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Abstract
The growing complexity of software systems and the influence of software-supported decisions in our society sparked the 
need for software that is transparent, accountable, and trustworthy. Explainability has been identified as a means to achieve 
these qualities. It is recognized as an emerging non-functional requirement (NFR) that has a significant impact on system 
quality. Accordingly, software engineers need means to assist them in incorporating this NFR into systems. This requires an 
early analysis of the benefits and possible design issues that arise from interrelationships between different quality aspects. 
However, explainability is currently under-researched in the domain of requirements engineering, and there is a lack of 
artifacts that support the requirements engineering process and system design. In this work, we remedy this deficit by pro-
posing four artifacts: a definition of explainability, a conceptual model, a knowledge catalogue, and a reference model for 
explainable systems. These artifacts should support software and requirements engineers in understanding the definition of 
explainability and how it interacts with other quality aspects. Besides that, they may be considered a starting point to provide 
practical value in the refinement of explainability from high-level requirements to concrete design choices, as well as on the 
identification of methods and metrics for the evaluation of the implemented requirements.

Keywords Explainability · Explainable artificial intelligence · Non-functional requirements · Quality aspects · Conceptual 
model · Reference model · Knowledge catalogue

1 Introduction

We are living in the algorithmic age [1]. Software decision-
making has spread from simple daily decisions, such as the 
choice of a navigation route, to more critical ones, such 
as the diagnosis of cancer patients [2]. Systems have been 

strongly influencing various aspects of our lives with their 
outputs, but they can be as mysterious as black boxes to 
us [3].

The ubiquitous influence of such “black-box systems” has 
induced discussions about the transparency and ethics of 
modern systems [4]. Responsible collection and use of data, 
privacy, safety, and security are just a few among many con-
cerns. In light of this, it is becoming increasingly crucial to 
understand how to incorporate these concerns into systems 
and, thus, how to deal with them during software engineer-
ing (SE) and requirements engineering (RE).

1.1  Explainability as the solution

In this regard, explainability is increasingly seen as the 
preferred solution to mitigate a system’s lack of transpar-
ency [5] and as a fruitful way to address ethical concerns 
about modern systems [6]. The concept of explainability 
has received a lot of attention recently, and it is slowly 

 * Larissa Chazette 
 larissa.chazette@inf.uni-hannover.de

 Wasja Brunotte 
 wasja.brunotte@inf.uni-hannover.de

 Timo Speith 
 timo.speith@uni-bayreuth.de

1 Software Engineering Group, Leibniz University Hannover, 
Hannover, Germany

2 Cluster of Excellence PhoenixD, Leibniz University 
Hannover, Hannover, Germany

3 Chair for Philosophy, Computer Science and Artificial 
Intelligence, University of Bayreuth, Bayreuth, Germany

4 Center for Perspicuous Computing, Saarland University, 
Saarbrücken, Germany

http://orcid.org/0000-0001-6093-8875
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-022-00393-5&domain=pdf


458 Requirements Engineering (2022) 27:457–487

1 3

establishing itself as an important non-functional require-
ment (NFR)1 for high system quality [8, 9].

Incorporating explainability in a system can mitigate 
software opacity, thereby helping users understand why the 
system produced a particular result and supporting them in 
making better decisions. Explainability also has an impact 
on the relationship of trust in and reliance on a system [10], 
it may avoid feelings of frustration [11], and can, thus, lead 
to greater acceptance by end users [12]. In general, previous 
studies have shown that explainability is not only a means 
of achieving transparency and calibrating trust, but that it 
is also linked to other important NFRs, such as usability, 
auditability, and privacy [5, 13–15].

However, although explainability has been identified as 
such an essential NFR for software-supported decisions [16] 
and even as one of the pillars for trustworthy artificial intelli-
gence (AI) [17], there is still a lack of a comprehensive over-
view that investigates the impact of incorporating explain-
ability in a system.2 For example, it is often overlooked that 
these impacts are not only positive, but can also be negative.

To address this gap in knowledge, we investigate the con-
cept of explainability and its interaction with other quality 
aspects3,4 in this article. Accordingly, we want to provide 
clarity on what constitutes explainability as an NFR and 
how it can be integrated into the RE process. Just like other 
NFRs, however, explainability is difficult to elicit, negotiate, 
and validate.

1.2  Challenges in RE and how artifacts can help 
solve them

Due to the subjective, interactive, and relative nature of 
NFRs, eliciting and modeling them presents many chal-
lenges for software engineers5 [20]. First, knowledge about 
NFRs is mostly tacit, disseminated, and based on experi-
ence [21, 22], which makes it difficult to grasp the existing 
knowledge. Here, explainability is no exception.

Furthermore, software quality is a multidimensional con-
cept based on real-world needs that comprise different lay-
ers of abstraction [5, 23]. Therefore, another challenge for 
software engineers is to translate abstract notions, such as 
quality goals (e.g., a smart home system that improves user 
satisfaction and comfort) into agreed-upon tangible func-
tionality that help achieve the quality goals (e.g., the smart 
home system dims the lights automatically when the user 
is tired). This translation process is followed by the need to 
evaluate how the derived functionality (also called “opera-
tionalizations”) influence software quality [20, 24]. This 
process from abstract to concrete often leads to trade-offs 
between different NFRs in a system that must be identified 
and resolved during requirements analysis [20, 25].

RE is not simply a process of identifying and describing 
requirements; it is also a process of supporting efficient com-
munication of these requirements among various stakehold-
ers [26]. For this reason, proper communication is another 
difficulty for RE. External stakeholders and internal team 
members may unintentionally use different words for the 
same concepts or the same words for different concepts due 
to a lack of shared understanding, which can make com-
munication challenging and lead to problems because of 
misunderstandings [27]. Therefore, a shared understanding 
is crucial for efficient communication and for reducing the 
risk of stakeholder dissatisfaction and rework [19].

Software engineers can create, use, and reuse artifacts to 
achieve a shared understanding in software projects [19]. 
An artifact is “any kind of textual or graphical document 
with the exception of source code” [28]. Artifacts can take 
on a variety of shapes, including textual requirement papers, 
visual models, glossaries, charts, frameworks, or quality 
models. Artifacts that are often used to support the RE pro-
cess are conceptual models [21], knowledge catalogues [20], 
and reference models [29]. Such artifacts may describe the 
taxonomy of a given kind of system or process, or compile 
knowledge about specific NFRs and their interactions with 
other quality aspects.

To illustrate the importance of both a shared understand-
ing and artifacts in software projects, RE itself may be taken 
as an example: Communication problems may arise from 
different interpretations of what RE is and how the RE pro-
cess is structured. Börger et al. [30] proposed a reference 
model (i.e., a type of artifact) for RE to achieve a shared 
understanding of it. To achieve a shared understanding 
about the meaning of RE, the proposed model describes 
the concept and divides the RE process into two main areas 
(requirements analysis and requirements management) and 
their related activities.6

1 We follow Glinz and see NFRs as attributes of or constraints on a 
system [7].
2 We deal with a very broad conception of explainability that applies 
to software systems in general. Accordingly, our focus is not specifi-
cally on AI systems, and we are, therefore, not only concerned with 
so-called explainable AI (XAI).
3 We use the notion of quality aspects to refer both to NFRs and to 
aspects that relate to or compose NFRs.
4 The terms NFR, quality aspects, and quality goals are used 
throughout this article. We consider quality goals as the qual-
ity aspects that are agreed upon for system quality within a project, 
which can be stated as or refined into NFRs [18].
5 A software engineer is a person involved in the specification, 
design, construction, deployment, evolution, and maintenance of soft-
ware systems. Requirements engineers, architects, developers, coders, 
and testers are examples of common roles for software engineers [19].

6 In this article, we stick to this reference model for our conception of 
RE. Furthermore, because the majority of system development errors 
and risks occur primarily during the requirements analysis phase and 
result in significant financial expenditure  [31], we focus on the area 
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Chung et al. [21] explain the importance of models and 
knowledge catalogues as resources for the use and reuse of 
knowledge during system development. Models and cata-
logues can compile either abstract or concrete knowledge. 
At a more abstract level, such artifacts can compile knowl-
edge about different NFRs and their interrelationships with 
other quality aspects (e.g., positive or negative influence of 
an NFR on another quality aspect). Likewise, models and 
catalogues can also compile more concrete knowledge, such 
as about methods and techniques in the field that can be used 
to operationalize a given NFR.

Existing works propose to build artifacts to capture 
and structure knowledge that is scattered among several 
sources [20, 21, 32, 33]. Software engineers can use such 
artifacts during different activities in RE such as during 
elicitation, interpretation and trade-off analysis, negotia-
tions with stakeholders, as well as to support the documenta-
tion of requirements and decisions. In summary, by making 
knowledge available in artifacts such as definitions, models 
and catalogues, software engineers can (1) draw on know-
how beyond their own fields and use this knowledge to meet 
the needs of a particular project, and (2) achieve a shared 
understanding that leads to better communication and to the 
definition of the “right” system’s requirements.

1.3  Goal and structure of this article

As for explainability, there is a scarcity of artifacts that com-
pile structured knowledge about this quality aspect and assist 
software engineers in understanding the factors that should 
be considered during the development of explainable sys-
tems, helping to achieve a shared understanding of the topic.

Therefore, we propose four artifacts that should aid in 
achieving a shared understanding of explainability, sup-
porting the creation of explainable systems: a definition, 
a conceptual model, a knowledge catalogue, and a refer-
ence model. Overall, our goal is to advance the knowledge 
towards a common terminology and semantics of explain-
ability, facilitating the discussion and analysis of this impor-
tant NFR during the RE process. To this end, we used an 
interdisciplinary systematic literature review (SLR) and 
workshops as part of a multi-method research strategy.

In particular, we distill definitions of explainability into 
an own suggestion that is appropriate for SE and RE. We 
use this definition as a starting point to create a conceptual 
model that represents the impacts of explainability across 
different quality dimensions. Subsequently, we compile a 

knowledge catalogue of explainability and its impacts on the 
various quality aspects along these dimensions. Finally, we 
conceive a reference model for explainability that describes 
key aspects to consider when developing explainable sys-
tems during requirements analysis, design, and evaluation. 
The goal of these artifacts is to support the identification, 
communication, and evaluation of key elements of explain-
able systems, their attributes, and relationships.

This article is an extension of a paper originally published 
in the 29th IEEE International Requirements Engineering 
Conference: [34]. In this extension, we (1) include more 
details about our research method, and (2) propose a refer-
ence model that may be used to identify relevant compo-
nents for the RE process and the development of explainable 
systems.

This article is structured as follows: in the follow-
ing Sect. 2, we present the background and related work. 
In Sect. 3, we lay the foundation for the more substantive 
chapters of this article by introducing our research ques-
tions (RQs) and outlining the chosen research design. This 
is followed by a section for each artifact we present. Accord-
ingly, we suggest our definition of explainability in Sect. 4, 
introduce our conceptual model in Sect. 5, and present the 
explainability catalogue in Sect. 6. Building on the previous 
artifacts, we conceive the reference model in Sect. 7. We 
discuss our results in Sect. 8, and we debate threats to valid-
ity in Sect. 9. Finally, we conclude our article in Sect. 10.

2  Background and related work

Artifacts are commonly used in RE and SE to support soft-
ware professionals during their tasks. For instance, software 
engineers typically use or reuse artifacts as guidance dur-
ing SE (or RE) activities. They may also create artifacts to 
gather knowledge (e.g., catalogues), or they create artifacts 
as a form of documentation (e.g., requirements specification 
or story cards). This section provides background informa-
tion on the types of artifacts that we propose as well as on 
explainability.

2.1  Definitions

Definitions are the first and most crucial step in facilitating 
communication for a given topic or concept. Definitions aid 
in defining the scope of a particular idea, for instance, by 
indicating its constituents. Definitions in SE and RE give 
a rough guidance for software engineers on the scope and 
elements of nearly everything. The definition of a quality 
aspect, for example, assists software engineers in under-
standing it during RE and especially quality assurance.

Definitions support a common terminology that facili-
tates communication. A lack of consensus may result in the 

of requirements analysis and its corresponding activities: elicitation, 
interpretation, negotiation, documentation, and validation/verifica-
tion.

Footnote 6 (continued)
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specification and integration of the wrong requirements. 
Explicitly shared vocabulary decreases the likelihood of 
misunderstandings when ideas employing this terminol-
ogy are not stated or are only loosely specified. Following 
this idea, Wixon [35] emphasizes the significance of defin-
ing usability and how crucial it is for development teams 
to reach consensus on this concept. For instance, usability 
may signify long-term efficiency to some developers while 
it may represent simplicity of use to others.

