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Abstract
Hyperelasticity is a common modeling approach to reproduce the nonlinear mechanical behavior of rubber materials at 
finite deformations. It is not only employed for stand-alone, purely elastic models but also within more sophisticated frame-
works like viscoelasticity or Mullins-type softening. The choice of an appropriate strain energy function and identification 
of its parameters is of particular importance for reliable simulations of rubber products. The present manuscript provides 
an overview of suitable hyperelastic models to reproduce the isochoric as well as volumetric behavior of nine widely used 
rubber compounds. This necessitates firstly a discussion on the careful preparation of the experimental data. More specific, 
procedures are proposed to properly treat the preload in tensile and compression tests as well as to proof the consistency 
of experimental data from multiple experiments. Moreover, feasible formulations of the cost function for the parameter 
identification in terms of the stress measure, error type as well as order of the residual norm are studied and their effect on 
the fitting results is illustrated. After these preliminaries, invariant-based strain energy functions with decoupled dependen-
cies on all three principal invariants are employed to identify promising models for each compound. Especially, appropriate 
parameter constraints are discussed and the role of the second invariant is analyzed. Thus, this contribution may serve as 
a guideline for the process of experimental characterization, data processing, model selection and parameter identification 
for existing as well as new materials.

1 Introduction

Elasticity describes an idealized mechanical material behav-
ior whose stress response depends only on the current defor-
mation state. Once the external load is removed, the material 
is expected to recover its initial, undeformed configuration 
and to release the entire work done by the external load, i.e., 
no hysteretic effects occur. The concept of hyperelasticity 
ensures such a behavior by defining the material response 
in terms of a potential (commonly called strain energy 
density function W) from which the constitutive equations 
are derived. Thus, a path independent mechanical work is 

guaranteed and the relation between the stress and deforma-
tion tensor is provided by a scalar function that is conveni-
ently to handle. Furthermore, the laws of thermodynamics 
can readily be evaluated and a variational functional for the 
balance of the linear momentum can be formulated. As a 
consequence of these desirable properties, hyperelasticity 
is a common modeling approach in solid mechanics. Espe-
cially materials that can undergo large deformations, like 
elastomers or soft tissues, are typically described by a strain 
energy function.

In the literature, a vast number of strain energy func-
tions have been published, particularly for rubber materials 
at finite strains. However, their validity is rarely tested for 
different rubber types or compounds such that an extensive 
database for a well-founded model selection is missing. 
Moreover, most publications focus on modeling either the 
isochoric response or, less often, the volumetric behavior. 
Also review articles which compile lists and benchmark tests 
of strain energy functions for rubbers are limited to a few 
compounds and often stick to the classical Treloar [95] or 
Kawabata data [56] stemming from sulfur crosslinked natu-
ral and isoprene rubber, respectively. An overview of these 
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articles is given in Tables 1 and 2 including the number of 
considered models, the type of rubber used for fitting as well 
as the objective of the work.

The present manuscript provides a systematic fitting of 
both, isochoric and volumetric hyperelastic models. They are 
fitted to the experimental data of nine different rubber com-
pounds and, thus, an extensive database is established. In 

addition and in contrast to the existing literature, the depend-
ence of the strain energy functions on the first and second 
principal invariant is investigated. Particularly, the role and 
importance of the second principal invariant for rubber 
models is studied in detail. Also, the effects of possible cost 
function formulations on the fitting results are demonstrated, 

Table 1  Review articles on isochoric hyperelastic models for rubber materials (number of models n includes only models for rubbers; CB: car-
bon black, HBNR: hydrogenated nitrile butadiene rubber, NR: natural rubber, S: sulfur, Si: silicone)

Literature n Experimental data Objective

[37] 10 None Deriving a new model
[34] 8 4 S-crosslinked NR from literature Visual comparison, giving attention to small strain behavior, considering 

applicability of Valanis-Landel hypothesis
[103] 5 S-crosslinked NR Discussing the models’ capability and drawbacks, considering also swollen 

rubber, proposing a model extension to improve the fitting at small strain
[13] 8 Treloar data Visual comparison, discussing predictivity to other deformation modes, 

addressing the effects of compressibility
[88] 6 lowly CB-filled HNBR Visual comparison, considering conditioned and unconditioned state, discuss-

ing predictivity to other deformation modes, studying of finite element 
simulations

[96] 45 none Providing list of references
[46] 5 none Discussing behavior at large strains, presenting extensions to thermoelasticity, 

anisotropy and compressibility
[70] 7 Si-rubber Visual comparison and in terms of the correlation coefficient, considering also 

pig muscular tissue
[68] 20 Treloar & Kawabata data Compiling rankings
[47] 25 Treloar data & NR & Si-rubber from  

[71]
Grading of the model performance, deriving a new model

[91] & 
[48]

14 & 11 Treloar data Providing and testing consistent linearizations, discussing performance and 
predictivity to other deformation modes

[11] 25 Treloar data & S-crosslinked NR from 
[104]

Presenting building-strategy for new models

[49] 8 Treloar data Considering micromechanically motivated chain and network models, visual 
comparison, studying predictivity to other deformation modes

[33] 8 Treloar data Developing an application for parameter identification and verification
[74] 12 Treloar data Modeling of nonlinear elasticity using deformation dependent parameters
[22] 44 Treloar & Kawabata data Compiling rankings, discussing alternative cost functions with weights for 

each experiment, presenting a generic fitting algorithm, discussing predictiv-
ity to other deformation modes

[30] 7 2 CB-filled, S-crosslinked NRs Proposing a new model, analyzing temperature dependencies
[41] 75 Treloar data & CB-filled HNBR from 

[45]
Compiling top ten rankings, comparing run time of finite element simulations

Table 2  Review articles on volumetric hyperelastic models (n is the number of models; CB: carbon black, EPDM: ethylene propylene diene rub-
ber, S: sulfur)

Literature n Experimental data Objective

[66] 5 None Discussing constraints on volumetric strain energy functions
[26] 5 None Discussing constraints on volumetric strain energy functions, proposing new models
[38] 10 None Discussing polyconvexity (also for isochoric models), proposing new models
[83] 4 CB-filled, S-crosslinked 

EPDM
Illustrating the effect of CB content, crosslink content and curing time on the bulk modulus
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reasonable constraints on the parameter bounds are recapped 
and crucial model properties are highlighted.

Another difference between the present work and existing 
contributions is that the treatment of the experimental data 
is highlighted. Since an accurate parameter identification 
requires a careful preparation of the raw test data, some com-
mon issues regarding data processing are addressed. On the 
one hand, a physically based approach is outlined to consider 
the preload in biaxial tensile tests as well as compression 
tests. On the other hand, a straightforward method is pro-
posed to check the consistency between data stemming from 
multiple experiments.

The manuscript is organized as follows. First, the theo-
retical foundations are laid in Sect. 2 including continuum 
mechanics, thermodynamics, the experimental setup and 
parameter identification. Next in Sect. 3, the treatment of 
the experimental data is explained. Finally in Sects. 4 and 5, 
the fitting procedure for the isochoric and volumetric strain 
energy functions is outlined, conducted and discussed.

2  Theory of Hyperelasticity 
and Experimental Methods

2.1  Kinematics

To describe the deformation of a solid body, the motion of 
a material point is tracked. Denoting its position in a ref-
erence configuration (typically the undeformed state) and 
the current configuration by X and x(X, t) , respectively, the 
displacement u = x − X is introduced. Then, the deforma-
tion gradient

is computed which is an invertible, two-field tensor. I 
denotes the identity tensor.

Rotational and distortional contributions to the deforma-
tion gradient are separated by the polar decomposition

with the proper orthogonal rotation R and the symmet-
ric right stretch tensor U . Moreover, U can be split into a 
volume-preserving deformation and a pure dilatation rep-
resented by the isochoric (i.e., unimodular) right stretch 
tensor Ū = J−1∕3 U and the volumetric contribution J1∕3 I , 
respectively. Here, J = det(U) denotes the determinant 
of U and measures the local volume change. Note that 
det(F) = det(U) holds true due to the multiplicativity of the 
determinant and det(R) = 1 . The multiplicative decomposi-
tion of the deformation gradient yields

(1)F =
�u

�X
+ I

(2)F = R ⋅ U

The square of U is called right Cauchy-Green tensor

whose principal invariants are

with the trace tr( ⋅ ) , adjugate adj( ⋅ ) = det( ⋅ )( ⋅ )−1 and Frobe-
nius norm ‖ ⋅ ‖ . Accordingly, the square of Ū will be referred 
to as isochoric right Cauchy-Green tensor

and the isochoric principal invariants are defined as

The eigenvalues of U are called principal stretches and 
denoted by �1 , �2 , �3 whereas the eigenvalues of Ū will be 
referred to as isochoric stretches �̄�k = J−1∕3 𝜆k , k = 1, 2, 3 . 
Both stretch tensors (and their squares) share the same eigen-
vectors Gk , viz.,

2.2  Stresses

The Cauchy stress � (also known as true stress) is defined as 
force per unit current area. More precisely, the stress tensor 
relates the normal n of an imaginary cut surface da in the 
current configuration and the resultant force df  acting on the 
cutting surface such that

In contrast, the 1st Piola-Kirchhoff stress P (also known as 
engineering stress) describes the force per unit reference 
area, viz.,

where N and dA are the corresponding normal vector and 
cutting surface in the reference configuration. The 1st Piola-
Kirchhoff stress is a two-field tensor, work-conjugated to the 
material time derivative of the deformation gradient Ḟ and 
linked to the Cauchy stress by

(3)F = R ⋅ Ū J1∕3.

(4)C = U2 = FT
⋅ F

(5)
I1 =tr(C) = ‖F‖2 , I2 = tr(adj(C)) = ‖adj(F)‖2 ,

I3 = det(C) = det(F)2

(6)C̄ = Ū
2
= det(C)−1∕3C

(7)
Ī1 = tr

(
C̄
)
= I

1
I
−1∕3

3
≥ 3 ,

Ī2 = tr
(
adj

(
C̄
))

= tr
(
C̄
−1
)
= I

2
I
−2∕3

3
≥ 3.

(8)U =

3∑
k=1

𝜆k Gk ⊗ Gk , Ū =

3∑
k=1

�̄�k Gk ⊗ Gk.

(9)� ⋅ n =
df

da
.

(10)P ⋅ N =
df

dA
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with the transposed inverse ( ⋅ )−T . The third stress measure 
used in this manuscript is the 2nd Piola-Kirchhoff stress S 
which is work-conjugated to 1∕2 Ċ . It is based in the ref-
erence configuration, lacks a physical meaning and can be 
computed by

The Cauchy stress can be additively decomposed into an iso-
choric (i.e., traceless) and a volumetric contribution �iso and 
�vol , respectively, commonly called deviatoric and hydro-
static stress. They are given by

where p is called hydrostatic pressure. Applying Eq. (12) to 
the deviatoric and hydrostatic Cauchy stress leads to

The stress power per unit reference volume is given by

In analogous manner to the stress, it splits additively into an 
isochoric and a volumetric part, viz.,

where the identity J̇ = J∕2C−1 ∶ Ċ is used.

2.3  Thermodynamics

The second law of thermodynamics for isothermal condi-
tions can be represented via the Clausius-Planck inequality 
per unit reference volume

with the mechanical dissipation rate Dm and the free energy 
per unit reference volume Ψ . For hyperelasticity, the free 
energy is given by a strain energy density function W. 
Assuming that W is defined in terms of the right Cauchy-
Green tensor, the chain rule Ẇ = 𝜕W∕𝜕C ∶ Ċ and Eq. (15) 
can be applied resulting in

Thus, the Clausius-Planck inequality is always fulfilled by 
defining the stress-deformation relation

(11)P = J � ⋅ F−T

(12)S = J F−1
⋅ � ⋅ F−T = F−1

⋅ P.

