
Vol.:(0123456789)1 3

Requirements Engineering (2022) 27:457–487
https://doi.org/10.1007/s00766-022-00393-5

ORIGINAL ARTICLE

Explainable software systems: from requirements analysis to system
evaluation

Larissa Chazette1 · Wasja Brunotte1,2 · Timo Speith3,4

Received: 31 January 2022 / Accepted: 1 November 2022 / Published online: 14 November 2022
© The Author(s) 2022

Abstract
The growing complexity of software systems and the influence of software-supported decisions in our society sparked the
need for software that is transparent, accountable, and trustworthy. Explainability has been identified as a means to achieve
these qualities. It is recognized as an emerging non-functional requirement (NFR) that has a significant impact on system
quality. Accordingly, software engineers need means to assist them in incorporating this NFR into systems. This requires an
early analysis of the benefits and possible design issues that arise from interrelationships between different quality aspects.
However, explainability is currently under-researched in the domain of requirements engineering, and there is a lack of
artifacts that support the requirements engineering process and system design. In this work, we remedy this deficit by pro-
posing four artifacts: a definition of explainability, a conceptual model, a knowledge catalogue, and a reference model for
explainable systems. These artifacts should support software and requirements engineers in understanding the definition of
explainability and how it interacts with other quality aspects. Besides that, they may be considered a starting point to provide
practical value in the refinement of explainability from high-level requirements to concrete design choices, as well as on the
identification of methods and metrics for the evaluation of the implemented requirements.

Keywords Explainability · Explainable artificial intelligence · Non-functional requirements · Quality aspects · Conceptual
model · Reference model · Knowledge catalogue

1 Introduction

We are living in the algorithmic age [1]. Software decision-
making has spread from simple daily decisions, such as the
choice of a navigation route, to more critical ones, such
as the diagnosis of cancer patients [2]. Systems have been

strongly influencing various aspects of our lives with their
outputs, but they can be as mysterious as black boxes to
us [3].

The ubiquitous influence of such “black-box systems” has
induced discussions about the transparency and ethics of
modern systems [4]. Responsible collection and use of data,
privacy, safety, and security are just a few among many con-
cerns. In light of this, it is becoming increasingly crucial to
understand how to incorporate these concerns into systems
and, thus, how to deal with them during software engineer-
ing (SE) and requirements engineering (RE).

1.1 Explainability as the solution

In this regard, explainability is increasingly seen as the
preferred solution to mitigate a system’s lack of transpar-
ency [5] and as a fruitful way to address ethical concerns
about modern systems [6]. The concept of explainability
has received a lot of attention recently, and it is slowly

 * Larissa Chazette
 larissa.chazette@inf.uni-hannover.de

 Wasja Brunotte
 wasja.brunotte@inf.uni-hannover.de

 Timo Speith
 timo.speith@uni-bayreuth.de

1 Software Engineering Group, Leibniz University Hannover,
Hannover, Germany

2 Cluster of Excellence PhoenixD, Leibniz University
Hannover, Hannover, Germany

3 Chair for Philosophy, Computer Science and Artificial
Intelligence, University of Bayreuth, Bayreuth, Germany

4 Center for Perspicuous Computing, Saarland University,
Saarbrücken, Germany

http://orcid.org/0000-0001-6093-8875
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-022-00393-5&domain=pdf

458 Requirements Engineering (2022) 27:457–487

1 3

establishing itself as an important non-functional require-
ment (NFR)1 for high system quality [8, 9].

Incorporating explainability in a system can mitigate
software opacity, thereby helping users understand why the
system produced a particular result and supporting them in
making better decisions. Explainability also has an impact
on the relationship of trust in and reliance on a system [10],
it may avoid feelings of frustration [11], and can, thus, lead
to greater acceptance by end users [12]. In general, previous
studies have shown that explainability is not only a means
of achieving transparency and calibrating trust, but that it
is also linked to other important NFRs, such as usability,
auditability, and privacy [5, 13–15].

However, although explainability has been identified as
such an essential NFR for software-supported decisions [16]
and even as one of the pillars for trustworthy artificial intelli-
gence (AI) [17], there is still a lack of a comprehensive over-
view that investigates the impact of incorporating explain-
ability in a system.2 For example, it is often overlooked that
these impacts are not only positive, but can also be negative.

To address this gap in knowledge, we investigate the con-
cept of explainability and its interaction with other quality
aspects3,4 in this article. Accordingly, we want to provide
clarity on what constitutes explainability as an NFR and
how it can be integrated into the RE process. Just like other
NFRs, however, explainability is difficult to elicit, negotiate,
and validate.

1.2 Challenges in RE and how artifacts can help
solve them

Due to the subjective, interactive, and relative nature of
NFRs, eliciting and modeling them presents many chal-
lenges for software engineers5 [20]. First, knowledge about
NFRs is mostly tacit, disseminated, and based on experi-
ence [21, 22], which makes it difficult to grasp the existing
knowledge. Here, explainability is no exception.

Furthermore, software quality is a multidimensional con-
cept based on real-world needs that comprise different lay-
ers of abstraction [5, 23]. Therefore, another challenge for
software engineers is to translate abstract notions, such as
quality goals (e.g., a smart home system that improves user
satisfaction and comfort) into agreed-upon tangible func-
tionality that help achieve the quality goals (e.g., the smart
home system dims the lights automatically when the user
is tired). This translation process is followed by the need to
evaluate how the derived functionality (also called “opera-
tionalizations”) influence software quality [20, 24]. This
process from abstract to concrete often leads to trade-offs
between different NFRs in a system that must be identified
and resolved during requirements analysis [20, 25].

RE is not simply a process of identifying and describing
requirements; it is also a process of supporting efficient com-
munication of these requirements among various stakehold-
ers [26]. For this reason, proper communication is another
difficulty for RE. External stakeholders and internal team
members may unintentionally use different words for the
same concepts or the same words for different concepts due
to a lack of shared understanding, which can make com-
munication challenging and lead to problems because of
misunderstandings [27]. Therefore, a shared understanding
is crucial for efficient communication and for reducing the
risk of stakeholder dissatisfaction and rework [19].

Software engineers can create, use, and reuse artifacts to
achieve a shared understanding in software projects [19].
An artifact is “any kind of textual or graphical document
with the exception of source code” [28]. Artifacts can take
on a variety of shapes, including textual requirement papers,
visual models, glossaries, charts, frameworks, or quality
models. Artifacts that are often used to support the RE pro-
cess are conceptual models [21], knowledge catalogues [20],
and reference models [29]. Such artifacts may describe the
taxonomy of a given kind of system or process, or compile
knowledge about specific NFRs and their interactions with
other quality aspects.

To illustrate the importance of both a shared understand-
ing and artifacts in software projects, RE itself may be taken
as an example: Communication problems may arise from
different interpretations of what RE is and how the RE pro-
cess is structured. Börger et al. [30] proposed a reference
model (i.e., a type of artifact) for RE to achieve a shared
understanding of it. To achieve a shared understanding
about the meaning of RE, the proposed model describes
the concept and divides the RE process into two main areas
(requirements analysis and requirements management) and
their related activities.6

1 We follow Glinz and see NFRs as attributes of or constraints on a
system [7].
2 We deal with a very broad conception of explainability that applies
to software systems in general. Accordingly, our focus is not specifi-
cally on AI systems, and we are, therefore, not only concerned with
so-called explainable AI (XAI).
3 We use the notion of quality aspects to refer both to NFRs and to
aspects that relate to or compose NFRs.
4 The terms NFR, quality aspects, and quality goals are used
throughout this article. We consider quality goals as the qual-
ity aspects that are agreed upon for system quality within a project,
which can be stated as or refined into NFRs [18].
5 A software engineer is a person involved in the specification,
design, construction, deployment, evolution, and maintenance of soft-
ware systems. Requirements engineers, architects, developers, coders,
and testers are examples of common roles for software engineers [19].

6 In this article, we stick to this reference model for our conception of
RE. Furthermore, because the majority of system development errors
and risks occur primarily during the requirements analysis phase and
result in significant financial expenditure [31], we focus on the area

459Requirements Engineering (2022) 27:457–487

1 3

Chung et al. [21] explain the importance of models and
knowledge catalogues as resources for the use and reuse of
knowledge during system development. Models and cata-
logues can compile either abstract or concrete knowledge.
At a more abstract level, such artifacts can compile knowl-
edge about different NFRs and their interrelationships with
other quality aspects (e.g., positive or negative influence of
an NFR on another quality aspect). Likewise, models and
catalogues can also compile more concrete knowledge, such
as about methods and techniques in the field that can be used
to operationalize a given NFR.

Existing works propose to build artifacts to capture
and structure knowledge that is scattered among several
sources [20, 21, 32, 33]. Software engineers can use such
artifacts during different activities in RE such as during
elicitation, interpretation and trade-off analysis, negotia-
tions with stakeholders, as well as to support the documenta-
tion of requirements and decisions. In summary, by making
knowledge available in artifacts such as definitions, models
and catalogues, software engineers can (1) draw on know-
how beyond their own fields and use this knowledge to meet
the needs of a particular project, and (2) achieve a shared
understanding that leads to better communication and to the
definition of the “right” system’s requirements.

1.3 Goal and structure of this article

As for explainability, there is a scarcity of artifacts that com-
pile structured knowledge about this quality aspect and assist
software engineers in understanding the factors that should
be considered during the development of explainable sys-
tems, helping to achieve a shared understanding of the topic.

Therefore, we propose four artifacts that should aid in
achieving a shared understanding of explainability, sup-
porting the creation of explainable systems: a definition,
a conceptual model, a knowledge catalogue, and a refer-
ence model. Overall, our goal is to advance the knowledge
towards a common terminology and semantics of explain-
ability, facilitating the discussion and analysis of this impor-
tant NFR during the RE process. To this end, we used an
interdisciplinary systematic literature review (SLR) and
workshops as part of a multi-method research strategy.

In particular, we distill definitions of explainability into
an own suggestion that is appropriate for SE and RE. We
use this definition as a starting point to create a conceptual
model that represents the impacts of explainability across
different quality dimensions. Subsequently, we compile a

knowledge catalogue of explainability and its impacts on the
various quality aspects along these dimensions. Finally, we
conceive a reference model for explainability that describes
key aspects to consider when developing explainable sys-
tems during requirements analysis, design, and evaluation.
The goal of these artifacts is to support the identification,
communication, and evaluation of key elements of explain-
able systems, their attributes, and relationships.

This article is an extension of a paper originally published
in the 29th IEEE International Requirements Engineering
Conference: [34]. In this extension, we (1) include more
details about our research method, and (2) propose a refer-
ence model that may be used to identify relevant compo-
nents for the RE process and the development of explainable
systems.

This article is structured as follows: in the follow-
ing Sect. 2, we present the background and related work.
In Sect. 3, we lay the foundation for the more substantive
chapters of this article by introducing our research ques-
tions (RQs) and outlining the chosen research design. This
is followed by a section for each artifact we present. Accord-
ingly, we suggest our definition of explainability in Sect. 4,
introduce our conceptual model in Sect. 5, and present the
explainability catalogue in Sect. 6. Building on the previous
artifacts, we conceive the reference model in Sect. 7. We
discuss our results in Sect. 8, and we debate threats to valid-
ity in Sect. 9. Finally, we conclude our article in Sect. 10.

2 Background and related work

Artifacts are commonly used in RE and SE to support soft-
ware professionals during their tasks. For instance, software
engineers typically use or reuse artifacts as guidance dur-
ing SE (or RE) activities. They may also create artifacts to
gather knowledge (e.g., catalogues), or they create artifacts
as a form of documentation (e.g., requirements specification
or story cards). This section provides background informa-
tion on the types of artifacts that we propose as well as on
explainability.

2.1 Definitions

Definitions are the first and most crucial step in facilitating
communication for a given topic or concept. Definitions aid
in defining the scope of a particular idea, for instance, by
indicating its constituents. Definitions in SE and RE give
a rough guidance for software engineers on the scope and
elements of nearly everything. The definition of a quality
aspect, for example, assists software engineers in under-
standing it during RE and especially quality assurance.

Definitions support a common terminology that facili-
tates communication. A lack of consensus may result in the

of requirements analysis and its corresponding activities: elicitation,
interpretation, negotiation, documentation, and validation/verifica-
tion.

Footnote 6 (continued)

460 Requirements Engineering (2022) 27:457–487

1 3

specification and integration of the wrong requirements.
Explicitly shared vocabulary decreases the likelihood of
misunderstandings when ideas employing this terminol-
ogy are not stated or are only loosely specified. Following
this idea, Wixon [35] emphasizes the significance of defin-
ing usability and how crucial it is for development teams
to reach consensus on this concept. For instance, usability
may signify long-term efficiency to some developers while
it may represent simplicity of use to others.

2.2 Models

A model is an abstraction of a system that deliberately
focuses on some of its aspects while excluding others [36].
Models provide an overview of a field by partitioning it
into broad categories. According to Hull et al. [36], a single
model never says everything about a system. For this reason,
different, possibly interrelated, models of systems are often
used to cover a variety of different aspects. Models can be
used for a number of different purposes. On the one hand,
they can be utilized for more technical tasks like software
design or configuration. On the other hand, models make
it easier to describe and optimize organizational concerns
including business processes and domains.

Conceptual models can be used to define and describe a
concept, helping to understand the taxonomy or characteris-
tics of a particular quality aspect during requirements analy-
sis. Conceptual models document, for example, knowledge
about a given domain, concept, or NFR. Taxonomies are
well-known examples of conceptual models. The knowledge
required to develop conceptual models is typically derived
from literature, previous experiences, and domain expertise.

Quality models are another example of models. A qual-
ity model can be defined as “the set of characteristics, and
the relationships between them that provides the basis for
specifying quality requirements and evaluation” [37]. Qual-
ity models help to specify and illustrate how quality aspects
translate to functional requirements.

A special category of models are the so-called refer-
ence models. A “reference model consists of a minimal
set of unifying concepts, axioms and relationships within a
particular problem domain, and is independent of specific
standards, technologies, implementations, or other concrete
details” [38]. Reference models may be used as a blueprint
for software system construction and are sometimes called
universal models, generic models, or model patterns [39].
A reference model can serve as a template for creating and
deriving other models (e.g., quality models) or understand-
ing the high-level structure of a process or domain. To this
end, reference models can be used to help identify important
factors for the analysis, operationalization, and evaluation of
a given quality aspect.

To give an example, the Open Systems Interconnection
model (OSI) [40] is a reference model that divides network
protocols into seven abstraction layers. The layers help to
separate concepts and network aspects into abstraction lev-
els, helping to compartmentalize the development of net-
work applications. The OSI model is widely used by network
engineers to describe network architectures, even though it
is informal and does not correspond perfectly to the protocol
layers in widespread use.

In fact, this is precisely the reason of their wide adoption:
reference models can be used as (1) abstract frameworks
or templates for understanding significant relationships
among the entities of some environment or domain (e.g.,
computer networks or, in our case, explainable systems) or
(2) to standardize or describe processes [41]. This abstract
nature gives them flexibility, making them easily adaptable.

Cherdantseva et al. [42] propose a reference model for
the information assurance and security (IAS) domain. The
model highlights the important aspects of IAS systems,
and serves as a conceptual framework for researchers. The
authors say that reference models foster a better understand-
ing of IAS and, as a result, help software engineers to do
their job more efficiently, serving as “a blueprint for the
design of a secure information system” and providing “a
basis for the elicitation of security requirements”.

To clearly distinguish the different types of models, we
consider a conceptual model to be an artifact that describes
a concept or captures the taxonomy of a certain concept or
domain (our conceptual illustrates the impact of explainabil-
ity on system quality); and we consider a reference model
as a template or framework that may be used by software
engineers to build other models or to guide them as they
design explainable systems.

2.3 Catalogues

Catalogues document knowledge about a given topic (e.g.,
a specific domain or about quality aspects, in the case of
software systems). They can, for example, document rela-
tionships between different quality aspects. Some research-
ers developed catalogues for specific domains based on the
premise of the NFR framework [21]. As a result, they can
help with trade-off analysis, where it is critical to understand
how two or more NFRs will interact in a system and how
they can coexist [43].

Serrano and Serrano [32] developed a catalogue spe-
cifically for the ubiquitous, pervasive, and mobile comput-
ing domain. Torres and Martins [44] propose the use of
NFR catalogues in the construction of RFID middleware
applications to alleviate the challenges of NFR elicitation
in autonomous systems. They argue that the use of cata-
logues can reduce or even eliminate possible faults in the
identification of functional and non-functional requirements.

461Requirements Engineering (2022) 27:457–487

1 3

Finally, Carvalho et al. [45] propose a catalogue for invis-
ibility requirements focused on the domain of ubiquitous
computing applications. They emphasize the importance of
software engineers understanding the relationships between
requirements in order to select appropriate strategies to sat-
isfy invisibility and traditional NFRs. Furthermore, they dis-
covered that invisibility might impact other essential NFRs
for the domain, such as usability, security, and reliability.

Mairiza et al. [20] conducted a literature review to iden-
tify conflicts among existing NFRs. They constructed a cata-
logue to synthesize the results and suggest that it can assist
software developers in identifying, analyzing, and resolving
conflicts between NFRs. Carvalho et al. [33] identified 102
NFR catalogues in the literature after conducting a system-
atic mapping study. They found that the most frequently
cited NFRs were performance, security, usability, and reli-
ability. Furthermore, they found that the catalogues are
represented in different ways, such as softgoal interdepend-
ency graphs, matrices, and tables. The existence of so many
catalogues illustrates their importance for RE and software
design. Although these catalogues present knowledge about
86 different NFRs, none of them addresses explainability.

2.4 Explainability

Since explainability has rapidly expanded as a research field
in the last years, publications about this topic have become
quite numerous, and it is hard to keep track of the terms,
methods, and results that came up [46]. For this reason, there
have been numerous literature reviews presenting overviews
concerning certain aspects (e.g., methods or definitions) of
explainability research.

Many of these reviews focus on a specific community or
application domain. For instance, [47] focuses on explain-
ability of recommender systems, [48] on explainability of
robots and human-robot interaction, [49] on the human-
computer interaction (HCI) domain, and [50] on biomedical
and malware classification. Another focus of these reviews
is to demarcate different, but related terms often used in
explainability research (see, e.g., [4, 46, 51]). For instance,
the terms “explainablilty” and “interpretability” are some-
times used as synonyms and sometimes not [52, 53].

