, for the CNN is obtained by converting geometries 
into pixels, while the output comes from simulations of an isogeometric (IGA) flexoelectric model, which in turn exploits 
the higher-order continuity of the underlying non-uniform rational B-splines (NURBS) basis functions to fast computing of 
flexoelectric parameters, e.g., electric gradient, mechanical displacement, strain, and strain gradient. To generate the data-
set of porous flexoelectric cantilevers, we developed a NURBS trimming technique based on the IGA model. As for CNN 
construction, the key factors were optimized based on the IGA dataset, including activation functions, dropout layers, and 
optimizers. Then the cross-validation was conducted to test the CNN’s generalization ability. Last but not least, the potential 
of the CNN performance has been explored under different model output sizes and the corresponding possible optimal model 
layout is proposed. The results can be instructive for studies on deep learning of other nonlocal mech-physical simulations.

Keywords Convolutional neural network · Isogeometric analysis · NURBS trimming technique · Nonlocal flexoelectricity

1 Introduction

Unlike piezoelectricity coupling electric polarization 
directly with the strain, flexoelectricity is a nonlocal cou-
pling of the polarization to the strain gradient, as shown 
in Fig. 1. While piezoelectricity exists only in non-cen-
trosymmetric materials, flexoelectricity shows in nearly any 
material [27, 53]. Promising applications of flexoelectricity 
have been emerging like energy harvesters absorbing the 
mechanical vibrations [22, 32], actuators compatible for 
the semiconductor industries [8], self-powering microsen-
sors [28, 31], as well as domain tailoring and polarization 
switching [17, 30]. In nano-scale systems, flexoelectricity 
is pronounced due to the arised large nonlocal strain gradi-
ents [2]. Simulation of flexoelectric materials is complicated 

due to the C1 continuity requirement in the weak form. This 
numerical prerequisite complicates the implementation of 
the classical finite element methods based on Lagrange poly-
nomials. Alternatively, the meshfree methods as presented 
in [3, 40] or isogeometric analysis (IGA) [21] can be used 
which intrinsically fulfill the C1 requirement.

However, simulating simple bulk materials is not yet 
enough to excavate the potentials of the nonlocal flexoelec-
tricity. Possible mechanisms of enhanced flexoelectricity in 
dielectrics mainly includes inner strain, polar nano-regions, 
non-crystalline polar phases, residual ferroelectricity, and 
surface piezoelectricity [12, 45]. Zhang et al. [55] found 
that the surface piezoelectricity can contribute about 70% of 
the enhanced flexoelectricity in BaTiO3 ceramics. Moreover, 
the shape and configuration of materials have been reported 
affecting the piezoelectric and the flexoelectric effects [26, 
35, 42]. To better develop flexoelectric devices based on the 
nonlocal electro-mechanical coupling effects, topology opti-
mization considering the surface piezoelectricity has proved 
feasible for piezoelectric structures [34] and for flexoelec-
tric structures [14, 36]. As meshfree methods tend to be 
computationally more expensive, IGA have advantages in 
representing complex boundary representations [15] when 
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adapting some improvements such as more sophisticated 
splines [37] or NURBS trimming technology [24].

Optimizing flexoelectricity with complex topologies 
required repetitive yet expensive simulations. Surrogate 
modeling serves right efficient for such problems, dramati-
cally decreasing the computational cost by approximating 
the input-output relation of a system. Namely, given input 
parameters, e.g., initial/boundary/operational conditions, the 
quantities of interest (QoIs), such as electric potential, stress/
strain, and their integrals/gradients can be obtained rapidly 
without conducting the simulations. The existing surrogate 
modeling approaches can be roughly categorized into two 
classes: projection-based reduced order models (ROMs) and 
data-fit models [7]. Common surrogate modeling techniques 
include: (i) Response Surface Models [33], (ii) Kriging 
Methods [11, 39], (iii) Radial Basis Functions [9, 51], and 
(v) Support Vector Regression [6, 46]. With the popularity 
of machine learning (ML), training surrogate models is also 
posed as a supervised learning problem [56], via Artificial 
Neural Networks (ANN) [5, 13, 52]. The Deep Neural Net-
work (DNN), also called Deep learning, provides a better 
representation of non-linear input–output relationships com-
pared to classical ANN [4]. Hamdia et al. [19] proved the 
accuracy of deep learning in solving flexoelectric problems. 
Goswami et al. [18] proposed a physics-informed DNN for 
modeling complex topologies like a fracture. Since first 
proposed in 1998 [29], the Convolutional Neural Network 
(CNN) has shown outstanding learning abilities in a wide 
range of applications including natural language [25, 54], 
speech recognition [1, 43], and computer vision [20, 41].