(13)
�iso =� − �vol and �vol = −p I with

p = −
tr(�)

3

(14)
Siso = S − Svol and Svol = −p J C−1 with p = −

tr(C ⋅ S)

3 J
.

(15)P = S ∶
1

2
Ċ =

1

2
Sij Ċij.

(16)Piso = P − Pvol and Pvol = −p J̇

(17)Dm = P − Ψ̇ ≥ 0

(18)Dm =
(
S − 2

𝜕W

𝜕C

)
∶
1

2
Ċ ≥ 0.

cf. Eq. (12), implying a material behavior free of dissipation, 
i.e., Dm = 0.

2.4  Strain Energy Density Functions and Imposed 
Restrictions

The strain energy functions discussed in this manuscript are 
assumed to be composed of an isochoric part Wiso in terms 
of the isochoric invariants Ī1 , Ī2 and a volumetric part Wvol 
depending on the volume change J, viz.,

Such a separate modeling of the deviatoric and the hydro-
static response is a reasonable and widely used approach for 
nearly incompressible materials like elastomers1. Employing 
Eq. (19)1 with the isochoric-volumetric split of the strain 
energy according to Eq. (20) leads automatically to a decou-
pled stress response, cf. Eq.  (14). With the derivatives 
𝜕Ī1∕𝜕C = dev

(
C̄
)
⋅ C−1 ,  𝜕Ī2∕𝜕C = −dev

(
C̄
−1
)
⋅ C−1 and 

�J∕�C = J∕2C−1 the stress contributions read

where dev( ⋅ ) denotes the traceless part of a tensor, cf. 
App. A for a representation in the current configuration. 
Furthermore, the authors restrict themselves to strain energy 
functions of a fully decoupled form

what is motivated by a separate investigation of the Ī1 - and Ī2
-terms, see Sects. 4.1.1 and 4.1.2 for a detailed explanation.

An alternative form of a decoupled strain energy is 
obtained by defining the isochoric part of Eq. (20) in terms 
of the isochoric stretches �̄�k . To satisfy a priori symmetry 
requirements due to isotropy, the Valanis-Landel assumption 
[97] is employed leading to the form

(19)
S =2

�W

�C
⇒ P = 2F ⋅

�W

�C
,

� =
2

J
F ⋅

�W

�C
⋅ FT ,

(20)W = Wiso

(
Ī1, Ī2

)
+Wvol(J).

(21)
Siso =2 dev

(
𝜕Wiso

𝜕Ī1
C̄ −

𝜕Wiso

𝜕Ī2
C̄
−1

)
⋅ C−1 and

Svol = − pJC−1 with p = −
𝜕Wvol

𝜕J

(22)W = Wiso,1

(
Ī1
)
+Wiso,2

(
Ī2
)
+Wvol(J) ,

(23)Wiso

(
�̄�1, �̄�2, �̄�3

)
=

3∑
k=1

𝜔
(
�̄�k
)

1 Note that the pressure dependent stress response of filled rubbers, 
as shown for instance by [17], can not be captured by a decoupled 
modeling approach.
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such that all three stretches are treated uniformly and sepa-
rately by a scalar function � , cf. [53, 98, 55] for the validity 
and limitations of this assumption regarding experimental 
findings. The corresponding 2nd Piola-Kirchhoff stress is 
obtained as

see for instance [80]. The forms Wiso

(
Ī1, Ī2

)
 and 

Wiso

(
�̄�1, �̄�2, �̄�3

)
 will be referred to as invariant and stretch 

formulation, respectively.
The second law of thermodynamics, cf. Sect. 2.3, does 

not impose any restrictions on the construction of the strain 
energy function. Therefore, many authors discussed require-
ments for an objective, physically plausible and numerically 
desirable material behavior. Objectivity is a very fundamen-
tal demand for material frame indifference, see for instance 
[39]. It is automatically satisfied by an appropriate choice 
of arguments of the strain energy function, e.g., the invari-
ants in Eq. (20) or the eigenvalues in Eq. (23). Physically 
motivated restrictions stem from experimental or empirical 
observations, e.g.,

• Greater stress occurs always in the direction of the 
greater strain, Baker-Ericksen inequalities [5]

• Incremental mechanical work done by external loads 
must be positive, Drucker-Hill postulate [28, 44]

• Tangential shear and bulk modulus must be positive
• Sound speed in a material must be a non-complex num-

ber

These wordings must then be turned into verifiable math-
ematical formulations within the finite strain theory 
and typically lead to constraints on the set of feasible 
parameters. Also constraints when approaching certain 
limits or deformation states, e.g., J → 0 ⇒ W → ∞ or 
W(F = I) = W(F = R) < W(I ≠ F ≠ R) are mostly based 
on physical considerations. On the other hand, numerical 
restrictions demand the existence or even uniqueness of a 
solution in elastostatics. They result for example in

• (Poly)convexity or ellipticity conditions for the strain 
energy function

• Monotonicity, invertibility or growth conditions for the 
stress-strain relation

• Positive definiteness conditions for the material tangent

See for instance [6, 7, 69, 77] for an overview and implica-
tions between these conditions. Since some of the numerical 
restrictions have a direct physical consequence, the bound-
ary between both categories is blurred. Furthermore, a few 
restrictions do not even affect the constitutive equations but 

(24)Siso = dev

(
3∑

k=1

𝜕𝜔

𝜕�̄�k
�̄�k Gk ⊗ Gk

)
⋅ C−1 ,

are reasonable for convenience, e.g., normalization condi-
tions like W(F = I) = 0.

The choice of a suitable restriction depends on the appli-
cation and is often a trade-off between numerical stability 
and the implied limitations. For instance, [55, 9] showed 
experimentally that 𝜕W∕𝜕Ī2 < 0 for small biaxial deforma-
tions of natural rubber. Too strong restrictions can easily 
rule out the capability of a model to reproduce this behavior. 
Moreover, the demand for polyconvexity would preclude a 
priori several Wiso,2-functions from the study in this manu-
script as [38] showed that Ī m

2
 is not a polyconvex term for 

m < 3∕2 . In addition, strict convexity of W(F) is violated in 
the case of buckling or phase transitions. Sects. 4.1.1 and 5 
discuss the restrictions made for each function Wiso,1

(
Ī1
)
 , 

Wiso,2

(
Ī2
)
 and Wvol(J).

2.5  Incompressibility

Nearly incompressible materials like rubbers and fluids are 
characterized by a stress response being much larger for vol-
umetric deformations than for isochoric deformations. Thus, 
the material volume tends to remain nearly constant, viz., 
J ≈ 1 and their Poisson ratio � is close to 0.5. For analytical 
considerations, nearly incompressible materials are often 
assumed to be perfectly incompressible, i.e., J = 1 always 
holds true and � = 0.5 . In this case, the stretch tensor U and 
the isochoric stretch tensor Ū as well as their invariants and 
eigenvalues coincide. Furthermore, the hydrostatic pres-
sure p in Eq. (14) is not given by a constitutive equation as 
in Eq. (21) but is determined by the static equilibrium.

2.6  Deformation Modes for Material 
Characterization

The deformation and stress states of five frequently used 
experiments for the characterization of the mechanical 
material behavior of rubbers are considered in this work: 
uniaxial tension, pure shear (also known as planar tension), 
equibiaxial tension, simple shear and confined compression 
(also known as volumetric compression). These idealized 
deformation modes are illustrated in App. B.

The uniaxial tension, pure shear and equibiaxial tension 
state (denoted by ux, ps and bx) can be derived as special 
cases of the general biaxial deformation mode

where �1 = � denotes the stretch in load direction x. The 
z-direction is considered as stress-free and the correspond-
ing stretch �3 = 1∕(�1�2) follows from the assumption of 
incompressibility. See Table 3 for the lateral stretch �2 in 

(25)F = U = Ū =

⎡⎢⎢⎣

𝜆1 0 0

0 𝜆2 0

0 0 𝜆3 =
1

𝜆1𝜆2

⎤⎥⎥⎦
and R = I
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y-direction, the experimental stress obtained from the meas-
ured force Fx and the hyperelastic model response in each 
deformation mode.

Next, the simple shear test (ss) is introduced with the 
shear strain s, the deformation gradient

and J = 1.
Furthermore, the deformation gradient of the confined 

compression test (cc) reads

(26)
F =

⎡⎢⎢⎣

1 s 0

0 1 0

0 0 1

⎤⎥⎥⎦
=

⎡
⎢⎢⎢⎣

2√
s2+4

s√
s2+4

0

−
s√
s2+4

2√
s2+4

0

0 0 1

⎤
⎥⎥⎥⎦

�����������������������
=R

⋅

⎡
⎢⎢⎢⎣

2√
s2+4

s√
s2+4

0

s√
s2+4

s2+2√
s2+4

0

0 0 1

⎤⎥⎥⎥⎦
�������������������

=U=Ū

where J = � . In case of nearly incompressible materials, 
�xx ≈ �yy = �zz can be observed, i.e., the deviatoric stress 
contribution �iso is negligible such that the approximation 
� ≈ �vol = −pI is valid. Thus, contrary to the biaxial tensile 
and simple shear tests which provide information about the 
isochoric response, the confined compression test reveals the 
volumetric behavior.

2.7  Experiments

Experimental data of nine unfilled rubbers from quasi-
static, uniaxial tensile tests as well as confined compres-
sion tests are employed, see Table 4, Fig. 1 and [84]. The 
uniaxial test data are used for the parameter identification of 

(27)

F = U =

⎡
⎢⎢⎣

𝜆 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

𝜆2∕3 0 0

0 1∕𝜆1∕3 0

0 0 1∕𝜆1∕3

⎤
⎥⎥⎦

���������������������������
=Ū

J1∕3 and R = I

Table 3  Hyperelastic stress response in deformation modes which 
are commonly used for experimental material characterization of rub-
ber materials ( Eux

0
 , Eps

0
 , Ebx

0
 , G0 , M0 and K0 are the initial Young, pure 

shear, equibiaxial, shear, longitudinal and bulk modulus; see App. C 
for the Ī2

(
Ī1

)
-dependencies)

Deformation mode Deformation gra-
dient F

Stress conver-
sion

Invariant-based hyperelasticity Stretch-based hyperelasticity

Incompressible
uniaxial tension (ux)

⎡⎢⎢⎣

� 0 0

0 1∕
√
� 0

0 0 1∕
√
�

⎤⎥⎥⎦

Pxx =
Fx

Ax

�xx = �Pxx

Sxx =
Pxx

�

Ī1 = 𝜆2 +
2

𝜆
Ī2 = 2𝜆 +

1

𝜆2
J = 1

Pxx = 2
(

𝜕W

𝜕Ī1
+

𝜕W

𝜕Ī2

1

𝜆

)(
𝜆 −

1

𝜆2

)

Eux
0

= 6
(

𝜕W

𝜕Ī1
+

𝜕W

𝜕Ī2

)
Ī1=Ī2=3

�̄�1 = 𝜆 �̄�2 = �̄�3 =
1√
𝜆

J = 1

Pxx = 𝜔�(�̄�1) − 𝜔�(�̄�3)
1√
𝜆3

Eux
0

=
3

2

(
��(1) + ���(1)

)

Pure shear (ps)/
incompressible
planar tension

⎡⎢⎢⎣

� 0 0

0 1 0

0 0 1∕�

⎤⎥⎥⎦

Pxx =
Fx

Ax

�xx = �Pxx

Sxx =
Pxx

�

Ī1 = Ī2 = 𝜆2 +
1

𝜆2
+ 1 J = 1

Pxx = 2
(

𝜕W

𝜕Ī1
+

𝜕W

𝜕Ī2

)(
𝜆 −

1

𝜆3

)