2.2  Models

A model is an abstraction of a system that deliberately 
focuses on some of its aspects while excluding others [36]. 
Models provide an overview of a field by partitioning it 
into broad categories. According to Hull et al. [36], a single 
model never says everything about a system. For this reason, 
different, possibly interrelated, models of systems are often 
used to cover a variety of different aspects. Models can be 
used for a number of different purposes. On the one hand, 
they can be utilized for more technical tasks like software 
design or configuration. On the other hand, models make 
it easier to describe and optimize organizational concerns 
including business processes and domains.

Conceptual models can be used to define and describe a 
concept, helping to understand the taxonomy or characteris-
tics of a particular quality aspect during requirements analy-
sis. Conceptual models document, for example, knowledge 
about a given domain, concept, or NFR. Taxonomies are 
well-known examples of conceptual models. The knowledge 
required to develop conceptual models is typically derived 
from literature, previous experiences, and domain expertise.

Quality models are another example of models. A qual-
ity model can be defined as “the set of characteristics, and 
the relationships between them that provides the basis for 
specifying quality requirements and evaluation” [37]. Qual-
ity models help to specify and illustrate how quality aspects 
translate to functional requirements.

A special category of models are the so-called refer-
ence models. A “reference model consists of a minimal 
set of unifying concepts, axioms and relationships within a 
particular problem domain, and is independent of specific 
standards, technologies, implementations, or other concrete 
details” [38]. Reference models may be used as a blueprint 
for software system construction and are sometimes called 
universal models, generic models, or model patterns [39]. 
A reference model can serve as a template for creating and 
deriving other models (e.g., quality models) or understand-
ing the high-level structure of a process or domain. To this 
end, reference models can be used to help identify important 
factors for the analysis, operationalization, and evaluation of 
a given quality aspect.

To give an example, the Open Systems Interconnection 
model (OSI) [40] is a reference model that divides network 
protocols into seven abstraction layers. The layers help to 
separate concepts and network aspects into abstraction lev-
els, helping to compartmentalize the development of net-
work applications. The OSI model is widely used by network 
engineers to describe network architectures, even though it 
is informal and does not correspond perfectly to the protocol 
layers in widespread use.

In fact, this is precisely the reason of their wide adoption: 
reference models can be used as (1) abstract frameworks 
or templates for understanding significant relationships 
among the entities of some environment or domain (e.g., 
computer networks or, in our case, explainable systems) or 
(2) to standardize or describe processes [41]. This abstract 
nature gives them flexibility, making them easily adaptable.

Cherdantseva et al. [42] propose a reference model for 
the information assurance and security (IAS) domain. The 
model highlights the important aspects of IAS systems, 
and serves as a conceptual framework for researchers. The 
authors say that reference models foster a better understand-
ing of IAS and, as a result, help software engineers to do 
their job more efficiently, serving as “a blueprint for the 
design of a secure information system” and providing “a 
basis for the elicitation of security requirements”.

To clearly distinguish the different types of models, we 
consider a conceptual model to be an artifact that describes 
a concept or captures the taxonomy of a certain concept or 
domain (our conceptual illustrates the impact of explainabil-
ity on system quality); and we consider a reference model 
as a template or framework that may be used by software 
engineers to build other models or to guide them as they 
design explainable systems.

2.3  Catalogues

Catalogues document knowledge about a given topic (e.g., 
a specific domain or about quality aspects, in the case of 
software systems). They can, for example, document rela-
tionships between different quality aspects. Some research-
ers developed catalogues for specific domains based on the 
premise of the NFR framework [21]. As a result, they can 
help with trade-off analysis, where it is critical to understand 
how two or more NFRs will interact in a system and how 
they can coexist [43].

Serrano and Serrano [32] developed a catalogue spe-
cifically for the ubiquitous, pervasive, and mobile comput-
ing domain. Torres and Martins [44] propose the use of 
NFR catalogues in the construction of RFID middleware 
applications to alleviate the challenges of NFR elicitation 
in autonomous systems. They argue that the use of cata-
logues can reduce or even eliminate possible faults in the 
identification of functional and non-functional requirements. 
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Finally, Carvalho et al. [45] propose a catalogue for invis-
ibility requirements focused on the domain of ubiquitous 
computing applications. They emphasize the importance of 
software engineers understanding the relationships between 
requirements in order to select appropriate strategies to sat-
isfy invisibility and traditional NFRs. Furthermore, they dis-
covered that invisibility might impact other essential NFRs 
for the domain, such as usability, security, and reliability.

Mairiza et al. [20] conducted a literature review to iden-
tify conflicts among existing NFRs. They constructed a cata-
logue to synthesize the results and suggest that it can assist 
software developers in identifying, analyzing, and resolving 
conflicts between NFRs. Carvalho et al. [33] identified 102 
NFR catalogues in the literature after conducting a system-
atic mapping study. They found that the most frequently 
cited NFRs were performance, security, usability, and reli-
ability. Furthermore, they found that the catalogues are 
represented in different ways, such as softgoal interdepend-
ency graphs, matrices, and tables. The existence of so many 
catalogues illustrates their importance for RE and software 
design. Although these catalogues present knowledge about 
86 different NFRs, none of them addresses explainability.

2.4  Explainability

Since explainability has rapidly expanded as a research field 
in the last years, publications about this topic have become 
quite numerous, and it is hard to keep track of the terms, 
methods, and results that came up [46]. For this reason, there 
have been numerous literature reviews presenting overviews 
concerning certain aspects (e.g., methods or definitions) of 
explainability research.

Many of these reviews focus on a specific community or 
application domain. For instance, [47] focuses on explain-
ability of recommender systems, [48] on explainability of 
robots and human-robot interaction, [49] on the human-
computer interaction (HCI) domain, and [50] on biomedical 
and malware classification. Another focus of these reviews 
is to demarcate different, but related terms often used in 
explainability research (see, e.g., [4, 46, 51]). For instance, 
the terms “explainablilty” and “interpretability” are some-
times used as synonyms and sometimes not [52, 53].

Our review differs from others in the following ways. To 
the best of our knowledge, our SLR is the first overview 
specifically targeting software and software engineers, to 
support them in dealing with explainability as a very new 
and complex NFR. For this reason, quality aspects are the 
pivotal focus of our work. As far as we are aware, only a few 
reviews explicitly include the interaction between explain-
ability and quality aspects (most notably [47, 54]). In con-
trast to preceding reviews, however, we do not only consider 
positive impacts of explainability on other quality aspects, 
but we also take negative ones into account.

Furthermore, many other reviews do not have an inter-
disciplinary focus. Even if they do not focus on a spe-
cific community (e.g., HCI), reviews rarely incorporate 
views on explainability outside of computer science. From 
our point of view, however, it is crucial to include fields 
such as philosophy and psychology in an investigation of 
explainability, since these fields have much experience 
in explanation research. Psychology is concerned with 
aspects of human cognition, while philosophy is inter-
ested in the definition of concepts as well as the nature 
of knowledge and reality. These aspects are crucial to 
understanding the features, implications, and significance 
of explainability.

3  Research goal and design

We frame our study into four RQs: 

RQ1: What is an appropriate definition of explainability to 
achieve shared understanding in SE and RE?

RQ2: What are the quality aspects impacted by explainability in 
a system context?

RQ3: How does explainability impact these quality aspects?
RQ4: How to support software professionals in identifying 

important factors for the analysis, operationalization, and 
evaluation of requirements for explainable systems?

Since other disciplines have a long history working on 
explainability, their insights should prove valuable for 
software engineering and enable us to refine the scope 
of the term explainability for this area. In particular, phi-
losophy and psychology have a long history in making 
different conceptions of explanation explicit, for instance, 
in formalisms and operationalizations.

Accordingly, RQ1 focuses on harnessing the work of 
other sciences in the field of explainability to compile a 
definition that is appropriate and useful for the disciplines 
of software and requirements engineering. Useful in this 
context means that the definition facilitates the discussion 
around the topic, contributing to a shared understanding 
among stakeholders and engineers as well as a clear vision 
of what “explainable system” means in the RE and SE 
contexts.

RQ2 focuses on providing an overview of the quality 
aspects that may be impacted by explainability. Similar 
to the work of Leite and Capelli [55], who investigated 
the interaction between transparency and other qualities, 
our goal is to offer an overview for explainability and its 
impact on other quality aspects within a system.

With RQ3 we want to assess what impact explainability 
has on other quality aspects. More specifically, our goal is 
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to analyze the polarity of these impacts: whether they are 
positive or negative. To answer RQ2 and RQ3, we built 
a conceptual model and a catalogue that compile knowl-
edge about the impacts of explainability on other quality 
aspects.

The goal of RQ4 is to make our results more actionable. 
To this end, we provide a reference model for explainability 
that aims to build shared understanding around the factors 
to be considered in the development of explainable systems, 
assisting software engineers in identifying relevant factors 
for explainability in different phases of the software lifecy-
cle: requirements analysis, design, and evaluation.

An overview of our research design is shown in Fig. 1. 
Our research consisted of a multi-method approach that 
combined two qualitative methods to achieve higher data 
reliability.

The first method focuses on systematic data collection 
and qualitative data analysis. For the data collection, we 
conducted an interdisciplinary SLR that resulted in a total 
of 229 papers. We coded the gathered data by using an open 
coding approach [56]. As a next step, we analyzed the result-
ing codes for definitions of explainability (RQ1), for rela-
tionships between explainability and other quality aspects 

(RQ2), and for information about the polarity of these rela-
tionships (RQ3).

To validate and complement our findings, we employed 
a second qualitative method: two workshops with experts. 
We framed the obtained knowledge in a conceptual model 
by structuring and grouping the quality aspects impacted 
by explainability along four dimensions and developed a 
catalogue based on it.

Finally, we used the responses to RQ1-RQ3 as a starting 
point and reviewed the data from our SLR to identify other 
principles and constituent parts of explainability to aid in the 
analysis of requirements, as well as in the design and evalu-
ation of explainable systems. We combine this knowledge 
with works in the literature to build a reference model for 
explainability (RQ4), factoring in all our previous results.

3.1  Data collection and analysis

In what follows, we will describe our research design in 
more detail. To this end, we will start with a more detailed 
description of our SLR.

3.1.1  Systematic literature review

We followed guidelines from Kitchenham et al. [57], and 
Wohlin [58] when conducting our SLR. The search strategy 
for our SLR consisted of a manual search followed by a 
snowballing process.

3.1.1.1 Manual Search  During a manual search, an inves-
tigator usually scans all the publications in specific sources 
such as proceedings or journals. First, we identified relevant 
sources from different domains such as computer science, 
philosophy, and psychology by consulting experts and rely-
ing on our own expertise. As a next step, the selected sources 
were independently reviewed for suitability by researchers 
of the specific domains.

Since we conducted an interdisciplinary SLR, sources 
from other disciplines were also considered during the man-
ual search. In addition to computer science, the disciplines 
of philosophy and psychology were chosen because they 
have decades of experience in explanation research. Further-
more, during the snowballing process, other research areas 
were also taken into account. We believe that the choice of 
sources for our manual search is sufficiently representative 
to uncover research in the area of explainability.

The manual search was performed independently by the 
authors of this article and resulted in 104 papers. We used 
Fleiss’ Kappa statistics [59] to assess the reliability of the 
selection process. The calculated value of � = 0.81 showed 
an almost perfect agreement [60].

Fig. 1  Overview of the research design
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3.1.1.2 Snowballing  After the manual search, we per-
formed snowballing to complement the search results. 
The snowballing process includes backward and forward 
snowballing as described by Wohlin  [58]. Our literature 
review process is partially based on a grounded theory (GT) 
approach for literature reviews proposed by Wolfswinkel 
et al. [61]. The goal of using this approach to reviewing the 
literature is to reach a detailed and relevant analysis of a 
topic, following some of the principles of GT.

According to [61], a literature review is never complete 
but at most saturated. This saturation is achieved when no 
new concepts or categories arise from the data (i.e., the pub-
lications that were inspected). We followed this approach to 
decide when to conclude our snowballing process. There-
fore, we only performed one iteration, as we could not gain 
any new insights or concepts during a second iteration.

The snowballing was independently conducted by the 
authors, resulting in additional 125 papers. The calculated 
value of � = 0.87 also shows an almost perfect agreement. 
Overall, our SLR yielded a total of 229 papers. A compre-
hensive overall summary of the number of papers inspected 
and selected in the different phases of the SLR is shown in 
Fig. 2.