Although ML models have also shown promise in many 
disciplines outside the realm of computer science (e.g., 
aquatic sciences [23], atmospheric science [38], and bio-
medical science [48]), the capability of CNN in extracting 
geometry–physics linkages, at present, is still difficult to sat-
isfy the engineering applications, especially in the nonlocal 
flexoelectricity. Inspired by the exciting predicting perfor-
mance of CNNs in other fields, in this paper, we developed 

a CNN-based surrogate model for the efficient analysis of 
flexoelectric structures with complex topology. Our method 
further demonstrated the underlying potential of optimizing 
flexoelectricity.

The paper is arranged as follows: Sect. 2 summarizes the 
boundary value problem (BVP) and associated IGA formula-
tion. Section 3 describes the CNN model before we present 
several benchmark problems in Sect. 4. The manuscript fin-
ishes with some concluding remarks in Sect. 5.

2  IGA simulation of flexoelectricity

2.1  Governing equation for flexoelectricity

The weak form of flexoelectricity for a linear dielectric solid 
can be derived from the electric enthalpy density h which is 
a function of the linear strain tensor �ij , the electric field Ei 
h
(
�ij,Ei

)
 and the strain gradient �jk,l [3]:

where eikl , �ij and Cijkl denote the piezoelectricity tensor, 
the dielectric tensor and the elasticity tensor, respectively; 
�ijkl = dijkl − fijkl is the flexoelectric tensor which includes the 
direct dijkl and the reverse flexoelectricity tensor fijkl , respec-
tively. Integrating h over the domain � , we obtain the total 
electric enthalpy

where �̂ij , �̃ij and D̂i are defined as

(1)
h
(
�ij,Ei, �jk,l

)
=

1

2
Cijkl�ij�kl − eiklEi�kl − �ijklEi�jk,l −

1

2
�ijEiEj,

(2)H =
1

2 ∫
�

(
�̂ij�ij + �̃ij�ij,k − D̂iEi

)
d�,

(3)�̂ij =
�H

��ij
, �̃ij =

�H

��ij,k
, D̂i =

�H

�Ei

.

Fig. 1  Illustration of the flexoelectric effect in a cantilever energy harvester
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The system kinetic energy KE and the external work We can 
be written as

where � is the density, � and � are the prescribed electric 
potential and surface charge density, and ui and t̄i are the pre-
scribed mechanical displacements and traction. Using Ham-
ilton principle and neglecting, the damping term leads to

Substituting Eqs. (2)–(4) into Eq. (5), we have

By reordering operations and ignoring the contribution of 
inertial forces to the static problems, the final weak form of 
the governing equation is

2.2  IGA formulation

Our IGA is based on Non-Uniform rational B-splines 
(NURBS), which in turn originated from B-splines. The basis 
functions Ni,p of p-order B-splines with (n + 1) control points 
are given as

where � is a knot vector in the parametric space. Introducing 
the weights �i to B-splines base functions, the mechanical 

(4)KE =
1

2 ∫𝛺

𝜌u̇iu̇id𝛺, We = ∫
Γt

t̄iuidS − ∫
ΓD

𝜔𝜃dS,

(5)� ∫
t2

t1

(
KE − H +Wext

)
dt = 0.

(6)𝛿 ∫
t2

t1

(
1

2 ∫𝛺

𝜌u̇iu̇id𝛺 −
1

2 ∫𝛺

(
�̂�ij𝜀ij + �̃�ijk𝜀ij,k − D̂iEi

)
d𝛺 + ∫Γt

t̄iuidS − ∫ΓD

𝜔𝜃dS

)
dt = 0.

(7)∫𝛺

(
Cijkl𝛿𝜀ij𝜀kl − ekijEk𝛿𝜀ij − 𝜇ijklEl𝛿𝜀ij,k − 𝜅ij𝛿EiEj

)
d𝛺 − ∫Γt

t̄i𝛿uidS + ∫ΓD

𝜔𝛿𝜃dS = 0.