E
ps

0
=

4

3
Eux
0

�̄�1 = 𝜆 �̄�2 = 1 �̄�3 =
1

𝜆
J = 1

Pxx = 𝜔�(�̄�1) − 𝜔�(�̄�3)
1

𝜆2

E
ps

0
=

4

3
Eux
0

Incompressible
equibiaxial tension 

(bx)

⎡⎢⎢⎣

� 0 0

0 � 0

0 0 1∕�2

⎤⎥⎥⎦

Pxx =
Fx

Ax

�xx = �Pxx

Sxx =
Pxx

�

Ī1 = 2𝜆2 +
1

𝜆4
Ī2 = 𝜆4 +

2

𝜆2
J = 1
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the Ī1-dependent strain energy functions Wiso,1 in Sect. 4.2, 
whereas the volumetric strain energy functions Wvol are 
assessed with the data from confined compression tests in 
Sect. 5. All experiments were conducted with a Zwick 1445 
universal test machine, cf. Supplementary Fig. 24(a). The 
tensile test procedure is based on the DIN 53504 standard 
(preload: 0.1 N ; displacement rate: 200 mm∕min ; flat, shoul-
dered specimen with 20 mm gauge length; optical strain 
measurement; loading until failure). For the confined com-
pression tests, a tight-fitting, cylindrical specimen (diam-
eter 7.5 mm ; height 10 mm ) is placed in the hole of a thick-
walled metal cylinder. Thus, the lateral strain is suppressed 
when a compressive force is applied and a volume change 
is enforced. The data of both experiments are processed 
according to the procedures in Sect. 3.1 and 3.3, respec-
tively, and afterwards resampled with equidistant strain 

increments of 0.5 % (i.e., Δ� = 0.005 ) to ensure an equal 
weight of all strain regions in the fitting procedure.

Furthermore, the classical Treloar data set [95] comprised 
of uniaxial tension, pure shear and equibiaxial tension data 
of unfilled, sulfur-crosslinked natural rubber, cf. Fig. 2, is 
used for the discussions on Ī2-dependent strain energy func-
tions Wiso,2 in Sect. 4.3. It is processed according to Sect. 3.1 
and its consistency is checked in Sect. 3.2. The choice of 
the Treloar data is explained by means of Supplementary 
Table 11 which lists frequently used experimental data sets 
for benchmarking constitutive models for rubbers (filled, 
thermoplastic and foamed elastomers are excluded since 
they cannot generally be idealized as volume preserving 
or free of dissipation and, hence, conflict with the model 
assumptions of perfect elasticity and incompressibility). 
First, it can be noticed that a lot of publications in the table 
provide general biaxial tension data sets rather than separate 

Table 4  Recipes of the 
investigated rubbers (mass 
fractions are given in parts per 
hundred rubber)

Material Type of rubber Rubber Sulfur
(80 %)

Zinc oxide Stearic acid Peroxide

BIIR+S Bromobutyl 100 2 5 2
BR+S Butadiene 100 2 5 2
CR+P Chloroprene 100 1.96
CR+S Chloroprene 100 2 3 1
IR+S Isoprene 100 2 5 2
NBR+S Nitrile-butadiene 100 2 5 2
NR+S Natural rubber 100 2 5 2
SBR+P Styrene-butadiene 100 2.45
NBR+S Styrene-butadiene 100 2 3 1

Fig. 1  Experimental data from (a) uniaxial tensile and (b) confined compression tests with the rubber materials in Table 4 (data were processed 
according to procedures in Sect. 3.1 and 3.3, respectively; legend in (b) also applies to (a))
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uniaxial, planar and equibiaxial tension data, cf. [52, 53, 
56, 85, 98]. Such data require further discussions which are 
beyond the scope of this work, e.g., how to properly treat the 
second stress value Pyy in the cost function, see Sect. 2.8, 
or how to apply the data preparation and consistency check 
from Sect. 3. Moreover, the listed general biaxial tensile tests 
do not always cover the full range of biaxial deformation 
from uniaxial ( �2 = 1∕

√
�1 ) to equibiaxial tension ( �2 = �1 ) 

at all �1-levels, cf. [53, 85, 98], or the maximum stretch is 
comparatively small. The remaining references often lack 
in detailed information about the experimental procedure 
or present incomplete data sets, i.e., the uniaxial, planar or 
equibiaxial tensile test is missing, cf. [1, 3, 104]. In addition, 
as nearly all data sets in the table are based on similar natural 
rubber compounds with comparable properties, the evalu-
ation of several of these sets would lead to redundant find-
ings. Due to the outlined considerations, the probably most 
frequently used and well established Treloar data are consid-
ered here, see for example [11, 13, 16, 36, 57, 58, 63, 67, 73] 
or Table 1. Although his measurement methods are outdated 
and he did not table the test data, Treloar [95] explained 
in detail his experimental setups and findings. Moreover, 
he presented interesting discussions on the systematic error 
in pure shear experiments, the equivalence of equibiaxial 
tension and uniaxial compression and the need of sample 
preconditioning by comparing the loading and unloading 
curves. Nevertheless, extensive, complete and consistent 
data sets for several rubber compounds from a modern test 
machine and up to large stretches with an analysis of error 
sources are still missing in the literature.

2.8  Parameter Fitting

Parameter fitting (also known as model calibration or param-
eter identification) is an optimization procedure which 
searches for the best parameter set of a material model such 
that the difference between the model response and given 
experimental data is minimal in a certain sense. Here, the 
p-norm of the residual array is minimized leading to the 
cost function

with the residual of the i-th data point (of experiment k 
with mk data points)

where �j , j = 1,… , n are the material parameters. �exp,i 
and Pexp,xx,i are the measured stretch and 1st Piola-Kirch-
hoff stress in direction of tension/compression and sexp,i 
and Pexp,xy,i are the measured shear strain and stress. The 
model response Pmod,xx,i or Pmod,xy,i is computed according 
to Table 3. Common choices for the norm order are p = 1 
(taxicab norm), p = 2 (Euclidean norm) or p = ∞ (maxi-
mum norm), i.e., the mean error, the root mean square error 
(RMSE) or the maximum error are minimized. When mul-
tiple experiments are fitted simultaneously, the cost func-
tion is given by F =

∑
k Fk . In this case, the factor 1∕mk in 

Eq. (28) eliminates a weighting of the experiments due to 
different numbers of data points.

The residual in Eq. (29) is defined in terms of the absolute 
error of the 1st Piola-Kirchhoff stress. Other reasonable error 
types are the relative error

or the normalized error

where the indices xx or xy are omitted for the sake of a more 
general notation. These two residuals scale the error from 
each experiment in order to eliminate a weighting when 
multiple experiments with different stress ranges are fitted, 
see for example the Treloar data in Fig. 2 with a maximum 
uniaxial stress of 6.6 MPa and a maximum equibiaxial stress 
of 2.5 MPa . In addition, the relative error in residual (30) 
gives a higher weight to the range of low stresses than the 

(28)Fk

(
�1,… , �n

)
=

(
1

mk

mk∑
i=1

||ri||p
)1∕p

→ min

(29)

k = ux, ps, bx, cc ∶ ri = Pxx,mod

(
�exp,i, �1,… , �n

)
− Pexp,xx,i

k = ss ∶ ri = Pxy,mod

(
sexp,i, �1,… , �n

)
− Pexp,xy,i

(30)ri =
Pmod − Pexp,i

Pexp,i

(31)ri =
Pmod − Pexp,i

max
|||Pexp,i

|||

Fig. 2  Treloar data [95] with close-up of the small strain regime (data 
were processed according to procedure in Sect. 3.1; ux: uniaxial ten-
sion, ps: pure shear, bx: equibiaxial tension)
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absolute and normalized error but may generate dubious ri 
when dividing by noisy stress values Pexp,i close to zero.

An alternative formulation of the cost function is obtained 
by replacing the 1st Piola-Kirchhoff stress P by the Cauchy 
stress � . For the biaxial tensile tests (ux, ps and bx), this 
is equivalent to multiplying the residual by 𝜆exp,i > 1 , cf. 
Table 3. Thus, it amplifies deviations from large stresses. 
Vice versa, replacing P by the 2nd Piola-Kirchhoff stress S 
leads to a division by �exp,i for these deformation modes and, 
hence, errors at small stress are more penalized. For sim-
ple shear, the 1st Piola-Kirchhoff stress is identical to the 
Cauchy stress Pxy = �xy . Whereas the 2nd Piola-Kirchhoff 
stress obtained from Sxy = Pxy − s Pyy is experimentally 
not accessible since the stress component Pyy is usually not 
measured2. For confined compression, the 1st Piola-Kirch-
hoff stress is equal to the Cauchy stress, too, whereas the 
2nd Piola-Kirchhoff stress scales P by 1∕�exp,i . In Sect. 4.1.3, 
the effects of the norm order, stress measure and error type 
on the fitting result are illustrated so that a reasonable choice 
for the subsequent studies and model comparisons can be 
made.

For the parameter identification, the SciPy optimize 
library is used. The implementation of the hyperelastic mod-
els is done with the Mathematica Add-On AceGen, cf. [62]. 
More precisely, the strain energy function is programmed in 
the symbolic Wolfram language such that the stresses as well 
as the exact Jacobian, i.e., derivative of the stress w.r.t. the 
material parameters are obtained via automatic differentia-
tion. Then, AceGen generates numerically efficient Fortran 
or C subroutines which are callable within the SciPy algo-
rithms, e.g., via the F2PY tool of the NumPy library.

3  Data Preparation

3.1  Preload Correction in Tensile Tests

For tensile tests with flat specimens, a small preload is typi-
cally applied to ensure a plane, non-buckling reference con-
figuration. Moreover, it avoids difficulties for the control-
ler of the test machine when encountering such a possibly 
unstable load state. The preload is ideally chosen as small 
as possible while it concurrently guarantees a straightened 
specimen. This balance may depend on the material’s stiff-
ness, the test machine settings and the specimen clamping, 
e.g., for different loading modes. Thus, no universal, best 

choice exists. Possible preload correction procedures are 
discussed below.

Since the preload leads to a slight stress offset of the 
first data point, many test machines provide an option to 
zero the load cell after applying the preload. As a conse-
quence, the whole stress-strain curve is shifted along the 
stress-axis such that the first data point provides zero stress 
at zero strain. This procedure (hereinafter referred to as ini-
tial stress correction or vertical shifting) is not ideal since 
the preload is actually present and should not be ignored. 
To overcome this drawback, an alternative to the stress cor-
rection is provided. Let us assume that the testing machine 
measures optically the distance in loading direction between 
two reference points on the specimen rather than the dis-
placement of the traverse. The measured length in the cur-
rent state at time ti and in the preloaded reference state are 
denoted by �i and �∗

0
 , respectively, leading to the erroneous 

stretch �∗
i
= �i∕�

∗
0
 . Hence, the initial length �∗

0
 must be cor-

rected because the elongation due to the preload, i.e., the 
prestretch �pre = �

∗
0
∕�0 with the true initial length �0 is not 

captured by the testing machine. This correction does not 
lead to a shifting of the stress-axis but to a scaling of the 
stretch-axis by �pre , viz., the true stretch is obtained by

Therefore, this procedure is referred to as initial stretch cor-
rection or horizontal scaling. In the following, a procedure 
to find a good approximation of �pre is proposed: 

1. Extract the data at small strains. The exact range must 
be checked for each material and deformation mode. For 
the materials depicted in Fig. 1(a), 1 < 𝜆 < 1.1 is a good 
overall choice.

2. Choose an appropriate strain energy function which is 
able to reproduce the small strain behavior well. For 
the unfilled rubbers in Fig. 1(a), a Neo-Hooke approach 
Wiso = c10

(
Ī1 − 3

)
 is sufficient3.