Our review differs from others in the following ways. To
the best of our knowledge, our SLR is the first overview
specifically targeting software and software engineers, to
support them in dealing with explainability as a very new
and complex NFR. For this reason, quality aspects are the
pivotal focus of our work. As far as we are aware, only a few
reviews explicitly include the interaction between explain-
ability and quality aspects (most notably [47, 54]). In con-
trast to preceding reviews, however, we do not only consider
positive impacts of explainability on other quality aspects,
but we also take negative ones into account.

Furthermore, many other reviews do not have an inter-
disciplinary focus. Even if they do not focus on a spe-
cific community (e.g., HCI), reviews rarely incorporate
views on explainability outside of computer science. From
our point of view, however, it is crucial to include fields
such as philosophy and psychology in an investigation of
explainability, since these fields have much experience
in explanation research. Psychology is concerned with
aspects of human cognition, while philosophy is inter-
ested in the definition of concepts as well as the nature
of knowledge and reality. These aspects are crucial to
understanding the features, implications, and significance
of explainability.

3 Research goal and design

We frame our study into four RQs:

RQ1: What is an appropriate definition of explainability to
achieve shared understanding in SE and RE?

RQ2: What are the quality aspects impacted by explainability in
a system context?

RQ3: How does explainability impact these quality aspects?
RQ4: How to support software professionals in identifying

important factors for the analysis, operationalization, and
evaluation of requirements for explainable systems?

Since other disciplines have a long history working on
explainability, their insights should prove valuable for
software engineering and enable us to refine the scope
of the term explainability for this area. In particular, phi-
losophy and psychology have a long history in making
different conceptions of explanation explicit, for instance,
in formalisms and operationalizations.

Accordingly, RQ1 focuses on harnessing the work of
other sciences in the field of explainability to compile a
definition that is appropriate and useful for the disciplines
of software and requirements engineering. Useful in this
context means that the definition facilitates the discussion
around the topic, contributing to a shared understanding
among stakeholders and engineers as well as a clear vision
of what “explainable system” means in the RE and SE
contexts.

RQ2 focuses on providing an overview of the quality
aspects that may be impacted by explainability. Similar
to the work of Leite and Capelli [55], who investigated
the interaction between transparency and other qualities,
our goal is to offer an overview for explainability and its
impact on other quality aspects within a system.

With RQ3 we want to assess what impact explainability
has on other quality aspects. More specifically, our goal is

462 Requirements Engineering (2022) 27:457–487

1 3

to analyze the polarity of these impacts: whether they are
positive or negative. To answer RQ2 and RQ3, we built
a conceptual model and a catalogue that compile knowl-
edge about the impacts of explainability on other quality
aspects.

The goal of RQ4 is to make our results more actionable.
To this end, we provide a reference model for explainability
that aims to build shared understanding around the factors
to be considered in the development of explainable systems,
assisting software engineers in identifying relevant factors
for explainability in different phases of the software lifecy-
cle: requirements analysis, design, and evaluation.

An overview of our research design is shown in Fig. 1.
Our research consisted of a multi-method approach that
combined two qualitative methods to achieve higher data
reliability.

The first method focuses on systematic data collection
and qualitative data analysis. For the data collection, we
conducted an interdisciplinary SLR that resulted in a total
of 229 papers. We coded the gathered data by using an open
coding approach [56]. As a next step, we analyzed the result-
ing codes for definitions of explainability (RQ1), for rela-
tionships between explainability and other quality aspects

(RQ2), and for information about the polarity of these rela-
tionships (RQ3).

To validate and complement our findings, we employed
a second qualitative method: two workshops with experts.
We framed the obtained knowledge in a conceptual model
by structuring and grouping the quality aspects impacted
by explainability along four dimensions and developed a
catalogue based on it.

Finally, we used the responses to RQ1-RQ3 as a starting
point and reviewed the data from our SLR to identify other
principles and constituent parts of explainability to aid in the
analysis of requirements, as well as in the design and evalu-
ation of explainable systems. We combine this knowledge
with works in the literature to build a reference model for
explainability (RQ4), factoring in all our previous results.

3.1 Data collection and analysis

In what follows, we will describe our research design in
more detail. To this end, we will start with a more detailed
description of our SLR.

3.1.1 Systematic literature review

We followed guidelines from Kitchenham et al. [57], and
Wohlin [58] when conducting our SLR. The search strategy
for our SLR consisted of a manual search followed by a
snowballing process.

3.1.1.1 Manual Search During a manual search, an inves-
tigator usually scans all the publications in specific sources
such as proceedings or journals. First, we identified relevant
sources from different domains such as computer science,
philosophy, and psychology by consulting experts and rely-
ing on our own expertise. As a next step, the selected sources
were independently reviewed for suitability by researchers
of the specific domains.

Since we conducted an interdisciplinary SLR, sources
from other disciplines were also considered during the man-
ual search. In addition to computer science, the disciplines
of philosophy and psychology were chosen because they
have decades of experience in explanation research. Further-
more, during the snowballing process, other research areas
were also taken into account. We believe that the choice of
sources for our manual search is sufficiently representative
to uncover research in the area of explainability.

The manual search was performed independently by the
authors of this article and resulted in 104 papers. We used
Fleiss’ Kappa statistics [59] to assess the reliability of the
selection process. The calculated value of � = 0.81 showed
an almost perfect agreement [60].

Fig. 1 Overview of the research design

463Requirements Engineering (2022) 27:457–487

1 3

3.1.1.2 Snowballing After the manual search, we per-
formed snowballing to complement the search results.
The snowballing process includes backward and forward
snowballing as described by Wohlin [58]. Our literature
review process is partially based on a grounded theory (GT)
approach for literature reviews proposed by Wolfswinkel
et al. [61]. The goal of using this approach to reviewing the
literature is to reach a detailed and relevant analysis of a
topic, following some of the principles of GT.

According to [61], a literature review is never complete
but at most saturated. This saturation is achieved when no
new concepts or categories arise from the data (i.e., the pub-
lications that were inspected). We followed this approach to
decide when to conclude our snowballing process. There-
fore, we only performed one iteration, as we could not gain
any new insights or concepts during a second iteration.

The snowballing was independently conducted by the
authors, resulting in additional 125 papers. The calculated
value of � = 0.87 also shows an almost perfect agreement.
Overall, our SLR yielded a total of 229 papers. A compre-
hensive overall summary of the number of papers inspected
and selected in the different phases of the SLR is shown in
Fig. 2.

3.1.1.3 Inclusion & Exclusion Criteria We included publica-
tions that met the following inclusion criteria (IC):

IC
1
 Provide information that is relevant to answering (par-

tially or completely) one of our research questions

IC
2
 Were published between 01/1984 and 03/2020

IC
3
 Are peer-reviewed journal, conference, and workshop

publications

 and we excluded publications that met the following exclu-
sion criteria (EC):

EC
1
 Are non English-language publications

EC
2
 Are publications exploring or proposing rough algo-

rithmic techniques without further discussion about
the theoretical background of explainability

 We chose 1984 as the starting date because that was the
year in which the first major work on explainability was
published (namely, [62]). Furthermore, we started the SLR
on 03/2020.7

We are aware of the fact that 36 years is a long period
of time. However, by choosing this time period, we wanted
to get as broad an overview of the topic as possible. When
it comes to explainability, it is useful to recognize that this
topic was already important in the eighties and is not as new
a research field as often believed [63].

To include a publication, all inclusion criteria must be
met. If at least one of the exclusion criteria was met, the
publication was rejected. Our selection process consisted
of a two-phase selection procedure. In phase one, we have
selected candidate papers based on title, abstract, and key-
words. In cases where the aforementioned elements did not
provide sufficient information, we have also analyzed the
conclusion section. EC

2
 did not apply in this phase. In phase

two, we have selected papers based on full text and also
applied EC

2
.

3.1.2 Coding and analysis

We followed an open-coding approach [56] for the quali-
tative analysis of the papers we found during our search.
This approach consists of up to three consecutive cod-
ing cycles. For our first coding cycle, we applied Initial
Coding [64] to preserve the views and perspectives of
the authors in the code. In the second coding cycle, we

Fig. 2 Overview of the SLR

7 The fact that the SLR was not updated following the submission of
the original conference paper constitutes a threat to validity, which
will be addressed in Sect. 9.

464 Requirements Engineering (2022) 27:457–487

1 3

clustered the initial codes based on similarities, using Pat-
tern Coding [65]. This allowed us to group the data from
the first coding cycle into categories. Next, we discussed
these categories until we reached an agreement on whether
they adequately reflected the meaning behind the codes.
These categories allowed us to structure the data for better
analysis and to identify similarities.

For RQ2 and RQ3, we conducted a third coding cycle
to further classify the categories into quality aspects.
We applied Protocol Coding [66] as a procedural cod-
ing method in this cycle. For this method, we used a pre-
established list of NFRs from Chung et al. [21]. If any cor-
respondence between a category and an NFR was found,
we assigned the corresponding code. In the specific cases
where we could not assign a corresponding NFR from [21]
to the data, we discussed together and selected a quality
aspect that would adequately describe the idea presented
in the text fragment.

All coding and review processes were conducted inde-
pendently by the authors of this article. In terms of review
processes, this means that each of the authors indepen-
dently read and analyzed the literature. The coding pro-
cesses were also executed independently by each author.
After each review and coding session, we discussed our
results before proceeding to the next phase. We had regu-
lar consensus sessions to discuss discrepancies. A list of
all codes is available in our supplementary material [67].

Finally, for RQ4, we conducted an additional round
of data extraction to complement our previous insights.
During this round, the focus was on the existing types
of explanations, possible implementation strategies for
explainability (including presentation forms), and methods
used to measure the quality of explanations. The coding
process followed the same procedure as mentioned above.
However, this time, the protocol coding was supported by
the taxonomy proposed by Speith [46] for the implementa-
tion strategies and the reviews by Vilone and Longo [68]
as well as Zhou [69] for measuring.

3.2 Data validation

We held two workshops to validate and augment the knowl-
edge gathered during data collection: one exclusively
with philosophers and psychologists, and one exclusively
with software engineers. The structure of the workshop is
depicted in Table 1.

Each of the workshops lasted for four hours. To prepare
for the discussions, we gave all participants of both work-
shops preparatory exercises to work on individually about a
week before the workshop began.

In both workshops, we discussed the categories and other
relevant information that were identified during our cod-
ing. For RQ1, the categories consisted of competing defini-
tions of explainability that we extracted from the literature.
For RQ2, the categories consisted in the identified quality
aspects that have a relationship with explainability. Finally,
for RQ3, we identified the kind of impact that explainability
can have on each of the extracted quality aspects.

3.2.1 Workshop with philosophers and psychologists

We validated the data related to RQ1 in a workshop with
philosophers and psychologists (two professors, one postdoc,
three doctoral candidates). All scholars excepts for one doc-
toral candidate do research in the field of explanation, one
professor and the postdoc even as a focus. Scholars in these
disciplines have a long history in researching explanations
and, thus, explainability. After consulting with experts from
these disciplines on the workshop design, we decided on an
open discussion.

The preparatory exercise of the philosophers and psy-
chologists was to write down a definition of explainability,
taking into account their own background knowledge. The
idea was to collect these definitions before the discussion to
allow for comparison and to avoid bias from our preliminary
results and the debate.

Table 1 Structure of the two workshops to validate the data related to RQ1, RQ2, and RQ3

Workshop with. Preparatory exercises Workshop activities

Philosophers and Psychologists Give a definition for explainability 1. Open discussion on presented categories from the
SLR.

2. Compare presented categories with definitions from
the pre-workshop task.

3. Discuss important quality aspects related to explain-
ability.

Software Engineers Select quality aspects based on provided scenarios
and list of quality aspects.

1. Enter positive and negative impacts of explainability
on other quality aspects.

Suggest other quality aspects related to explainability. 2. Compare results with the findings from the SLR.
3. Cluster the found quality aspects into groups.

465Requirements Engineering (2022) 27:457–487

1 3

The workshop consisted of three activities. In the first
activity, we presented the categories with respect to RQ1
found in the literature for discussion. We debated whether
these categories accurately reflect the participants’ percep-
tions on the meaning of explainability. In the second activity,
the idea was to compare the definitions found in the litera-
ture with participants’ own definition of explainability, sub-
mitted before the workshop. We compared the definitions,
and also identified and discussed the differences in order to
reach a consensus. During the last activity, we discussed
interdependencies between explainability and other software
quality aspects.

3.2.2 Workshop with software engineers

We validated the data related to RQ2 and RQ3 in a workshop
with software engineers (three professors, two postdocs, one
practitioner, one doctoral candidate). All three professors do
research in the field of requirements engineering and two
of them also in direct relation to explainability, as do the
two postdoctoral researchers. The practitioner is a product
owner in an international company, and the research field
of the doctoral candidate is the interplay between require-
ments engineering and agile development. Two experts in
the field of RE with experience in the topic of NFRs and
software quality were consulted about the workshop design
(depicted in Table 1).

For the preparatory exercise, we asked participants to
list quality aspects that can be impacted by explainability.
To support them in the task, we developed four hypothetical
scenarios in which explainable systems should be designed
and sent them a list of quality aspects resulting from our cod-
ing process (without the identified polarities, to avoid bias).
We also welcomed participants’ suggestions about further
quality aspects that could be connected to explainability but
were not present in our list.

The scenarios consisted of short stories describing
a domain and a business problem related to the need for
explainability. The goal was to help participants better
understand contexts where explainable systems may be
needed. Based on the scenarios, we asked participants to
specify desirable quality aspects for each system based on
their expertise, and to analyze how explainability would
interact with each of these identified aspects (positively or
negatively). The four hypothetical scenarios are described
in our additional material [67].

This workshop also included three activities, each lasting
for approximately an hour. In the first activity, we presented
the list of quality aspect without polarities to the participants
and asked them to set the polarities. We established a rigor-
ous structure for this activity, where each participant would
first define the polarity, justify the decision and at the end of

the round all participants could discuss each others’ choices.
The idea was to provoke debate and reach consensus.

In the second activity, we compared the polarities given
by the participants with the findings from our coding pro-
cess. Again, we compared the results and had an open dis-
cussion to discuss differences and reach consensus. Experts
agreed on all polarities that they had not mentioned before
but had been discovered in the literature. In the third activ-
ity, we clustered the quality aspects collaboratively based on
their relationship and discussed their impacts on the system.

3.3 Knowledge structuring

The last step of our research consisted of making sense of
and structuring the knowledge collected in the previous
stages.

3.3.1 Operationalizing explainability: definition

We operationalized the concept of explainability in a sys-
tem context by distilling a definition of it. In the workshop
with psychologists and philosophers, we integrated proposed
definitions with ones that we found in the literature. The
resulting definition contains several variables so as to be as
flexible as possible to be adjusted to specific project contexts
while at the same time providing a shared understanding of
explainability among stakeholders.

3.3.2 Framing the results: conceptual model

We built a conceptual model to frame our knowledge cata-
logue. This model illustrates the impact of explainability on
several quality dimensions (see Fig. 3; RQ2). During the
workshop with software engineers, we discussed possible
ways to classify the different quality aspects. Here, the par-
ticipants offered useful ideas. To further supplement these
ideas, we consulted the literature and found three promising
ways to classify the results (more details in Sect. 5). These
three ways are analogous to the suggestions made by the
workshop participants and supported us in the development
of our conceptual model.

3.3.3 Summarizing the results: knowledge catalogue

We summarized the results for RQ3 in a knowledge cata-
logue for explainability. Overall, we have extracted 57 qual-
ity aspects that might be influenced by explainability. We
present these quality aspects and how they are influenced
by explainability in Fig. 4. Additionally, we extracted a rep-
resentative example from the literature for all positive and
negative influences listed in our catalogue to show how this
influence may come about. These examples also serve to
illustrate our understanding of certain quality aspects.

466 Requirements Engineering (2022) 27:457–487

1 3

Fig. 3 A conceptual model illustrating the impact of explainability across different quality dimensions

Fig. 4 The knowledge catalogue for explainability: how explainability impacts other quality aspects

467Requirements Engineering (2022) 27:457–487

1 3

3.3.4 Making the results actionable: reference model

We have compiled and summarized the extracted informa-
tion for RQ4 to conceive a reference model for explain-
ability. The reference model encompasses three phases:
requirements analysis, design, and evaluation. Each
of these phases in the model include relevant aspects
that should be considered in each phase in the software
lifecycle.

We used our previous findings (RQ1–RQ3) and an
additional round of data extraction to shape the phases
in the reference model. In particular, the categories in the
“requirements analysis” phase are based on variables of
the definition we set out, and on the work of Chazette
and Schneider [5]. The categories on the “design” phase
that make up the implementation strategy are based on
the work by Speith [46], and the categories on the “evalu-
ation” phase are based on the findings of our SLR. Fur-
thermore, we illustrate how our template can be applied
by means of a running example.

We present the results for RQ1 in Sect. 4, the results
for RQ2 and RQ3 in Sects. 5, 6, and the results for RQ4
in Sect. 7.

4 A definition of explainability

The domain of software engineering does not need a mere
abstract definition of explainability, but one that focuses
on requirements for explainable systems. Before software
engineers can elicit the need for explainability in a system,
they have to understand what explainability is in a system
context. For this reason, we provide a definition of what
makes a system explainable to answer our first RQ.

Explainability is tied to disclosing information, which
can be done by giving explanations. In this line of thought,
Köhl et al. hold that what makes a system explainable is
the access to explanations [9]. However, this leaves open
what exactly is to be explained. In the literature, defini-
tions of explainability vary considerably in this regard.
Moreover, our review has revealed other aspects in which
definitions of explainability differ. Consequently, there is
not one definition of explainability, but several comple-
mentary ones.

Similarly, Köhl et al. also found that there is not just one
type of explainability, but that a system may be explainable
in one respect but not in another [9]. Based on their defini-
tion of explainability, the definitions we found in the litera-
ture, and results from our workshop with philosophers and
psychologists, we were able to develop an abstract definition
of explainability that can be adjusted according to project or
field of application.