(8)

⎧⎪⎪⎨⎪⎪⎩

Ni,p(𝜉) =
𝜉 − 𝜉i

𝜉i+p − 𝜉i
Ni,p−1(𝜉) +

𝜉i+p+1 − 𝜉

𝜉i+p+1 − 𝜉i+1
Ni+1,p−1(𝜉),

Ni,0(𝜉) =

�
1, 𝜉i ≤ 𝜉 < 𝜉i+1,

0, others.

displacement � and the electric potential � on a p-order 
NURBS surface with (m + 1)(n + 1) control points can be 
defined as

with

The test functions have a similar structure. Substituting the 
trial functions and test functions into the weak form, Eq. (7) 

yields after some algebra to the final linear system of equa-
tions [15]:

For details about IGA derivation, please refer to Appendix 1.

2.3  NURBS trimming technique

To facilitate the computing of flexoelectricity on complex 
topologies like inclusions and holes, we incorporated into 
our IGA formulation the NURBS trimming technique pro-
posed by Kin et al. [24]. The flow of the trimming analy-
sis is demonstrated in Fig. 2. First, the NURBS is meshed 

(9)��,� =
∑
N

Ri,j(�, �)�i, ��,� =
∑
N

Ri,j(�, �)�,

(10)
Ri,j(�, �) =

Ni,p(�)Nj,q(�)�i,j

n∑
k=0

m∑
l=0

Nk,p(�)Nl,q(�)�k,l

.

(11)
(

�uu �u�

��� ���

)(
�

�

)
=

(
��

��

)
.

Fig. 2  The working flow of the 
NURBS trimming technique
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in the parametric space, all the elements are identified 
and decomposed into triangular sub-elements. Then, for 
the numerical integration of the triangular sub-elements, 
the Jacobian matrix is calculated via the transformation of 
the sub-elements from the physical space to the Gaussian 
quadrature space. Finally, the element stiffness matrix 
and global stiffness matrix are assembled for solving the 
boundary value problem. Therefore, the key of the IGA 
on trimmed NURBS model lies in the identification of 
trimmed elements and the accuracy of the corresponding 
numerical integration.

2.3.1  Trimmed elements identification

In the NURBS geometries, the distance of a point to a 
trimming curve can be obtained by finding the small-
est distance between the point to its projections on the 
curve, e.g., d2 is minimum projection distance, and thus 
is the distance of the point P to the curve C(u), as shown 
in Fig. 3a.

Hence, the trimmed elements can be generally recog-
nized by the distance relationship between the element’s 
center, the element’s vertices, and the curve, as shown in 
Fig. 3b. Possible conditions are as follows: (i) If dc < rin , 
the element is trimmed by the curve; (ii) If dc > rout , the 
element is normal; (iii) If rin ≤ dc ≤ rout , the element 
needs refinement with the Quadtree algorithm [24].

2.3.2  Trimmed elements decomposition

In Jacobian computing, the trimmed elements can be 
divided into 3 types, based on the number of vertices 
outside of the physical domain, as shown in Fig.  4. 

NEFEM (NURBS integral finite element method) [44] 
is used to process straight-sided triangular sub-elements 
and curved-sided triangular sub-elements, as shown in 
Appendix 2.

2.4  Numerical examples of the proposed IGA 
approach

2.4.1  Case I: an infinite plate with a circular hole

Our IGA method with NURBS trimming was implemented 
in MATLAB. To validate the proposed approach, we first 
investigated a infinite plate with a circular hole of radius 
a = 1 m (case I), which is subjected to a subjected to a far 
field traction ( � = 1 Pa ) in the x direction, as shown in 
Fig. 5. A finite portion of the infinite plate is considered 
for analysis and, due to the symmetry of the problem in 
Fig. 5a, only a quarter of the portion requires modelling 
in Fig. 5b.