3.1.1.3 Inclusion & Exclusion Criteria We included publica-
tions that met the following inclusion criteria (IC): 

IC
1
  Provide information that is relevant to answering (par-

tially or completely) one of our research questions

IC
2
  Were published between 01/1984 and 03/2020

IC
3
  Are peer-reviewed journal, conference, and workshop 

publications

 and we excluded publications that met the following exclu-
sion criteria (EC): 

EC
1
  Are non English-language publications

EC
2
  Are publications exploring or proposing rough algo-

rithmic techniques without further discussion about 
the theoretical background of explainability

 We chose 1984 as the starting date because that was the 
year in which the first major work on explainability was 
published (namely, [62]). Furthermore, we started the SLR 
on 03/2020.7

We are aware of the fact that 36 years is a long period 
of time. However, by choosing this time period, we wanted 
to get as broad an overview of the topic as possible. When 
it comes to explainability, it is useful to recognize that this 
topic was already important in the eighties and is not as new 
a research field as often believed [63].

To include a publication, all inclusion criteria must be 
met. If at least one of the exclusion criteria was met, the 
publication was rejected. Our selection process consisted 
of a two-phase selection procedure. In phase one, we have 
selected candidate papers based on title, abstract, and key-
words. In cases where the aforementioned elements did not 
provide sufficient information, we have also analyzed the 
conclusion section. EC

2
 did not apply in this phase. In phase 

two, we have selected papers based on full text and also 
applied EC

2
.

3.1.2  Coding and analysis

We followed an open-coding approach [56] for the quali-
tative analysis of the papers we found during our search. 
This approach consists of up to three consecutive cod-
ing cycles. For our first coding cycle, we applied Initial 
Coding  [64] to preserve the views and perspectives of 
the authors in the code. In the second coding cycle, we 

Fig. 2  Overview of the SLR

7 The fact that the SLR was not updated following the submission of 
the original conference paper constitutes a threat to validity, which 
will be addressed in Sect. 9.
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clustered the initial codes based on similarities, using Pat-
tern Coding [65]. This allowed us to group the data from 
the first coding cycle into categories. Next, we discussed 
these categories until we reached an agreement on whether 
they adequately reflected the meaning behind the codes. 
These categories allowed us to structure the data for better 
analysis and to identify similarities.

For RQ2 and RQ3, we conducted a third coding cycle 
to further classify the categories into quality aspects. 
We applied Protocol Coding  [66] as a procedural cod-
ing method in this cycle. For this method, we used a pre-
established list of NFRs from Chung et al. [21]. If any cor-
respondence between a category and an NFR was found, 
we assigned the corresponding code. In the specific cases 
where we could not assign a corresponding NFR from [21] 
to the data, we discussed together and selected a quality 
aspect that would adequately describe the idea presented 
in the text fragment.

All coding and review processes were conducted inde-
pendently by the authors of this article. In terms of review 
processes, this means that each of the authors indepen-
dently read and analyzed the literature. The coding pro-
cesses were also executed independently by each author. 
After each review and coding session, we discussed our 
results before proceeding to the next phase. We had regu-
lar consensus sessions to discuss discrepancies. A list of 
all codes is available in our supplementary material [67].

Finally, for RQ4, we conducted an additional round 
of data extraction to complement our previous insights. 
During this round, the focus was on the existing types 
of explanations, possible implementation strategies for 
explainability (including presentation forms), and methods 
used to measure the quality of explanations. The coding 
process followed the same procedure as mentioned above. 
However, this time, the protocol coding was supported by 
the taxonomy proposed by Speith [46] for the implementa-
tion strategies and the reviews by Vilone and Longo [68] 
as well as Zhou [69] for measuring.

3.2  Data validation

We held two workshops to validate and augment the knowl-
edge gathered during data collection: one exclusively 
with philosophers and psychologists, and one exclusively 
with software engineers. The structure of the workshop is 
depicted in Table 1.

Each of the workshops lasted for four hours. To prepare 
for the discussions, we gave all participants of both work-
shops preparatory exercises to work on individually about a 
week before the workshop began.

In both workshops, we discussed the categories and other 
relevant information that were identified during our cod-
ing. For RQ1, the categories consisted of competing defini-
tions of explainability that we extracted from the literature. 
For RQ2, the categories consisted in the identified quality 
aspects that have a relationship with explainability. Finally, 
for RQ3, we identified the kind of impact that explainability 
can have on each of the extracted quality aspects.

3.2.1  Workshop with philosophers and psychologists

We validated the data related to RQ1 in a workshop with 
philosophers and psychologists (two professors, one postdoc, 
three doctoral candidates). All scholars excepts for one doc-
toral candidate do research in the field of explanation, one 
professor and the postdoc even as a focus. Scholars in these 
disciplines have a long history in researching explanations 
and, thus, explainability. After consulting with experts from 
these disciplines on the workshop design, we decided on an 
open discussion.

The preparatory exercise of the philosophers and psy-
chologists was to write down a definition of explainability, 
taking into account their own background knowledge. The 
idea was to collect these definitions before the discussion to 
allow for comparison and to avoid bias from our preliminary 
results and the debate.

Table 1  Structure of the two workshops to validate the data related to RQ1, RQ2, and RQ3

Workshop with. Preparatory exercises Workshop activities

Philosophers and Psychologists Give a definition for explainability 1. Open discussion on presented categories from the 
SLR.

2. Compare presented categories with definitions from 
the pre-workshop task.

3. Discuss important quality aspects related to explain-
ability.

Software Engineers Select quality aspects based on provided scenarios 
and list of quality aspects.

1. Enter positive and negative impacts of explainability 
on other quality aspects.

Suggest other quality aspects related to explainability. 2. Compare results with the findings from the SLR.
3. Cluster the found quality aspects into groups.
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The workshop consisted of three activities. In the first 
activity, we presented the categories with respect to RQ1 
found in the literature for discussion. We debated whether 
these categories accurately reflect the participants’ percep-
tions on the meaning of explainability. In the second activity, 
the idea was to compare the definitions found in the litera-
ture with participants’ own definition of explainability, sub-
mitted before the workshop. We compared the definitions, 
and also identified and discussed the differences in order to 
reach a consensus. During the last activity, we discussed 
interdependencies between explainability and other software 
quality aspects.

3.2.2  Workshop with software engineers

We validated the data related to RQ2 and RQ3 in a workshop 
with software engineers (three professors, two postdocs, one 
practitioner, one doctoral candidate). All three professors do 
research in the field of requirements engineering and two 
of them also in direct relation to explainability, as do the 
two postdoctoral researchers. The practitioner is a product 
owner in an international company, and the research field 
of the doctoral candidate is the interplay between require-
ments engineering and agile development. Two experts in 
the field of RE with experience in the topic of NFRs and 
software quality were consulted about the workshop design 
(depicted in Table 1).

For the preparatory exercise, we asked participants to 
list quality aspects that can be impacted by explainability. 
To support them in the task, we developed four hypothetical 
scenarios in which explainable systems should be designed 
and sent them a list of quality aspects resulting from our cod-
ing process (without the identified polarities, to avoid bias). 
We also welcomed participants’ suggestions about further 
quality aspects that could be connected to explainability but 
were not present in our list.

The scenarios consisted of short stories describing 
a domain and a business problem related to the need for 
explainability. The goal was to help participants better 
understand contexts where explainable systems may be 
needed. Based on the scenarios, we asked participants to 
specify desirable quality aspects for each system based on 
their expertise, and to analyze how explainability would 
interact with each of these identified aspects (positively or 
negatively). The four hypothetical scenarios are described 
in our additional material [67].

This workshop also included three activities, each lasting 
for approximately an hour. In the first activity, we presented 
the list of quality aspect without polarities to the participants 
and asked them to set the polarities. We established a rigor-
ous structure for this activity, where each participant would 
first define the polarity, justify the decision and at the end of 

the round all participants could discuss each others’ choices. 
The idea was to provoke debate and reach consensus.

In the second activity, we compared the polarities given 
by the participants with the findings from our coding pro-
cess. Again, we compared the results and had an open dis-
cussion to discuss differences and reach consensus. Experts 
agreed on all polarities that they had not mentioned before 
but had been discovered in the literature. In the third activ-
ity, we clustered the quality aspects collaboratively based on 
their relationship and discussed their impacts on the system.

3.3  Knowledge structuring

The last step of our research consisted of making sense of 
and structuring the knowledge collected in the previous 
stages.

3.3.1  Operationalizing explainability: definition

We operationalized the concept of explainability in a sys-
tem context by distilling a definition of it. In the workshop 
with psychologists and philosophers, we integrated proposed 
definitions with ones that we found in the literature. The 
resulting definition contains several variables so as to be as 
flexible as possible to be adjusted to specific project contexts 
while at the same time providing a shared understanding of 
explainability among stakeholders.

3.3.2  Framing the results: conceptual model

We built a conceptual model to frame our knowledge cata-
logue. This model illustrates the impact of explainability on 
several quality dimensions (see Fig. 3; RQ2). During the 
workshop with software engineers, we discussed possible 
ways to classify the different quality aspects. Here, the par-
ticipants offered useful ideas. To further supplement these 
ideas, we consulted the literature and found three promising 
ways to classify the results (more details in Sect. 5). These 
three ways are analogous to the suggestions made by the 
workshop participants and supported us in the development 
of our conceptual model.

3.3.3  Summarizing the results: knowledge catalogue

We summarized the results for RQ3 in a knowledge cata-
logue for explainability. Overall, we have extracted 57 qual-
ity aspects that might be influenced by explainability. We 
present these quality aspects and how they are influenced 
by explainability in Fig. 4. Additionally, we extracted a rep-
resentative example from the literature for all positive and 
negative influences listed in our catalogue to show how this 
influence may come about. These examples also serve to 
illustrate our understanding of certain quality aspects.
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Fig. 3  A conceptual model illustrating the impact of explainability across different quality dimensions

Fig. 4  The knowledge catalogue for explainability: how explainability impacts other quality aspects
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3.3.4  Making the results actionable: reference model

We have compiled and summarized the extracted informa-
tion for RQ4 to conceive a reference model for explain-
ability. The reference model encompasses three phases: 
requirements analysis, design, and evaluation. Each 
of these phases in the model include relevant aspects 
that should be considered in each phase in the software 
lifecycle.

We used our previous findings (RQ1–RQ3) and an 
additional round of data extraction to shape the phases 
in the reference model. In particular, the categories in the 
“requirements analysis” phase are based on variables of 
the definition we set out, and on the work of Chazette 
and Schneider [5]. The categories on the “design” phase 
that make up the implementation strategy are based on 
the work by Speith [46], and the categories on the “evalu-
ation” phase are based on the findings of our SLR. Fur-
thermore, we illustrate how our template can be applied 
by means of a running example.

We present the results for RQ1 in Sect. 4, the results 
for RQ2 and RQ3 in Sects. 5, 6, and the results for RQ4 
in Sect. 7.

4  A definition of explainability

The domain of software engineering does not need a mere 
abstract definition of explainability, but one that focuses 
on requirements for explainable systems. Before software 
engineers can elicit the need for explainability in a system, 
they have to understand what explainability is in a system 
context. For this reason, we provide a definition of what 
makes a system explainable to answer our first RQ.

Explainability is tied to disclosing information, which 
can be done by giving explanations. In this line of thought, 
Köhl et al. hold that what makes a system explainable is 
the access to explanations [9]. However, this leaves open 
what exactly is to be explained. In the literature, defini-
tions of explainability vary considerably in this regard. 
Moreover, our review has revealed other aspects in which 
definitions of explainability differ. Consequently, there is 
not one definition of explainability, but several comple-
mentary ones.

Similarly, Köhl et al. also found that there is not just one 
type of explainability, but that a system may be explainable 
in one respect but not in another [9]. Based on their defini-
tion of explainability, the definitions we found in the litera-
ture, and results from our workshop with philosophers and 
psychologists, we were able to develop an abstract definition 
of explainability that can be adjusted according to project or 
field of application. 

Answering RQ1 A system S is explainable with respect to an 
aspect X of S relative to an addressee A in context C if and only 
if there is an entity E (the explainer) who, by giving a corpus of 
information I (the explanation of X), enables A to understand X 
of S in C.

The definition above summarizes the important variables 
of an explainable system that are relevant for requirements 
and software engineers. These variables provide guidance 
on the elements that are important in an explainable system 
and, therefore, need to be considered during elicitation and 
design. In particular, an exemplary application of how our 
definition can support requirements engineering in practice 
can be found in Sect. 7.