Answering RQ1 A system S is explainable with respect to an
aspect X of S relative to an addressee A in context C if and only
if there is an entity E (the explainer) who, by giving a corpus of
information I (the explanation of X), enables A to understand X
of S in C.

The definition above summarizes the important variables
of an explainable system that are relevant for requirements
and software engineers. These variables provide guidance
on the elements that are important in an explainable system
and, therefore, need to be considered during elicitation and
design. In particular, an exemplary application of how our
definition can support requirements engineering in practice
can be found in Sect. 7.

There were differences in the literature concerning the
values of the following variables presented in the above defi-
nition: aspects of a system that should be explained, con-
texts in which to explain, the entity that does the explaining
(the explainer), and addressees that receive the explana-
tion. Being aware of these differences is crucial for require-
ments engineers to elicit the right kind of explainability for
a project as well as specifying the fitting requirements on
explanations.

4.1 Aspects that should be explained

Concerning the aspects that should be explained, we found
the following options in the literature and validated them
during the workshop with philosophers and psychologists:
the system in general (e.g., global aspects of a system) [70],
and, more specifically, its reasoning processes (e.g., infer-
ence processes for certain problems) [71], its inner logic
(e.g., relationships between the inputs and outputs) [9], its
model’s internals (e.g., parameters and data structures) [72],
its intention (e.g., pursued outcome of actions) [73], its
behavior (e.g., real-world actions) [74], its decision (e.g.,
underlying criteria) [4], its performance (e.g., predictive
accuracy) [75], and its knowledge about the user or the world
(e.g., user preferences) [74].

4.2 Contexts and explainers

A context is set by a situation consisting of the interaction
between a person, a system, a task, and an environment [76].
Plausible influences on the context are time-pressure, the
stakes involved, and the type of system [54].

Explainers refer to a system or specific parts of a sys-
tem that supply its stakeholders with the needed informa-
tion. Semantically speaking, our definition allows that these
specific parts of the system do not necessarily have to be
technical components (such as algorithms or even hardware
elements) of the system itself. In this sense, an explainer
could also be an intermediate instance, a kind of external

468 Requirements Engineering (2022) 27:457–487

1 3

mediator. This mediator acts as an interface between the
system and the addressee, explaining something and helping
the addressee to understand the aspect of the system [54].
Although the person applying the definition should be the
one to decide where the boundaries of an explainable sys-
tem should be set, in the context of our work, we focus on
self-explainable systems: systems that explain themselves
“directly” to an end user.

Consider the following example. A patient (addressee) is
in a hospital and has been examined by a physician (context)
using a medical diagnosis system. The medical findings are
processed by the system (aspects) and presented directly
to the patient in an electronic dashboard. However, these
findings cannot be interpreted and understood by patients
directly because they do not have the necessary medical
domain knowledge. Therefore, the physician intervenes as
a mediator and explains the results of the examination to
the patient in a way that is understandable for the patient.
This system could be considered explainable following the
proposed definition since it communicates results to the phy-
sician, who understands them, and the physician, in turn, is
able to explain the output of the system to the patient based
on the received explanations.

However, because we focus on self-explainable systems,
the system in the example above is only deemed explainable
in our perspective if the physician is the intended addressee
for explanations. If the patients are the intended addressees,
the system would be considered explainable if the system
explains itself to the patient directly (since the patient is
the end user) and comprehensively without the need for a
physician to intervene as a mediator. Thus, if necessary,
no medical terminology may be used and the results of the
examination must be presented in a way that is clear and
understandable to laypersons. In this sense, we consider that
the target audience of explanations determines whether or
not a system is explainable. If a medical diagnostic system is
designed for physicians (who are the end users in this situa-
tion), the system must be explainable to physicians.

4.3 Addressee’s understanding

A vast number of papers in the literature make reference to
the addressee’s evoked understanding as important factor
for the success of explainability (e.g., [14, 51, 70, 77, 78]).
Framing explainability in terms of understanding provides
the benefit of making it measurable, as there are established
methods of eliciting a person’s understanding of something,
such as questionnaires or usability tests [5].

The variables in our definition will become important
later on, when we discuss our reference model (Sect. 7). In
this template, these variables essentially constitute different
aspects that need to be elicited in a project context before

concrete implementation strategies are devised. Accordingly,
we will return to the variables later on, using an example to
help us understand them better.

5 A conceptual model of explainability

Conceptual models and catalogues compile knowledge about
quality aspects and help to better visualize their possible
impact on a system. Based on the data extracted from the
literature and on our qualitative data analysis and validation,
we were able to build a conceptual model and a knowledge
catalogue for explainability.

In this section, we will first discuss our conceptual model.
Overall, this model serves as a kind of classification scheme
and is divided into four so-called quality dimensions. A
quality dimension is a conceptual layer that groups quality
aspects that make up a system. It represents a perspective
from which to consider the quality of the system.

Answering RQ2 We framed the quality aspects that are impacted
by explainability in a conceptual model that spans different
quality dimensions of a system (see Fig. 3).

We considered three existing concepts to shape and com-
pose the conceptual model: stakeholder classes, elicitation
dimensions, and quality spectrum. These concepts help us
illustrate our vision of system quality and how it is impacted
by explainability.

5.1 Stakeholder classes

Langer et al. categorize quality aspects that are influenced by
explainability according to so-called stakeholder classes and
distinguish the following ones: users, developers, affected
parties, deployers, and regulators. According to them, these
classes should serve as a reference point when it comes to
implementing explainability since the interests of different
stakeholder classes may conflict [54].

This first concept is related to our definition and based on
the insight that understanding is pivotal for explainability.
Individuals differ in their background-knowledge, values,
experiences, and many further respects. For this reason, they
also differ in what is required for them to understand certain
aspects of a system.

Furthermore, Langer and colleagues also hold that some
persons are more likely to be interested in a certain quality
aspect than others [54]. For instance, a developer might be
more interested in the maintainability of a system than a
user.

Against this background, using stakeholder classes to
organize quality aspects seems promising. Since it is a

469Requirements Engineering (2022) 27:457–487

1 3

stakeholder who needs to understand a system for it to be
explainable according to our definition, the stakeholder class
provides a frame of reference for software engineers.

5.2 Elicitation dimensions

Chazette and Schneider identified six dimensions that affect
the elicitation and analysis of explainability [5]: the users’
needs and expectations, cultural values, corporate values,
laws and norms, domain aspects, and project constraints.
Their results indicate that different factors distributed across
these dimensions influence the identification of explainabil-
ity as being a necessary quality aspect within a system, as
well as the design choices towards its operationalization. In
other words, these dimensions influence the (explainability)
requirements of a system.8

The users’ needs and expectations for example, is a
dimension that considers the user and will thus reflect
directly on the end-user requirements. Cultural values refer
to the ethos of a group or society [79], and how culture
influence the system design [80]. Corporate values refer to
the strategic vision and values of an organization [81], and
how they shape software systems. Laws and norms concern
the regulatory and legal influence on the requirements and
design of a system. Domain aspects consider the subject
area on which the system is intended to be applied, and will
dictate the logic around the application [82]. The project
constraints are more practical aspects (also known as non-
technical aspects [83]), such as available resources (e.g.,
time, money, technologies, manpower).

5.3 Quality spectrum

The external/internal quality concept based on the ISO
25010 [37] and proposed by Freeman and Pryce [84] is the
final concept that we use to shape our model. In particular,
we use it to categorize the quality dimensions (and thus the
quality aspects within them) themselves.

The external/internal quality concept is the basis for what
we call the quality spectrum. Since a spectrum is “a range
of different positions between two extreme points” [85], we
consider the system quality spectrum as a range between
the two extreme points: internal and external quality. In
our model, the quality dimensions represent “positions” or
“directions” in the quality spectrum.

In this sense, an external quality dimension is more
related to the users or the quality in use, and an internal

quality dimension is more related to the developers or the
system itself. The same applies to the quality aspects inside
these dimensions.

However, as pointed out by McConnel [86], the differ-
ence between internal and external quality is not completely
clear-cut, meaning that a quality aspect can belong or affect
several dimensions. Therefore, we do not assign the dimen-
sions and quality aspects of our conceptual model as clear-
cut internal or external, but rather acknowledge a continuous
shift from external to internal.

5.4 Compiling the concepts

Based on these three concepts and input from our workshop
with software engineers, we developed a conceptual model
for the impact of explainability on other quality aspects. To
this end, we combined the concepts of stakeholder classes
and elicitation dimensions to form four new dimensions,
into which we sort the quality aspects that are impacted by
explainability: user’s needs, cultural values and laws and
norms, domain aspects and corporate values, and project
constraints and system aspects. Furthermore, we arrange
these quality dimensions in the quality spectrum.

We also identified quality aspects that are present in all
dimensions. In particular, we identified quality aspects that
form a foundation for the four dimensions (e.g., transpar-
ency). Without the influence of explainability on these
foundational qualities, many other quality aspects would
not be influenced. Furthermore, we identified superodinated
qualities. These quality aspects are influenced by all other
aspects, sometimes being described as the goals of explain-
ability (e.g., trust).

More details on the individual dimensions will be given
in the next section, when we discuss the catalogue, since
the dimensions are closely linked to the quality aspects they
frame. The dimensions and their respective quality aspects
are illustrated in Fig. 3. In the figure, the quality aspects are
grouped according to similarity, based on our workshops’
results. Furthermore, the listing order corresponds to that
of the descriptive text in Sect. 6. Overall, our conceptual
model should support software engineers in understanding
how explainability can affect a system, facilitating require-
ments analysis.

6 A catalogue of explainability’s impacts

In this section, we present the catalogue and discuss the
quality aspects in relation to our conceptual model. To this
end, we analyze them, whenever possible, based on the three
categorizations we have described above: the stakeholders
involved, the dimensions that affect the elicitation and analy-
sis of explainability, and the external/internal categorization.

8 We adopt and extend this notion in that we consider these dimen-
sions to be decisive not only for the RE process, for example, by
influencing whether a requirements engineer considers a quality
aspect as relevant because of existing laws, but also for a system in
general, by influencing the quality of the system from a given per-
spective.

470 Requirements Engineering (2022) 27:457–487

1 3

Answering RQ3 We built a catalogue that lists all quality aspects
found in our study and the kind of impact that explainability
has on each one of these aspects (Fig. 4).

6.1 Foundational qualities

Explainability can influence two quality aspects that have a
crucial role: transparency and understandability. These
quality aspects provide a foundation for all four dimensions,
thereby having an influence on the other aspects inside these
dimensions (and, in some cases, vice versa).

Receiving explanations about a system, its processes
and outputs can facilitate understanding on many lev-
els [87]. Furthermore, explanations contribute to a higher
system transparency [88]. For instance, understandability
and transparency are required on a more external dimen-
sion so that users understand the outputs of a system (e.g.,
an explanation about a route change), which may positively
impact user experience. They are also important on a more
internal dimension, where they can contribute to under-
standing aspects of the code, facilitating debugging and
maintainability.

6.2 User’s needs

Most papers concerning stakeholders in Explainable Arti-
ficial Intelligence (XAI) state users as a common class of
stakeholders (e.g., [51, 89, 90]). This, in turn, also coincides
with the view from requirements engineering, where (end)
users also count as a common class of stakeholders [91].
Among others, users take into account recommendations of
software systems to make decisions [13]. Members of this
stakeholder class can be physicians, loan officers, judges,
or hiring managers. Usually, users are not knowledgeable
about the technical details and the functioning of the systems
they use [54].

When explainability is “integrated” into a system, differ-
ent groups of users will certainly have different expectations,
experiences, personal values, preferences, and needs. Such
aspects mean that individuals can perceive quality differ-
ently. At the same time, explainability influences aspects that
are extremely important from a user perspective.

The quality aspects we have associated with users are
mostly external. In other words, they are not qualities that
depend solely on the system. To be more precise, they
depend on the expectations and the needs of the person who
uses the system.

On a general level, the user experience can both profit
and suffer from explainability. Explanations can foster
a sense of familiarity with the system [92] and make it
more engaging [93]. In this case, user experience profits
from explainability. On the other side, explanations can

cause emotions such as confusion, surprise [94], and dis-
traction [78], harming the user experience. Furthermore,
explainability has a positive impact on the mental-model
accuracy of involved parties. By giving explanations,
it is possible to make users aware of the system’s limita-
tions [75], helping them to develop better mental models
of it [94]. Explanations may also increase a user’s ability to
predict a decision and calibrate expectations with respect to
what a system can or cannot do [75]. This can be attributed
to an improved user awareness about a situation or about
the system [12]. Furthermore, explanations about data col-
lection, use, and processing allow users to be aware of how
the system handles their data. Thus, explainability may be a
way to improve privacy awareness [15, 51]. Explainability
can also positively impact the perceived usefulness of a
system or a recommendation [95], which contributes to the
perceived value of a system, increasing users’ perception of
a system’s competence [96] and integrity [97] and leading to
more positive attitudes towards the system [98]. Finally, all
of this demonstrates that explainability can positively impact
the user satisfaction with a system [94].

Explainability can also influence the usability of a sys-
tem. On the positive side, explanations can increase the ease
of use of a system [47], lead to more efficient use [12], and
make it easier for users to find what they want [99]. On the
negative side, explanations can overwhelm users with exces-
sive information [100] and can also impair the user interface
design [5]. Explanations can help to improve user perfor-
mance on problem solving and other tasks [97]. Another
plausible positive impact of explainability is on user effec-
tiveness [101]. With explanations, users may experience
greater accuracy in decision-making by understanding more
about a recommended option or product [102]. However,
user effectiveness can also suffer when explanations lead
users to agree with incorrect system suggestions [10]. User
efficiency is another quality aspect that can be positively
and negatively influenced by explainability. Analyzing and
understanding explanation takes time and effort [103], pos-
sibly reducing user efficiency. Overall, however, the time
needed to make a judgment could also be reduced with com-
plementary information [101], increasing user efficiency.
Furthermore, explanations may also give users a greater
sense of control, since they understand the reasons behind
decisions and can decide whether they accept an output or
not [14]. Explainability can also have a positive influence on
human-machine cooperation [77] since explanations may
provide a more effective interface for humans [104], improv-
ing interactivity and cooperation [33], which can be espe-
cially advantageous in the case of cyber-physical systems.

Explainability can have a positive influence on learnabil-
ity, allowing users to learn about how a system works or how
to use a system [102]. It may also provide guidance, helping
users in solving problems and educating them about product

471Requirements Engineering (2022) 27:457–487

1 3

knowledge [105]. As these examples illustrate, explanations
can support decision-making processes for users [47]. In
some cases, this goes as far as enabling scrutability of a
system, that is, enabling a user to provide feedback on a
system’s user model so that the system can give more valu-
able outputs or recommendations in the future [47]. Finally,
explainability can help knowledge discovery [14]. By mak-
ing the decision patterns in a system comprehensible, knowl-
edge about the corresponding patterns in the real world can
be extracted. This can provide a valuable basis for scientific
insight [75].

6.3 Cultural values and laws and norms

Although [5] distinguished Cultural Values and Laws and
Norms as two separate dimensions and [54] did the same for
regulators and affected parties, we have combined them into
one dimension because they are complementary and influ-
ence each other. The dimensions form a kind of symbiosis
since, e.g., legal foundations are grounded, among others,
on the basis of the cultural values of a society. We adopt the
same approach for the dimensions discussed in Sects. 6.4,
6.5.

Regulators commonly envision laws for people who could
be affected by certain practices. In other words, regulators
stipulate legal and ethical norms for the general use, deploy-
ment, and development of systems. This class of stakehold-
ers occupies an extraordinary role, since they have a “watch-
dog” function concerning the systems and their use [54].
Regulators can be ethicists, lawyers, and politicians, who
must have the know-how to assess, control, and regulate the
whole process of developing and using systems.

The restrictive measures by regulators are necessary,
as the influence of systems is constantly growing and key
decisions about people are increasingly automated – often
without their knowing [54]. Affected parties are (groups of)
people in the scope of a system’s impact. They are stake-
holders, as for them much depends on the decision of a sys-
tem. Patients, job or loan applicants, or defendants at court
are typical examples of this stakeholder class [54].

In this dimension, cultural values represent the ethos of a
society or group and influence the need for specific system
qualities and how they should be operationalized [79, 80].
These values resonate in the conception of laws and norms,
which enforce constraints that must be met and guaranteed
in the design of systems. Explainability can influence key
aspects on this dimension.

With regard to the internal/external distinction, a clear
attribution is not possible. Rather, the quality aspects seem
to occupy a hybrid position. Whether or not they are present
does not only depend on the system itself, but it also does
not depend on a person using them. Rather, it depends on
general conventions (e.g., legal, societal) that are in place.

For this reason, we take them to be more internal than the
quality aspects from the last dimensions: general conven-
tions are better implementable than individual preferences.

On the cultural side, explanations can contribute to the
achievement of ethical decision-making [106] and, more
specifically, ethical AI. On the one hand, explaining the
agent’s choice may support ensuring that ethical decisions
are made [14]. On the other hand, providing explanations
can be seen as an ethical aspect itself [6]. Furthermore,
explainability may also contribute to fairness, enabling
the identification of harms and decision biases to ensure
fair decision-making [14], or helping to mitigate decision
biases [75].

On the legal side, explainability can promote a system’s
compliance with regulatory and policy goals [107]. Explain-
ing an agent’s choice can ensure that legal decisions are
made [14]. A closely related aspect is accountability. We
were able to identify a positive impact of explainability on
this quality that occurs when explanations allow entities to
be made accountable for a certain outcome [108]. In the lit-
erature, many authors refer to this as liability [108] or legal
accountability [109].

In order to guarantee a system’s adherence to cultural
and legal norms, regulators and affected parties need several
mechanisms that allow for inspecting systems. One NFR
that can help in this regard is auditability. Explainability
positively impacts this NFR, since explanations can help to
identify whether a system made a mistake [10], can help to
understand the underlying technicalities and models [73],
and allow users to inspect a system’s inner workings to judge
whether it is acceptable or not [110]. In a similar manner,
validation can be positively impacted, since explainability
makes it possible for users to validate a system’s knowl-
edge [102] or assess if a recommended alternative is truly
adequate for them [47]. The latter aspect is essential for
another quality that is helped by explainability, namely,
decision justification. On the one hand, explanations are a
perfect way to justify a decision [108]. On the other hand,
they can also help to uncover whether a decision is actually
justified [4].