3. Fit the chosen strain energy function to the extracted 
data with a modified stretch input according to Eq. (32). 
That is, �i = �∗

i
�pre where �∗

i
 are the measured stretches 

and �pre is the prestrech which is treated as an additional 
fitting parameter. If data sets from multiple deformation 
modes are available, this fitting should be done for each 
experiment separately.

4. Scale all measured stretches �∗
i
 by the fitted pre-

stretch �pre to obtain the corrected stretches: �i = �∗
i
�pre.

(32)�i = �∗
i
�pre =

�i

�
∗
0

�
∗
0

�0

=
�i

�0

.

2 Note that a simple shear deformation state F = I + s e
x
⊗ e

y
 is 

assumed here which generally does not lead to a simple shear stress 
state � = 𝜎

xy

(
e
x
⊗ e

y
+ e

y
⊗ e

x

)
 , i.e., �

xx
= �

yy
= �

zz
= 0 for finite 

strains, see for instance [93].

3 For highly filled rubbers with a high initial stiff-
ness and pronounced softening at small strains, an expo-
nential A∕B

(
1 − exp

(
−B

(
Ī1 − 3

)))
 or a logarithmic term 

A∕B ln
(
1 + B

(
Ī1 − 3

))
 can be added.
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The proposed procedure is applied to all compounds in 
Fig. 1(a), see Table 6 for the fitted shear moduli G0 = 2 c10 . 
It is illustrated for the CR+S compound in Fig. 3(a). The 
fitted value �pre = 1.051 states that the specimen of this 
compound was prestretched by 5.1 % due to the preload. 
The effect of the initial stretch correction is compared to the 

initial stress correction in Fig. 3(b). The difference between 
both approaches is pronounced particularly at large strains.

Furthermore, Fig. 4 depicts the effect of the initial stretch 
correction on the stress-stretch curves of uniaxial tensile 
tests with the same material but different preloads from 
−0.25 N (i.e., a buckled specimen with an underestimated 
initial length) to 4 N (i.e., a strongly prestretched specimen 
with an overestimated initial length). It can be observed that 
the corrected curves nearly coincide over a large range of 
preloads. Only the stress responses with the negative and 
highest preload deviate slightly at large strains. In contrast, 
the stress correction is not able to reasonably compensate 
the preload dependency as it would lead to a shift of all data 
points by only −0.03… 0.5 MPa ( −0.25… 4 N on a cross 
section area of approx. 2 × 4 mm2 ). The effect would be 
barely visible in the stress-stretch plot. Thus, the presented 
initial stretch correction should be preferred. However, the 
choice of the applied preload is still to be made carefully 
and depends on several factors as outlined at the beginning 
of this section. In general, negative and very large preloads 
should be avoided.

3.2  Consistency Check of Tensile and Shear Tests

Experimental data obtained from uniaxial tensile tests are 
very reliable and reproducible. In contrast, pure shear, equibi-
axial tension and simple shear measurements require more 
difficult, error-prone setups which do not yield exactly the 
desired deformation states. For instance, the pure shear state 

Fig. 3  Procedure of the proposed initial stretch correction for the 
CR+S compound:  (a)  The Neo-Hooke model with the modified 
stretch input according to Eq.  (32) is fitted to the raw data (blue); 
The additional fitting parameter �pre is used to scale the stretch data 
(orange); For illustration, the conventional initial stress correction 

which shifts the data vertically, viz., zeroing the load cell after apply-
ing the preload is depicted as well (green).  (b)  Effect of the initial 
stretch as well as initial stress correction on the whole data range (the 
fitted parameters are �pre = 1.051 , c10 = 0.225)

Fig. 4  Proposed initial stretch correction applied to tensile tests with 
the same material but different preloads: The raw data are plotted as 
dashed lines and, for the sake of readability, with an offset of 10 MPa , 
cf. right axis, whereas the corrected data are given as solid lines
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is commonly obtained from a tensile test using a specimen 
with a high aspect ratio (width to length), cf. Supplementary 
Fig. 24(b). The high aspect ratio minimizes the lateral contrac-
tion but, nevertheless, leads to a non-homogeneous deforma-
tion at the edges. Moreover, this setup requires highly parallel 
and concentric lower and upper clamping as well as specimens 
with a constant thickness over the specimen width. In case of 
equibiaxial tensile tests with a clamping frame as shown in 
Supplementary Fig. 24(c), the friction between the clamps and 
the rails causes an overstiff response. Note also that the simple 
shear deformation given in Eq. (26) is just an idealization of 
the real distortion, especially for large strains.

Due to the variety of errors, experimental data can read-
ily be inconsistent, i.e., the measured response from different 
deformation modes do not comply with theoretical considera-
tions. For invariant- or stretch-based hyperelastic models under 
the assumption of incompressibility, the ratios between the 
initial tangent moduli are fixed and independent of the chosen 
strain energy function:

If the experimental data do not exhibit these ratios, no model 
would be able to reproduce the behavior properly. Therefore, 
it is advisable to check the consistency before running the 
model calibration: 

1. Run the initial stretch correction from Sect. 3.1 for each 
experiment. If an initial stretch correction is not desired 
or needed, run the procedure anyway but keep the pre-
stretch constant �pre = 1 , i.e., the strain energy function 
is fitted to the unmodified data.

(33)
E
ux
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= lim
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dPux
xx

d𝜆
= 6

(
𝜕W

𝜕Ī1
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2. Use the identified parameters of the strain energy func-
tion to compute the initial moduli according to Eq. (33).

3. P r o v e  t h a t   E
ps

0
∕Eux

0
≈ 4∕3  ,  Ebx

0
∕Eux

0
≈ 2 

and Gss
0
∕Eux

0
≈ 1∕3.

For illustration, this procedure is applied to the Treloar 
data in Fig. 2 considering the Neo-Hooke model and the 
strain range 1 < 𝜆 < 1.35 . The fitted initial moduli and 
prestretches are given in Table 5. Both, the initial modu-
lus of the pure shear data as well as the equibiaxial data 
are slightly too stiff but still in good agreement with the 
uniaxial Young’s modulus. Thus, reasonable results can 
be expected when fitting hyperelastic models under the 
assumption of incompressibility.

3.3  Data Processing of Confined Compression Tests

Confined compression tests typically show a too compliant 

behavior at small deformations because the sample diameter 
is slightly less than the bore diameter of the specimen holder. 
When the pressure is applied, the material can expand a bit 
in lateral direction such that initially the response is pre-
dominantly isochoric. Once the nearly incompressible rub-
ber comes into contact with the inner surface of the speci-
men holder, the stress response increases notably due to the 
much stiffer volumetric behavior. Unfortunately, this stress 
upturn is smooth rather than abrupt. Hence, the challenge 
is to find a point that represents this transition in order to 
approximate the specimen height h0 when the volumetric 

Table 5  Initial moduli of the 
Treloar data [95]

Deforma-
tion mode

Initial modulus Ratio to  
E
ux

0

Theoreti-
cal ratio to  
E
ux

0

Ratio to 
E
ps

0
 

Theoreti-
cal ratio to  Eps

0

Prestretch 
�
pre

ux Eux
0

= 1.165 MPa 1.027
ps E

ps

0
= 1.605 MPa 1.378 1.333 1.008

bx Ebx
0

= 2.481 MPa 2.131 2 1.546 1.5 1.008
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deformation begins. A suitable approach is proposed below 
and exemplified in Fig. 5(a) using the IR+S compound. The 
crucial differences to the preload correction in Sect. 3.1 are: 
it is presumed that the applied preload is negligibly small, 
the height of the undeformed specimen h∗

0
 is known and the 

displacement is measured rather than the strain. 

1. Choose a lower pressure bound (e.g., 15 MPa in 
Fig. 5(a)) above which the response can be definitely 
assumed to be volumetric and truncate the data below.

2. Choose an upper bound up to which the volumetric 
response is approximately linear (e.g., 25 MPa).

3. Fit the model p = −K0(J − 1) to this pressure range with 
the constant bulk modulus K0 and a modified input 

Fig. 5  (a) Proposed data processing for confined compression tests 
applied to the IR+S compound: the linear p-J-model with the modi-
fied input according to Eq. (34) is fitted to the data range between 15 

and 25 MPa ; (b) initial shear and bulk moduli according to the proce-
dures in Sect. 3.1 and 3.3, respectively (the + represents moduli from 
two uniaxial tensile tests as well as two confined compression tests)

Table 6  Initial shear moduli G0 and bulk moduli K0 according to the 
procedures in Sect. 3.1 and 3.3, respectively, as well as Poisson ratios 
obtained by �0 =

(
3K0∕G0 − 2

)
∕
(
6K0∕G0 + 2

)
 and measured mass 

densities �0 of the rubbers in Fig. 1 (all values are the average of two 
measurements)

BIIR+S BR+S CR+P CR+S IR+S NBR+S NR+S SBR+P NBR+S

G0 in MPa 0.309 0.472 0.652 0.461 0.260 0.831 0.291 0.410 0.397
K0 in GPa 2.023 1.719 2.091 2.192 1.774 2.074 1.969 1.816 1.926
�0 = 0.499… … 924 … 863 … 844 … 895 … 927 … 800 … 926 … 887 … 897

�0 in g∕mm3 0.960 0.946 1.256 1.273 0.941 1.014 0.949 0.946 0.970
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 where u∗
i
 and ui are the measured and corrected dis-

placement at time ti . Note that the displacement is 
defined to be positive in compression direction. u0 is the 
applied displacement, i.e., the height reduction when 
the specimen comes into contact with the inner surface 
of the specimen holder and the volumetric deformation 
begins. It is considered as an additional fitting parameter 
besides K0.

4. Use the identified u0 to derive the volume change from 
the measured displacement: Ji = 1 − (u∗

i
− u0)∕(h

∗
0
− u0)

.

(34)Ji = 1 −
ui

h0
= 1 −

u∗
i
− u0

h∗
0
− u0

The preload correction is applied to all confined compres-
sion tests from Fig. 1(b), see Table 6 for the fitted bulk mod-
uli K0 . Moreover, the K0 values are plotted against the shear 
moduli G0 from Sect. 3.1 in Fig. 5(b). No correlation between 
the bulk modulus, shear modulus, Poisson ratio or mass den-
sity can be observed. However, the provided initial shear and 
bulk moduli may serve as a data source for future numerical 
work lacking in experimental data and, hence, realistic param-
eter values.