The plane stress conditions are assumed as our previ-
ous study [10], and, the elastic material properties used 

Fig. 3  Positional relationship 
of points and elements with a 
trimming curve

Fig. 4  Trimmed elements decomposition and classification
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are Young’s modulus E = 30 MPa and Poisson’s ratio 
� = 0.3 . By using the polar coordinates shown in Fig. 5b, 
the stresses and displacements for this benchmark are 
given in an analytical solution in [49] as

and

where G is the shear modulus and the Kolosov constant 
� = (3 − �)∕(1 − �) for the plane strain assumption. Bound-
ary conditions specified in [49] are applied on the right and 
upper edges as shown in Fig. 5b.

The performance of the proposed IGA formulation is 
studied using meshes with 36, 100, 324 and 1156 nodes 
as shown in Fig. 6b–d and the NURBS basis is used for 
all meshes. The proposed method shows good convergence 
characteristics in this problem involving stress concentra-
tion. Figure 6e shows �xx predicted along the left edge x = 0 
showing comparable accuracy and smoothness, and close 
agreement with the analytical solution by Eq. (12), where 
�xx(� = �∕2, r = a) = 3.

2.4.2  Case II: 2‑D flexoelectric cantilever with multi‑holes

Furthermore, the 2-D flexoelectric cantilever (case II) in 
Fig. 7 was investigated. The length L and the height h of 
the cantilever are 0.454 mm and 0.227 mm, respectively, 

(12)

�xx = 1 −
a2

r2

(
3

2
cos(2�) + cos(4�)

)
+

3a4

2r4
cos(4�),

�xy = −
a2

r2

(
1

2
sin(2�) + sin(4�)

)
+

3a4

2r4
sin(4�),

�yy = −
a2

r2

(
1

2
cos(2�) − cos(4�)

)
−

3a4

2r4
cos(4�),

(13)
u =

a

8G

(
r

a
(� + 1) cos(�) +

2a

r
[(1 + �) cos(�) + cos 3(�)] −

2a3

r3
cos 3(�)

)
,

v =
a

8G

(
r

a
(� − 3) sin(�) +

2a

r
[(1 − �) sin(�) + sin 3(�)] −

2a3

r3
sin 3(�)

)
,

while the thickness is set as 1 mm. To set up the boundary 
value problem (BVP), (i) the bottom edge is grounded; (ii) 
the left edge is fixed; and (iii) the free vertex of the top edge 
is applied with a point load of 100 mN. The NURBS model 
was meshed into 1024 elements with 1156 control points 
by the h-refinement [21] of 5, where h stands for the knot 
insertion times. Three holes are represented by the NURBS 
circles with a radius of 0.1h = 22.7 μm.

As for case II, our MATLAB program solved the dis-
placement � and the electric potential � in Eq. (11) using 
the material properties in Table 1. Both scenarios whether 
the beam in Fig. 7 is with holes or not, are simulated. The 

impact of holes on electric potential is shown in Fig. 8. 
More detailed interactions of the defects with the structure 
response were revealed by the contours of displacement, the 
strain, and the strain gradient in Figs. 9 and 10.

3  CNN‑based surrogate model

3.1  Dataset generation

Our CNN-based surrogate model is designed to predict 
the identical output from our IGA model, i.e., the basic 
unknowns including the displacement and the electric 
potential. The other physical fields like the strain/stress and 
the strain/stress gradient can be derived from the predicted 
basic unknowns. To simplify the generation of representative 
porous flexoelectric structures, the NURBS representation 
for circles is used to indicate the holes as shown in Fig. 11.

Similar to the boundary settings of Fig. 7, a cantilever is 
fixed at one end and applied with a point load of 100 mN 

Fig. 5  An infinite plate with 
a circular hole subjected to a 
horizontal uniformed traction 
(case I)
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at the top vertex of the other end, while the bottom edge 
is grounded. Then the MATLAB’s built-in uniform distri-
bution algorithm was utilized to generate the circles with 
arbitrary radius r in a defined range {r ∣ 0.05h ≤ r ≤ 0.2h} 
and to guarantee an equal chance inside the defined limit 
boundary in Fig. 11. The corresponding material properties 

used are shown in Table 1. The physical meanings of these 
properties can be referred to in Eq. (1).

The dataset structure is shown in Fig. 12. For each sam-
ple, the CNN-based model input is a binary image record-
ing the geometry information and the model output is an 
array of the nodal basic unknowns, i.e., the mechanical 
displacement components ( u1 , u2 ) and the electric poten-
tial ( �).