6.4 Domain aspects and corporate values

People who decide where to employ certain systems (e.g.,
a hospital manager decides to bring a special kind of diag-
nosis system into use in her hospital) are deployers. Other
possible stakeholders in this dimensions are specialists in
a domain, known as domain experts. People have to work
with the deployed systems and, consequently, new people
fall inside the range of affected people [54].

This dimension is shaped by two aspects: (1) the cor-
porate values and vision of an organization [81], and (2)
the domain aspects that shape a system’s design since

472 Requirements Engineering (2022) 27:457–487

1 3

explanations may be more urgent in some domains than in
others.

We consider this dimension as more internal to the sys-
tem, since it encompasses quality aspects that are more
related to the domain or the values of the corporation or the
team. Generally, the integration of such aspects affects the
design of a system on an architectural level. However, there
are some exceptions, as the organization’s vision may aim
at external factors like customer loyalty.

Explainability supports the predictability of a system
by making it easier to predict a system’s performance cor-
rectly and helping to determine when a system might make
a mistake [111]. Furthermore, explainability can support the
reliability of a system [70]. In general, explainability sup-
ports the development of more robust systems for critical
domains [112]. All of this contributes to a positive impact
on safety, helping to meet safety standards [14], or helping
to create safer systems [113]. On the negative side, expla-
nations may also present safety risks by distracting users in
critical situations.

Explanations are also seen as a means to bridge the gap
between perceived security and actual security [71], helping
users to understand the actual mechanisms in systems and
adapt their behavior accordingly. However, explanations may
disclose information that makes the system vulnerable to
attack and gaming [3]. Explainability can also influence pri-
vacy positively, since the principle of information disclosure
can help users to discover what features are correlated with
sensitive information that can be removed [15, 114]. By the
same principle, however, privacy can be hurt since one may
need to disclose sensitive information that could jeopardize
privacy [12]. Explainability can also threaten model confi-
dentiality and trade secrets, which companies are reluctant
to reveal [51].

Explainability can contribute to persuasiveness, since
explanations may increase the acceptance of a system’s deci-
sions and the probability that users adopt its recommenda-
tions [47]. Furthermore, explainability influences customer
loyalty positively, since it supports the continuity of use [92]
and may inspire feelings of loyalty towards the system [99].

6.5 Project constraints and system aspects

Individuals who design, build, and program systems are,
among others, developers, quality engineers, and software
architects. They count as stakeholders [115], as without
them the systems would not exist in the first place. Gen-
erally, representatives of this group have a high expertise
concerning the systems and a strong interest in creating and
improving them.

This dimension is shaped by two aspects: project con-
straints and system aspects. The project constraints are the
non-technical aspects of a system [83], while system aspects

are more related to internal aspects of the system, such as
performance and maintainability.

The quality aspects framed in this dimension are almost
entirely internal in the classical sense, since they corre-
spond to the most internal aspects of a system or the process
through which the system is built.

Explainability can have both a positive and negative
impact on maintainability. On the one hand, it can facili-
tate software maintenance and evolution by giving informa-
tion about models and system logic. On the other hand, the
ability to generate explanations requires new components
in a system, hampering maintenance. A positive impact on
verifiability was also identified, when explanations can
work as a means to ensure the correctness of the knowl-
edge base [102] or to help users evaluate the accuracy of
a system’s prediction [116]. Testability falls in the same
line, since explanations can help to evaluate or test a system
or a model [14]. Explainability has a positive influence on
debugging, as explanations can help developers to identify
and fix bugs [4]. Specifically, in the case of machine learning
(ML) applications, this could enable developers to identify
and fix biases in the learned model and, thus, model optimi-
zation is positively affected [50]. Overall, all these factors
can help increase the correctness of a system, by helping
to correct errors in the system or in model input data [108].

The overall performance of a system can be affected both
positively and negatively by explainability. On the one hand,
explanations can positively influence the performance of a
system by helping developers to improve the system [77].
In this regard, explainability positively influences system
effectiveness. On the other hand, however, explanations can
also lead to drawbacks in terms of performance [103] by
requiring loading time, memory, and computational cost [5].
Thus, as the additional explainability capacities are likely to
require computational resources, the efficiency of the sys-
tem might decrease [4]. Another quality that is impacted by
explainability is accuracy. For instance, in the ML domain,
the accuracy of models can benefit from explainability
through model optimization [50]. On the negative side, there
exists a trade-off between the predictive accuracy of a model
and explainability [4]. A system that is inherently explain-
able, for instance, may have to sacrifice predictive power
in order to be so [72]. Explainability may have a negative
impact on real-time capability since the implementation of
explanations could require more computing power and addi-
tional processes, such as logging data, might be involved.

Adaptability can be negatively impacted, for example, if
lending regulations in a financial software have changed and
an explanation module in the software is also affected. Next,
assume that a new module should be added to a system. The
quality aspect involved here is extensibility, which in turn
is negatively impacted by explainability. Merely adding the
new module is already laborious. If the explainability is also

473Requirements Engineering (2022) 27:457–487

1 3

affected by this new module, the required effort increases
again. Depending on the architecture of the software, it may
even be impossible to preserve the system’s explainability.
Explanations affect the portability of a system as well. On
the negative side, an explanation component might not be
ported directly because it uses visual explanations, but the
environment to which system is to be ported to has no ele-
ments that allow for visual outputs. On the positive side,
explainability helps transferability [117]. Transferability is
the possibility to transfer a learned model from one context
to another (thus, it can be seen as a special case of portability
for ML applications). Explanations may help in this regard
by making it possible to identify the context from and to
which the model can be transferred [117].

Overall, the inclusion of explanation modules can
increase the complexity of the system and its code, influenc-
ing many of the previously seen quality aspects. In particu-
lar, as an explainability component needs additional devel-
opment effort and time, it can result in higher development
costs [9].

6.6 Superordinated qualities

We were able to identify some aspects that hold regardless
of dimension. These aspects are commonly seen as some
kind of superordinated goals of explainability. For instance,
organizations and regulators have been lately focusing on
defining core principles (or “pillars”) for responsible or
trustworthy AI. Explainability has been often listed as one
of these pillars [51]. Overall, many of the quality aspects we
could find in the literature contribute to trustworthiness. For
instance, explanations can help to identify whether a system
is safe and whether it complies to legal or cultural norms.

Ideally, confidence and trust in a system originate solely
from trustworthy systems. Although one could trust an
untrustworthy system, this trust would be unjustified and
inadequate [118]. For this reason, explainability can both
contribute to and hurt trust or confidence in a system [12,
71]. Regardless of the system’s actual trustworthiness, bad
explanations can always degrade trust [71]. Finally, all of
this can influence the system’s acceptance. A system that
is trustworthy can gain acceptance [74] and explainability
is key to this.

7 A reference model for explainability

Building on the previous artifacts, we propose a reference
model for explainability. Reference models can support the
design and implementation of software systems, making it
easier to understand primordial factors to the conception and
design of these systems [119].

Building on this idea, we propose a reference model that
provide a frame of reference of the main factors and relevant
points that should be considered when defining explainabil-
ity from requirements analysis (e.g., eliciting explainability
requirements) to the design phase (i.e., operationalization of
the elicited requirements) and evaluation (i.e., measuring if
the requirements are achieved). In light of this, we answer
RQ4 as follows:

Answering RQ4 We propose a reference model for explainable
systems (Fig. 5) based on the findings from our SLR. This
reference model includes relevant factors that should be con-
sidered for the development of explainable systems at various
stages of the software lifecycle, assisting software engineers
in the analysis, operationalization, and evaluation of require-
ments for explainable systems.

7.1 Constituents of the reference model

Our reference model draws on ideas from three sources.
The first source is a stepwise approach from abstract qual-
ity notions to concretely measurable requirements proposed
by Schneider [120]. This stepwise approach considers three
levels of abstraction: abstract goals, concrete characteristics,
and measures or indicators [120, 121]. The abstract goals9
correspond to the objectives and constraints for a system; the
concrete characteristics define the design decisions for the
abstract goals; and the measures or indicators help evaluate
whether the abstract goals have been achieved.

Based on this approach, we create the structure of a ref-
erence model that goes from the abstract to the concrete:
from abstract aspects of the “real-world” that are relevant for
requirements analysis and must be translated into require-
ments, to factors that influence concrete design decisions,
to evaluation strategies. We have transformed these levels
of abstraction into phases of the software lifecycle to make
them more practical and to provide software engineers with
guidance on what to consider in each phase. In our model,
these levels correspond to requirements analysis, design, and
evaluation, respectively.

During requirements analysis, software engineers, in
conjunction with relevant stakeholders, elicit and define
explainability requirements. Such requirements are not only
the quality aspects that the system should have, but may also
include an initial overview of the system, a vision of the sys-
tem or a part of it, a list of key features, constraints, etc. Dur-
ing the design phase, the requirements should be refined into
tangible system solutions or design choices, based on the

9 Abstract goals can also be understood as so-called “high-level” or
“raw” requirements [122], i.e., requirements that are not yet very spe-
cific and concrete, but express preliminary ideas, concepts, or visions
that need to be further refined.

474 Requirements Engineering (2022) 27:457–487

1 3

factors considering during requirements analysis. Finally,
during evaluation, quantitative measurements or qualitative
indicators should be specified for each concrete solution as
a method to subsequently analyze whether a requirement
was met.

The work of Chazette et al. [123] is the second source of
ideas upon which our reference model is based. Chazette
et al. propose six core activities and associated practices
for the development of explainable systems. These activities
include (1) establishing a system vision (also with respect to
explainability), (2) assessing the needs of the involved stake-
holders, deciding how to implement explainability, (3) think-
ing about the algorithm to be explained, (4) weighing the
trade-offs between explainability and other quality aspects,
(5) making design decisions that favor explainability, and (6)
assessing the impact of explainability on the system.

We also consider ideas from the work of Speith [46] to
put together our reference model. Speith presents an over-
view and taxonomy of various approaches that can be used
to translate the more abstract considerations about explain-
ability into concrete implementations. Although his work is
primarily intended for AI systems, we will adopt and gener-
alize it so that it is applicable to all kind of software systems.

We combine ideas found in these three works with the
results of our study. In summary, our reference model pro-
posal is based on (1) the three levels of abstraction adapted
to phases of the software lifecycle [120], (2) the six core
activities for the development of explainable systems [123],
(3) the approaches used to translate abstract considerations
into concrete implementations [46], and (4) our research
findings. The reference model is illustrated in Fig. 5 and
presents the critical elements to take into account when

developing explainable systems, broken down into seven cat-
egories that cover different phases of the software lifecycle.

A simple hypothetical scenario will serve to illustrate
each phase of the reference model and is intended to facili-
tate and guide the discussion:

Scenario: A car manufacturer produces fully autonomous
vehicles. The manufacturer wants passengers to better under-
stand the system’s navigation decisions. In conjunction with
stakeholders, it was decided that explanations before and
during navigation should help reach this goal, also aiming
to improve user experience.

Explanations might be shown on the screen of the board
computer or provided acoustically. To keep the passenger
informed and aware of the various navigation possibili-
ties, it is critical to provide a full review of the available
route options and the reasoning behind each recommenda-
tion prior to navigation start. During navigation, passengers
should be informed of any route changes, accidents, threats,
or delays in a timely manner.

7.2 Requirements analysis

Requirements analysis is “the analysis of elicited require-
ments in order to understand and document them” [122].
Understanding and documenting the needs of stakeholders
is one of the primary goals of RE, and requirements analysis
is essential in this process.

The definition proposed in Sect. 4 offers an initial over-
view of some of the essential factors that should be consid-
ered and elicited during requirements analysis. According

Fig. 5 A reference model to support the development of explainable systems

475Requirements Engineering (2022) 27:457–487

1 3

to the suggested definition, gathering knowledge about the
context of use, the aspect of the system to be explained, and
the addressee (entity or person who receives the explanation)
is pivotal in order to provide meaningful explanations.

Other factors are related to the impact of explainability
across different quality dimensions, as addressed in Sect. 5.
These dimensions influence the requirements. In particular,
these dimensions have an influence on whether explainabil-
ity is identified as an important quality aspect in a system,
which objectives are associated with it (e.g., more transpar-
ency or usability in a system), and what constraints there are
(e.g., project deadlines, financial limitations).

The objectives and constraints serve as the basis for
higher-level decisions, such as defining an explainability
vision. The explainability vision is a high-level definition
of explainability and includes the consideration of the type
of explanation to be presented and the important aspects to
explain. Furthermore, all of these considerations (objectives,
constraints, explainability vision) culminate in the explain-
ability requirements.

7.2.1 Objectives

The objectives of explainability are the first items to be
defined. They depend on the stakeholders’ goals and on the
reasons and purposes that motivate their need for explain-
ability in a system. These goals, reasons, and purposes, in
turn, may be influenced by any of the quality dimensions
mentioned earlier (e.g., cultural values, domain aspects,
etc.).

As we have explored in the previous sections, explain-
ability can be seen as an enabler, as a means of achieving
other crucial quality aspects. Thus, one must describe which
quality aspects are to be achieved through explainability. In
principle, these quality aspects can come from any of the
dimensions presented in Fig. 3.

Perhaps the stakeholders in a particular project need an
explainable system because explainability contributes to a
better user experience, or because they see the need of devel-
oping a system that is aligned with ethical values. Overall,
all of the 57 quality aspects listed in our model (Fig. 3), in
any combination, can function as an objective.

7.2.2 Constraints

The constraints are factors that influence or limit design
decisions in some way. Constraints are usually associated
with factors such as the context, the addressee, and the pro-
ject circumstances. These factors have a major influence on
the system design. As mentioned in Sect. 4, the context is
an interaction between a person, a system, a task, and an
environment.

For instance, the context of a physician (a person) inter-
acting with an explainable cancer diagnosis system (the
system) that supports the interpretation of image exams of
cancer tumors (task) during a medical appointment in a hos-
pital (environment) will directly influence the requirements
on explanations.

In particular, the characteristics of the physician in their
role as addressee play a significant role, along with the task
they perform with the system and the environment in which
the system is used. All of these influences have to be taken
into account to define a vision of the system to be developed,
refine it into requirements, and to prepare the field for sub-
sequent concretizations, since constraints will significantly
influence how concrete design decisions are shaped and
realized.

7.2.3 Explainability vision

One of the high-level design decisions during requirements
analysis is the type of explanation that is required. This deci-
sion is crucial when it comes to explainability, as choosing
the appropriate kind of explanation is the precondition for
conveying information in an appropriate way. In general,
the decision on the type of explanation will depend on the
objectives and constraints that were defined.

It is important to note that these abstracts thoughts about
explanations do not necessarily define their implementation.
When thinking about the design of a system (e.g., the medi-
cal system mentioned above), one is not directly concerned
with how an explanation is implemented. First, one consid-
ers it at a higher abstraction level. This is because the type
of explanation one wants is likely to draw on one’s everyday
behavior and explanation practices. Accordingly, such types
of explanation are very abstract and distinct from concrete
implementation and design ideas.

Miller et al. [124] found that implementations of explain-
ability are often based on intuitions rather than on informed
deliberations. For this reason, it is crucial to have an idea of
explanation types, as well as plausible ways to implement
them. As we discussed in previous sections, philosophy and
psychology have long investigated explanations, offering
significant knowledge about the many sorts of explanations
and their usefulness for various contexts and situations. We
can use this existing knowledge to gain valuable insights into
how to design useful explanations in RE contexts.

With this in mind, Miller examined the philosophical and
psychological literature to gain knowledge about explain-
ability and found that the various forms of explanation each
have their own advantages and disadvantages [78]. These
advantages and disadvantages must be weighed in order to
determine what type of explanation is suitable for each case
in order to achieve the intended objectives. We analyzed the

476 Requirements Engineering (2022) 27:457–487

1 3

data from our literature review to learn about the many types
of explanations that exist and to provide important insights
for software engineers.

Explanation Types and Aspects to Explain Explanations
are commonly described as answers to “w”-questions (e.g.,
why, what, when, but also how) [125, 126]. When it comes
to more fine-grained details, however, there is significant
disagreement. There are many different types of explana-
tions, each with its own advantages and drawbacks. While
an extensive description of explanation types goes beyond
the scope of this article, we will shortly discuss some promi-
nent ones.

One prominent type of explanation is causal explana-
tion [127, 128]. As the name implies, causal explanations
commonly cite the causes of a phenomenon to explain it.
Closely linked to causal explanations are counterfactual
explanations [129]. This type of explanation uses counter-
factual scenarios (i.e., what-if-things-had-been-different
scenarios) to explain a phenomenon. For instance, if the
window were opened, the letter would not have been swept
away by a gust of air. The link to causal explanation can be
easily seen: in the example above, the gust of air blowing is
the cause for the letter being swept away.

There are many types of causal explanations, and in
recent years, mechanistic explanation gained prominence.
These explanations aim at explaining a phenomenon by
explaining the mechanism constitutive of the phenomenon
coming to be [130]. For instance, a mechanistic explana-
tion of the heart pumping blood would involve the parts
of heart (e.g., atria, ventricles, valves, etc.), the operations
performed by these parts (e.g., contraction and relaxation
by the chambers), and their organization (e.g., blood flows
from each atrium to valve and ultimately into the circulatory
system) [131].

Another type of explanation are reason explanations [71,
125]. Reason explanations explain the action of an agent
by referring to the subjective reasons this agent has had for
executing a said action. Note the difference to causal expla-
nation: while causal explanations try to uncover the physical
processes directly leading to a phenomenon, reason expla-
nation make use of the reasons that motivated an agent to
execute a specific action.

In addition to the type of explanation, the explainabil-
ity vision also includes the aspects to explain. In order to
properly integrate explainability, it is critical to understand
which aspects or components of the particular system
must be explained. For this reason, the aspect that should
be explained is part of our definition of explainability (see
Sect. 4.1). Some exemplary aspects are: a system’s rationale,
its predictive accuracy, or its intention.

Note that the concept of aspects to explain is a more
fine-grained version of what Speith [46] calls “scope” in
his taxonomy. Scope concerns whether the whole AI model

should be explained (i.e., a global scope) or just a single
prediction (i.e., a local scope). When it comes to the aspects
we found, the aspect “system in general” corresponds to a
global scope and the aspects “a system’s decision” to a local
one. Accordingly, the other aspects we found expand the
work of Speith [46].