There were differences in the literature concerning the 
values of the following variables presented in the above defi-
nition: aspects of a system that should be explained, con-
texts in which to explain, the entity that does the explaining 
(the explainer), and addressees that receive the explana-
tion. Being aware of these differences is crucial for require-
ments engineers to elicit the right kind of explainability for 
a project as well as specifying the fitting requirements on 
explanations.

4.1  Aspects that should be explained

Concerning the aspects that should be explained, we found 
the following options in the literature and validated them 
during the workshop with philosophers and psychologists: 
the system in general (e.g., global aspects of a system) [70], 
and, more specifically, its reasoning processes (e.g., infer-
ence processes for certain problems) [71], its inner logic 
(e.g., relationships between the inputs and outputs) [9], its 
model’s internals (e.g., parameters and data structures) [72], 
its intention (e.g., pursued outcome of actions) [73], its 
behavior (e.g., real-world actions) [74], its decision (e.g., 
underlying criteria) [4], its performance (e.g., predictive 
accuracy) [75], and its knowledge about the user or the world 
(e.g., user preferences) [74].

4.2  Contexts and explainers

A context is set by a situation consisting of the interaction 
between a person, a system, a task, and an environment [76]. 
Plausible influences on the context are time-pressure, the 
stakes involved, and the type of system [54].

Explainers refer to a system or specific parts of a sys-
tem that supply its stakeholders with the needed informa-
tion. Semantically speaking, our definition allows that these 
specific parts of the system do not necessarily have to be 
technical components (such as algorithms or even hardware 
elements) of the system itself. In this sense, an explainer 
could also be an intermediate instance, a kind of external 
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mediator. This mediator acts as an interface between the 
system and the addressee, explaining something and helping 
the addressee to understand the aspect of the system [54]. 
Although the person applying the definition should be the 
one to decide where the boundaries of an explainable sys-
tem should be set, in the context of our work, we focus on 
self-explainable systems: systems that explain themselves 
“directly” to an end user.

Consider the following example. A patient (addressee) is 
in a hospital and has been examined by a physician (context) 
using a medical diagnosis system. The medical findings are 
processed by the system (aspects) and presented directly 
to the patient in an electronic dashboard. However, these 
findings cannot be interpreted and understood by patients 
directly because they do not have the necessary medical 
domain knowledge. Therefore, the physician intervenes as 
a mediator and explains the results of the examination to 
the patient in a way that is understandable for the patient. 
This system could be considered explainable following the 
proposed definition since it communicates results to the phy-
sician, who understands them, and the physician, in turn, is 
able to explain the output of the system to the patient based 
on the received explanations.

However, because we focus on self-explainable systems, 
the system in the example above is only deemed explainable 
in our perspective if the physician is the intended addressee 
for explanations. If the patients are the intended addressees, 
the system would be considered explainable if the system 
explains itself to the patient directly (since the patient is 
the end user) and comprehensively without the need for a 
physician to intervene as a mediator. Thus, if necessary, 
no medical terminology may be used and the results of the 
examination must be presented in a way that is clear and 
understandable to laypersons. In this sense, we consider that 
the target audience of explanations determines whether or 
not a system is explainable. If a medical diagnostic system is 
designed for physicians (who are the end users in this situa-
tion), the system must be explainable to physicians.

4.3  Addressee’s understanding

A vast number of papers in the literature make reference to 
the addressee’s evoked understanding as important factor 
for the success of explainability (e.g., [14, 51, 70, 77, 78]). 
Framing explainability in terms of understanding provides 
the benefit of making it measurable, as there are established 
methods of eliciting a person’s understanding of something, 
such as questionnaires or usability tests [5].

The variables in our definition will become important 
later on, when we discuss our reference model (Sect. 7). In 
this template, these variables essentially constitute different 
aspects that need to be elicited in a project context before 

concrete implementation strategies are devised. Accordingly, 
we will return to the variables later on, using an example to 
help us understand them better.

5  A conceptual model of explainability

Conceptual models and catalogues compile knowledge about 
quality aspects and help to better visualize their possible 
impact on a system. Based on the data extracted from the 
literature and on our qualitative data analysis and validation, 
we were able to build a conceptual model and a knowledge 
catalogue for explainability.

In this section, we will first discuss our conceptual model. 
Overall, this model serves as a kind of classification scheme 
and is divided into four so-called quality dimensions. A 
quality dimension is a conceptual layer that groups quality 
aspects that make up a system. It represents a perspective 
from which to consider the quality of the system.

Answering RQ2 We framed the quality aspects that are impacted 
by explainability in a conceptual model that spans different 
quality dimensions of a system (see Fig. 3).

We considered three existing concepts to shape and com-
pose the conceptual model: stakeholder classes, elicitation 
dimensions, and quality spectrum. These concepts help us 
illustrate our vision of system quality and how it is impacted 
by explainability.

5.1  Stakeholder classes

Langer et al. categorize quality aspects that are influenced by 
explainability according to so-called stakeholder classes and 
distinguish the following ones: users, developers, affected 
parties, deployers, and regulators. According to them, these 
classes should serve as a reference point when it comes to 
implementing explainability since the interests of different 
stakeholder classes may conflict [54].

This first concept is related to our definition and based on 
the insight that understanding is pivotal for explainability. 
Individuals differ in their background-knowledge, values, 
experiences, and many further respects. For this reason, they 
also differ in what is required for them to understand certain 
aspects of a system.

Furthermore, Langer and colleagues also hold that some 
persons are more likely to be interested in a certain quality 
aspect than others [54]. For instance, a developer might be 
more interested in the maintainability of a system than a 
user.

Against this background, using stakeholder classes to 
organize quality aspects seems promising. Since it is a 
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stakeholder who needs to understand a system for it to be 
explainable according to our definition, the stakeholder class 
provides a frame of reference for software engineers.

5.2  Elicitation dimensions

Chazette and Schneider identified six dimensions that affect 
the elicitation and analysis of explainability [5]: the users’ 
needs and expectations, cultural values, corporate values, 
laws and norms, domain aspects, and project constraints. 
Their results indicate that different factors distributed across 
these dimensions influence the identification of explainabil-
ity as being a necessary quality aspect within a system, as 
well as the design choices towards its operationalization. In 
other words, these dimensions influence the (explainability) 
requirements of a system.8

The users’ needs and expectations for example, is a 
dimension that considers the user and will thus reflect 
directly on the end-user requirements. Cultural values refer 
to the ethos of a group or society [79], and how culture 
influence the system design [80]. Corporate values refer to 
the strategic vision and values of an organization [81], and 
how they shape software systems. Laws and norms concern 
the regulatory and legal influence on the requirements and 
design of a system. Domain aspects consider the subject 
area on which the system is intended to be applied, and will 
dictate the logic around the application [82]. The project 
constraints are more practical aspects (also known as non-
technical aspects [83]), such as available resources (e.g., 
time, money, technologies, manpower).

5.3  Quality spectrum

The external/internal quality concept based on the ISO 
25010 [37] and proposed by Freeman and Pryce [84] is the 
final concept that we use to shape our model. In particular, 
we use it to categorize the quality dimensions (and thus the 
quality aspects within them) themselves.

The external/internal quality concept is the basis for what 
we call the quality spectrum. Since a spectrum is “a range 
of different positions between two extreme points” [85], we 
consider the system quality spectrum as a range between 
the two extreme points: internal and external quality. In 
our model, the quality dimensions represent “positions” or 
“directions” in the quality spectrum.

In this sense, an external quality dimension is more 
related to the users or the quality in use, and an internal 

quality dimension is more related to the developers or the 
system itself. The same applies to the quality aspects inside 
these dimensions.

However, as pointed out by McConnel [86], the differ-
ence between internal and external quality is not completely 
clear-cut, meaning that a quality aspect can belong or affect 
several dimensions. Therefore, we do not assign the dimen-
sions and quality aspects of our conceptual model as clear-
cut internal or external, but rather acknowledge a continuous 
shift from external to internal.

5.4  Compiling the concepts

Based on these three concepts and input from our workshop 
with software engineers, we developed a conceptual model 
for the impact of explainability on other quality aspects. To 
this end, we combined the concepts of stakeholder classes 
and elicitation dimensions to form four new dimensions, 
into which we sort the quality aspects that are impacted by 
explainability: user’s needs, cultural values and laws and 
norms, domain aspects and corporate values, and project 
constraints and system aspects. Furthermore, we arrange 
these quality dimensions in the quality spectrum.

We also identified quality aspects that are present in all 
dimensions. In particular, we identified quality aspects that 
form a foundation for the four dimensions (e.g., transpar-
ency). Without the influence of explainability on these 
foundational qualities, many other quality aspects would 
not be influenced. Furthermore, we identified superodinated 
qualities. These quality aspects are influenced by all other 
aspects, sometimes being described as the goals of explain-
ability (e.g., trust).

More details on the individual dimensions will be given 
in the next section, when we discuss the catalogue, since 
the dimensions are closely linked to the quality aspects they 
frame. The dimensions and their respective quality aspects 
are illustrated in Fig. 3. In the figure, the quality aspects are 
grouped according to similarity, based on our workshops’ 
results. Furthermore, the listing order corresponds to that 
of the descriptive text in Sect. 6. Overall, our conceptual 
model should support software engineers in understanding 
how explainability can affect a system, facilitating require-
ments analysis.

6  A catalogue of explainability’s impacts

In this section, we present the catalogue and discuss the 
quality aspects in relation to our conceptual model. To this 
end, we analyze them, whenever possible, based on the three 
categorizations we have described above: the stakeholders 
involved, the dimensions that affect the elicitation and analy-
sis of explainability, and the external/internal categorization.

8 We adopt and extend this notion in that we consider these dimen-
sions to be decisive not only for the RE process, for example, by 
influencing whether a requirements engineer considers a quality 
aspect as relevant because of existing laws, but also for a system in 
general, by influencing the quality of the system from a given per-
spective.
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Answering RQ3 We built a catalogue that lists all quality aspects 
found in our study and the kind of impact that explainability 
has on each one of these aspects (Fig. 4).

6.1  Foundational qualities

Explainability can influence two quality aspects that have a 
crucial role: transparency and understandability. These 
quality aspects provide a foundation for all four dimensions, 
thereby having an influence on the other aspects inside these 
dimensions (and, in some cases, vice versa).

Receiving explanations about a system, its processes 
and outputs can facilitate understanding on many lev-
els [87]. Furthermore, explanations contribute to a higher 
system transparency [88]. For instance, understandability 
and transparency are required on a more external dimen-
sion so that users understand the outputs of a system (e.g., 
an explanation about a route change), which may positively 
impact user experience. They are also important on a more 
internal dimension, where they can contribute to under-
standing aspects of the code, facilitating debugging and 
maintainability.

6.2  User’s needs

Most papers concerning stakeholders in Explainable Arti-
ficial Intelligence (XAI) state users as a common class of 
stakeholders (e.g., [51, 89, 90]). This, in turn, also coincides 
with the view from requirements engineering, where (end) 
users also count as a common class of stakeholders [91]. 
Among others, users take into account recommendations of 
software systems to make decisions [13]. Members of this 
stakeholder class can be physicians, loan officers, judges, 
or hiring managers. Usually, users are not knowledgeable 
about the technical details and the functioning of the systems 
they use [54].

When explainability is “integrated” into a system, differ-
ent groups of users will certainly have different expectations, 
experiences, personal values, preferences, and needs. Such 
aspects mean that individuals can perceive quality differ-
ently. At the same time, explainability influences aspects that 
are extremely important from a user perspective.

The quality aspects we have associated with users are 
mostly external. In other words, they are not qualities that 
depend solely on the system. To be more precise, they 
depend on the expectations and the needs of the person who 
uses the system.

On a general level, the user experience can both profit 
and suffer from explainability. Explanations can foster 
a sense of familiarity with the system [92] and make it 
more engaging [93]. In this case, user experience profits 
from explainability. On the other side, explanations can 

cause emotions such as confusion, surprise [94], and dis-
traction [78], harming the user experience. Furthermore, 
explainability has a positive impact on the mental-model 
accuracy of involved parties. By giving explanations, 
it is possible to make users aware of the system’s limita-
tions [75], helping them to develop better mental models 
of it [94]. Explanations may also increase a user’s ability to 
predict a decision and calibrate expectations with respect to 
what a system can or cannot do [75]. This can be attributed 
to an improved user awareness about a situation or about 
the system [12]. Furthermore, explanations about data col-
lection, use, and processing allow users to be aware of how 
the system handles their data. Thus, explainability may be a 
way to improve privacy awareness [15, 51]. Explainability 
can also positively impact the perceived usefulness of a 
system or a recommendation [95], which contributes to the 
perceived value of a system, increasing users’ perception of 
a system’s competence [96] and integrity [97] and leading to 
more positive attitudes towards the system [98]. Finally, all 
of this demonstrates that explainability can positively impact 
the user satisfaction with a system [94].