For the following study, we considered the number of 
holes (nb) ranging from 1 to 5. For each case, 200 samples 
were produced randomly. And three cases of model output 
numbers (with different h-refinements) were considered. 
In total, the dataset contains 3000 samples, as shown in 
Fig. 12. For most cases, the simulation is done in 2 min. 
But for samples with the high h-refinement, the calcula-
tion could take over 5 min due to the NURBS trimming 
analysis.

Fig. 6  NURBS meshes used for case I by the proposed approach

Fig. 7  NURBS meshing and boundary settings of the flexoelectric 
BVP (case II)

Table 1  Material properties of 
single crystal BaTiO3 in case II

Properties E v e
13

�
12

�
11

�
13

�
33

Value 18.30 0.37 −4.4 1 11 12.48 1408
Unit GPa – C∕m2 μC∕m nC∕(V ⋅m) nC∕(V ⋅m) –
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Fig. 8  Electric potential contours of case II using our IGA formulation

Fig. 9  Displacement and Strain 
contours of case II using our 
IGA formulation
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Fig. 10  Strain gradient contours of case II using our IGA formulation
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3.2  Data preprocessing

The dataset is randomly split into the training set (80% data) 
and the testing dataset (20% data) in the model training. For 
computational efficiency, the pixels of the binary images are 
reduced to 64 × 32 . The Min–Max normalization is applied 
to the physical fields data, which on the dataset E = {ei} is 
written as

After the Min–Max normalization, a good balance between 
the model bias and the data variance is achieved, judging 
from the loss difference between test and train datasets in 

(14)Normalized
(
ei
)
=

ei − Emin

Emax − Emin

.

Fig. 11  Setup of the boundary value problem for data generation

Fig. 12  The IGA dataset com-
ponents of the CNN model

Fig. 13  Loss curves with/without the Min–Max normalization
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pre-experiments, as shown in Fig. 13. The metric for model 
loss adopted here is the mean square error (MSE), which is 
the sum of squared distances between targets ei and predic-
tions êi.

3.3  Model building

The proposed CNN-based surrogate model is shown in 
Fig. 14a. Realized in Python with PyTorch library, the 
model input is binary images of flexoelectric porous 
beams, while the output is the same as that from IGA sim-
ulations. When the training data are input in our model, 
three 2-D convolutional layers (Con2D) and three Max-
Pooling2D layers are arranged alternately, to gradually 
extract the underline data features at different abstract 
extend as the network grows deeper, as shown in Fig. 14b. 
Then to avoid the common overfitting issue in CNN, the 
dropout layer is followed. In the end, the fully connected 

(15)MSE(E) =
1

n

n∑
i=1

(
ei − êi

)2
.

Dense layer is added according to make the learned fea-
tures match the dimension of the output.

Unlike classic pixel-to-pixel predictions in CNNs, 
our CNN model predicts nodal fields as the output array 
instead, which ameliorates the cost of reducing image 
resolution, so that the training efficiency and prediction 
accuracy is improved.

3.3.1  Activation function

ReLU (Rectified Linear Unit) activation functions exhibit 
certain biological meaning [16] and are widely used 
in deep neural network applications including image 

Fig. 14  The CNN framework of our surrogate model

Table 2  Comparison of the model loss using common optimizers

Optimizer Validation loss (MSE) Training 
time (s)

Adam 0.0068 62
AdaDelta 0.0077 65
SGD 0.0113 91
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recognition. The ReLU is used for all the layers in our 
models, except that the final hidden layer must use linear 
activation for prediction’s purpose, as shown in Fig. 14c.

3.3.2  Optimizer

Under the same training settings (200 samples with 80% as 
training dataset, epochs = 50, batch size = 20), the Adap-
tive Moment Estimation (Adam) outperforms other common 
adaptive techniques, as shown in Table 2.

3.3.3  Dropout

Dropout is a regularization technique for neural network 
models to avoid overfitting [47]. Through dropout layers, 
random neurons are ignored during one training epoch, so 
their contribution to the downstream neurons and weight 
updates on the backward pass is temporally removed. Drop-
out layers are normally used after all convolutional layers 
and pooling layers as indicated in our CNN-based surrogate 
model (Fig. 15a). An alternative way is to drop out entire 
feature maps from the convolutional layer which are then not 
used during pooling. This is called spatial dropout [50], as 
illustrated in Fig. 15b.