Explainability Requirements To define requirements, it is
necessary to compare the goals of the various stakeholders
and understand how these goals translate to what is expected
from the system. Explainability requirements comprise all
of the investigated components (i.e., objectives, constraints,
explainability vision). To define requirements for explain-
ability, it is, thus, important to operationalize these compo-
nents in order to establish explanation characteristics (i.e.,
the requirements on explanations).

Requirements typically begin as high-level requirements
that should be operationalized further until they reach the
level of functional requirements, which express specific
design choices. For example, the need for more security in
a system (a high-level requirement) is refined into the need
for more security in login, which is refined into the need
for a two-factor authentication procedure. The need for a
two-factor authentication procedure, in turn, translates into
requirements that define the functional processes needed to
achieve the high-level requirement of more security.

It is also essential to analyze what are the existing inter-
relationships between requirements in the system and how
defined requirements affect and interact with other (exist-
ing or planned) requirements in the system. Therefore, a
trade-off analysis should take place to help prioritize require-
ments according to factors such as the stakeholders’ goals
and observed constraints. During trade-off analysis, our pro-
posed conceptual model and knowledge catalogue can assist
in considering and identifying potential trade-offs.

Contextualizing: In our scenario, two quality aspects are
pursued: understandability and user experience.10 These
quality aspects are seen as objectives during requirements
analysis.

The objective of achieving better understandability can be
achieved through built-in explanations that help understand
route choices. This goal is motivated by an upcoming legal
regulations in autonomous driving that require end users
to be informed about system decisions. The goal of a bet-
ter user experience, in contrast, is motivated by corporate
interests.

The addressees are passengers in an autonomous car. In
this scenario, timing is an important contextual factor, and,

10 It should be noted that this is only an exemplary excerpt for didac-
tic purposes and considers understandability and user experience as
the only (quality) objectives.

477Requirements Engineering (2022) 27:457–487

1 3

therefore, a constraint tied to the explanations: before navi-
gation, passengers may have more time to make a decision
concerning a route recommendation, than during navigation.
Consequently, timeliness is a crucial factor during naviga-
tion, as explanations need to be displayed at the right time
and be understood quickly, so that the addressee can use
them to make a decision.

After defining the objectives and constraints, the expla-
nation type can be determined. In our autonomous vehicle
scenario, causal explanations are likely the adequate expla-
nation type. Causal explanations are useful for describing
causes of occurrences like traffic jams or for clarifying the
reasons for a delay (i.e., aspects to explain). Those help
to define the explanation characteristics that should be
described in the requirements.

7.3 Design

In the design phase, all goals, objectives, constraints, prelim-
inary thoughts, and established requirements for explainabil-
ity come together and influence the concrete design choices.
In this phase, the factors defined in the previous phase must
be linked to a concrete implementation strategy.

According to Speith’s taxonomy, one must decide on
the scope (the aspects to explain discussed earlier), stage,
information extraction procedure11, result, and presentation
form when implementing explainability. We call the choice
of these factors together the implementation strategy.

7.3.1 Implementation strategy

The implementation strategy refers to how explainability
will be implemented into the system. This includes func-
tions, modules (in terms of algorithmic solutions), and
interface elements that should be implemented in the sys-
tem to provide explanations. Functions can vary in com-
plexity depending on what should be explained and on the
complexity of the underlying model. Modules work as an
additional part of the system or a separate entity that can act
as an explainer (e.g., a virtual assistant). Finally, interface
factors are more related to design choices concerning how
the explanations are going to be presented in the interface.

Stage This factor concerns the question of when explain-
ability is incorporated into a system. When working on a
project where explainability is a quality goal, one can either
try to “explain” an already existing system by implement-
ing and adding appropriate mechanisms (this would be the

stage post-hoc) [113, 125], or one could start from scratch,
designing an inherently explainable system (this would be
the stage ante-hoc) [50, 51].

Here, a significant distinction between systems based on
“traditional” software 12 and those powered by AI must be
made. In many cases, to make AI-based systems explainable,
an entirely new system must be added to explain the old one.
This illustrates why “black box” is a fitting metaphor for
these systems: once trained, they cannot be adjusted easily.
Making a traditional software system explainable, however,
can usually be done by simply adapting its code.

Information extraction procedure This factor describes
how the information needed for creating the explanations
is derived. While the information extraction procedure is of
particular interest for AI-based systems (because the infor-
mation must often be derived by an additional module), it
also has some applications for traditional systems, as we
explore below.

One big distinction when it comes to the information
extraction procedure is whether it is necessary to have access
to the system code to obtain the information required to
explain it. If one has access to the system, one could analyze
the code and interpret the algorithmic rationale to obtain
internal information that can be used to construct explana-
tions [102, 113].

In fact, however, it is not necessary to have access to the
system code; one can also gather the data required to create
explanations through external analyses. An external analy-
sis [48, 111] could be based on perturbing the input to see
how the output changes. This information extraction proce-
dure is called (local) perturbation [4, 77].

Result The extracted information (obtained through the
information extraction procedure) commonly has a specific
semantic, called the result [46]. Carefully selecting the
semantics of an explanation may prove essential, depending
on the addressee of the explanation and the context in which
it is produced. This is the case because the semantics of an
explanation often influence who can understand it.

There are different types of results. For instance, the
extracted information could indicate the relevance of cer-
tain input features for the output. This result is called feature
relevance [14, 50]. Another type of results are examples [49,
94]. Examples could be representative instances of similar
decisions.

The result can be used as a link to the explanation type.
For instance, highlighting a particular feature can be used
to implement counterfactual explanations, and causal
explanations could be conveyed by offering instances (i.e.,
examples).

11 Originally, Speith calls this factor functioning [46]. However, since
functioning is an overloaded term in the context of software systems,
we will not use it here.

12 We use the term “traditional” to refer to software or systems that
are neither ML or AI-based.

478 Requirements Engineering (2022) 27:457–487

1 3

7.3.2 Presentation form

Another factor to consider during the design phase is the
presentation form of the explanation. Explanations can be
represented in many forms, for instance, textually, numeri-
cally, or visually. The result and presentation form are
intrinsically related: While the result dictates the semantic
of the given explanation, the presentation form constitutes
its representation and delivery. With the concept of a repre-
sentation format, we generalize the notion of output format
in Speith’s taxonomy, enriching it by the concept of tone.

It is essential to determine the medium of the explana-
tion (this is what Speith originally calls output format [46]).
Primary mediums are textual [113, 125], visual [47, 132],
and auditory [48, 133]. Each of these formats have further
sub-classes. For instance, textual formats can be (instruc-
tions) in natural language [47, 102], but they can also be in
the form of rules (e.g., if-else statements) [105, 134]. The
latter format, which is especially helpful for those trying to
debug systems, was primarily employed in the 1980s when
it came to expert system explanations [133]. Visual formats
include icons, (heat)maps, and videos. Finally, auditory
formats might be alert tones, but also (synthesized) speech
instructions.

In addition, each of these presentations forms also have
their own particularities (or requirements), such as the tone
that will be used in communication (formal vs. casual, tech-
nical vs. non-technical), length, volume, brightness, and so
on. The choice of an appropriate presentation form can be
crucial. For example, auditory explanations of decisions
made by a navigation algorithm in a non-autonomous vehi-
cle would be preferable to textual explanations for safety
reasons.

Contextualizing: The goals, objectives, and constraints
defined during the requirements analysis have to be refined
into tangible technical strategies or design choices.

A list of possible aspects to be explained was given in
Sect. 4. In our hypothetical scenario, the aspect that must
be explained is the system’s rationale for route calculation
with a focus on the variables that were considered for route
choice: arrival time and traffic condition.

Furthermore, an explanation module must be added to the
already existing system to provide the explanations. Thus,
the stage would be a post-hoc. The need for such a module
arises because the system in our hypothetical scenario is
supported by a deep neural network (DNN). Consequently,
the module’s information extraction procedure has be com-
patible with DNNs (e.g., TCAV [135]) or it needs to be
applicable to all types of AI models (e.g., LIME [77]).

The explanations should be presented with interface-spe-
cific design strategies such as auditory explanations, icons,
and animations (e.g., to highlight a new event such as an

accident) on the board computer’s screen and possibly with
brief texts. Furthermore, the communication tone should be
casual rather than formal.

7.4 Evaluation

Evaluation bridges the gap between a customer’s over-
all goals on the one hand and the metrics agreed upon for
measurement on the other [120]. Accordingly, to analyze
the influence of explanations, evaluation methods and corre-
sponding metrics13 should be defined. In particular, metrics
should help find out whether the chosen technical solutions
contribute to meeting the defined requirements and help to
assess whether the chosen implementation of explainability
is adequate or needs to be improved [120].

7.4.1 Evaluation levels for explainability

When it comes to the evaluation of explainability, an impor-
tant distinction must be made. We have emphasized that
explainability is a kind of enabler, and can contribute to
achieving other quality aspects. Accordingly, we can evalu-
ate explainability by measuring how much it contributed to
these other quality aspects. We call such an evaluation an
evaluation on the system level. However, we can also evalu-
ate explainability by assessing the generated explanations
themselves. This would be an evaluation on the explanation
level.

Evaluation on the system level The quality of an explana-
tion may be assessed on the system level, by analyzing how
it affects the system in terms of a specific quality aspect
(e.g., the influence of an explanation on usability or perfor-
mance). Many of these quality aspects have already been
intensively investigated by software engineers, so that there
are already established evaluation methods for them. As an
example, the impact of explanations on the system’s usabil-
ity can be evaluated quantitatively through usability tests
scores or qualitatively, by assessing users’ perception on the
system’s usability [5].

Since there are so many quality aspects associated with
explainability, it is not possible to discuss all of the evalu-
ation methods and relevant metrics in this publication. For
this reason, we concentrate on strategies for evaluating
explanations and advise the interested reader to search for
literature that addresses evaluation for the particular quality
aspect of interest.

Evaluation on the explanation level So far, many different
methods have been proposed for evaluating explanations of

13 For simplicity, we generalize the term metric to refer to both met-
rics and indicators.

479Requirements Engineering (2022) 27:457–487

1 3

software systems on the explanation level [68, 69]. To the
best of our knowledge, however, there is no consensus on
what is a good evaluation method for such explanations [68,
136], which also means that there is no gold standard for
evaluating explanations of software systems [68, 137]. For
this reason, the choice of evaluation methods and metrics
depends heavily on which objectives have been defined in
advance.

7.4.2 Methods

Since the effectiveness and quality of an explanation is sub-
jective in most cases, the focus of evaluations is often on
end-user feedback. This was confirmed by Nunes and Jan-
nach [47] in an SLR on explanations in recommender sys-
tems. They discovered that the most important methods used
to evaluate explanations are user studies. Likewise, Vilone
and Longo [68] found that subjective assessments are the
most common way of evaluation. This was again confirmed
in a recent study that ascertained that user-centered activities
and methods are often recommended for the development of
explainable systems [123].

Consistent with this research, we found in our SLR that
the most important evaluation methods are focused on
end-user feedback. In particular, the methods we identified
include: user studies in general [138, 139], but also more
specifically questionnaires [47, 140], A/B tests [93, 111],
case studies [109, 141], and interviews [75, 98]. These user-
centered methods may be used to determine whether or not
a given explanation design (as defined during requirements
analysis) helps to achieve an objective.

User studies can adopt different methodologies to evalu-
ate explanations. For instance, in questionnaires, study par-
ticipants might be asked whether they better understood a
certain aspect of the system after receiving explanations
(e.g., “From the explanation, I understand how the [software,
algorithm, tool] works.”, [142]).

The methodology of A/B tests is to compare several types
of explanations to discover which style is best suited given
the objectives that were defined (e.g., comparing “explana-
tion variant A” against “explanation variant B” with respect
to the stipulated objective of achieving more user satisfac-
tion with the system) [143].

A case study is another empirical research strategy which
focuses on studying a particular case or phenomenon (e.g.,
an individual person, a group, a setting, or an organization)
in its own context or environment. Case studies typically
combine a variety of data collection techniques, which helps
to better understand the complexity of individual cases and
to increase the accuracy of data acquired and conclusions
drawn [144]. In this sense, a case study could consist in
assessing explainable systems in a particular environment
and deriving detailed information about their impact.

Finally, an interview is a qualitative research method in
which the population of interest (i.e., the people being inter-
viewed) are questioned by the researcher. These questions
can be pre-established and fixed (structured interviews),
or the interviewer can think about the questions during the
interview, with (semi-structured interviews) or without
(unstructured interviews) the help of a checklist of topics to
be covered [144]. In general, conducting interviews allows
for a more in-depth understanding of a population’s view-
points on certain topics.

7.4.3 Metrics

There is a wide variety of metrics for explanations that can
become important depending on the context. Explanations
can be evaluated with respect to metrics such as their sound-
ness [113], plausibility [145], realism [146], and persua-
siveness [147]. The comprehensibility of an explanation, its
relevance, length, timeliness, completeness, and usefulness
are also metrics that are frequently addressed in the litera-
ture [68, 113, 148]. In general, Vilone and Longo compiled a
list of explanation properties14 [68] that can be used to assess
the quality of explanations. Furthermore, we also provide
a list of all the properties we found in the literature in our
supplementary material [67].

Contextualizing: In the case of our hypothetical scenario,
it is crucial to evaluate whether the implemented explana-
tions are suitable to achieve the stated objectives, taking into
account the existing constraints.

Timeliness was identified as a constraint. An explanation
is perceived as helpful or relevant not only if it is compre-
hensive, but also if it is given at an opportune moment so
that it supports a decision at the right time. During naviga-
tion, for example, an explanation outlining the reasons for
a route change should be understood in a timely manner
so that the passenger can make a decision in time for the
vehicle to still take a particular exit. In this scenario, the
difference between the time the user takes from receiving
the explanation to taking the action can serve as a metric.

When it comes to achieving the goal of system under-
standability, a comparison of mental models in a user study
may be one way to ascertain whether the chosen explanation
design is beneficial. Using such a comparison, it is possible
to determine whether the user’s mental model (i.e., the user’s
interpretation of the system) is sufficiently comparable to the
actual model of the system, as developed by the engineers
(i.e., what the system actually is and does).

For example, such a comparison can be used to assess
whether the user understood the explanation of the route

14 We also consider this properties as metrics.

480 Requirements Engineering (2022) 27:457–487

1 3

change as it should have been understood, whether the expla-
nation in the case contributed to the comprehensibility of the
system, or whether there are still gaps in the communication
of the information.

Finally, a user study can help assess participants’ percep-
tions of the user experience.

8 Discussion

Explainability is a quality aspect that echoes the demand for
more human oversight of systems [17]. It can bring posi-
tive or negative consequences across all quality dimensions:
from users’ needs to system aspects. Explainability’s impact
on so many crucial dimensions illustrates the growing need
to take explainability into account while designing a sys-
tem. However, there is currently little guidance on how to do
so. Developing proper elicitation methodologies, artifacts,
and tools to capture explainability requirements and assist
the RE process is critical for project success. Artifacts are
important components of RE and software projects because
they promote knowledge exchange and help develop a shared
understanding, both of which are essential for the definition
of good requirements. Artifacts contribute to the develop-
ment of a common vocabulary, which enables communica-
tion and the calibration of expectations in relation to system
and project requirements.

To this end, our first contribution is a definition of
explainability for software engineers (Sect. 4). This defini-
tion points out what should be considered when dealing with
requirements and the appropriate functionality for explain-
able systems: aspects that should be explained, contexts,
explainers, and addressees. A common definition facilitates
communication during a project. Besides, being aware of
these variables facilitates the software development process,
supporting the elicitation and specification of explainabil-
ity requirements. In this sense, the possible values for these
variables (e.g., reasoning process as an aspect that should be
explained) we found in the literature can serve as an abstract
starting point during requirements analysis. Overall, our arti-
facts can help engineering explainable systems and to make
good design choices towards explainability requirements.

In contrast, poor design choices regarding explainability
(e.g., inadequate information, wrong presentation choices)
can negatively affect the relationship with the user (e.g., user
experience issues), interfere with important quality aspects
for a corporation (e.g., damaging brand image and customer
loyalty), and bring disadvantages for the project or the sys-
tem (e.g., increasing development costs or hindering system
performance). This kind of impact may stem from the fact
that explainability might be seen as an aspect of communi-
cation between systems and humans. Depending on how it

happens in practice, communication can either strengthen
or harm relationships.

Research in RE can profit from insights of other disci-
plines when it comes to explainability. The fields of phi-
losophy, psychology, and HCI, for example, have long
researched aspects such as explanations or human interaction
with systems (see [78] for research concerning explanations
in several disciplines). At the same time, requirements engi-
neers can contribute to the field of explainability by studying
how to include such aspects in systems and adapt develop-
ment processes. This knowledge, scattered among different
areas of knowledge, must be made available and integrated
into the development of systems.

To this end, two other additional contributions of this arti-
cle are a conceptual model (Sect. 5) and a knowledge cata-
logue (Sect. 6). Conceptual models are useful to abstract,
comprehend, and communicate information. Among others,
our catalogue can serve as checklist during elicitation and
also during trade-off analysis. It can help software engi-
neers avoid conflicts between quality aspects and choose the
best strategies for achieving the desired quality outcomes.
Both artifacts contain information that may be used to turn
explainability into a positive catalyst for other essential sys-
tem qualities in modern systems.

Building up on this, our reference model (presented in
Sect. 7) brings together the proposed definition, conceptual
model, and knowledge catalogue into one artifact. This refer-
ence model is intended to help software engineers develop
explainable systems by providing them with a guide of the
main aspects to consider during three key phases of the
software lifecycle: requirements analysis, design, and eval-
uation. To incorporate explainability into a system, many
different aspects need to be considered in the software engi-
neering process. For example, the envisioned quality goals,
the different types of explanation a customer may want, and
the appropriate form of presentation (audio, text, icon, etc.),
all of which should be evaluated using appropriate methods
and metrics. In this regard, the reference model serves as a
guide to identify the relevant things to consider for develop-
ing explainable systems at each phase in the software engi-
neering process.