Explainability can also influence the usability of a sys-
tem. On the positive side, explanations can increase the ease 
of use of a system [47], lead to more efficient use [12], and 
make it easier for users to find what they want [99]. On the 
negative side, explanations can overwhelm users with exces-
sive information [100] and can also impair the user interface 
design [5]. Explanations can help to improve user perfor-
mance on problem solving and other tasks [97]. Another 
plausible positive impact of explainability is on user effec-
tiveness [101]. With explanations, users may experience 
greater accuracy in decision-making by understanding more 
about a recommended option or product [102]. However, 
user effectiveness can also suffer when explanations lead 
users to agree with incorrect system suggestions [10]. User 
efficiency is another quality aspect that can be positively 
and negatively influenced by explainability. Analyzing and 
understanding explanation takes time and effort [103], pos-
sibly reducing user efficiency. Overall, however, the time 
needed to make a judgment could also be reduced with com-
plementary information [101], increasing user efficiency. 
Furthermore, explanations may also give users a greater 
sense of control, since they understand the reasons behind 
decisions and can decide whether they accept an output or 
not [14]. Explainability can also have a positive influence on 
human-machine cooperation [77] since explanations may 
provide a more effective interface for humans [104], improv-
ing interactivity and cooperation [33], which can be espe-
cially advantageous in the case of cyber-physical systems.

Explainability can have a positive influence on learnabil-
ity, allowing users to learn about how a system works or how 
to use a system [102]. It may also provide guidance, helping 
users in solving problems and educating them about product 
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knowledge [105]. As these examples illustrate, explanations 
can support decision-making processes for users [47]. In 
some cases, this goes as far as enabling scrutability of a 
system, that is, enabling a user to provide feedback on a 
system’s user model so that the system can give more valu-
able outputs or recommendations in the future [47]. Finally, 
explainability can help knowledge discovery [14]. By mak-
ing the decision patterns in a system comprehensible, knowl-
edge about the corresponding patterns in the real world can 
be extracted. This can provide a valuable basis for scientific 
insight [75].

6.3  Cultural values and laws and norms

Although [5] distinguished Cultural Values and Laws and 
Norms as two separate dimensions and [54] did the same for 
regulators and affected parties, we have combined them into 
one dimension because they are complementary and influ-
ence each other. The dimensions form a kind of symbiosis 
since, e.g., legal foundations are grounded, among others, 
on the basis of the cultural values of a society. We adopt the 
same approach for the dimensions discussed in Sects. 6.4, 
6.5.

Regulators commonly envision laws for people who could 
be affected by certain practices. In other words, regulators 
stipulate legal and ethical norms for the general use, deploy-
ment, and development of systems. This class of stakehold-
ers occupies an extraordinary role, since they have a “watch-
dog” function concerning the systems and their use [54]. 
Regulators can be ethicists, lawyers, and politicians, who 
must have the know-how to assess, control, and regulate the 
whole process of developing and using systems.

The restrictive measures by regulators are necessary, 
as the influence of systems is constantly growing and key 
decisions about people are increasingly automated – often 
without their knowing [54]. Affected parties are (groups of) 
people in the scope of a system’s impact. They are stake-
holders, as for them much depends on the decision of a sys-
tem. Patients, job or loan applicants, or defendants at court 
are typical examples of this stakeholder class [54].

In this dimension, cultural values represent the ethos of a 
society or group and influence the need for specific system 
qualities and how they should be operationalized [79, 80]. 
These values resonate in the conception of laws and norms, 
which enforce constraints that must be met and guaranteed 
in the design of systems. Explainability can influence key 
aspects on this dimension.

With regard to the internal/external distinction, a clear 
attribution is not possible. Rather, the quality aspects seem 
to occupy a hybrid position. Whether or not they are present 
does not only depend on the system itself, but it also does 
not depend on a person using them. Rather, it depends on 
general conventions (e.g., legal, societal) that are in place. 

For this reason, we take them to be more internal than the 
quality aspects from the last dimensions: general conven-
tions are better implementable than individual preferences.

On the cultural side, explanations can contribute to the 
achievement of ethical decision-making [106] and, more 
specifically, ethical AI. On the one hand, explaining the 
agent’s choice may support ensuring that ethical decisions 
are made [14]. On the other hand, providing explanations 
can be seen as an ethical aspect itself [6]. Furthermore, 
explainability may also contribute to fairness, enabling 
the identification of harms and decision biases to ensure 
fair decision-making [14], or helping to mitigate decision 
biases [75].

On the legal side, explainability can promote a system’s 
compliance with regulatory and policy goals [107]. Explain-
ing an agent’s choice can ensure that legal decisions are 
made [14]. A closely related aspect is accountability. We 
were able to identify a positive impact of explainability on 
this quality that occurs when explanations allow entities to 
be made accountable for a certain outcome [108]. In the lit-
erature, many authors refer to this as liability [108] or legal 
accountability [109].

In order to guarantee a system’s adherence to cultural 
and legal norms, regulators and affected parties need several 
mechanisms that allow for inspecting systems. One NFR 
that can help in this regard is auditability. Explainability 
positively impacts this NFR, since explanations can help to 
identify whether a system made a mistake [10], can help to 
understand the underlying technicalities and models [73], 
and allow users to inspect a system’s inner workings to judge 
whether it is acceptable or not [110]. In a similar manner, 
validation can be positively impacted, since explainability 
makes it possible for users to validate a system’s knowl-
edge [102] or assess if a recommended alternative is truly 
adequate for them [47]. The latter aspect is essential for 
another quality that is helped by explainability, namely, 
decision justification. On the one hand, explanations are a 
perfect way to justify a decision [108]. On the other hand, 
they can also help to uncover whether a decision is actually 
justified [4].

6.4  Domain aspects and corporate values

People who decide where to employ certain systems (e.g., 
a hospital manager decides to bring a special kind of diag-
nosis system into use in her hospital) are deployers. Other 
possible stakeholders in this dimensions are specialists in 
a domain, known as domain experts. People have to work 
with the deployed systems and, consequently, new people 
fall inside the range of affected people [54].

This dimension is shaped by two aspects: (1) the cor-
porate values and vision of an organization [81], and (2) 
the domain aspects that shape a system’s design since 
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explanations may be more urgent in some domains than in 
others.

We consider this dimension as more internal to the sys-
tem, since it encompasses quality aspects that are more 
related to the domain or the values of the corporation or the 
team. Generally, the integration of such aspects affects the 
design of a system on an architectural level. However, there 
are some exceptions, as the organization’s vision may aim 
at external factors like customer loyalty.

Explainability supports the predictability of a system 
by making it easier to predict a system’s performance cor-
rectly and helping to determine when a system might make 
a mistake [111]. Furthermore, explainability can support the 
reliability of a system [70]. In general, explainability sup-
ports the development of more robust systems for critical 
domains [112]. All of this contributes to a positive impact 
on safety, helping to meet safety standards [14], or helping 
to create safer systems [113]. On the negative side, expla-
nations may also present safety risks by distracting users in 
critical situations.

Explanations are also seen as a means to bridge the gap 
between perceived security and actual security [71], helping 
users to understand the actual mechanisms in systems and 
adapt their behavior accordingly. However, explanations may 
disclose information that makes the system vulnerable to 
attack and gaming [3]. Explainability can also influence pri-
vacy positively, since the principle of information disclosure 
can help users to discover what features are correlated with 
sensitive information that can be removed [15, 114]. By the 
same principle, however, privacy can be hurt since one may 
need to disclose sensitive information that could jeopardize 
privacy [12]. Explainability can also threaten model confi-
dentiality and trade secrets, which companies are reluctant 
to reveal [51].

Explainability can contribute to persuasiveness, since 
explanations may increase the acceptance of a system’s deci-
sions and the probability that users adopt its recommenda-
tions [47]. Furthermore, explainability influences customer 
loyalty positively, since it supports the continuity of use [92] 
and may inspire feelings of loyalty towards the system [99].

6.5  Project constraints and system aspects

Individuals who design, build, and program systems are, 
among others, developers, quality engineers, and software 
architects. They count as stakeholders [115], as without 
them the systems would not exist in the first place. Gen-
erally, representatives of this group have a high expertise 
concerning the systems and a strong interest in creating and 
improving them.

This dimension is shaped by two aspects: project con-
straints and system aspects. The project constraints are the 
non-technical aspects of a system [83], while system aspects 

are more related to internal aspects of the system, such as 
performance and maintainability.

The quality aspects framed in this dimension are almost 
entirely internal in the classical sense, since they corre-
spond to the most internal aspects of a system or the process 
through which the system is built.

Explainability can have both a positive and negative 
impact on maintainability. On the one hand, it can facili-
tate software maintenance and evolution by giving informa-
tion about models and system logic. On the other hand, the 
ability to generate explanations requires new components 
in a system, hampering maintenance. A positive impact on 
verifiability was also identified, when explanations can 
work as a means to ensure the correctness of the knowl-
edge base [102] or to help users evaluate the accuracy of 
a system’s prediction [116]. Testability falls in the same 
line, since explanations can help to evaluate or test a system 
or a model [14]. Explainability has a positive influence on 
debugging, as explanations can help developers to identify 
and fix bugs [4]. Specifically, in the case of machine learning 
(ML) applications, this could enable developers to identify 
and fix biases in the learned model and, thus, model optimi-
zation is positively affected [50]. Overall, all these factors 
can help increase the correctness of a system, by helping 
to correct errors in the system or in model input data [108].

The overall performance of a system can be affected both 
positively and negatively by explainability. On the one hand, 
explanations can positively influence the performance of a 
system by helping developers to improve the system [77]. 
In this regard, explainability positively influences system 
effectiveness. On the other hand, however, explanations can 
also lead to drawbacks in terms of performance [103] by 
requiring loading time, memory, and computational cost [5]. 
Thus, as the additional explainability capacities are likely to 
require computational resources, the efficiency of the sys-
tem might decrease [4]. Another quality that is impacted by 
explainability is accuracy. For instance, in the ML domain, 
the accuracy of models can benefit from explainability 
through model optimization [50]. On the negative side, there 
exists a trade-off between the predictive accuracy of a model 
and explainability [4]. A system that is inherently explain-
able, for instance, may have to sacrifice predictive power 
in order to be so [72]. Explainability may have a negative 
impact on real-time capability since the implementation of 
explanations could require more computing power and addi-
tional processes, such as logging data, might be involved.

Adaptability can be negatively impacted, for example, if 
lending regulations in a financial software have changed and 
an explanation module in the software is also affected. Next, 
assume that a new module should be added to a system. The 
quality aspect involved here is extensibility, which in turn 
is negatively impacted by explainability. Merely adding the 
new module is already laborious. If the explainability is also 
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affected by this new module, the required effort increases 
again. Depending on the architecture of the software, it may 
even be impossible to preserve the system’s explainability. 
Explanations affect the portability of a system as well. On 
the negative side, an explanation component might not be 
ported directly because it uses visual explanations, but the 
environment to which system is to be ported to has no ele-
ments that allow for visual outputs. On the positive side, 
explainability helps transferability [117]. Transferability is 
the possibility to transfer a learned model from one context 
to another (thus, it can be seen as a special case of portability 
for ML applications). Explanations may help in this regard 
by making it possible to identify the context from and to 
which the model can be transferred [117].

Overall, the inclusion of explanation modules can 
increase the complexity of the system and its code, influenc-
ing many of the previously seen quality aspects. In particu-
lar, as an explainability component needs additional devel-
opment effort and time, it can result in higher development 
costs [9].

6.6  Superordinated qualities

We were able to identify some aspects that hold regardless 
of dimension. These aspects are commonly seen as some 
kind of superordinated goals of explainability. For instance, 
organizations and regulators have been lately focusing on 
defining core principles (or “pillars”) for responsible or 
trustworthy AI. Explainability has been often listed as one 
of these pillars [51]. Overall, many of the quality aspects we 
could find in the literature contribute to trustworthiness. For 
instance, explanations can help to identify whether a system 
is safe and whether it complies to legal or cultural norms.

Ideally, confidence and trust in a system originate solely 
from trustworthy systems. Although one could trust an 
untrustworthy system, this trust would be unjustified and 
inadequate [118]. For this reason, explainability can both 
contribute to and hurt trust or confidence in a system [12, 
71]. Regardless of the system’s actual trustworthiness, bad 
explanations can always degrade trust [71]. Finally, all of 
this can influence the system’s acceptance. A system that 
is trustworthy can gain acceptance [74] and explainability 
is key to this.