A low dropout has a minimal effect while a high value 
may result in under-learning. In our model, the dropout value 

is set to 50%, which seems close to the optimal for a wide 
range of networks [47]. Under the same training settings 
(200 samples with 80% as training dataset, epochs = 50, 
batch size = 20), the validation loss of (a) is 0.0068, which 
is slightly better than that of (b), which is 0.0088. So our 
model adopted the normal dropout layers.

4  Results and analysis

Our CNN model could predict the identical physical 
unknowns as our IGA model at a stable accuracy by the 
model selection and hypermeter tuning. Details of training 
settings and results will be discussed in the following. We 
first tested the accuracy of our model by cross-validation, 
and then analyzed the potential of our model performance 
and possible optimal model layout.

4.1  Cross‑validation

That k-fold cross-validation (CV) is a resampling procedure 
to estimate the generalization ability of the model on new 
data. Here k refers to the number of groups that the samples 
are to be split into. To validate our model, 10-fold cross-
validation was conducted, as shown in Fig. 16. Under the 
same training settings (200 samples with 80% as training 

Fig. 15  Comparison of differ-
ence dropout settings in CNN 
structures
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dataset, epochs = 50, batch size = 20), we get the average 
of the MSE (cv) over 10 folds when the training process is 
repeated 10 times. The final steady state of cv indicates that 
our model converges as the training time increases.

4.2  Model performance analysis

In building our CNN-based surrogate model, the predic-
tion errors exist due to the discretization from the analytic 
NURBS into pixels, due to the reduction of the pixels in data 
preprocessing, and finally the CNN approximation. Mean-
while, with the specified CNN layers, our model may not be 
right the best for the given problem.

It would therefore be interesting to see how to minimize 
the total errors by adjusting the size of the model output 
and convolutional layers. The layers of our current model 
are summarized in Table 3. The size of the model output is 
determined by the aforementioned h-refinement. For a scalar 
physical field like electric potential, the output size ranges 
in {100, 324, 1156} while h is in {3, 4, 5} . The influence of 

Fig. 16  10-fold cross-validation 
of the proposed CNN model

Table 3  The layers summary of the current CNN model

x is the output size. x = {100, 324, 1156} for h-refinement = {3, 4, 5}

Layer (type) Output shape Params.

input_1 (InputLayer) (None, 64, 32, 1) 0
conv2d_1 (Conv2D) (None, 64, 32, 256) 2560
max_pooling2d_1 (MaxPooling2D) (None, 32, 16, 256) 0
conv2d_2 (Conv2D) (None, 32, 16, 128) 295,040
max_pooling2d_2 (MaxPooling2D) (None, 16, 8, 128) 0
conv2d_3 (Conv2D) (None, 16, 8, 64) 73,792
max_pooling2d_3 (MaxPooling2D) (None, 8, 4, 64) 0
dropout_1 (Dropout) (None, 8, 4, 64) 0
flatten_1 (Flatten) (None, 2048) 0
dense_1 (Dense) (None, 32) 65,568
dropout_2 (Dropout) (None, 32) 0
dense_2 (Dense) (None, x1) –

Fig. 17  Impact of model output 
size on the proposed CNN 
model
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the model output size on the model performance is shown 
in Fig. 17.

In the analysis, 1000 samples were randomly selected, 
where 80% samples were set as the training dataset, while the 
rest 20% as the testing dataset. For all cases, the MSE turned 
to converge after the first 100 epochs. The training time is 
comparable, around 200 seconds each. When h is 3, the 
model output size is 100, and the corresponding MSE is the 
smallest, 6 × 10−4 . As the model output size increased, MSE 
jumped around 40 times bigger, which means the current 
model might have no potential for predicting under the larger 
output size. In fact, when h is 3 with 100 control points, the 
mesh is very coarse. Thus, the error from NURBS trimming 
of our IGA model is considerable compared to the finer cases.