Since reference models are usually minimal sets (see
Sect. 2.2), our proposed reference model can be extended
and adapted to fit different contexts or as a base for other
models. In fact, during the process of publishing this
article, a study was conducted and this reference model
was expanded and used to build a quality framework for
explainability. The results were published in a conference
paper (see [18]). Although this is not a direct evaluation
of our reference model, it may be seen as an indication
that such an artifact is promising and can be used as a
base model that can be extended or as a model template
for creating other models. In addition, a minimal model

481Requirements Engineering (2022) 27:457–487

1 3

implies that these components are essential and should
not be disregarded.

To check whether our artifacts can be useful for deal-
ing with explainability as an NFR, we compare them with
the guideline set out by Paech et al. [24]. They proposed
a list with 20 features that should be covered by methods
that focus on quality aspects (see [24], Table 1). Taking
these features into account, our artifacts can support: the
identification of quality goals (quality aspects that should
be achieved through explainability), the visualization of
dependencies between quality aspects and functional
aspects, the identification of means of implementation,
the comparison of different design strategies, as well as
the identification of suitable metrics for evaluation.

Overall, building these artifacts has revealed that there
is much to do in the field of NFRs. On the one hand, we
believe that there may be other emerging quality aspects
besides explainability. Aspects such as human-machine
cooperation, privacy awareness, and mental-model accu-
racy show that there are specific needs that should be
better understood when developing modern systems.
Furthermore, ethics, fairness, and legal compliance are
all good examples of quality aspects that are gaining in
importance and should be better researched [149].

On the other hand, we have identified that explainabil-
ity can exhibit an impact on nearly all traditional NFRs
that can be found in the ISO 25010 [37]: performance,
efficiency, usability, reliability, security, maintainability,
and portability. As such, the importance of explainability
has to be further acknowledged. In this line of thought,
the impact of other NFRs on explainability should be bet-
ter researched and existing catalogues could be updated
to incorporate explainability. The RE community needs
to explore what kind of activities, artifacts, methods, and
tools need to be incorporated into the software devel-
opment process in order to accommodate the necessary
steps towards building explainable systems. Our work is
an essential step in this direction.

9 Limitations and threats to validity

Our work is mostly based on qualitative data analysis.
Consequently, there is the possibility that the results are
affected by subjectivity during analysis. Therefore, we
decided on a multi-method approach to produce results
that are more robust and compelling than single method
studies. In what follows, we discuss the main threats to
validity in each part of our research.

9.1 SLR and coding

The review process assumed a common understanding
among all researchers involved in this work with respect to
the search and analysis methods used. Results could be sub-
ject to bias if the methods and concepts are misunderstood.
We mitigated this threat by elaborating a review protocol and
discussing it before starting the review to reach a good level
of shared understanding.

We have formulated inclusion and exclusion criteria
to reduce biases due to subjective decisions in the selec-
tion process. Some criteria, such as the publication period,
are objective, while others, focusing on the content of the
papers, are still subjective.

To decrease the amount of researcher bias, we conducted
the analysis independently. For both the literature review and
the coding process, in case of disagreement, the decision on
inclusion or exclusion (for a paper) or the code assignment
(for the extracted data) was taken by all researchers and vali-
dated by the Fleiss’ Kappa statistic.

Another limiting factor of our SLR is that it only cov-
ers the period up to March 2020. Explainability is a rapidly
evolving field of research, especially in recent years, so it is
not guaranteed that our results will remain up-to-date. To
counteract this problem at least somewhat, we have used the
most recent research as a guide when constructing the refer-
ence model. In this regard, there were no problems embed-
ding our results. Moreover, our SLR period already spans
36 years, during which we have found that similar concepts
remain steadily in the literature.

9.2 Workshops

There are some threats to validity for the workshops. First,
some of the homework given to the participants was based
on the results of our literature review. Accordingly, it could
be that they were implicitly biased by it.

To prevent such an implicit influence, we removed as
much additional information from the homework as pos-
sible. Furthermore, we encouraged the experts to think of
own experiences an be not restrained by the given material.

Furthermore, as the workshops took place online, this
could be a limiting factor. Here, the homework was aimed at
getting the experts attuned to the subject matter so that the
workshops could take place in a focused manner despite the
online format. Additionally, plenty of breaks and clear tasks
helped the participants be productive during the workshop.

Finally, the time allotted for each workshop was short,
at four hours each. However, since we only had three tasks
for each workshop, this was an acceptable time frame in our
eyes. This was also confirmed during the workshops, as we
did not have to cancel any of the tasks due to lack of time.

482 Requirements Engineering (2022) 27:457–487

1 3

9.3 Proposed artifacts

When it comes to our conceptual model and the knowledge
catalogue, the clustering and categorization of the quality
aspects into their different dimensions was prone to subjec-
tive judgment. As steps to mitigate this, we rooted this cat-
egorization on well-known concepts present in the literature
and conducted workshops with experts. This allowed us to
inspect our clustering through internal and external reviews.

During the internal reviews, the categorization was dis-
cussed among the authors to clarify ambiguities and reach
agreements. During the external reviews, we compared the
findings from the literature with expert knowledge. Due to
these review processes, we are confident to have achieved a
proper level of validity of the catalogue.

Moreover, as researchers in the field, we are confident
that both our catalogue and conceptual model are reasonably
accurate for the field studied, developed over debates that
formed our shared knowledge on the subject.

The coding and clustering for the reference model was
also prone to subjective judgment. To mitigate this threat,
we decreased the amount of researcher bias by conducting
the analysis (coding and clustering) independently. As we
did not conduct workshops to validate our findings, we used
established results from previous work to form our catego-
ries. Furthermore, we illustrated the use of the reference
model with a running example, showcasing its applicability.
However, its correctness and realism have not been evalu-
ated and further studies are needed in order to validate the
model in practice.

10 Conclusion and future work

Explainability is increasingly seen as an appropriate means
of achieving essential quality aspects in a system, such as
transparency, accountability, and trust. As building these
values into our systems becomes more urgent, there is a
need for tools and methods that help elicit, implement, and
validate related requirements. For this reason, we should be
concerned with understanding explainability as a whole: its
meaning, its effects, its taxonomy. Furthermore, the interplay
of explainability with increasingly important quality aspects
such as ethics, greenability, privacy, and trust should also
be researched.

In this sense, our proposed definition can help to facili-
tate communication and align expectations when referring
to explainability. Our conceptual model can help profes-
sionals to understand its taxonomy, and our knowledge
catalogue can help to identify conflicts between explain-
ability and other important qualities. Finally, our suggested
reference model for explainability can assist software engi-
neers understand the relevant and influential aspects for the

requirements analysis, design, and evaluation of explainable
systems. With the support of these artifacts, it is possible to
think of design strategies and implementation level solutions
that result in positive effects for all stakeholders involved.
Overall, we hope that our work lays a foundation for the RE
community to better understand and investigate the topic of
explainability.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00766- 022- 00393-5.

Acknowledgements This work was supported by the research initia-
tive Mobilise between the Technical University of Braunschweig and
Leibniz University Hannover, funded by the Ministry for Science and
Culture of Lower Saxony and by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s Excel-
lence Strategy within the Cluster of Excellence PhoenixD (EXC 2122,
Project ID 390833453). Work on this paper was also funded by the
Volkswagen Foundation grants AZ 98509 and AZ 98514 “Explainable
Intelligent Systems” (EIS) and by the DFG grant 389792660 as part
of TRR 248. We thank Martin Glinz for his feedback on our research
design and our colleague Nils Prenner for his feedback and the fruit-
ful discussions. Furthermore, we thank all workshop participants, the
anonymous reviewers, and the colleagues who gave feedback on our
manuscript. Special gratitude goes to Dieter Belle, for his immeasur-
able help in staying organized.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Mike walsh: welcome to the algorithmic age. Accessed 27 Jan
2022 (2018). https:// www. mike- walsh. com/ news/ welco me- to-
the- algor ithmic- age

 2. Panesar A (2019) Ethics of intelligence. Machine learning
and AI for healthcare: big data for improved health outcomes.
Apress, New York, NY, pp 207–254. https:// doi. org/ 10. 1007/
978-1- 4842- 3799-1_6

 3. Lepri B, Oliver N, Letouzé E, Pentland A, Vinck P (2018) Fair,
transparent, and accountable algorithmic decision-making pro-
cesses. Philos Technol 31(4):611–627. https:// doi. org/ 10. 1007/
s13347- 017- 0279-x

 4. Adadi A, Berrada M (2018) Peeking inside the black-box: a sur-
vey on explainable artificial intelligence (XAI). IEEE Access
6:52138–52160. https:// doi. org/ 10. 1109/ ACCESS. 2018. 28700
52

https://doi.org/10.1007/s00766-022-00393-5
http://creativecommons.org/licenses/by/4.0/
https://www.mike-walsh.com/news/welcome-to-the-algorithmic-age
https://www.mike-walsh.com/news/welcome-to-the-algorithmic-age
https://doi.org/10.1007/978-1-4842-3799-1_6
https://doi.org/10.1007/978-1-4842-3799-1_6
https://doi.org/10.1007/s13347-017-0279-x
https://doi.org/10.1007/s13347-017-0279-x
https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1109/ACCESS.2018.2870052

483Requirements Engineering (2022) 27:457–487

1 3

 5. Chazette L, Schneider K (2020) Explainability as a non-func-
tional requirement: challenges and recommendations. Requir Eng
25(4):493–514. https:// doi. org/ 10. 1007/ s00766- 020- 00333-1

 6. Langer M, Baum K, Hartmann K, Hessel S, Speith T, Wahl J
(2021) Explainability auditing for intelligent systems: a rationale
for multi-disciplinary perspectives. In: 2021 IEEE 29th interna-
tional requirements engineering conference workshops (REW).
pp 164–168. https:// doi. org/ 10. 1109/ REW53 955. 2021. 00030

 7. Glinz M (2007) On non-functional requirements. In: 15th IEEE
international requirements engineering conference (RE). pp
21–26. https:// doi. org/ 10. 1109/ RE. 2007. 45

 8. Chazette L, Karras O, Schneider K (2019) Do end-users want
explanations? Analyzing the role of explainability as an emerging
aspect of non-functional requirements. In: 2019 IEEE 27th inter-
national requirements engineering conference (RE). pp 223–233.
https:// doi. org/ 10. 1109/ RE. 2019. 00032

 9. Köhl MA, Baum K, Langer M, Oster D, Speith T, Bohlender
D (2019) Explainability as a non-functional requirement. In:
27th IEEE international requirements engineering conference
(RE). IEEE, New York, NY, pp 363–368. https:// doi. org/ 10.
1109/ RE. 2019. 00046

 10. Bussone A, Stumpf S, O’Sullivan D (2015) The role of expla-
nations on trust and reliance in clinical decision support sys-
tems. In: 2015 international conference on healthcare informat-
ics. IEEE, New York, NY, pp 160–169. https:// doi. org/ 10. 1109/
ICHI. 2015. 26

 11. Winkler JP, Vogelsang A (2017) “What does my classifier
learn?” A visual approach to understanding natural language
text classifiers. In: Frasincar F, Ittoo A, Nguyen LM, Métais E
(eds) Natural language and information systems. pp 468–479.
https:// doi. org/ 10. 1007/ 978-3- 319- 59569-6_ 55

 12. Zhou J, Hu H, Li Z, Yu K, Chen F (2019) Physiological indica-
tors for user trust in machine learning with influence enhanced
fact-checking. In: International cross-domain conference for
machine learning and knowledge extraction. Springer, Cham,
pp 94–113. https:// doi. org/ 10. 1007/ 978-3- 030- 29726-8_7

 13. Hind M, Wei D, Campbell M, Codella NCF, Dhurandhar A,
Mojsilović A, Natesan RK, Varshney KR (2019) TED: teaching
AI to explain its decisions. In: Proceedings of the 2019 AAAI/
ACM conference on AI, ethics, and society. ACM, New York,
NY, pp 123–129. https:// doi. org/ 10. 1145/ 33066 18. 33142 73

 14. Rosenfeld A, Richardson A (2019) Explainability in human-
agent systems. Auton Agent Multi-Agent Syst 33(6):673–705.
https:// doi. org/ 10. 1007/ s10458- 019- 09408-y

 15. Brunotte W, Specht A, Chazette L, Schneider K (2022) Privacy
explanations – a means to end-user trust. arXiv. https:// doi. org/
10. 48550/ ARXIV. 2210. 09706

 16. Abdollahi B, Nasraoui O (2018) Transparency in fair machine
learning: the case of explainable recommender systems.
Human and machine learning: visible, explainable, trustwor-
thy and transparent. Springer, Cham, CH, pp 21–35. https://
doi. org/ 10. 1007/ 978-3- 319- 90403-0_2

 17. Thiebes S, Lins S, Sunyaev A (2020) Trustworthy artificial
intelligence. Electron Mark 1–18 . https:// doi. org/ 10. 1007/
s12525- 020- 00441-4

 18. Chazette L, Klös V, Herzog F, Schneider K (2022) Require-
ments on explanations: a quality framework for explainability.
In: Proceedings of the 2022 IEEE 30th international require-
ments engineering conference (RE), pp 140–152. https:// doi.
org/ 10. 1109/ RE549 65. 2022. 00019

 19. Glinz M, Fricker SA (2015) On shared understanding in soft-
ware engineering: an essay. Comput Sci Res Dev 30(3):363–
376. https:// doi. org/ 10. 1007/ s00450- 014- 0256-x

 20. Mairiza D, Zowghi D (2011) Constructing a catalogue of con-
flicts among non-functional requirements. Evaluation of novel

approaches to software engineering. Springer, Berlin, Heidel-
berg, pp 31–44

 21. Chung L, Nixon BA, Yu E, Mylopoulos J (2012) Non-func-
tional requirements in software engineering. Springer, Boston,
MA. https:// doi. org/ 10. 1007/ 978-1- 4615- 5269-7

 22. Gacitúa R, Ma L, Nuseibeh B, Piwek P, Roeck AND, Rounce-
field M, Sawyer P, Willis A, Yang H (2009) Making tacit
requirements explicit. In: Second international workshop on
managing requirements knowledge (MARK@RE). IEEE, New
York, NY, pp 40–44. https:// doi. org/ 10. 1109/ MARK. 2009.7

 23. Santos D, Resende A, Junior PA, Costa H (2016) Attributes
and metrics of internal quality that impact the external quality
of object-oriented software: a systematic literature review. In:
2016 XLII Latin American computing conference (CLEI). pp
1–12. https:// doi. org/ 10. 1109/ CLEI. 2016. 78333 22

 24. Paech B, Kerkow D (2004) Non-functional requirements engi-
neering-quality is essential. In: 10th international workshop on
requirments engineering foundation for software quality

 25. Cysneiros LM (2007) Evaluating the effectiveness of using
catalogues to elicit non-functional requirements. In: Workshop
em engenharia de requisitos (WER 2007). pp 107–115

 26. Nuseibeh B, Easterbrook S (2000) Requirements engineering:
a roadmap. In: Proceedings of the conference on the future of
software engineering. ICSE ’00. Association for Computing
Machinery, New York, NY, pp 35–46. https:// doi. org/ 10. 1145/
336512. 336523

 27. Bittner EAC, Leimeister JM (2013) Why shared understand-
ing matters – engineering a collaboration process for shared
understanding to improve collaboration effectiveness in hetero-
geneous teams. In: 2013 46th Hawaii international conference
on system sciences. IEEE, Piscataway, pp 106–114. https:// doi.
org/ 10. 1109/ HICSS. 2013. 608

 28. Ghazi P, Glinz M (2017) Challenges of working with arti-
facts in requirements engineering and software engineer-
ing. Requir Eng 22(3):359–385. https:// doi. org/ 10. 1007/
s00766- 017- 0272-z

 29. Boehm BW, Brown JR, Lipow M (1976) Quantitative evalua-
tion of software quality. In: Proceedings of the 2nd international
conference on software engineering. ICSE ’76. IEEE Computer
Society Press, Washington, DC, pp 592–605

 30. Börger E, Hörger B, Parnas D, Rombach D (1999) Requirements
capture, documentation, and validation. In: Dagstuhl seminar.
Dagstuhl Seminar

 31. Rupp C, Simon M, Hocker F (2009) Requirements engineering
und management. HMD Prax Wirtsch 46(3):94–103

 32. Serrano M, Serrano M (2013) Ubiquitous, pervasive and mobile
computing: a reusable-models-based non-functional catalogue.
In: Proceedings of requirements engineering@Brazil, vol. 1005.
CEUR, Aachen, DE

 33. Carvalho RM, Andrade RMC, Lelli V, Silva EG, de Oliveira
KM (2020) What about catalogs of non-functional requirements?
In: Proceedings of REFSQ-2020 workshops, vol. 2584. CEUR,
Aachen, DE

 34. Chazette L, Brunotte W, Speith T (2021) Exploring explainabil-
ity: a definition, a model, and a knowledge catalogue. In: 2021
IEEE 29th international requirements engineering conference
(RE). IEEE, pp 197–208

 35. Wixon D, Wilson C (1997) Chapter 27 - the usability engineering
framework for product design and evaluation. In: Helander MG,
Landauer TK, Prabhu PV (eds) Handbook of human-computer
interaction, 2nd edn. North-Holland, Amsterdam, pp 653–688.
https:// doi. org/ 10. 1016/ B978- 04448 1862-1. 50093-5

 36. Hull E, Jackson K, Dick J (2011) Introduction. Springer, London,
pp 1–23. https:// doi. org/ 10. 1007/ 978-1- 84996- 405-0_1