Table 7  Isochoric strain energy functions depending on the first 
invariant (an asterisk * indicates models that were originally defined 
in terms of the first as well as second invariant or principal stretches 

and are reduced by replacing Ī2 → 3 or �̄�
i
→ 1 ; n is the number of 

parameters and the imposed parameter restrictions)

No. Name Literature Strain energy function Wiso,1 n

0 Neo-Hooke [99] Eq. (10) c10
(
Ī1 − 3

)
1

1* Isihara [51] Eq. (25) c10
(
Ī1 − 3

)
+ c20

(
Ī1 − 3

)2 2

2 Knowles [61] Eq. (4.1) G0

2b

((
b

n

(
Ī1 − 3

)
+ 1

)n

− 1
) 2

3 Kilian [59] Eq. (17)
G0

(
−
(
Īm − 3

)
(ln(1 − 𝜂) + 𝜂) −

2

3
a
(

Ī1−3

2

)3∕2)
, 𝜂 =

√
Ī1−3

Īm−3

3 ( ̄Im>3)

4* Swanson [92] Eq. (13) 3

2

m∑
i=1

Ai

𝛼i

��
Ī1∕3

�𝛼i − 1
�
, m = 2

4

5* Edwards & Vilgis [29] Eq. (4.31) Gc

2

(1−𝛼)Ī1

1−𝛼 Ī1
+ ln

(
1 − 𝛼 Ī1

) 2

(0<𝛼<1∕3)
6 bin Othman & Gregory [12] Eq. (10) A

2

(
Ī1 − 3

)
−

C

B2
log

(
B

C

√
Ī1 − 3 + 1

)
+

1

B

√
Ī1 − 3

3

7 Yeoh [102] Eq. (10) c10
(
Ī1 − 3

)
+ c20

(
Ī1 − 3

)2
+ c30

(
Ī1 − 3

)3 3

8* Yamashita & Kawabata [101] Eq. (16) c10
(
Ī1 − 3

)
+

A

𝛼

(
Ī1 − 3

)𝛼 3 ( �≥1)

9 extended Yeoh [103] Eq. (20) c10
(
Ī1 − 3

)
+ c20

(
Ī1 − 3

)2
+ c30

(
Ī1 − 3

)3
+

A

B

(
1 − exp

(
−B

(
Ī1 − 3

))) 5

10 Arruda & Boyce [3] Eq. (15) with series 
expansion Eq. (21)

G

(
1

2

(
Ī
1
− 3

)
+

1

20N

(
Ī
2

1
− 9

)
+

11

1050N2

(
Ī
3

1
− 27

)
+

11

1050N2

(
Ī
3

1
− 27

)

+
19

7000N3

(
Ī
4

1
− 81

)
+

519

673750N4

(
Ī
5

1
− 243

))
2

11 8-chain [3] Eq. (15) with 
approx. by [19] Eq. 
(10)

G
(

1

6

(
Ī1 − 3

)
−

Īm

3
ln
(
1 −

Ī1−3

Īm−3

))
2 ( ̄Im>3)

12 Davies [23] Eq. (22) G

2(1−𝛼)

((
Ī1 − 3 + C

)1−𝛼
− C1−𝛼

)
+ k

(
Ī1 − 3

)2 4

13 Gent [31] Eq. (3) −
G0

2

(
Īm − 3

)
ln
(
1 −

Ī1−3

Īm−3

)
2 ( ̄Im>3)

14* Lion [65] Eq. (4.8a) c10
(
Ī1 − 3

)
+ c50

(
Ī1 − 3

)5 2

15* Yeoh & Fleming [104] Eq. (24) A

B

(
1 − exp

(
−B

(
Ī1 − 3

)))
− c10

(
Īm − 3

)
ln
(
1 −

Ī1−3

Īm−3

)
4 ( ̄Im>3)
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4  Fitting of Isochoric Strain Energy 
Functions

4.1  Preliminaries

4.1.1  Fitting Procedure, Considered Models and Parameter 
Limits

The fitting procedure for the isochoric strain energy is 
divided into two parts. At first, the uniaxial tension data 
of the nine rubbers depicted in Fig. 1(a) are used to iden-
tify promising Ī1-dependent strain energy functions for each 

compound. Thereafter, the best performing Ī1-based models 
are combined with several Ī2-terms and fitted simultaneously 
to the uniaxial tension, pure shear and equibiaxial tension 
data of the natural rubber from Treloar [95]. This separated 
procedure is followed to systematically investigate the role 
of both terms. In particular, the relevance of the second 
invariant is pointed out and conclusions for reliable param-
eter identifications are drawn, see Sect. 4.1.2. Before pre-
senting the fitting results for the Ī1 - and Ī2-terms in Sect. 4.2 
and 4.3, respectively, the chosen residual formulation is dis-
cussed and illustrated in Sect. 4.1.3.

Table 8  Cont.: Isochoric strain energy functions depending on the 
first invariant (an asterisk  * indicates models that were originally 
defined in terms of the first as well as second invariant or principal 
stretches and are reduced by replacing Ī2 → 3 or �̄�

i
→ 1 ; n is the num-

ber of parameters and the imposed parameter restrictions; comments 
on specific models: 17) further terms are omitted since they cannot be 
represented in terms of elementary functions, 22) �1 = 1 is fixed to 
ensure a non-zero initial modulus)

No. Name Literature Strain energy function Wiso,1 n

16 Gregory [35], cf. [94] Eq. (13) A

2(1−𝛼)

((
Ī1 − 3 + C

)1−𝛼
− C1−𝛼

)
+

B

2(1+𝛽)

((
Ī1 − 3 + C

)1+𝛽
− C1+𝛽

)
5

17* Lambert-Diani & Rey [63] Eq. (25) exp (a0)
a1

(
exp

(
a1
(
Ī1 − 3

))
− 1

) 2

18* extended tube [54] Eq. (50) Gc

2

(1−1∕n)(Ī1−3)
1−(Ī1−3)∕n

+ ln
(
1 −

Ī1−3

n

) 2 ( n>0)

19 Boyce & Arruda [13] Eq. (27) 3

2

m∑
i=1

Ai

i

��
Ī1∕3

�i
− 1

�
, m = 4

4

20* Haupt & Sedlan [40] Eq. (62) c10
(
Ī1 − 3

)
+ c30

(
Ī1 − 3

)3 2

21* Hartmann & Neff [38] Eq. (3.4) 𝛼
(
Ī 3
1
− 27

)
+ c10

(
Ī1 − 3

)
2

22* Beda [10] Eq. (27) m∑
i=1

Ai

𝛼i

�
Ī1 − 3

�𝛼i 𝛼1 = 1, m = 2
3 ( �i≥1)

23 Lim [64] Eq. (69) G1

2

(
Ī1 − 3

)
−

G2

2

(
Īm − 3

)
ln
(
1 −

Ī1−3

Īm−3

)
3 ( ̄Im>3)

24 Beatty [8] Eq. (7.2) −
G0 Īm(Īm−3)
2(2 Īm−3)

ln
(

1−(Ī1−3)∕(Īm−3)

1+(Ī1−3)∕Īm

) 2 ( ̄Im>3)

25 Hoss & Marczak [47] Eq. (3) A

2 a

(
1 − exp

(
−a

(
Ī1 − 3

)))
+

B

2b

((
b

n

(
Ī1 − 3

)
+ 1

)n

− 1
) 5

26* Carroll [16] Eq. (19) 3

2

(
A
(
Ī1∕3 − 1

)
+

B

4

((
Ī1∕3

)4
− 1

))
2

27 Dobrynin & Carrillo [25] Eq. (1) G

2

((
Ī1 − 3

)
+

6(Ī1−3)
(𝛽−1)(𝛽 Ī1−3)

) 2 ( 0<𝛽<1)

28 Khajehsaeid [57] Eq. (19) G0

2

(
1

a

(
exp

(
a
(
Ī1 − 3

))
− 1

)
+ b

((
Ī1 − 2

)(
1 − ln

(
Ī1 − 2

))
− 1

)) 3

29* Network averaging tube [58] Eq. (25)
𝜇c𝜅 n ln

�
sin

�
𝜋∕

√
n
�
(Ī1∕3)

q∕2

sin
�
𝜋∕

√
n (Ī1∕3)

q∕2
�
�

3 
( q>0, n>1
)

30* Xiang [100] Eq. (22) Gc n ln
(

3 n+Ī1∕2

3 n−Ī1

)
2 ( n>1)

31* Zhao [105] Eq. (17) A21

(
Ī1 − 3

)
+ A41

(
Ī 2
1
− 9

)
+ A42

(
Ī 2
1
− 9

)2 3

32* simplified tube [81] Eq. (5) Gc

2

Ī1−3

1−(Ī1−3)∕n

2 ( n>0)

33 Fu [30] Eqs. (10)–(11)
G

(
1

2

(
Ī
1
− 3

)
+

1

20N

(
Ī
2

1
− 9

)
+

11

1050N2

(
Ī
3

1
− 27

)
+

19

7000N3

(
Ī
4

1
− 81

)
+

519

673750N4

(
Ī
5

1
− 243

))
+

a

b

(
exp

(
b
(
Ī1 − 3

))
− 1

)
4
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The considered strain energy functions of this study are 
collected from the literature and compiled in Tables 7, 8 and 
9. Note that for models depending on both invariants Ī1 and Ī2 
one of them is formally set equal to 3 to obtain separated for-
mulations (in a similar manner, possible stretch-based terms 
are eliminated by setting all �̄�k = 1 ). That is, some models 
differ from their original formulation (indicated by an aster-
isk * in the tables) and approaches with coupled terms are 
beyond the scope of this work. All strain energy functions 
are proven to satisfy the following requirements:

• For Ī1 - and Ī2-based strain energy functions, the maxi-
mum number of parameters is five and two, respectively.

• A closed-form representation of the strain energy in 
terms of elementary functions must be available. In 
addition, models requiring numerical integration, inter-
nal iterations or other computationally costly aspects 
are excluded as well.

• Only models that are particularly developed for rub-
bers are considered. For instance, some publications 
consider also models for isotropic soft tissues. How-
ever, due to the characteristic tension-compression 
asymmetry of tissues (i.e., the stress response is more 
pronounced under compression than under tension), 
different modeling approaches are necessary, see also 
[75, 15].

The fitting is conducted with the following parameter 
restrictions:

• The initial shear modulus G0 , cf. Eq. (33), must be finite 
(e.g., for the term 

(
Ī1 − 3

)𝛼 , this requirement is fulfilled 
for � ≥ 1)

• For limited stretch models, i.e., models with a pole, the 
singularity is ensured to appear at Ī1 > 3 , Ī2 > 3 (e.g., this 
implies Īm > 3 for the term − ln

(
1 −

(
Ī1 − 3

)
∕
(
Īm − 3

))
).

All remaining material parameters can assume any real 
number. Indeed, these requirements are very generous and 
may lead to numerically undesirable or physically implau-
sible behavior for arbitrary deformation states. However, 
finding suitable parameter bounds for each strain energy 
function is not reasonable for a large number of models. 
It depends on the imposed restrictions, cf. Sect. 2.4, and 
often leads to an optimization problem subjected to addi-
tional constraints. Moreover, promising models can easily 
be overlooked due to too strong constraints. Especially, 
when combining Ī1 - and Ī2-models, parameter limits are 
often too restrictive, e.g., demanding convexity for both 
Wiso,1 and Wiso,2 . Therefore, the results are proven after the 
fitting to fulfill monotonicity conditions, viz., the Cauchy 
stress as well as the 1st Piola-Kirchhoff stress increase 
monotonically in the experimental strain range. A stability 
check beyond the maximum strain of the considered data is 
not taken into account since the specimens are loaded until 
failure. Any discussion on a physical plausible behavior 
beyond the elongation at break is pointless and, for numer-
ical stability, an extrapolation with a constant modulus can 
be implemented.