To improve the performance of our basic CNN model in 
Table 3, the size of convolutional layers is our following con-
cern. We denote the size of convolutional layers as scale = 1. 
There are about 4.4 × 105 hyperparameters for the basic model, 
and most are in the convolutional layers. In the following anal-
ysis, the neurons in all the three Conv2D layers are changed 
by the same scale. Considering the practical training time, the 
explored network scale is limited in {2−4, 2−2, 20, 22, 24} . 
For a given scale 2i , the number of hyperparameters in the 
corresponding model is about 4.4 ⋅ 2i × 105 . 200 samples were 
randomly selected, where 80% samples were set as the training 
dataset, while the rest 20% as the testing dataset.

The MSE is evaluated for the first 100 epochs. For varying 
output sizes, the potential optimal size of convolutional layers 
differs, as shown in Table 4. While the original model scale is 
most suitable for the case that output size is 100, the increased 
model scale did make our model predict better in larger out-
put sizes of 324 and 1156. The number of hyperparameters 
reflects the network complexity. As neurons in convolutional 
layers increase, more subtle features can be captured, which 
might keep pace with the increasing model output size.

5  Conclusion

Flexoelectricity is a nonlocal electromechanical coupling 
phenomenon between strain gradient and electric polariza-
tion, which is normally computationally costly for simulating 

structures with complex topology and further optimizing. 
We developed an IGA model with the NURBS trimming 
technique to firstly realize the amiable simulation of porous 
flexoelectric structures. Then a CNN-based surrogate model 
is proposed to predict the identical output from our IGA 
model. Instead of conventional pixel-to-pixel prediction, pre-
dicting physical fields of the control points helps to eliminate 
loss in model accuracy, as well as to save training time of 
deep learning. Moreover, details of CNN model building 
are discussed, including the choice of activation functions, 
dropout layers, and optimizers based on our IGA dataset. 
Finally, the CNN model performances by changing model 
output size and convolutional layers size have been analyzed, 
which might be useful to build similar CNN frameworks 
predicting nonlocal mech-physical problems.

Appendix 1: Further derivation of IGA 
formulation

The contribution of a Gaussian integral point to Eq. (11) is

where �i and Wi , are the Jacobian and the weight of the inte-
gration point, respectively; �� and �� are the corresponding 
gradient operators for � and � ; �� is Hessian operator for �.

According to the gradient operation of NURBS, �� , �� , 
and �� can be written as

which can all be derived from the explicit expressions of 
NURBS base functions in Eqs. (8)–(10).

Appendix 2: Jacobian computation 
of triangle sub‑elements

Straight‑sided triangular elements

The transformations of the straight-sided triangle element 
from the physical space to the Gaussian quadrature space is 
shown in Fig. 18a.
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Table 4  The MSE variation under different model scales and output 
size

h (model 
output size)

Model scale

1/16 1/4 1 4 16

3 (100) 0.0027 0.0027  0.0015 0.0040 0.0029
4 (324)  0.0102  0.0102 0.0275 0.0204  0.0093
5 (1156) 0.0220 0.0406 0.0123  0.0121 0.0297
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The Jacobian of a straight-sided triangular element is 
determined by transformation R and S , i.e.,

Transformation S ∶ {s, t} → {x, y} is from the parametric 
space �pa to the physical space �ph . We have

and

Transformation R ∶ {�, �} → {s, t} transforms the Gaussian 
quadrature for triangle elements into the parametric space 
�pa , written in natural coordinates as

and
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Curved‑sided triangular elements

The transformations of the curved-sided triangle element 
from the physical space to the Gaussian quadrature space is 
shown in Fig. 18b.

The Jacobian of a straight-sided triangular element is 
determined by transformation P , Q , R and S , i.e.,

While Transformation S is identical as the one for 
straight-sided triangular elements, Transformation 
R ∶ {X, Y} → {s, t} transforms the curved triangle Te with 
vertices (0, 0), (0, 1) and (1, 0) into the parametric space 
�pa , written in natural coordinates as

and
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Fig. 18  Spatial transformation of triangular sub-elements
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Transformation Q ∶ {u, �} → {X, Y} transforms the rectan-
gular area Ψe ∶

[
u1, u2

]
× [0, 1] into a curved triangle �e ; 

through the transformation, the upper edge and the two ver-
tices of the lower edge of Ψe are mapped to the 3 vertices of 
the curved triangle, respectively, i.e.,

and

Transformation P ∶ {�, �} → {u, �} transforms the Gauss-
ian quadrature space [0, 1] × [0, 1] into a rectangular area 
Ψe , i.e.,

and
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