 37. ISO Central Secretary: ISO/IEC 25010:2011 systems and soft-
ware engineering-systems and software quality requirements

https://doi.org/10.1007/s00766-020-00333-1
https://doi.org/10.1109/REW53955.2021.00030
https://doi.org/10.1109/RE.2007.45
https://doi.org/10.1109/RE.2019.00032
https://doi.org/10.1109/RE.2019.00046
https://doi.org/10.1109/RE.2019.00046
https://doi.org/10.1109/ICHI.2015.26
https://doi.org/10.1109/ICHI.2015.26
https://doi.org/10.1007/978-3-319-59569-6_55
https://doi.org/10.1007/978-3-030-29726-8_7
https://doi.org/10.1145/3306618.3314273
https://doi.org/10.1007/s10458-019-09408-y
https://doi.org/10.48550/ARXIV.2210.09706
https://doi.org/10.48550/ARXIV.2210.09706
https://doi.org/10.1007/978-3-319-90403-0_2
https://doi.org/10.1007/978-3-319-90403-0_2
https://doi.org/10.1007/s12525-020-00441-4
https://doi.org/10.1007/s12525-020-00441-4
https://doi.org/10.1109/RE54965.2022.00019
https://doi.org/10.1109/RE54965.2022.00019
https://doi.org/10.1007/s00450-014-0256-x
https://doi.org/10.1007/978-1-4615-5269-7
https://doi.org/10.1109/MARK.2009.7
https://doi.org/10.1109/CLEI.2016.7833322
https://doi.org/10.1145/336512.336523
https://doi.org/10.1145/336512.336523
https://doi.org/10.1109/HICSS.2013.608
https://doi.org/10.1109/HICSS.2013.608
https://doi.org/10.1007/s00766-017-0272-z
https://doi.org/10.1007/s00766-017-0272-z
https://doi.org/10.1016/B978-044481862-1.50093-5
https://doi.org/10.1007/978-1-84996-405-0_1

484 Requirements Engineering (2022) 27:457–487

1 3

and evaluation (SQuaRE) - system and software quality models.
Standard ISO/IEC 25010:2011, International Organization for
Standardization (2011). https:// www. iso. org/ stand ard/ 35733. html

 38. MacKenzie CM, Laskey K, McCabe F, Brown PF, Metz R, Ham-
ilton BA (2006) Reference model for service oriented architec-
ture 1.0. OASIS Stand 12(S 18)

 39. Fettke P, Loos P (2003) Classification of reference models: a
methodology and its application. IseB 1(1):35–53. https:// doi.
org/ 10. 1007/ BF026 83509

 40. Alani MM (2014) OSI model. Springer, Cham, pp 5–17. https://
doi. org/ 10. 1007/ 978-3- 319- 05152-9_2

 41. Weber KC, Araújo EER, da Rocha ARC, Machado CAF, Sca-
let D, Salviano CF (2005) Brazilian software process reference
model and assessment method. In: Yolum P, Güngör T, Gürgen
F, Özturan C (eds) Computer and information sciences - ISCIS
2005. Springer, Berlin, Heidelberg, pp 402–411

 42. Cherdantseva Y, Hilton J (2013) A reference model of informa-
tion assurance and security. In: 2013 international conference on
availability, reliability and security. pp 546–555. https:// doi. org/
10. 1109/ ARES. 2013. 72

 43. Gutmann P, Grigg I (2005) Security usability. IEEE Secur Priv
3(4):56–58. https:// doi. org/ 10. 1109/ MSP. 2005. 104

 44. Torres RC, Martins LEG (2018) NFR catalogues for RFID mid-
dleware. J Comput Sci Technol 14(02):102–108

 45. Carvalho RM, Andrade RMC, Oliveira KM (2020) How develop-
ers believe invisibility impacts NFRs related to user interaction.
28th IEEE international requirements engineering conference
(RE). IEEE, New York, NY, pp 102–112. https:// doi. org/ 10.
1109/ RE485 21. 2020. 00022

 46. Speith T (2022) A review of taxonomies of explainable artificial
intelligence (xai) methods. In: Proceedings of the 2022 confer-
ence on fairness, accountability, and transparency. FAccT ’22.
Association for Computing Machinery, New York, NY. https://
doi. org/ 10. 1145/ 35311 46. 35346 39

 47. Nunes I, Jannach D (2017) A systematic review and taxonomy
of explanations in decision support and recommender systems.
User Model User-Adap Inter 27(3–5):393–444. https:// doi. org/
10. 1007/ s11257- 017- 9195-0

 48. Anjomshoae S, Najjar A, Calvaresi D, Främling K (2019)
Explainable agents and robots: results from a systematic litera-
ture review. In: Proceedings of the 18th international confer-
ence on autonomous agents and multiagent systems (AAMAS).
International Foundation for Autonomous Agents and Multiagent
Systems, Richland County, SC, pp 1078–1088. https:// doi. org/
10. 5555/ 33061 27. 33318 06

 49. Abdul A, Vermeulen J, Wang D, Lim BY, Kankanhalli M (2018)
Trends and trajectories for explainable, accountable and intel-
ligible systems: an HCI research agenda. In: Proceedings of the
2018 conference on human factors in computing systems (CHI).
ACM, New York, NY, pp 1–18. https:// doi. org/ 10. 1145/ 31735
74. 31741 56

 50. Mathews SM (2019) Explainable artificial intelligence applica-
tions in NLP, biomedical, and malware classification: a literature
review. In: Intelligent computing – proceedings of the computing
conference. Springer, Cham, pp. 1269–1292. https:// doi. org/ 10.
1007/ 978-3- 030- 22868-2_ 90

 51. Arrieta AB, Díaz-Rodríguez N, Ser JD, Bennetot A, Tabik S,
Barbado A, Garcia S, Gil-Lopez S, Molina D, Benjamins R,
Chatila R, Herrera F (2020) Explainable artificial intelligence
(XAI): Concepts, taxonomies, opportunities and challenges
toward responsible AI. Inf Fusion 58:82–115. https:// doi. org/
10. 1016/j. inffus. 2019. 12. 012

 52. Clinciu M-A, Hastie H (2019) A survey of explainable ai ter-
minology. In: Alonso JM, Catala A (eds) Proceedings of the
1st workshop on interactive natural language technology for
explainable artificial intelligence (NL4XAI). Association for

Computational Linguistics, Stroudsburg, PA, pp 8–13. https://
doi. org/ 10. 18653/ v1/ W19- 8403

 53. Graziani M, Dutkiewicz L, Calvaresi D, Amorim JP, Yordanova
K, Vered M, Nair R, Abreu PH, Blanke T, Pulignano V, Prior JO,
Lauwaert L, Reijers W, Depeursinge A, Andrearcyk V, Müller
H (2022) A global taxonomy of interpretable AI: unifying the
terminology for the technical and social sciences. Artif Intell Rev
1–32

 54. Langer M, Oster D, Speith T, Hermanns H, Kästner L, Schmidt
E, Sesing A, Baum K (2021) What do we want from explainable
artificial intelligence (XAI)? - a stakeholder perspective on XAI
and a conceptual model guiding interdisciplinary XAI research.
Articif Intell. https:// doi. org/ 10. 1016/j. artint. 2021. 103473

 55. do Prado Leite JCS, Cappelli C (2010) Software transpar-
ency. Bus Inf. Syst Eng 2(3):127–139. https:// doi. org/ 10. 1007/
s12599- 010- 0102-z

 56. Saldaña J (2021) The coding manual for qualitative researchers.
SAGE Publications, Thousand Oaks, CA

 57. Kitchenham B, Charters S (2007) Guidelines for performing
systematic literature reviews in software engineering. Technical
report, Keele University

 58. Wohlin C (2014) Guidelines for snowballing in systematic litera-
ture studies and a replication in software engineering. In: Pro-
ceedings of the 18th international conference on evaluation and
assessment in software engineering, New York, NY. pp 1–10.
https:// doi. org/ 10. 1145/ 26012 48. 26012 68

 59. Fleiss JL (1971) Measuring nominal scale agreement among
many raters. Psychol Bull 76(5):378–382. https:// doi. org/ 10.
1037/ h0031 619

 60. Landis JR, Koch GG (1977) The measurement of observer agree-
ment for categorical data. Biometrics 33(1):159–174. https:// doi.
org/ 10. 2307/ 25293 10

 61. Wolfswinkel JF, Furtmueller E, Wilderom CPM (2013) Using
grounded theory as a method for rigorously reviewing literature.
Eur J Inf Syst 22(1):45–55. https:// doi. org/ 10. 1057/ ejis. 2011. 51

 62. Buchanan BG, Shortliffe EH (1984) Rule-based expert systems:
the MYCIN experiments of the stanford heuristic programming
project. Addison-Wesley, Boston, MA

 63. Brock DC (2018) Learning from artificial intelligence’s previous
awakenings: the history of expert systems. AI Mag 39(3):3–15.
https:// doi. org/ 10. 1609/ aimag. v39i3. 2809

 64. Charmaz K (2006) Constructing grounded theory: a practical
guide through qualitative analysis. SAGE Publications, Thousand
Oaks, CA

 65. Miles MB, Huberman AM (1994) Qualitative data analysis: an
expanded sourcebook. SAGE Publications, Thousand Oaks, CA

 66. Boyatzis RE (1998) Transforming qualitative information: the-
matic analysis and code development. SAGE Publications, Thou-
sand Oaks, CA

 67. Chazette L, Brunotte W, Speith T (2022) Explainable software
systems: from requirements analysis to system evaluation. Suppl
Mater J Article https:// figsh are. com/s/ f73d4 1c413 45dd0 8cf39

 68. Vilone G, Longo L (2021) Notions of explainability and evalua-
tion approaches for explainable artificial intelligence. Inf Fusion
76:89–106. https:// doi. org/ 10. 1016/j. inffus. 2021. 05. 009

 69. Zhou J, Gandomi AH, Chen F, Holzinger A (2021) Evaluating
the quality of machine learning explanations: a survey on meth-
ods and metrics. Electronics. https:// doi. org/ 10. 3390/ elect ronic
s1005 0593

 70. Carvalho DV, Pereira EM, Cardoso JS (2019) Machine learning
interpretability: a survey on methods and metrics. Electronics.
https:// doi. org/ 10. 3390/ elect ronic s8080 832

 71. Pieters W (2011) Explanation and trust: What to tell the user in
security and AI? Ethics Inf Technol 13(1):53–64. https:// doi. org/
10. 1007/ s10676- 010- 9253-3

https://www.iso.org/standard/35733.html
https://doi.org/10.1007/BF02683509
https://doi.org/10.1007/BF02683509
https://doi.org/10.1007/978-3-319-05152-9_2
https://doi.org/10.1007/978-3-319-05152-9_2
https://doi.org/10.1109/ARES.2013.72
https://doi.org/10.1109/ARES.2013.72
https://doi.org/10.1109/MSP.2005.104
https://doi.org/10.1109/RE48521.2020.00022
https://doi.org/10.1109/RE48521.2020.00022
https://doi.org/10.1145/3531146.3534639
https://doi.org/10.1145/3531146.3534639
https://doi.org/10.1007/s11257-017-9195-0
https://doi.org/10.1007/s11257-017-9195-0
https://doi.org/10.5555/3306127.3331806
https://doi.org/10.5555/3306127.3331806
https://doi.org/10.1145/3173574.3174156
https://doi.org/10.1145/3173574.3174156
https://doi.org/10.1007/978-3-030-22868-2_90
https://doi.org/10.1007/978-3-030-22868-2_90
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.18653/v1/W19-8403
https://doi.org/10.18653/v1/W19-8403
https://doi.org/10.1016/j.artint.2021.103473
https://doi.org/10.1007/s12599-010-0102-z
https://doi.org/10.1007/s12599-010-0102-z
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1037/h0031619
https://doi.org/10.1037/h0031619
https://doi.org/10.2307/2529310
https://doi.org/10.2307/2529310
https://doi.org/10.1057/ejis.2011.51
https://doi.org/10.1609/aimag.v39i3.2809
https://figshare.com/s/f73d41c41345dd08cf39
https://doi.org/10.1016/j.inffus.2021.05.009
https://doi.org/10.3390/electronics10050593
https://doi.org/10.3390/electronics10050593
https://doi.org/10.3390/electronics8080832
https://doi.org/10.1007/s10676-010-9253-3
https://doi.org/10.1007/s10676-010-9253-3

485Requirements Engineering (2022) 27:457–487

1 3

 72. Holzinger A, Langs G, Denk H, Zatloukal K, Müller H (2019)
Causability and explainability of artificial intelligence in medi-
cine. Wiley Interdiscipl Rev Data Min Knowl Discov 9(4):1–13.
https:// doi. org/ 10. 1002/ widm. 1312

 73. Hois J, Theofanou-Fuelbier D, Junk AJ (2019) How to achieve
explainability and transparency in human AI interaction. Inter-
national conference on human-computer interaction (HCI).
Springer, Cham, CH, pp 177–183. https:// doi. org/ 10. 1007/ 978-
3- 030- 23528-4_ 25

 74. Glass A, McGuinness DL, Wolverton M (2008) Toward estab-
lishing trust in adaptive agents. In: Proceedings of the 13th inter-
national conference on intelligent user interfaces (IUI). ACM,
New York, NY, pp 227–236. https:// doi. org/ 10. 1145/ 13787 73.
13788 04

 75. Liao QV, Gruen DM, Miller S (2020) Questioning the AI:
informing design practices for explainable AI user experiences.
In: Proceedings of the 2020 conference on human factors in com-
puting systems (CHI). ACM, New York, NY, pp 1–15. https://
doi. org/ 10. 1145/ 33138 31. 33765 90

 76. Dourish P (2004) What we talk about when we talk about con-
text. Pers Ubiquit Comput 8(1):19–30. https:// doi. org/ 10. 1007/
s00779- 003- 0253-8

 77. Ribeiro MT, Singh S, Guestrin C (2016) “Why should I trust
you?”: explaining the predictions of any classifier. In: Proceed-
ings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining. ACM, New York, NY,
pp 1135–1144. https:// doi. org/ 10. 1145/ 29396 72. 29397 78

 78. Miller T (2019) Explanation in artificial intelligence: insights
from the social sciences. Artif Intell 267:1–38. https:// doi. org/
10. 1016/j. artint. 2018. 07. 007

 79. Pacey A (1983) The culture of technology. MIT Press, Cam-
bridge, MA

 80. Kummer T-F, Leimeister JM, Bick M (2012) On the impor-
tance of national culture for the design of information sys-
tems. Bus Inf Syst Eng 4(6):317–330. https:// doi. org/ 10. 1007/
s12599- 012- 0236-2

 81. Thomsen S (2004) Corporate values and corporate governance.
Corp Gov 4(4):29–46. https:// doi. org/ 10. 1108/ 14720 70041
05588 62

 82. Chung L, Nixon BA (1995) Dealing with non-functional
requirements: three experimental studies of a process-oriented
approach. In: 1995 17th international conference on software
engineering. IEEE, p 25

 83. Carvallo JP, Franch X, Quer C (2006) Managing non-techni-
cal requirements in cots components selection. In: 14th IEEE
international requirements engineering conference (RE). IEEE,
New York, NY, pp. 323–326. https:// doi. org/ 10. 1109/ RE. 2006.
40

 84. Freeman S, Pryce N (2009) Growing object-oriented software.
Guided by tests. Addison-Wesley, Boston, MA

 85. Cambridge dictionary: spectrum. Cambridge Dictionary (2022).
https:// dicti onary. cambr idge. org/ dicti onary/ engli sh/ spect rum
Accessed 05 May 2022

 86. McConnell S (2004) Code complete. Microsoft Press, Redmond,
WA

 87. Henin C, Daniel LM (2019) Towards a generic framework for
black-box explanation methods. In: Proceedings of the IJCAI
workshop on explainable artificial intelligence (XAI). pp 28–34

 88. Chen L, Yan D, Wang F (2019) User evaluations on sentiment-
based recommendation explanations. ACM Trans Interact Intell
Syst (TiiS) 9(4):1–38. https:// doi. org/ 10. 1145/ 32828 78

 89. Preece AD, Harborne D, Braines D, Tomsett R, Chakraborty S
(2018) Stakeholders in explainable AI. CoRR arXiv: 1810. 00184

 90. Weller A (2019) Transparency: motivations and challenges. In:
Samek W, Montavon G, Vedaldi A, Hansen LK, Müller K-R
(eds) Explainable AI: interpreting, explaining and visualizing

deep learning. Springer, Cham, CH, pp 23–40. Chap. 2. https://
doi. org/ 10. 1007/ 978-3- 030- 28954-6_2

 91. Glinz M, Wieringa RJ (2007) Guest editors’ introduction: stake-
holders in requirements engineering. IEEE Softw 24(2):18–20.
https:// doi. org/ 10. 1109/ MS. 2007. 42

 92. Riedl MO (2019) Human-centered artificial intelligence and
machine learning. Hum Behav Emerg Technol 1(1):33–36.
https:// doi. org/ 10. 1002/ hbe2. 117

 93. McInerney J, Lacker B, Hansen S, Higley K, Bouchard H, Gru-
son A, Mehrotra R (2018) Explore, exploit, and explain: per-
sonalizing explainable recommendations with bandits. In: Pro-
ceedings of the 12th ACM conference on recommender systems
(RecSys). ACM, New York, NY, pp 31–39. https:// doi. org/ 10.
1145/ 32403 23. 32403 54

 94. Cai CJ, Jongejan J, Holbrook J (2019) The effects of example-
based explanations in a machine learning interface. In: Proceed-
ings of the 24th international conference on intelligent user inter-
faces (IUI). ACM, New York, NY, pp 258–262. https:// doi. org/
10. 1145/ 33012 75. 33022 89

 95. Zanker M (2012) The influence of knowledgeable explanations
on users’ perception of a recommender system. In: Proceedings
of the sixth ACM conference on recommender systems (Rec-
Sys). ACM, New York, NY, pp 269–272. https:// doi. org/ 10. 1145/
23659 52. 23660 11

 96. Pu P, Chen L (2006) Trust building with explanation interfaces.
In: Proceedings of the 11th international conference on intel-
ligent user interfaces (IUI). ACM, New York, NY, pp 93–100.
https:// doi. org/ 10. 1145/ 11114 49. 11114 75

 97. Kizilcec RF (2016) How much information? Effects of transpar-
ency on trust in an algorithmic interface. In: Proceedings of the
2016 conference on human factors in computing systems (CHI).
ACM, New York, NY, pp 2390–2395. https:// doi. org/ 10. 1145/
28580 36. 28584 02

 98. Cramer H, Evers V, Ramlal S, Maarten VS, Rutledge L, Stash
N, Aroyo L, Wielinga B (2008) The effects of transparency on
trust in and acceptance of a content-based art recommender.
User Model User-Adap Inter 18(5):455. https:// doi. org/ 10. 1007/
s11257- 008- 9051-3

 99. Tintarev N, Masthoff J (2007) Effective explanations of recom-
mendations: user-centered design. In: Proceedings of the 2007
ACM conference on recommender systems (RecSys). ACM, New
York, NY, pp 153–156. https:// doi. org/ 10. 1145/ 12972 31. 12972
59