7  A reference model for explainability

Building on the previous artifacts, we propose a reference 
model for explainability. Reference models can support the 
design and implementation of software systems, making it 
easier to understand primordial factors to the conception and 
design of these systems [119].

Building on this idea, we propose a reference model that 
provide a frame of reference of the main factors and relevant 
points that should be considered when defining explainabil-
ity from requirements analysis (e.g., eliciting explainability 
requirements) to the design phase (i.e., operationalization of 
the elicited requirements) and evaluation (i.e., measuring if 
the requirements are achieved). In light of this, we answer 
RQ4 as follows:

Answering RQ4 We propose a reference model for explainable 
systems (Fig. 5) based on the findings from our SLR. This 
reference model includes relevant factors that should be con-
sidered for the development of explainable systems at various 
stages of the software lifecycle, assisting software engineers 
in the analysis, operationalization, and evaluation of require-
ments for explainable systems.

7.1  Constituents of the reference model

Our reference model draws on ideas from three sources. 
The first source is a stepwise approach from abstract qual-
ity notions to concretely measurable requirements proposed 
by Schneider [120]. This stepwise approach considers three 
levels of abstraction: abstract goals, concrete characteristics, 
and measures or indicators [120, 121]. The abstract goals9 
correspond to the objectives and constraints for a system; the 
concrete characteristics define the design decisions for the 
abstract goals; and the measures or indicators help evaluate 
whether the abstract goals have been achieved.

Based on this approach, we create the structure of a ref-
erence model that goes from the abstract to the concrete: 
from abstract aspects of the “real-world” that are relevant for 
requirements analysis and must be translated into require-
ments, to factors that influence concrete design decisions, 
to evaluation strategies. We have transformed these levels 
of abstraction into phases of the software lifecycle to make 
them more practical and to provide software engineers with 
guidance on what to consider in each phase. In our model, 
these levels correspond to requirements analysis, design, and 
evaluation, respectively.

During requirements analysis, software engineers, in 
conjunction with relevant stakeholders, elicit and define 
explainability requirements. Such requirements are not only 
the quality aspects that the system should have, but may also 
include an initial overview of the system, a vision of the sys-
tem or a part of it, a list of key features, constraints, etc. Dur-
ing the design phase, the requirements should be refined into 
tangible system solutions or design choices, based on the 

9 Abstract goals can also be understood as so-called “high-level” or 
“raw” requirements [122], i.e., requirements that are not yet very spe-
cific and concrete, but express preliminary ideas, concepts, or visions 
that need to be further refined.
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factors considering during requirements analysis. Finally, 
during evaluation, quantitative measurements or qualitative 
indicators should be specified for each concrete solution as 
a method to subsequently analyze whether a requirement 
was met.

The work of Chazette et al. [123] is the second source of 
ideas upon which our reference model is based. Chazette 
et al. propose six core activities and associated practices 
for the development of explainable systems. These activities 
include (1) establishing a system vision (also with respect to 
explainability), (2) assessing the needs of the involved stake-
holders, deciding how to implement explainability, (3) think-
ing about the algorithm to be explained, (4) weighing the 
trade-offs between explainability and other quality aspects, 
(5) making design decisions that favor explainability, and (6) 
assessing the impact of explainability on the system.

We also consider ideas from the work of Speith [46] to 
put together our reference model. Speith presents an over-
view and taxonomy of various approaches that can be used 
to translate the more abstract considerations about explain-
ability into concrete implementations. Although his work is 
primarily intended for AI systems, we will adopt and gener-
alize it so that it is applicable to all kind of software systems.

We combine ideas found in these three works with the 
results of our study. In summary, our reference model pro-
posal is based on (1) the three levels of abstraction adapted 
to phases of the software lifecycle [120], (2) the six core 
activities for the development of explainable systems [123], 
(3) the approaches used to translate abstract considerations 
into concrete implementations [46], and (4) our research 
findings. The reference model is illustrated in Fig. 5 and 
presents the critical elements to take into account when 

developing explainable systems, broken down into seven cat-
egories that cover different phases of the software lifecycle.

A simple hypothetical scenario will serve to illustrate 
each phase of the reference model and is intended to facili-
tate and guide the discussion:

Scenario: A car manufacturer produces fully autonomous 
vehicles. The manufacturer wants passengers to better under-
stand the system’s navigation decisions. In conjunction with 
stakeholders, it was decided that explanations before and 
during navigation should help reach this goal, also aiming 
to improve user experience.

Explanations might be shown on the screen of the board 
computer or provided acoustically. To keep the passenger 
informed and aware of the various navigation possibili-
ties, it is critical to provide a full review of the available 
route options and the reasoning behind each recommenda-
tion prior to navigation start. During navigation, passengers 
should be informed of any route changes, accidents, threats, 
or delays in a timely manner.

7.2  Requirements analysis

Requirements analysis is “the analysis of elicited require-
ments in order to understand and document them” [122]. 
Understanding and documenting the needs of stakeholders 
is one of the primary goals of RE, and requirements analysis 
is essential in this process.

The definition proposed in Sect. 4 offers an initial over-
view of some of the essential factors that should be consid-
ered and elicited during requirements analysis. According 

Fig. 5  A reference model to support the development of explainable systems
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to the suggested definition, gathering knowledge about the 
context of use, the aspect of the system to be explained, and 
the addressee (entity or person who receives the explanation) 
is pivotal in order to provide meaningful explanations.

Other factors are related to the impact of explainability 
across different quality dimensions, as addressed in Sect. 5. 
These dimensions influence the requirements. In particular, 
these dimensions have an influence on whether explainabil-
ity is identified as an important quality aspect in a system, 
which objectives are associated with it (e.g., more transpar-
ency or usability in a system), and what constraints there are 
(e.g., project deadlines, financial limitations).

The objectives and constraints serve as the basis for 
higher-level decisions, such as defining an explainability 
vision. The explainability vision is a high-level definition 
of explainability and includes the consideration of the type 
of explanation to be presented and the important aspects to 
explain. Furthermore, all of these considerations (objectives, 
constraints, explainability vision) culminate in the explain-
ability requirements.

7.2.1  Objectives

The objectives of explainability are the first items to be 
defined. They depend on the stakeholders’ goals and on the 
reasons and purposes that motivate their need for explain-
ability in a system. These goals, reasons, and purposes, in 
turn, may be influenced by any of the quality dimensions 
mentioned earlier (e.g., cultural values, domain aspects, 
etc.).

As we have explored in the previous sections, explain-
ability can be seen as an enabler, as a means of achieving 
other crucial quality aspects. Thus, one must describe which 
quality aspects are to be achieved through explainability. In 
principle, these quality aspects can come from any of the 
dimensions presented in Fig. 3.

Perhaps the stakeholders in a particular project need an 
explainable system because explainability contributes to a 
better user experience, or because they see the need of devel-
oping a system that is aligned with ethical values. Overall, 
all of the 57 quality aspects listed in our model (Fig. 3), in 
any combination, can function as an objective.

7.2.2  Constraints

The constraints are factors that influence or limit design 
decisions in some way. Constraints are usually associated 
with factors such as the context, the addressee, and the pro-
ject circumstances. These factors have a major influence on 
the system design. As mentioned in Sect. 4, the context is 
an interaction between a person, a system, a task, and an 
environment.

For instance, the context of a physician (a person) inter-
acting with an explainable cancer diagnosis system (the 
system) that supports the interpretation of image exams of 
cancer tumors (task) during a medical appointment in a hos-
pital (environment) will directly influence the requirements 
on explanations.

In particular, the characteristics of the physician in their 
role as addressee play a significant role, along with the task 
they perform with the system and the environment in which 
the system is used. All of these influences have to be taken 
into account to define a vision of the system to be developed, 
refine it into requirements, and to prepare the field for sub-
sequent concretizations, since constraints will significantly 
influence how concrete design decisions are shaped and 
realized.

7.2.3  Explainability vision

One of the high-level design decisions during requirements 
analysis is the type of explanation that is required. This deci-
sion is crucial when it comes to explainability, as choosing 
the appropriate kind of explanation is the precondition for 
conveying information in an appropriate way. In general, 
the decision on the type of explanation will depend on the 
objectives and constraints that were defined.

It is important to note that these abstracts thoughts about 
explanations do not necessarily define their implementation. 
When thinking about the design of a system (e.g., the medi-
cal system mentioned above), one is not directly concerned 
with how an explanation is implemented. First, one consid-
ers it at a higher abstraction level. This is because the type 
of explanation one wants is likely to draw on one’s everyday 
behavior and explanation practices. Accordingly, such types 
of explanation are very abstract and distinct from concrete 
implementation and design ideas.

Miller et al. [124] found that implementations of explain-
ability are often based on intuitions rather than on informed 
deliberations. For this reason, it is crucial to have an idea of 
explanation types, as well as plausible ways to implement 
them. As we discussed in previous sections, philosophy and 
psychology have long investigated explanations, offering 
significant knowledge about the many sorts of explanations 
and their usefulness for various contexts and situations. We 
can use this existing knowledge to gain valuable insights into 
how to design useful explanations in RE contexts.

With this in mind, Miller examined the philosophical and 
psychological literature to gain knowledge about explain-
ability and found that the various forms of explanation each 
have their own advantages and disadvantages [78]. These 
advantages and disadvantages must be weighed in order to 
determine what type of explanation is suitable for each case 
in order to achieve the intended objectives. We analyzed the 
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data from our literature review to learn about the many types 
of explanations that exist and to provide important insights 
for software engineers.

Explanation Types and Aspects to Explain Explanations 
are commonly described as answers to “w”-questions (e.g., 
why, what, when, but also how) [125, 126]. When it comes 
to more fine-grained details, however, there is significant 
disagreement. There are many different types of explana-
tions, each with its own advantages and drawbacks. While 
an extensive description of explanation types goes beyond 
the scope of this article, we will shortly discuss some promi-
nent ones.

One prominent type of explanation is causal explana-
tion [127, 128]. As the name implies, causal explanations 
commonly cite the causes of a phenomenon to explain it. 
Closely linked to causal explanations are counterfactual 
explanations [129]. This type of explanation uses counter-
factual scenarios (i.e., what-if-things-had-been-different 
scenarios) to explain a phenomenon. For instance, if the 
window were opened, the letter would not have been swept 
away by a gust of air. The link to causal explanation can be 
easily seen: in the example above, the gust of air blowing is 
the cause for the letter being swept away.

There are many types of causal explanations, and in 
recent years, mechanistic explanation gained prominence. 
These explanations aim at explaining a phenomenon by 
explaining the mechanism constitutive of the phenomenon 
coming to be [130]. For instance, a mechanistic explana-
tion of the heart pumping blood would involve the parts 
of heart (e.g., atria, ventricles, valves, etc.), the operations 
performed by these parts (e.g., contraction and relaxation 
by the chambers), and their organization (e.g., blood flows 
from each atrium to valve and ultimately into the circulatory 
system) [131].

Another type of explanation are reason explanations [71, 
125]. Reason explanations explain the action of an agent 
by referring to the subjective reasons this agent has had for 
executing a said action. Note the difference to causal expla-
nation: while causal explanations try to uncover the physical 
processes directly leading to a phenomenon, reason expla-
nation make use of the reasons that motivated an agent to 
execute a specific action.

In addition to the type of explanation, the explainabil-
ity vision also includes the aspects to explain. In order to 
properly integrate explainability, it is critical to understand 
which aspects or components of the particular system 
must be explained. For this reason, the aspect that should 
be explained is part of our definition of explainability (see 
Sect. 4.1). Some exemplary aspects are: a system’s rationale, 
its predictive accuracy, or its intention.

Note that the concept of aspects to explain is a more 
fine-grained version of what Speith [46] calls “scope” in 
his taxonomy. Scope concerns whether the whole AI model 

should be explained (i.e., a global scope) or just a single 
prediction (i.e., a local scope). When it comes to the aspects 
we found, the aspect “system in general” corresponds to a 
global scope and the aspects “a system’s decision” to a local 
one. Accordingly, the other aspects we found expand the 
work of Speith [46].

Explainability Requirements To define requirements, it is 
necessary to compare the goals of the various stakeholders 
and understand how these goals translate to what is expected 
from the system. Explainability requirements comprise all 
of the investigated components (i.e., objectives, constraints, 
explainability vision). To define requirements for explain-
ability, it is, thus, important to operationalize these compo-
nents in order to establish explanation characteristics (i.e., 
the requirements on explanations).