Table 9  Isochoric strain energy 
functions depending on the 
second invariant (all models 
were originally defined in terms 
of both the first and second 
invariant and are reduced 
by replacing Ī1 → 3 ; n is the 
number of material parameters 
and the imposed parameter 
restrictions; comments on 
specific models: 4) the linear 
term is omitted to obtain a 
two-parameter model, 6) further 
terms are omitted since they 
cannot be represented in terms 
of elementary functions)

No. Name Literature Strain energy function Wiso,2 n

0 No Ī2-dependency – 0 0
1 Mooney-Rivlin [76] Eq. (14) c01

(
Ī2 − 3

)
1

2 Gent & Thomas [32] Eq. (3) 3G2

2
ln
(
Ī2∕3

) 1

3 Klingbeil & Shield [60] Eqs. (4.1), (4.3) & (4.7) 3G2

2m

((
Ī2∕3

)m
− 1

) 2

4 Alexander [1] Eq. (52) G2 𝛾

2
ln
(
(Ī2 − 3)∕𝛾 + 1

) 2

5 Haines & Wilson [36] Eq. (2.1) c01
(
Ī2 − 3

)
+ c02

(
Ī2 − 3

)2 2

6 Lambert-Diani & Rey [63] Eq. (25) G2

2m

(
Ī2 − 3

)m 2 ( m ≥ 1)

7 Chevalier & Marco [18] Eq. (13) c01
(
Ī2 − 3

)
+

3G2

2
ln
(
Ī2∕3

) 2

8 Pucci & Saccomandi [82] Eq. (32) −
G2

2

(
Īm − 3

)
ln
(
1 −

Ī2−3

Īm−3

)
2 ( ̄Im > 3)

9 Hartmann & Neff [38] Eq. (3.4) c01

(
Ī
3∕2

2
− 33∕2

)
1

10 Carroll [16] Eq. (19)
3G2

(√
Ī2∕3 − 1

)
1

11 Mansouri & Darijani [67] Eq. (14) G2

2 a

(
exp

(
a
(
Ī2 − 3

))
− 1

) 2

12 Dal [21] Eqs. (34)2 & (35)2 9

2
G2

(
3

√
Ī2∕3 − 1

)
1
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Demanding monotonicity of the Cauchy stress is a 
fundamental, physically motivated requirement and 
equivalent to satisfying the Baker-Ericksen inequalities (
𝜎i − 𝜎j

)(
𝜆i − 𝜆j

)
> 0 for i ≠ j . Whereas monotonicity 

of the 1st Piola-Kirchhoff stress is a necessary condition 
to ensure a stable material behavior in the sense of Hill 
and  Drucker [44, 28]. That is, the incremental work 
defined by ΔF ⋅ Δu must be positive where Δu is the dis-
placement increment due to the additional external force 
ΔF . For the biaxial deformation states, it is equivalent to 
ΔPxx Δ𝜆 > 0 and for simple shear to ΔPxy Δs > 0 . Note 
that monotonicity of the 1st Piola-Kirchhoff stress implies 
monotonicity of the Cauchy stress.  

4.1.2  Role of the Second Principal Invariant

Many hyperelastic material models are defined in terms 
of the first principal invariant  Ī1 or in terms of the first 
and second principal invariant  Ī1 and  Ī2 , see for instance 
[20] for an overview. The additional dependency on Ī2 , its 
physical meaning and its role within the fitting procedure 
are discussed by many authors. A comprehensive review 
on experimental findings was given by Kawabata & Kawai 
[55]. Assuming incompressibility, they discussed the 
stress dependency (more precisely, the derivatives 𝜕W∕𝜕Ī1 
and 𝜕W∕𝜕Ī2 ) for biaxial deformation modes within the small 
as well as large strain regime and at different temperatures. 
Also the relaxation behavior, the effect of filler and differ-
ent polymers were investigated. In context of construction 
and calibration of strain energy functions, two important 

outcomes are: 𝜕W∕𝜕Ī1 > 𝜕W∕𝜕Ī2 holds true for all deforma-
tions and 𝜕W∕𝜕Ī2 can take negative values at small strains. 
Under the assumption of a simple network,  Kawabata 
& Kawai [55] derived a micromechanical interpretation of 
their observations stating that the Ī1-dependency is ,,related 
primarily to intramolecular forces“ while the Ī2-dependency 
is ”a manifestation of intermolecular interactions“. How-
ever, it can be noticed that physically motivated modeling 
approaches rarely result in a strain energy function in terms 
of the second principal invariant. For instance, so-called tube 
models are typically comprised of a crosslink part defined in 
terms of Ī1 and a stretch-based part accounting additionally 
for chain entanglements, cf. [29, 42].

Destrade et al. [24] discussed the Ī2-dependency based 
on observations from systematic fittings. They stated that 
”the Ī2-dependence is precisely the missing ingredient 
to obtain excellent agreement in the small-to-moderate 
regime“ when fitting the Mooney-Rivlin model to uniaxial 
tension of the Treloar data. Indeed, the stress-strain curve 
is well fitted in the considered strain regime and deforma-
tion mode. However, their parameters lead to c10 < c01 , i.e., 
𝜕W∕𝜕Ī1 < 𝜕W∕𝜕Ī2 what is contrary to the experimental find-
ings explained above. Moreover, these parameters result in 
an overstiff response under equibiaxial tension.

The authors of the present manuscript are of the opinion 
that the ratio between the Ī1 - and Ī2-dependency, i.e., 𝜕W∕𝜕Ī1 
and 𝜕W∕𝜕Ī2 is essential to balance the model response in 
different deformation modes. This interpretation is moti-
vated by the dependence of the stress response on Ī2 for each 

Fig. 6  (Grey lines) Uniaxial (ux) and equibiaxial (bx) data from Tre-
loar [95]; (orange lines) the simplified tube model, cf. Eq. (35), is fit-
ted simultaneously to ux and bx data; (blue lines) the model is fitted 
only to the ux data and predicts the response to the bx deformation; 

(red lines) the simplified tube model without the Ī2-term is fitted 
simultaneously to ux and bx data; (green lines) the model without the 
Ī2-term is fitted only to the ux data and predicts the response to the bx 
deformation



2273Systematic Fitting and Comparison of Hyperelastic Continuum Models for Elastomers  

1 3

deformation mode in Table 3. On the one hand, compared 
to the 𝜕W∕𝜕Ī1-contribution, the 𝜕W∕𝜕Ī2-term in the con-
stitutive equation is scaled by 1∕𝜆 < 1 for uniaxial tension 
and by 𝜆2 > 1 for equibiaxial tension, whereas the 𝜕W∕𝜕Ī1 - 
and 𝜕W∕𝜕Ī2-term are weighted equally for simple and pure 
shear. On the other hand, it should be noted that for these 
four deformation modes Ī1 and Ī2 are not independent of each 
other, see App. C for the Ī2

(
Ī1
)
-dependencies. In particular, 

the relations Ī1 > Ī2 for uniaxial tension, Ī1 < Ī2 for equibi-
axial tension and Ī1 = Ī2 for simple as well as pure shear can 
be shown. That is, uniaxial tension is primarily driven by Ī1 
and equibiaxial tension by Ī2 whereas the shear deformations 
are equally affected by both invariants. As a consequence of 
this predetermined weighting between the Ī1 - and Ī2-contri-
bution in different deformation modes, test data from only 
one experiment is insufficient for the calibration of models 
with Ī1 - and Ī2-dependency because a plausible extrapolation 
to other deformation modes cannot be guaranteed.

This conclusion should not be taken as a drawback of 
invariant-based models compared with stretch-based models. 
In fact, leaving out the Ī2-dependency when fitting to only 
one deformation mode is a possibility to avoid unforeseen 
behavior in the other deformation modes. In contrast, there 
is no straightforward method for stretch-based models to 
ensure in advance a reasonable behavior for other deforma-
tion modes. This is due to the fact that both terms 𝜔�(�̄�1) 
and 𝜔�(�̄�3) always appear in the constitutive equations, cf. 
Table 3.

To illustrate the considerations regarding the Ī2-depend-
ency, the simplified tube model by [81]

is employed with Gc , Ge and n being the crosslink modulus, 
entanglement modulus and elastically active chain length, 
respectively. It depends on both principal invariants and is 

(35)Wiso

�
Ī1, Ī2

�
=

Gc

2

Ī1 − 3

1 −
Ī1−3

n

+ 3Ge

⎛⎜⎜⎝

�
Ī2

3
− 1

⎞⎟⎟⎠

Fig. 7  Effect of the stress measure in the cost function on the fit-
ting result: all three figures show the same data using different 
stress measures (a) Cauchy stress, (b) 1st Piola-Kirchhoff stress, (c) 

2nd Piola-Kichhoff stress (the black solid lines are the experimental 
data from the CR+S compound; PK: Piola-Kirchhoff)

Fig. 8  Effect of the norm order p in the cost function on the fitting 
result (the black solid line is the experimental data from the CR+S 
compound)
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calibrated on the Treloar data (with an Euclidean norm, nor-
malized error, 1st Piola-Kirchhoff stress) in four different 
ways, see Fig. 6. First, the model is fitted to the uniaxial as 
well as equibiaxial data. Then, only the uniaxial data are 
considered for the parameter identification and the calibrated 
model is used to predict the equibiaxial response. After-
wards, this procedure is repeated with Ge = 0 such that the Ī2
-dependency is turned off. It can be observed that the model 
with Ī2-dependency is generally able to fit the uniaxial and 
equibiaxial data very well. When the equibiaxial data are not 
considered for the model calibration, the uniaxial fit at small 
strains ( 𝜆 < 4 ) improves. However, the equibiaxial response 
is drastically overestimated. In contrast, the model without Ī2
-dependency cannot capture both deformation modes simul-
taneously since the ratio between the model’s response under 
uniaxial tension and equibiaxial tension is fixed and does not 
match with the experimental data. Thereby, the equibiaxial 
prediction is less random and still acceptable compared to 
the prediction with both Ī1 - and Ī2-dependency. A similar 
finding was described by Seibert & Schöche [88] who attest 
”pure Ī1-dependent formulations [...] the best predictive 
properties of multiaxial deformation states when the mate-
rial parameters were determined on the basis of uniaxial 
data“ only. Also Boyce & Arruda [13] studied the predictive 
capability of hyperelastic models and observed that ”strain 
energy expressions which contain the second invariant [...], 
Ī2 , should be used with caution; forms such as the Mooney-
Rivlin model are found to be overly stiff in certain types of 
deformation“.

4.1.3  Effect of the Stress Measure, Norm Order and Error 
Type in the Cost Function

As mentioned in Sect. 2.8, there are several ways to define 
the cost function for the fitting procedure. To illustrate the 
effect of different stress measures and norm orders, the 
8-chain model by [3] with the inverse Langevin function 
approximation by [19] is fitted to the data of the CR+S com-
pound. Furthermore, to illustrate the influence of the error 
types, the Treloar data [95] are employed.

Fig. 7 shows the influence of the stress measure on the 
fitting result. As explained in Sect. 2.8, different stress 
measures emphasize different sections of the stress-strain 
curve. The optimization w.r.t. the Cauchy stress leads to the 
smallest deviations at large stretches ( 𝜆 > 7.5 ) whereas the 
2nd Piola-Kirchhoff stress provides the smallest errors in 
the range 1.75 < 𝜆 < 6.5 . The 1st Piola-Kirchhoff stress is a 
tradeoff with a stress-strain curve in between. Note that this 
and the following effects can be more or less pronounced 
depending on the experimental data and the model capabil-
ity, e.g., a perfectly fitting model would be unaffected by the 
definition of the cost function.