 100. Tsai C, Brusilovsky P (2019) Explaining recommendations in
an interactive hybrid social recommender. In: Proceedings of
the 24th international conference on intelligent user interfaces
(IUI). ACM, New York, NY, pp 391–396. https:// doi. org/ 10.
1145/ 33012 75. 33023 18

 101. Tintarev N, Masthoff J (2012) Evaluating the effective-
ness of explanations for recommender systems. User Model
User-Adap Inter 22(4–5):399–439. https:// doi. org/ 10. 1007/
s11257- 011- 9117-5

 102. Darlington K (2013) Aspects of intelligent systems explanation.
Univ J Control Autom 1(2):40–51. https:// doi. org/ 10. 13189/ ujca.
2013. 010204

 103. Kumar PS, Saravanan M, Suresh S (2019) Explainable classifica-
tion using clustering in deep learning models. In: Proceedings of
the IJCAI workshop on explainable artificial intelligence (XAI).
pp 115–121

 104. Dodge J, Liao QV, Zhang Y, Bellamy RKE, Dugan C (2019)
Explaining models: an empirical study of how explanations
impact fairness judgment. In: Proceedings of the 24th interna-
tional conference on intelligent user interfaces (IUI). ACM, New
York, NY, pp 275–285. https:// doi. org/ 10. 1145/ 33012 75. 33023
10

https://doi.org/10.1002/widm.1312
https://doi.org/10.1007/978-3-030-23528-4_25
https://doi.org/10.1007/978-3-030-23528-4_25
https://doi.org/10.1145/1378773.1378804
https://doi.org/10.1145/1378773.1378804
https://doi.org/10.1145/3313831.3376590
https://doi.org/10.1145/3313831.3376590
https://doi.org/10.1007/s00779-003-0253-8
https://doi.org/10.1007/s00779-003-0253-8
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1007/s12599-012-0236-2
https://doi.org/10.1007/s12599-012-0236-2
https://doi.org/10.1108/14720700410558862
https://doi.org/10.1108/14720700410558862
https://doi.org/10.1109/RE.2006.40
https://doi.org/10.1109/RE.2006.40
https://dictionary.cambridge.org/dictionary/english/spectrum
https://doi.org/10.1145/3282878
http://arxiv.org/abs/1810.00184
https://doi.org/10.1007/978-3-030-28954-6_2
https://doi.org/10.1007/978-3-030-28954-6_2
https://doi.org/10.1109/MS.2007.42
https://doi.org/10.1002/hbe2.117
https://doi.org/10.1145/3240323.3240354
https://doi.org/10.1145/3240323.3240354
https://doi.org/10.1145/3301275.3302289
https://doi.org/10.1145/3301275.3302289
https://doi.org/10.1145/2365952.2366011
https://doi.org/10.1145/2365952.2366011
https://doi.org/10.1145/1111449.1111475
https://doi.org/10.1145/2858036.2858402
https://doi.org/10.1145/2858036.2858402
https://doi.org/10.1007/s11257-008-9051-3
https://doi.org/10.1007/s11257-008-9051-3
https://doi.org/10.1145/1297231.1297259
https://doi.org/10.1145/1297231.1297259
https://doi.org/10.1145/3301275.3302318
https://doi.org/10.1145/3301275.3302318
https://doi.org/10.1007/s11257-011-9117-5
https://doi.org/10.1007/s11257-011-9117-5
https://doi.org/10.13189/ujca.2013.010204
https://doi.org/10.13189/ujca.2013.010204
https://doi.org/10.1145/3301275.3302310
https://doi.org/10.1145/3301275.3302310

486 Requirements Engineering (2022) 27:457–487

1 3

 105. Putnam V, Conati C (2019) Exploring the need for explainable
artificial intelligence (XAI) in intelligent tutoring systems (ITS).
In: Joint proceedings of the ACM IUI 2019 workshops. CEUR,
Aachen, DE

 106. Schneider J, Handali J (2019) Personalized explanation in
machine learning: a conceptualization. In: Proceedings of the
27th European conference on information systems (ECIS)

 107. Gilpin LH, Testart C, Fruchter N, Adebayo J (2018) Explaining
explanations to society. In: NIPS workshop on ethical, social and
governance issues in AI. pp 1–6

 108. Monteath I, Sheh R (2018) Assisted and incremental medical
diagnosis using explainable artificial intelligence. In: Proceed-
ings of the IJCAI/ECAI workshop on explainable artificial intel-
ligence (XAI). pp 104–108

 109. Binns R, Van Kleek M, Veale M, Lyngs U, Zhao J, Shadbolt N
(2018) ’It’s reducing a human being to a percentage’: perceptions
of justice in algorithmic decisions. In: Proceedings of the 2018
conference on human factors in computing systems (CHI). ACM,
New York, NY, pp. 1–14. https:// doi. org/ 10. 1145/ 31735 74. 31739
51

 110. McCarthy K, Reilly J, McGinty L, Smyth B (2004) Thinking
positively-explanatory feedback for conversational recommender
systems. In: Proceedings of the European conference on case-
based reasoning (ECCBR) explanation workshop. pp 115–124

 111. Lage I, Lifschitz D, Doshi-Velez F, Amir O (2019) Exploring
computational user models for agent policy summarization. In
Proceedings of the IJCAI workshop on explainable artificial
intelligence (XAI). pp 59–65

 112. Borgo R, Cashmore M, Magazzeni D (2018) Towards provid-
ing explanations for AI planner decisions. In: Proceedings of
the IJCAI/ECAI workshop on explainable artificial intelligence
(XAI). pp 11–17

 113. Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F,
Pedreschi D (2019) A survey of methods for explaining black
box models. ACM Comput Surv 51(5):1–42. https:// doi. org/ 10.
1145/ 32360 09

 114. Hohman F, Head A, Caruana R, DeLine R, Drucker SM (2019)
Gamut: a design probe to understand how data scientists under-
stand machine learning models. In: Proceedings of the 2019 chi
conference on human factors in computing systems. ACM, New
York, NY, pp 1–13. https:// doi. org/ 10. 1145/ 32906 05. 33008 09

 115. Alexander IF (2004) A better fit - characterising the stakeholders.
In: Grundspenkis J, Kirikova M (eds) CAiSE’04 workshops in
connection with the 16th conference on advanced information
systems engineering, Riga, Latvia, 7–11 June, 2004, knowledge
and model driven information systems engineering for networked
organisations, proceedings, vol 2. Riga Technical University,
Riga, Latvia, Faculty of Computer Science and Information
Technology, pp 215–223

 116. Zhou J, Chen F (2019) Towards trustworthy human-AI teaming
under uncertainty. In: Proceedings of the IJCAI workshop on
explainable artificial intelligence (XAI). pp 143–147

 117. Chen J, Lécué F, Pan JZ, Horrocks I, Chen H (2018) Knowl-
edge-based transfer learning explanation. In: Proceedings of the
sixteenth international conference for principles of knowledge
representation and reasoning (KR). AAAI, Palo Alto, CA, pp
349–358

 118. Jacovi A, Marasović A, Miller T, Goldberg Y (2021) Formalizing
trust in artificial intelligence: prerequisites, causes and goals of
human trust in AI. In: Proceedings of the 2021 ACM conference
on fairness, accountability, and transparency (FAccT). Asso-
ciation for Computing Machinery, New York, NY, pp 624–635.
https:// doi. org/ 10. 1145/ 34421 88. 34459 23

 119. Nascimento N, Alencar P, Cowan D, Lucena C (2020) A refer-
ence model for iot embodied agents controlled by neural net-
works. In: 2020 IEEE international conference on big data (Big

Data). pp 3500–3505. https:// doi. org/ 10. 1109/ BigDa ta500 22.
2020. 93779 36

 120. Schneider K (2012) Abenteuer softwarequalität: grundlagen
und verfahren für qualitätssicherung und qualitätsmanagement.
dpunkt.verlag, Heidelberg, DE

 121. Wagner S, Goeb A, Heinemann L, Kläs M, Lampasona C, Loch-
mann K, Mayr A, Plösch R, Seidl A, Streit J, Trendowicz A
(2015) Operationalised product quality models and assessment:
the quamoco approach. Inf Softw Technol 62:101–123. https://
doi. org/ 10. 1016/j. infsof. 2015. 02. 009

 122. Glinz M (2017) A glossary of requirements engineering termi-
nology. Stand Gloss Certif Prof Requir Eng (CPRE) Stud Exam
Version 1:56

 123. Chazette L, Klünder J, Balci M, Schneider K (2022) How can we
develop explainable systems? insights from a literature review
and an interview study. In: Proceedings of the international con-
ference on software and system processes and international con-
ference on global software engineering (ICSSP’22). ICSSP ’22.
Association for Computing Machinery, New York, NY. https://
doi. org/ 10. 1145/ 35293 20. 35293 21

 124. Miller T, Howe P, Sonenberg L (2017) Explainable AI: beware
of inmates running the asylum. or: how i learnt to stop worrying
and love the social and behavioural sciences. In: Aha DW, Dar-
rell T, Pazzani M, Reid D, Sammut C, Stone P (eds) Proceedings
of the IJCAI 2017 workshop on explainable artificial intelligence
(XAI). IJCAI, Santa Clara County, CA, pp 36–42

 125. Hall M, Harborne D, Tomsett R, Galetic V, Quintana-Amate S,
Nottle A, Preece A (2019) A systematic method to understand
requirements for explainable AI (XAI) systems. In: Proceedings
of the IJCAI 2019 workshop on explainable artificial intelligence
(XAI), pp 21–27

 126. Dam HK, Tran T, Ghose A (2018) Explainable software ana-
lytics. In: Proceedings of the 40th international conference on
software engineering: new ideas and emerging results (ICSE-
NIER). Association for Computing Machinery, New York, NY,
pp 53–56. https:// doi. org/ 10. 1145/ 31833 99. 31834 24

 127. Weber E, Van Bouwel J, Vanderbeeken R (2005) Forms of causal
explanation. Found Sci 10(4):437–454

 128. Halpern JY, Pearl J (2005) Causes and explanations: a struc-
tural-model approach. Part ii: explanations. Br J Philos Sci
56(4):889–911

 129. Byrne RM (2019) Counterfactuals in explainable artificial intel-
ligence (xai): evidence from human reasoning. In: IJCAI. pp
6276–6282

 130. Bechtel W (1994) Levels of description and explanation in cogni-
tive science. Mind Mach 4(1):1–25

 131. Bechtel W, Abrahamsen A (2005) Explanation: a mechanist alter-
native. Stud History Philos Sci Part C Stud History Philos Biol
Biomed Sci 36(2):421–441. https:// doi. org/ 10. 1016/j. shpsc. 2005.
03. 010 (Mechanisms in Biology)

 132. Brinton C (2017) A framework for explanation of machine learn-
ing decisions. In: Proceedings of the IJCAI workshop on explain-
able artificial intelligence (XAI). pp 14–18

 133. Gregor S, Benbasat I (1999) Explanations from intelligent sys-
tems: theoretical foundations and implications for practice. MIS
Q 23(4):497–530. https:// doi. org/ 10. 2307/ 249487

 134. Doran D, Schulz S, Besold TR (2017) What does explainable AI
really mean? A new conceptualization of perspectives. In: Pro-
ceedings of the first international workshop on comprehensibility
and explanation in AI and ML, vol 2071. CEUR, Aachen, DE

 135. Kim B, Wattenberg M, Gilmer J, Cai CJ, Wexler J, Viégas FB,
Sayres R (2018) Interpretability beyond feature attribution:
Quantitative testing with concept activation vectors (TCAV).
In: Dy JG, Krause A (eds) Proceedings of the 35th interna-
tional conference on machine learning. ICML 2018. Microtome

https://doi.org/10.1145/3173574.3173951
https://doi.org/10.1145/3173574.3173951
https://doi.org/10.1145/3236009
https://doi.org/10.1145/3236009
https://doi.org/10.1145/3290605.3300809
https://doi.org/10.1145/3442188.3445923
https://doi.org/10.1109/BigData50022.2020.9377936
https://doi.org/10.1109/BigData50022.2020.9377936
https://doi.org/10.1016/j.infsof.2015.02.009
https://doi.org/10.1016/j.infsof.2015.02.009
https://doi.org/10.1145/3529320.3529321
https://doi.org/10.1145/3529320.3529321
https://doi.org/10.1145/3183399.3183424
https://doi.org/10.1016/j.shpsc.2005.03.010
https://doi.org/10.1016/j.shpsc.2005.03.010
https://doi.org/10.2307/249487

487Requirements Engineering (2022) 27:457–487

1 3

Publishing, Brookline, MA, pp 2668–2677. http:// proce edings.
mlr. press/ v80/ kim18d. html

 136. Speith T (2021) How to evaluate explainability – a case for three
criteria. In: 30th IEEE international requirements engineering
conference workshops. REW 2022. IEEE, Piscataway, NJ, USA

 137. Doshi-Velez F, Kim B (2017) Towards a rigorous science of
interpretable machine learning. CoRR arxiv: 1702. 08608

 138. Friedrich G, Zanker M (2011) A taxonomy for generating expla-
nations in recommender systems. AI Mag 32(3):90–98

 139. Eiter T, Saribatur ZG, Schüller P (2019) Abstraction for zoom-
ing-in to unsolvability reasons of grid-cell problems. In: Proceed-
ings of the IJCAI workshop on explainable artificial intelligence
(XAI 2019). pp 7–13

 140. Vorm ES (2018) Assessing demand for transparency in intelligent
systems using machine learning. In: 2018 innovations in intel-
ligent systems and applications (INISTA). IEEE, pp. 1–7. https://
doi. org/ 10. 1109/ INISTA. 2018. 84663 28

 141. Juozapaitis Z, Koul A, Fern A, Erwig M, Doshi-Velez F (2019)
Explainable reinforcement learning via reward decomposition.
In: Proceedings of the IJCAI workshop on explainable artificial
intelligence (XAI 2019). pp 47–53

 142. Hoffman RR, Mueller ST, Klein G, Litman J (2018) Challenges
and prospects, metrics for explainable AI

 143. Herlocker JL, Konstan JA, Riedl J (2000) Explaining collabo-
rative filtering recommendations. In: Proceedings of the 2000
ACM conference on computer supported cooperative work
(CSCW). ACM, New York, NY, pp 241–250. https:// doi. org/ 10.
1145/ 358916. 358995

 144. Robson C, McCartan K (2016) Real world research: a resource
for users of social research methods in applied settings, 4th edn.
Wiley, Chichester

 145. Ehsan U, Tambwekar P, Chan L, Harrison B, Riedl MO (2019)
Automated rationale generation: a technique for explainable ai
and its effects on human perceptions. In: Proceedings of the
24th international conference on intelligent user interfaces. pp
263–274

 146. Olson ML, Neal L, Li F, Wong W-K (2019) Counterfactual states
for atari agents via generative deep learning. In: Proceedings of
the IJCAI workshop on explainable artificial intelligence (XAI
2019). pp 87–93

 147. Sato M, Nagatani K, Sonoda T, Zhang Q, Ohkuma T (2019) Con-
text style explanation for recommender systems. J Inf Process
27:720–729. https:// doi. org/ 10. 2197/ ipsjj ip. 27. 720

 148. Wang N, Wang H, Jia Y, Yin Y (2018) Explainable recommenda-
tion via multi-task learning in opinionated text data. In: The 41st
international ACM SIGIR conference on research & development
in information retrieval. pp 165–174

 149. Aydemir FB, Dalpiaz F (2018) A roadmap for ethics-aware soft-
ware engineering. In: Proceedings of the international work-
shop on software fairness (FairWare). ACM, New York, NY, pp
15–21. https:// doi. org/ 10. 1145/ 31947 70. 31947 78

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://proceedings.mlr.press/v80/kim18d.html
http://proceedings.mlr.press/v80/kim18d.html
http://arxiv.org/abs/1702.08608
https://doi.org/10.1109/INISTA.2018.8466328
https://doi.org/10.1109/INISTA.2018.8466328
https://doi.org/10.1145/358916.358995
https://doi.org/10.1145/358916.358995
https://doi.org/10.2197/ipsjjip.27.720
https://doi.org/10.1145/3194770.3194778

	Explainable software systems: from requirements analysis to system evaluation
	Abstract
	1 Introduction
	1.1 Explainability as the solution
	1.2 Challenges in RE and how artifacts can help solve them
	1.3 Goal and structure of this article

	2 Background and related work
	2.1 Definitions
	2.2 Models
	2.3 Catalogues
	2.4 Explainability

	3 Research goal and design
	3.1 Data collection and analysis
	3.1.1 Systematic literature review
	3.1.1.1 Manual Search
	3.1.1.2 Snowballing
	3.1.1.3 Inclusion & Exclusion Criteria

	3.1.2 Coding and analysis

	3.2 Data validation
	3.2.1 Workshop with philosophers and psychologists
	3.2.2 Workshop with software engineers

	3.3 Knowledge structuring
	3.3.1 Operationalizing explainability: definition
	3.3.2 Framing the results: conceptual model
	3.3.3 Summarizing the results: knowledge catalogue
	3.3.4 Making the results actionable: reference model

	4 A definition of explainability
	4.1 Aspects that should be explained
	4.2 Contexts and explainers
	4.3 Addressee’s understanding

	5 A conceptual model of explainability
	5.1 Stakeholder classes
	5.2 Elicitation dimensions
	5.3 Quality spectrum
	5.4 Compiling the concepts

	6 A catalogue of explainability’s impacts
	6.1 Foundational qualities
	6.2 User’s needs
	6.3 Cultural values and laws and norms
	6.4 Domain aspects and corporate values
	6.5 Project constraints and system aspects
	6.6 Superordinated qualities

	7 A reference model for explainability
	7.1 Constituents of the reference model
	7.2 Requirements analysis
	7.2.1 Objectives
	7.2.2 Constraints
	7.2.3 Explainability vision

	7.3 Design
	7.3.1 Implementation strategy
	7.3.2 Presentation form

	7.4 Evaluation
	7.4.1 Evaluation levels for explainability
	7.4.2 Methods
	7.4.3 Metrics

	8 Discussion
	9 Limitations and threats to validity
	9.1 SLR and coding
	9.2 Workshops
	9.3 Proposed artifacts

	10 Conclusion and future work
	Acknowledgements
	References