Requirements typically begin as high-level requirements 
that should be operationalized further until they reach the 
level of functional requirements, which express specific 
design choices. For example, the need for more security in 
a system (a high-level requirement) is refined into the need 
for more security in login, which is refined into the need 
for a two-factor authentication procedure. The need for a 
two-factor authentication procedure, in turn, translates into 
requirements that define the functional processes needed to 
achieve the high-level requirement of more security.

It is also essential to analyze what are the existing inter-
relationships between requirements in the system and how 
defined requirements affect and interact with other (exist-
ing or planned) requirements in the system. Therefore, a 
trade-off analysis should take place to help prioritize require-
ments according to factors such as the stakeholders’ goals 
and observed constraints. During trade-off analysis, our pro-
posed conceptual model and knowledge catalogue can assist 
in considering and identifying potential trade-offs.

Contextualizing: In our scenario, two quality aspects are 
pursued: understandability and user experience.10 These 
quality aspects are seen as objectives during requirements 
analysis.

The objective of achieving better understandability can be 
achieved through built-in explanations that help understand 
route choices. This goal is motivated by an upcoming legal 
regulations in autonomous driving that require end users 
to be informed about system decisions. The goal of a bet-
ter user experience, in contrast, is motivated by corporate 
interests.

The addressees are passengers in an autonomous car. In 
this scenario, timing is an important contextual factor, and, 

10 It should be noted that this is only an exemplary excerpt for didac-
tic purposes and considers understandability and user experience as 
the only (quality) objectives.
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therefore, a constraint tied to the explanations: before navi-
gation, passengers may have more time to make a decision 
concerning a route recommendation, than during navigation. 
Consequently, timeliness is a crucial factor during naviga-
tion, as explanations need to be displayed at the right time 
and be understood quickly, so that the addressee can use 
them to make a decision.

After defining the objectives and constraints, the expla-
nation type can be determined. In our autonomous vehicle 
scenario, causal explanations are likely the adequate expla-
nation type. Causal explanations are useful for describing 
causes of occurrences like traffic jams or for clarifying the 
reasons for a delay (i.e., aspects to explain). Those help 
to define the explanation characteristics that should be 
described in the requirements.

7.3  Design

In the design phase, all goals, objectives, constraints, prelim-
inary thoughts, and established requirements for explainabil-
ity come together and influence the concrete design choices. 
In this phase, the factors defined in the previous phase must 
be linked to a concrete implementation strategy.

According to Speith’s taxonomy, one must decide on 
the scope (the aspects to explain discussed earlier), stage, 
information extraction procedure11, result, and presentation 
form when implementing explainability. We call the choice 
of these factors together the implementation strategy.

7.3.1  Implementation strategy

The implementation strategy refers to how explainability 
will be implemented into the system. This includes func-
tions, modules (in terms of algorithmic solutions), and 
interface elements that should be implemented in the sys-
tem to provide explanations. Functions can vary in com-
plexity depending on what should be explained and on the 
complexity of the underlying model. Modules work as an 
additional part of the system or a separate entity that can act 
as an explainer (e.g., a virtual assistant). Finally, interface 
factors are more related to design choices concerning how 
the explanations are going to be presented in the interface.

Stage This factor concerns the question of when explain-
ability is incorporated into a system. When working on a 
project where explainability is a quality goal, one can either 
try to “explain” an already existing system by implement-
ing and adding appropriate mechanisms (this would be the 

stage post-hoc) [113, 125], or one could start from scratch, 
designing an inherently explainable system (this would be 
the stage ante-hoc) [50, 51].

Here, a significant distinction between systems based on 
“traditional” software 12 and those powered by AI must be 
made. In many cases, to make AI-based systems explainable, 
an entirely new system must be added to explain the old one. 
This illustrates why “black box” is a fitting metaphor for 
these systems: once trained, they cannot be adjusted easily. 
Making a traditional software system explainable, however, 
can usually be done by simply adapting its code.

Information extraction procedure This factor describes 
how the information needed for creating the explanations 
is derived. While the information extraction procedure is of 
particular interest for AI-based systems (because the infor-
mation must often be derived by an additional module), it 
also has some applications for traditional systems, as we 
explore below.

One big distinction when it comes to the information 
extraction procedure is whether it is necessary to have access 
to the system code to obtain the information required to 
explain it. If one has access to the system, one could analyze 
the code and interpret the algorithmic rationale to obtain 
internal information that can be used to construct explana-
tions [102, 113].

In fact, however, it is not necessary to have access to the 
system code; one can also gather the data required to create 
explanations through external analyses. An external analy-
sis [48, 111] could be based on perturbing the input to see 
how the output changes. This information extraction proce-
dure is called (local) perturbation [4, 77].

Result The extracted information (obtained through the 
information extraction procedure) commonly has a specific 
semantic, called the result [46]. Carefully selecting the 
semantics of an explanation may prove essential, depending 
on the addressee of the explanation and the context in which 
it is produced. This is the case because the semantics of an 
explanation often influence who can understand it.

There are different types of results. For instance, the 
extracted information could indicate the relevance of cer-
tain input features for the output. This result is called feature 
relevance [14, 50]. Another type of results are examples [49, 
94]. Examples could be representative instances of similar 
decisions.

The result can be used as a link to the explanation type. 
For instance, highlighting a particular feature can be used 
to implement counterfactual explanations, and causal 
explanations could be conveyed by offering instances (i.e., 
examples).

11 Originally, Speith calls this factor functioning [46]. However, since 
functioning is an overloaded term in the context of software systems, 
we will not use it here.

12 We use the term “traditional” to refer to software or systems that 
are neither ML or AI-based.
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7.3.2  Presentation form

Another factor to consider during the design phase is the 
presentation form of the explanation. Explanations can be 
represented in many forms, for instance, textually, numeri-
cally, or visually. The result and presentation form are 
intrinsically related: While the result dictates the semantic 
of the given explanation, the presentation form constitutes 
its representation and delivery. With the concept of a repre-
sentation format, we generalize the notion of output format 
in Speith’s taxonomy, enriching it by the concept of tone.

It is essential to determine the medium of the explana-
tion (this is what Speith originally calls output format [46]). 
Primary mediums are textual [113, 125], visual [47, 132], 
and auditory [48, 133]. Each of these formats have further 
sub-classes. For instance, textual formats can be (instruc-
tions) in natural language [47, 102], but they can also be in 
the form of rules (e.g., if-else statements) [105, 134]. The 
latter format, which is especially helpful for those trying to 
debug systems, was primarily employed in the 1980s when 
it came to expert system explanations [133]. Visual formats 
include icons, (heat)maps, and videos. Finally, auditory 
formats might be alert tones, but also (synthesized) speech 
instructions.

In addition, each of these presentations forms also have 
their own particularities (or requirements), such as the tone 
that will be used in communication (formal vs. casual, tech-
nical vs. non-technical), length, volume, brightness, and so 
on. The choice of an appropriate presentation form can be 
crucial. For example, auditory explanations of decisions 
made by a navigation algorithm in a non-autonomous vehi-
cle would be preferable to textual explanations for safety 
reasons.

Contextualizing: The goals, objectives, and constraints 
defined during the requirements analysis have to be refined 
into tangible technical strategies or design choices.

A list of possible aspects to be explained was given in 
Sect. 4. In our hypothetical scenario, the aspect that must 
be explained is the system’s rationale for route calculation 
with a focus on the variables that were considered for route 
choice: arrival time and traffic condition.

Furthermore, an explanation module must be added to the 
already existing system to provide the explanations. Thus, 
the stage would be a post-hoc. The need for such a module 
arises because the system in our hypothetical scenario is 
supported by a deep neural network (DNN). Consequently, 
the module’s information extraction procedure has be com-
patible with DNNs (e.g., TCAV [135]) or it needs to be 
applicable to all types of AI models (e.g., LIME [77]).

The explanations should be presented with interface-spe-
cific design strategies such as auditory explanations, icons, 
and animations (e.g., to highlight a new event such as an 

accident) on the board computer’s screen and possibly with 
brief texts. Furthermore, the communication tone should be 
casual rather than formal.

7.4  Evaluation

Evaluation bridges the gap between a customer’s over-
all goals on the one hand and the metrics agreed upon for 
measurement on the other [120]. Accordingly, to analyze 
the influence of explanations, evaluation methods and corre-
sponding metrics13 should be defined. In particular, metrics 
should help find out whether the chosen technical solutions 
contribute to meeting the defined requirements and help to 
assess whether the chosen implementation of explainability 
is adequate or needs to be improved [120].

7.4.1  Evaluation levels for explainability

When it comes to the evaluation of explainability, an impor-
tant distinction must be made. We have emphasized that 
explainability is a kind of enabler, and can contribute to 
achieving other quality aspects. Accordingly, we can evalu-
ate explainability by measuring how much it contributed to 
these other quality aspects. We call such an evaluation an 
evaluation on the system level. However, we can also evalu-
ate explainability by assessing the generated explanations 
themselves. This would be an evaluation on the explanation 
level.

Evaluation on the system level The quality of an explana-
tion may be assessed on the system level, by analyzing how 
it affects the system in terms of a specific quality aspect 
(e.g., the influence of an explanation on usability or perfor-
mance). Many of these quality aspects have already been 
intensively investigated by software engineers, so that there 
are already established evaluation methods for them. As an 
example, the impact of explanations on the system’s usabil-
ity can be evaluated quantitatively through usability tests 
scores or qualitatively, by assessing users’ perception on the 
system’s usability [5].

Since there are so many quality aspects associated with 
explainability, it is not possible to discuss all of the evalu-
ation methods and relevant metrics in this publication. For 
this reason, we concentrate on strategies for evaluating 
explanations and advise the interested reader to search for 
literature that addresses evaluation for the particular quality 
aspect of interest.

Evaluation on the explanation level So far, many different 
methods have been proposed for evaluating explanations of 

13 For simplicity, we generalize the term metric to refer to both met-
rics and indicators.
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software systems on the explanation level [68, 69]. To the 
best of our knowledge, however, there is no consensus on 
what is a good evaluation method for such explanations [68, 
136], which also means that there is no gold standard for 
evaluating explanations of software systems [68, 137]. For 
this reason, the choice of evaluation methods and metrics 
depends heavily on which objectives have been defined in 
advance.

7.4.2  Methods

Since the effectiveness and quality of an explanation is sub-
jective in most cases, the focus of evaluations is often on 
end-user feedback. This was confirmed by Nunes and Jan-
nach [47] in an SLR on explanations in recommender sys-
tems. They discovered that the most important methods used 
to evaluate explanations are user studies. Likewise, Vilone 
and Longo [68] found that subjective assessments are the 
most common way of evaluation. This was again confirmed 
in a recent study that ascertained that user-centered activities 
and methods are often recommended for the development of 
explainable systems [123].

Consistent with this research, we found in our SLR that 
the most important evaluation methods are focused on 
end-user feedback. In particular, the methods we identified 
include: user studies in general [138, 139], but also more 
specifically questionnaires [47, 140], A/B tests [93, 111], 
case studies [109, 141], and interviews [75, 98]. These user-
centered methods may be used to determine whether or not 
a given explanation design (as defined during requirements 
analysis) helps to achieve an objective.

User studies can adopt different methodologies to evalu-
ate explanations. For instance, in questionnaires, study par-
ticipants might be asked whether they better understood a 
certain aspect of the system after receiving explanations 
(e.g., “From the explanation, I understand how the [software, 
algorithm, tool] works.”, [142]).

The methodology of A/B tests is to compare several types 
of explanations to discover which style is best suited given 
the objectives that were defined (e.g., comparing “explana-
tion variant A” against “explanation variant B” with respect 
to the stipulated objective of achieving more user satisfac-
tion with the system) [143].

A case study is another empirical research strategy which 
focuses on studying a particular case or phenomenon (e.g., 
an individual person, a group, a setting, or an organization) 
in its own context or environment. Case studies typically 
combine a variety of data collection techniques, which helps 
to better understand the complexity of individual cases and 
to increase the accuracy of data acquired and conclusions 
drawn [144]. In this sense, a case study could consist in 
assessing explainable systems in a particular environment 
and deriving detailed information about their impact.

Finally, an interview is a qualitative research method in 
which the population of interest (i.e., the people being inter-
viewed) are questioned by the researcher. These questions 
can be pre-established and fixed (structured interviews), 
or the interviewer can think about the questions during the 
interview, with (semi-structured interviews) or without 
(unstructured interviews) the help of a checklist of topics to 
be covered [144]. In general, conducting interviews allows 
for a more in-depth understanding of a population’s view-
points on certain topics.