In Fig. 8, the order of the p-norm in the cost function 
Eq. (28) is varied. The taxicab norm with p = 1 optimizes 
the mean absolute error, i.e., high deviations at large strains 
can be compensated by a good fit at low strains. In contrast, 
the maximum norm ( p = ∞ ) takes only the maximum error 
of the whole strain range into account. As a consequence, 
the deviations of the stress response at very larges stretches 
( 𝜆 > 9.5 ) are much lower in exchange for a worsened fit 
at 𝜆 < 7 . The result with the Euclidean norm ( p = 2 ) is a 

Fig. 9  Effect of the error type in the cost function on the fitting result (the black solid lines are the experimental data from Treloar [95])
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Fig. 10  Fitting results for the BIIR+S compound: (a) ranking sorted by RMSE, (b) stress-stretch curve of the best performing models with five, 
four, three and two parameters (experimental data are shown as grey, solid line; number of parameters is given in brackets)

Fig. 11  Fitting results for the BR+S compound: (a) ranking sorted by RMSE, (b) stress-stretch curve of the best performing models with five, 
four, three and two parameters (experimental data are shown as grey, solid line; number of parameters is given in brackets)
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Fig. 12  Fitting results for the CR+P compound: (a) ranking sorted by RMSE, (b) stress-stretch curve of the best performing models with five, 
four, three and two parameters (experimental data are shown as grey, solid line; number of parameters is given in brackets)

Fig. 13  Fitting results for the CR+S compound: (a) ranking sorted by RMSE, (b) stress-stretch curve of the best performing models with five, 
four, three and two parameters (experimental data are shown as grey, solid line; number of parameters is given in brackets)
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Fig. 14  Fitting results for the IR+S compound: (a) ranking sorted by RMSE, (b) stress-stretch curve of the best performing models with five, 
four, three and two parameters (experimental data are shown as grey, solid line; number of parameters is given in brackets)

Fig. 15  Fitting results for the NBR+S compound: (a) ranking sorted by RMSE, (b) stress-stretch curve of the best performing models with five, 
four, three and two parameters (experimental data are shown as grey, solid line; number of parameters is given in brackets)
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Fig. 16  Fitting results for the NR+S compound: (a) ranking sorted by RMSE, (b) stress-stretch curve of the best performing models with five, 
four, three and two parameters (experimental data are shown as grey, solid line; number of parameters is given in brackets)

Fig. 17  Fitting results for the SBR+P compound: (a) ranking sorted by RMSE, (b) stress-stretch curve of the best performing models with five, 
four, three and two parameters (experimental data are shown as grey, solid line; number of parameters is given in brackets)
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compromise with a slight bias towards the result obtained 
with p = 1.

Finally, the effect of the error type in the residual is shown 
in Fig. 9. Here, the 8-chain model is simultaneously fitted 
to all three deformation modes of the Treloar data using an 
absolute, normalized and relative error, cf. Eqs. (29)–(31). 
In general, it can be observed that the chosen model is not 
able to capture the stress response of the three experiments 
simultaneously, see also Sect. 4.1.2. More specific, the uni-
axial response tends to be overestimated and the equibiax-
ial response underestimated. Using an absolute error, the 
fit to the uniaxial tensile test is slightly better than for the 
other error types, especially for 𝜆 > 2 , but at the expense 
of the goodness of fit to the equibiaxial data. Vice versa, 
the relative error leads to better results for the equibiaxial 
experiment but worse results for the uniaxial one, see expla-
nation in Sect. 2.8. Moreover, it improves the results for 
small strains ( 𝜆 < 1.5 ) of all deformation modes. The result 
obtained with the normalized error lies in between the other 
results. Note that, if one compares the effect of the error 
type by means of only one experiment, the absolute error 
and normalized error would coincide.

In summary, the formulation of the cost function has an 
essential influence on the rankings in the subsequent sec-
tions. Therefore, this choice must be made carefully. In the 
present manuscript, the

• Euclidean norm
• Normalized error
• 1st Piola-Kirchhoff stress

are preferred and employed in all parameter optimizations 
and numerical investigations due to the following reasons. 
The Euclidean norm leads to a least square problem for 
which many specialized, efficient algorithms exist. Moreo-
ver, many statistical measures are based on the squared error, 
e.g., the coefficient of determination. The normalized error 
gives an equal weight to all deformation modes and does not 
overemphasize small stresses from very low and possibly 
noisy forces. The 1st Piola-Kirchhoff stress scales linearly 
w.r.t. the measured forces and does not need a conversion 
based on the strain measurement or assumption of perfect 
incompressibility. Thus, it allows a direct interpretation 
when testing or simulating the forces on the final rubber 
product. Furthermore, in contrast to the 2nd Piola-Kirchhoff 
stress, it is readily accessible for all deformation modes and 
does not lack of a physical meaning. Unlike the Cauchy 
stress, it does not give too much weight to the large strain 
regime which is of lower importance for most engineering 
applications.

4.2  Fitting of Ī
1
‑Dependent Strain Energy Functions

The fitting results of the strain energy functions depend-
ing only on Ī1 , cf. Tables 7 and 8, are given as bar charts in 

Fig. 18  Fitting results for the SBR+S compound: (a) ranking sorted by RMSE, (b) stress-stretch curve of the best performing models with five, 
four, three and two parameters (experimental data are shown as grey, solid line; number of parameters is given in brackets)



2280 A. Ricker, P. Wriggers 

1 3

Figs. 10(a), 11(a), 12(a), 13(a), 14(a), 15(a), 16(a), 17(a) and 
18(a). They show the root mean square error as well as the 
maximum error relative to the Neo-Hooke model for each 
compound. In addition, the stress-stretch plot of the best 
performing models with two, three, four and five parameters 
are given in Figs. 10(b), 11(b), 12(b), 13(b), 14(b), 15(b), 
16(b), 17(b) and 18(b). These models are chosen for plotting 
rather than the overall top three models since the stress-
stretch curves of the best ranked models nearly coincide for 
the most compounds and are hardly distinguishable.

Comparing the most promising candidates for each com-
pound, it can be observed that there is not a best model 
which is generally applicable to all rubbers. However, count-
ing the top three appearances, there are some strain energy 
functions with a high potential: the network averaging tube 
[58], Gregory [35], Beda [10], extended Yeoh [103] and 
Hoss and Marczak [47] model. The first one is a physically 
motivated model with only three parameters. It ranks first 
for two materials (BIIR+S, IR+S) and provides only for the 
CR+S compound unsatisfying results. In contrast, the others 
are phenomenological models with five parameters show-
ing acceptable results for all compounds. However, for each 
material, there exist four- or three-parameter strain energy 
functions with a fitting quality nearly as good as the afore-
mentioned ones. In general, models with a lower number of 
parameters are preferable to avoid overparametrization. That 

is, they are prone to non-sensitive, non-unique and numeri-
cally undesirable parameters with a strong dependence on 
the initial guess, high correlations and a large number of 
iterations within in the fitting procedure.

Even models with two parameters are acceptable for some 
compounds. For example, they are suitable for materials that 
can stand comparatively low strains and exhibit no upturn, 
e.g., the peroxide-crosslinked rubbers. For the CR+P com-
pound in Fig. 12, yet the Neo-Hooke model can be reason-
able. Furthermore, the response of some sulfur-crosslinked 
compounds with large strains and a pronounced upturn can 
be captured acceptably with only two parameters, e.g., the 
BIIR+S, CR+S, NBR+S and SBR+S compound. Notably, 
in the authors’ opinion, the stress-strain curves of these 
materials do not have any obvious property in common.

Looking into more detail for the sulfur-crosslinked com-
pounds, two frequent shortcomings even of top-ranked 
models can be noticed. On the one hand, models typically 
fail to fit accurately the concave shape at small to moderate 
strains leading to an underestimation of the stress response 
in this region, see for instance Fig. 15(b). On the other hand, 
the material behavior close to the maximum strain is not 
reproduced properly by numerous models, e.g., the Swanson 
model in Fig. 14(b). Hence, the maximum error usually lies 
either in that small to moderate strain region or close to the 
failure strain. Since rubber parts are rarely designed for large 
deformations close to failure and the sample variance is high 
at very large strains, the former is considered as more criti-
cal. As discussed in Sect. 4.1.3, a residual with a 2nd Piola-
Kirchhoff stress or a relative error can ease the shortcoming 
in the small strain regime to some extent.

The ”a posteriori“ check of monotonicity conditions, as 
discussed in Sect. 4.1.1, is passed by all strain energy func-
tions except the extended Yeoh model. It violates monoto-
nicity of the 1st Piola-Kirchhoff stress when calibrated for 
the IR+S compound. This issue is due to its exponential 
term, cf. Table 7, which is responsible for the good fit of the 
aforementioned concave shape. However, the exponential 
reduces faster than the polynomial terms increase such that 
the stress-stretch curve temporarily shows a slightly negative 
slope when changing from the concave to convex curvature.

4.3  Fitting of Ī
2
‑Dependent Strain Energy Functions

For the identification of promising Ī2-dependent strain 
energy functions, the natural rubber from Treloar [95] is 
used since experimental data from multiple biaxial ten-
sile tests are needed, cf. Sect. 4.1.2. First, all Ī1-models 
from Tables 7 and 8 were fitted only to the uniaxial Tre-
loar data to identify the best performing two-, three- and 
four-parameter Ī1-model. These are the strain energy func-
tions by Xiang et al. [100], Khiêm & Itskov [58] and Yeoh 
& Fleming [104] which show a very similar goodness of 

Fig. 19  Fitting of the best performing two-, three- and four-parameter 
Ī1-model to the uniaxial tension data by Treloar [95] and their predic-
tions for pure shear and equibiaxial tension (the stresses of the predic-
tions are shifted by 1 and 2 MPa , respectively, for the sake of read-
ability)
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fit, cf. Fig. 19 for the resulting stress-strain curves. Each 
of the three Ī1-models is then combined with all Ī2-models 
from Table 9.

The results are depicted in Fig. 20. The additional Ī2
-dependency improves the fitting quality significantly for 
all three considered Ī1-models. However, the degree of 
improvement depends on the combination of the Ī1 - and Ī2-
parts. For example, the Ī1-model by Xiang et al. [100] almost 
always achieves the smallest improvement whereas the Net-
work averaging tube model [58] benefits strongly from all 

Ī2-parts. Only when combined with the Alexander model, 
the Xiang model shows the largest improvement. Since such 
interdependencies between the Ī1 - and Ī2-parts can hardly 
be foreseen, general conclusions for all Ī1-Ī2-combinations 
must be made carefully. More precisely, it is also possible 
that an Ī1-model which performs poorly on its own may show 
great results with highly different parameter values when 
combined with a proper Ī2-part.

Fig. 20  a Ranking of the Ī2-dependent strain energy functions for the 
Treloar data [95] (number of parameters is given in brackets); fitting 
of the best performing one- and two-parameter Ī2-model as well as 

the Ī2-independent approach combined with the best ranked Ī1-models 
with b two, c three and c four parameters
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Another desirable feature of the Ī2-models is the improved 
fit of the concave shape at low to moderate strains ( 𝜆 < 2 ) of 
the uniaxial fits, cf. Fig. 19 and Sect. 4.2. This shortcoming 
is largely compensated when a Ī2-part is added, cf. green and 
orange lines in Figs. 20(b-d). In case of the Yeoh & Fleming 
Ī1-model, this effect can lead to anomalous parameters in 
the exponential term (i.e., negative B or large A, cf. Table 7) 
since this term is already designed to reproduce the behavior 
in this strain regime and, hence, loses its original purpose.

For all Ī1-models, the Ī2-part by Chevalier & Marco 
[18] provides the best improvement, followed by the 
Klingbeil & Shield approach [60]. Both strain energy 
functions require two additional parameters. For the lat-
ter, the exponent m determines whether Wiso,2 is a con-
cave ( m ≤ 1 ) or convex ( m ≥ 1 ) function. This parameter 
is fitted to m = 0.46 (Xiang), m = 0.60 (Network averag-
ing tube) and m = 0.48 (Yeoh & Fleming), i.e., Wiso,2 is 
always concave. The two best performing one-parameter 
Ī2-models are special cases of this approach with m = 1∕2 
[16] and m = 1∕3 [21] and, hence, concave functions, 
too. Furthermore, the aforementioned, top-ranked model 
by Chevalier & Marco [18] is concave as it is the sum of 
the two special cases m = 1 (Mooney-Rivlin, linear) and 
m → 0 (Gent & Thomas, concave). Interestingly, these two 
cases on their own show only moderate results. Hartmann 
& Neff [38] introduced the exponent m = 3∕2 to ensure 
polyconvexity for all deformation states but at the expense 
of fitting quality. In case of the Mansouri & Darijani model 

[67], the parameter a was fitted to small negative values 
(order of magnitude −10−3 ) implying slight concavity of 
Wiso,2 . Also, c02 of the Haines & Wilson model [36] was 
optimized to small negative values ( −10−6 ) resulting in 
a negligibly concave Ī2-part. The exponent of the Lam-
bert-Diani & Rey model [63] tends to the lower bound 
m → 1 , i.e., it reduces from a strictly convex function to 
the linear Mooney-Rivlin approach. Apparently, a con-
cave Ī2-dependency is essential for a good fit to several 
deformation modes. To prove this conclusion, the model 
Wiso = c10

((
Ī1∕3

)m1 − 1
)
+ c01

((
Ī2∕3

)m2 − 1
)
 , cf. [92], with 

a symmetric dependency on Ī1 and Ī2 was fitted to all three 
deformation modes of the Treloar data. The optimized 
parameters fulfill c10 > 0 , m1 > 1 , c01 > 0 , 0 < m2 < 1 , i.e., 
a convex Ī1 - and a concave Ī2-dependency.