7.4.3  Metrics

There is a wide variety of metrics for explanations that can 
become important depending on the context. Explanations 
can be evaluated with respect to metrics such as their sound-
ness [113], plausibility [145], realism [146], and persua-
siveness [147]. The comprehensibility of an explanation, its 
relevance, length, timeliness, completeness, and usefulness 
are also metrics that are frequently addressed in the litera-
ture [68, 113, 148]. In general, Vilone and Longo compiled a 
list of explanation properties14 [68] that can be used to assess 
the quality of explanations. Furthermore, we also provide 
a list of all the properties we found in the literature in our 
supplementary material [67].

Contextualizing: In the case of our hypothetical scenario, 
it is crucial to evaluate whether the implemented explana-
tions are suitable to achieve the stated objectives, taking into 
account the existing constraints.

Timeliness was identified as a constraint. An explanation 
is perceived as helpful or relevant not only if it is compre-
hensive, but also if it is given at an opportune moment so 
that it supports a decision at the right time. During naviga-
tion, for example, an explanation outlining the reasons for 
a route change should be understood in a timely manner 
so that the passenger can make a decision in time for the 
vehicle to still take a particular exit. In this scenario, the 
difference between the time the user takes from receiving 
the explanation to taking the action can serve as a metric.

When it comes to achieving the goal of system under-
standability, a comparison of mental models in a user study 
may be one way to ascertain whether the chosen explanation 
design is beneficial. Using such a comparison, it is possible 
to determine whether the user’s mental model (i.e., the user’s 
interpretation of the system) is sufficiently comparable to the 
actual model of the system, as developed by the engineers 
(i.e., what the system actually is and does).

For example, such a comparison can be used to assess 
whether the user understood the explanation of the route 

14 We also consider this properties as metrics.
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change as it should have been understood, whether the expla-
nation in the case contributed to the comprehensibility of the 
system, or whether there are still gaps in the communication 
of the information.

Finally, a user study can help assess participants’ percep-
tions of the user experience.

8  Discussion

Explainability is a quality aspect that echoes the demand for 
more human oversight of systems [17]. It can bring posi-
tive or negative consequences across all quality dimensions: 
from users’ needs to system aspects. Explainability’s impact 
on so many crucial dimensions illustrates the growing need 
to take explainability into account while designing a sys-
tem. However, there is currently little guidance on how to do 
so. Developing proper elicitation methodologies, artifacts, 
and tools to capture explainability requirements and assist 
the RE process is critical for project success. Artifacts are 
important components of RE and software projects because 
they promote knowledge exchange and help develop a shared 
understanding, both of which are essential for the definition 
of good requirements. Artifacts contribute to the develop-
ment of a common vocabulary, which enables communica-
tion and the calibration of expectations in relation to system 
and project requirements.

To this end, our first contribution is a definition of 
explainability for software engineers (Sect. 4). This defini-
tion points out what should be considered when dealing with 
requirements and the appropriate functionality for explain-
able systems: aspects that should be explained, contexts, 
explainers, and addressees. A common definition facilitates 
communication during a project. Besides, being aware of 
these variables facilitates the software development process, 
supporting the elicitation and specification of explainabil-
ity requirements. In this sense, the possible values for these 
variables (e.g., reasoning process as an aspect that should be 
explained) we found in the literature can serve as an abstract 
starting point during requirements analysis. Overall, our arti-
facts can help engineering explainable systems and to make 
good design choices towards explainability requirements.

In contrast, poor design choices regarding explainability 
(e.g., inadequate information, wrong presentation choices) 
can negatively affect the relationship with the user (e.g., user 
experience issues), interfere with important quality aspects 
for a corporation (e.g., damaging brand image and customer 
loyalty), and bring disadvantages for the project or the sys-
tem (e.g., increasing development costs or hindering system 
performance). This kind of impact may stem from the fact 
that explainability might be seen as an aspect of communi-
cation between systems and humans. Depending on how it 

happens in practice, communication can either strengthen 
or harm relationships.

Research in RE can profit from insights of other disci-
plines when it comes to explainability. The fields of phi-
losophy, psychology, and HCI, for example, have long 
researched aspects such as explanations or human interaction 
with systems (see [78] for research concerning explanations 
in several disciplines). At the same time, requirements engi-
neers can contribute to the field of explainability by studying 
how to include such aspects in systems and adapt develop-
ment processes. This knowledge, scattered among different 
areas of knowledge, must be made available and integrated 
into the development of systems.

To this end, two other additional contributions of this arti-
cle are a conceptual model (Sect. 5) and a knowledge cata-
logue (Sect. 6). Conceptual models are useful to abstract, 
comprehend, and communicate information. Among others, 
our catalogue can serve as checklist during elicitation and 
also during trade-off analysis. It can help software engi-
neers avoid conflicts between quality aspects and choose the 
best strategies for achieving the desired quality outcomes. 
Both artifacts contain information that may be used to turn 
explainability into a positive catalyst for other essential sys-
tem qualities in modern systems.

Building up on this, our reference model (presented in 
Sect. 7) brings together the proposed definition, conceptual 
model, and knowledge catalogue into one artifact. This refer-
ence model is intended to help software engineers develop 
explainable systems by providing them with a guide of the 
main aspects to consider during three key phases of the 
software lifecycle: requirements analysis, design, and eval-
uation. To incorporate explainability into a system, many 
different aspects need to be considered in the software engi-
neering process. For example, the envisioned quality goals, 
the different types of explanation a customer may want, and 
the appropriate form of presentation (audio, text, icon, etc.), 
all of which should be evaluated using appropriate methods 
and metrics. In this regard, the reference model serves as a 
guide to identify the relevant things to consider for develop-
ing explainable systems at each phase in the software engi-
neering process.

Since reference models are usually minimal sets (see 
Sect. 2.2), our proposed reference model can be extended 
and adapted to fit different contexts or as a base for other 
models. In fact, during the process of publishing this 
article, a study was conducted and this reference model 
was expanded and used to build a quality framework for 
explainability. The results were published in a conference 
paper (see [18]). Although this is not a direct evaluation 
of our reference model, it may be seen as an indication 
that such an artifact is promising and can be used as a 
base model that can be extended or as a model template 
for creating other models. In addition, a minimal model 
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implies that these components are essential and should 
not be disregarded.

To check whether our artifacts can be useful for deal-
ing with explainability as an NFR, we compare them with 
the guideline set out by Paech et al. [24]. They proposed 
a list with 20 features that should be covered by methods 
that focus on quality aspects (see [24], Table 1). Taking 
these features into account, our artifacts can support: the 
identification of quality goals (quality aspects that should 
be achieved through explainability), the visualization of 
dependencies between quality aspects and functional 
aspects, the identification of means of implementation, 
the comparison of different design strategies, as well as 
the identification of suitable metrics for evaluation.

Overall, building these artifacts has revealed that there 
is much to do in the field of NFRs. On the one hand, we 
believe that there may be other emerging quality aspects 
besides explainability. Aspects such as human-machine 
cooperation, privacy awareness, and mental-model accu-
racy show that there are specific needs that should be 
better understood when developing modern systems. 
Furthermore, ethics, fairness, and legal compliance are 
all good examples of quality aspects that are gaining in 
importance and should be better researched [149].

On the other hand, we have identified that explainabil-
ity can exhibit an impact on nearly all traditional NFRs 
that can be found in the ISO 25010 [37]: performance, 
efficiency, usability, reliability, security, maintainability, 
and portability. As such, the importance of explainability 
has to be further acknowledged. In this line of thought, 
the impact of other NFRs on explainability should be bet-
ter researched and existing catalogues could be updated 
to incorporate explainability. The RE community needs 
to explore what kind of activities, artifacts, methods, and 
tools need to be incorporated into the software devel-
opment process in order to accommodate the necessary 
steps towards building explainable systems. Our work is 
an essential step in this direction.

9  Limitations and threats to validity

Our work is mostly based on qualitative data analysis. 
Consequently, there is the possibility that the results are 
affected by subjectivity during analysis. Therefore, we 
decided on a multi-method approach to produce results 
that are more robust and compelling than single method 
studies. In what follows, we discuss the main threats to 
validity in each part of our research.

9.1  SLR and coding

The review process assumed a common understanding 
among all researchers involved in this work with respect to 
the search and analysis methods used. Results could be sub-
ject to bias if the methods and concepts are misunderstood. 
We mitigated this threat by elaborating a review protocol and 
discussing it before starting the review to reach a good level 
of shared understanding.

We have formulated inclusion and exclusion criteria 
to reduce biases due to subjective decisions in the selec-
tion process. Some criteria, such as the publication period, 
are objective, while others, focusing on the content of the 
papers, are still subjective.

To decrease the amount of researcher bias, we conducted 
the analysis independently. For both the literature review and 
the coding process, in case of disagreement, the decision on 
inclusion or exclusion (for a paper) or the code assignment 
(for the extracted data) was taken by all researchers and vali-
dated by the Fleiss’ Kappa statistic.

Another limiting factor of our SLR is that it only cov-
ers the period up to March 2020. Explainability is a rapidly 
evolving field of research, especially in recent years, so it is 
not guaranteed that our results will remain up-to-date. To 
counteract this problem at least somewhat, we have used the 
most recent research as a guide when constructing the refer-
ence model. In this regard, there were no problems embed-
ding our results. Moreover, our SLR period already spans 
36 years, during which we have found that similar concepts 
remain steadily in the literature.

9.2  Workshops

There are some threats to validity for the workshops. First, 
some of the homework given to the participants was based 
on the results of our literature review. Accordingly, it could 
be that they were implicitly biased by it.

To prevent such an implicit influence, we removed as 
much additional information from the homework as pos-
sible. Furthermore, we encouraged the experts to think of 
own experiences an be not restrained by the given material.

Furthermore, as the workshops took place online, this 
could be a limiting factor. Here, the homework was aimed at 
getting the experts attuned to the subject matter so that the 
workshops could take place in a focused manner despite the 
online format. Additionally, plenty of breaks and clear tasks 
helped the participants be productive during the workshop.

Finally, the time allotted for each workshop was short, 
at four hours each. However, since we only had three tasks 
for each workshop, this was an acceptable time frame in our 
eyes. This was also confirmed during the workshops, as we 
did not have to cancel any of the tasks due to lack of time.
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9.3  Proposed artifacts

When it comes to our conceptual model and the knowledge 
catalogue, the clustering and categorization of the quality 
aspects into their different dimensions was prone to subjec-
tive judgment. As steps to mitigate this, we rooted this cat-
egorization on well-known concepts present in the literature 
and conducted workshops with experts. This allowed us to 
inspect our clustering through internal and external reviews.

During the internal reviews, the categorization was dis-
cussed among the authors to clarify ambiguities and reach 
agreements. During the external reviews, we compared the 
findings from the literature with expert knowledge. Due to 
these review processes, we are confident to have achieved a 
proper level of validity of the catalogue.

Moreover, as researchers in the field, we are confident 
that both our catalogue and conceptual model are reasonably 
accurate for the field studied, developed over debates that 
formed our shared knowledge on the subject.

The coding and clustering for the reference model was 
also prone to subjective judgment. To mitigate this threat, 
we decreased the amount of researcher bias by conducting 
the analysis (coding and clustering) independently. As we 
did not conduct workshops to validate our findings, we used 
established results from previous work to form our catego-
ries. Furthermore, we illustrated the use of the reference 
model with a running example, showcasing its applicability. 
However, its correctness and realism have not been evalu-
ated and further studies are needed in order to validate the 
model in practice.

10  Conclusion and future work

Explainability is increasingly seen as an appropriate means 
of achieving essential quality aspects in a system, such as 
transparency, accountability, and trust. As building these 
values into our systems becomes more urgent, there is a 
need for tools and methods that help elicit, implement, and 
validate related requirements. For this reason, we should be 
concerned with understanding explainability as a whole: its 
meaning, its effects, its taxonomy. Furthermore, the interplay 
of explainability with increasingly important quality aspects 
such as ethics, greenability, privacy, and trust should also 
be researched.

In this sense, our proposed definition can help to facili-
tate communication and align expectations when referring 
to explainability. Our conceptual model can help profes-
sionals to understand its taxonomy, and our knowledge 
catalogue can help to identify conflicts between explain-
ability and other important qualities. Finally, our suggested 
reference model for explainability can assist software engi-
neers understand the relevant and influential aspects for the 

requirements analysis, design, and evaluation of explainable 
systems. With the support of these artifacts, it is possible to 
think of design strategies and implementation level solutions 
that result in positive effects for all stakeholders involved. 
Overall, we hope that our work lays a foundation for the RE 
community to better understand and investigate the topic of 
explainability.
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