The section closes with a comparison of the invariant-
based models in Figs. 20(b-d) to the widely used, stretch-
based Ogden model [78], viz.,

cf. Eq. (23). Implementations with two, three and four terms 
( n = 2, 3, 4 ), i.e., four, six and eight parameters are consid-
ered. The fitting results in Fig. 21 reveal that at least three 
terms are needed for an accurate fit. Comparing the three- 
and four-term implementation, both exhibit similar stress 
responses for equibiaxial tension and pure shear. Only for 
the uniaxial load case at moderate strains ( 2 < 𝜆 < 4 ) and 
at very large strains ( 𝜆 > 7.5 ), the model with four terms 
is superior. However, the four-term implementation with 
eight parameters shows signs of overparametrization, e.g., 
non-reproducible results from different initial guesses. In 
contrast, all model combinations in Figs. 20(b-d) with both 
Ī1 - and Ī2-dependency can reproduce the experiments over 
the full strain range in all three deformation modes with less 
and unique material parameters. For instance, the Yeoh & 
Fleming model combined with the Chevalier & Marco Ī2
-term requires six parameters and the combination of the 
Xiang with the Carroll model leads to only three parameters 
in total.

5  Fitting of Volumetric Strain Energy 
Functions

The fitting of volumetric strain energy functions Wvol is more 
straightforward than the calibration of the isochoric models 
in the previous section. Due to the nearly linear material 
behavior, i.e., slightly convex pressure-volume curves, cf. 
Fig. 1(b), most of the models in the literature have one or 
two parameters. Moreover, Wvol is a function of only one 
argument J. That allows, in contrast to the isochoric strain 

(36)𝜔
(
�̄�k
)
=

n∑
i=1

2𝜇i

𝛼 2
i

(
�̄�
𝛼i
k
− 1

)
,

Fig. 21  Fitting of the Ogden model with two, three and four terms to 
the Treloar data [95] (number of parameters is given in brackets)
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energy functions, a simple ”a priori“ imposition of reason-
able parameter limits. In total, 23 models were found in the 
literature, cf. [84], but only nine of them, cf. Table 10, fulfill 
the following requirements:

• Strict convexity, i.e., a positive bulk modulus (even for 
J → ∞ ): K = 𝜕2Wvol∕𝜕J

2 > 0

• Non-finite response when approaching zero volume: 
J → 0 ⇒ Wvol → ∞

• Stress-free state at undeformed configuration: 
J = 1 ⇒ �Wvol∕�J = 0 (implies that if Wvol is strict con-
vex, then J = 1 is its global minimum)

• Maximum two parameters

Although it violates the second requirement, the widely used 
strain energy with a constant bulk modulus is taken as refer-
ence. For the two-parameter models, a lower bound for the 
second parameter � , cf. Table 10, is prescribed to ensure 
that the aforementioned restrictions are always fulfilled. 
It is worth mentioning that the first three requirements are 
numerically motivated rather than physically. More specific, 
the validity of the considered models is bounded on the one 
hand by cavitation damage which can be observed for J > 1 , 
see for instance [27]. On the other hand, hydrostatic com-
pression ( J < 1 ) can lead to pressure-induced glass transi-
tion [17]. Both phenomena cause a significant change of the 
material properties and cannot be captured by the models. 
Hence, a discussion for J → ∞ or J → 0 is actually meaning-
less from a physical point of view. Moreover, if cavitation 

Fig. 22  Fitting results for the IR+S compound:  (a)  ranking sorted 
by RMSE, (b) pressure-volume curve of the best performing models 
with two and one parameters as well as the reference model with a 

constant bulk modulus (experimental data are shown as grey, solid 
line; the number of parameters is given in brackets)

Table 10  Volumetric strain 
energy functions (n is the 
number of material parameters 
with restrictions on the second 
parameter � ; the initial bulk 
modulus K0 must be positive 
for all models; comments 
on specific models: 6) both 
citations originally present 
three-parameter strain energy 
functions which are reduced 
here to the same two-parameter 
model, see also [83, 87])

No. Name Literature Strain energy function Wvol n

0 Const. K − K0

2
(J − 1)2 1

1 Ogden [79] Eq. (25) K0

�2

(
−� ln(J) + J� − 1

) 2 ( � ≥ 2)

2 Simo & Taylor I [89] Eq. (29) K0

4

(
ln(J)2 + (J − 1)2

) 1

3 Simo & Taylor II [90] Eq. (4.34)2
K0

4

(
−2 ln(J) + J2 − 1

) 1

4 Ansys [2] Eq. (4.5–4) K0

32

(
J4 +

1

J4
− 2

)
1

5 Doll & Schweizerhof [26] Eq. (16)1
K0

2
(exp(J − 1) − ln(J) − 1) 1

6 Doll/Schröder [26] Eq. (13)/
[86] Eq. (3.33)2

K0

2 �2

(
J� +

1

J�
− 2

)
2 ( � ≥ 2)

7 Schröder & Neff [86] Eq. (3.33)5
K0

12

(
4 ln(J)2 − 2 ln(J) + J2 − 1

) 1

8 Hartmann & Neff [38] Eq. (3.2) K0

50

(
J5 +

1

J5
− 2

)
1

9 Neff [77] Eq. (1.4)2
K0

2 �

(
exp

(
� ln(J)2

)
− 1

) 2 ( � ≥ 1)
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damage is to be modeled, the strict convexity requirement 
can be violated and has to be abandoned.

The results are very similar for all compounds. Therefore, 
they are exemplified by means of the IR+S compound in 
Fig. 22 and those for the remaining materials are given in 
App. E. For all materials, the two-parameter models by Doll 
& Schweizerhof [26]/Schröder & Neff [86] and Neff et al. 
[77] show the best results. However, for both models, the 
second parameter � takes large values ( 𝛽 > 18 for Doll/
Schröder and 𝛽 > 57 for Neff, cf. Table 10). Since this 
parameter appears in the exponent and adjusts the curva-
ture of the pressure-volume curve, it can readily affect the 
stability of finite element simulations. Hence, specialized 
elements are required, see for instance [87]. The third two-
parameter model by Ogden [79] reduces for all materials to 
the Simo & Taylor II model with the limiting case � → 2 . 
Here, greater �-values would generate a less convex or even 
concave curvature of the pressure-volume curve.

The one-parameter models fail to reproduce the curvature 
of the experimental data and show moderate fitting quality. 
For instance, the top-ranked Ansys model [2] and Hartmann & 
Neff model [38] are special cases of the Doll/Schröder model 
by fixing the second parameter. However, the fixed �-values 
are too small to properly reproduce the experimental data 
(fixed � = 4 and � = 5 vs. fitted � = 18… 42 ). In general, the 
gain in fitting quality of the one-parameter models in compari-
son to the reference approach with a constant bulk modulus 
is comparatively small. Hence, in practice, the possibly lit-
tle improvement of the fit must be weighted up against the 
numerical robustness of a constant bulk modulus. Moreover, 
the confined compression test is always subjected to friction, 
cf. [83, 50], such that the modulus and the curvature of the 
experimental pressure-volume curve tend to be overestimated.

6  Conclusion

The present manuscript provides a guideline for the pro-
cess of model selection and calibration of hyperelastic 
models for rubber materials. For this purpose, the paper 
begins with a discussion on crucial aspects of the prepara-
tion of the experimental data. That includes the proposi-
tion of physically motivated procedures for the preload 
correction in tensile and compression tests. Moreover, a 
consistency check for multiple experiments in different 
deformation modes is derived. It was shown that the pre-
sented preload correction is a suitable approach to com-
pensate an improper preload. The consistency check was 
applied to the widely used Treloar data [95] proving a 
good agreement between its uniaxial tensile, pure shear 
and equibiaxial tensile test.

Then, the importance of the Ī2-contribution to the strain 
energy function for an accurate and plausible model behavior 

in several deformation modes is pointed out and illustrated. 
However, models depending on both Ī1 and Ī2 show a lim-
ited predictivity to other deformation modes when fitted to 
only one experiment. Furthermore, the effect of different 
cost function formulations (i.e., stress measure, error type 
and order of the residual norm) on the fitting result is dem-
onstrated. This choice can strongly affect the fitting results 
and cause different rankings. It allows to design tailor-made 
cost functions which emphasize particular strain regimes or 
deformation modes.

Based on this preliminary work, 33 strain energy func-
tions in terms of Ī1 were fitted to uniaxial tension data of nine 
different rubber compounds. The models with the largest 
number of material parameters are able to reproduce the 
stress response of most of the materials, e.g., the extended 
Yeoh [103], Beda [10], Gregory [35] or Hoss & Marczak 
[47] model with five parameters each. However, they often 
tend to numerically undesirable parameters and a slow opti-
mization procedure. In contrast, strain energy functions 
with three or four parameters, like the network average tube 
model [58], show satisfying results for specific compounds 
but are less generally applicable. Two-parameter models pro-
vide acceptable fittings for the two peroxide cross-linked 
rubbers, which exhibit the smallest elongation at break, and 
for a few of the sulfur cross-linked compounds.

For the identification of promising Ī2-based strain energy 
functions, the Treloar data were considered. The best-
performing one-, two and three-parameter Ī1-model were 
combined with twelve Ī2-approaches. It was observed that 
concave Ī2-dependent strain energy functions with a mod-
erate curvature are well suited to improve the goodness of 
fit, e.g., the Chevalier & Marco [18] or Carroll model [16] 
with two and one parameter, respectively. More precisely, 
the additional Ī2-dependency is able to balance the stress 
response of different deformation modes and can compen-
sate shortcomings of a pure Ī1-dependency. However, since 
the test framework considers those Ī1-models which perform 
already well on their own, these findings do not allow gen-
eral statements about preferable Ī2-approaches.

Finally, modeling approaches for the volumetric behavior 
were analyzed. For this purpose, nine strain energy functions 
are fitted to the confined compression data of the nine above-
mentioned rubber compounds. In contrast to the stress-strain 
curves of the uniaxial tensile test, the pressure-volume curves of 
all materials are very similar. Hence, suitable volumetric strain 
energy functions are ranked similarly, too. Clearly, the two-
parameter models Doll/Schröder [26, 86] and Neff [77] provide 
the best results. However, their pronounced non-linearity may 
lead to additional numerical challenges.

For future work, an expansion of the presented database 
is reasonable. More precisely, up-to-date data sets com-
prised of uniaxial tensile, pure shear and equibiaxial ten-
sile tests on several compounds are desirable. This would 
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allow well-founded investigations of further Ī1-Ī2 model 
combinations, of coupled Ī1-Ī2-terms and of stretch-based 
models. Alternatively, general biaxial tension data could be 
employed for these purposes. In that case, discussions on the 
preparation and on the consistency check of the data as well 
as on the treatment of two stress values in the cost function 
are necessary. Furthermore, the accuracy and error sources 
of the biaxial experimental setup should be assessed.
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