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Keywords: supergravity; off-shell formulation; matter couplings; supercovariant tensor calculus;
invariant actions; BRST transformations

1. Introduction

In the basic formulation [1,2] of pure D = 4, N = 1 supergravity, the commutator
algebra of local symmetry transformations closes only on-shell. This complicates various
computations, such as the construction of couplings of the supergravity multiplet (i.e.,
the supersymmetry multiplet with the vierbein and the gravitino) to matter multiplets, of
locally supersymmetric invariants with higher derivatives and of Faddeev–Popov terms.
Fortunately, there are off-shell formulations of the theory with auxiliary fields that close
the algebra of local symmetry transformations off-shell.

The best-known off-shell formulations of pure D = 4, N = 1 supergravity are the
so-called old minimal formulation [3,4] and the so-called new minimal formulation [5]. The
auxiliary fields of the new minimal supergravity multiplet are a real 2-form gauge potential
and a real vector field which is the gauge field of local R-transformations (“R-gauge field”).
This auxiliary field content of new minimal supergravity hinders the algebraic elimination
of the auxiliary fields because the equations of motion for these fields only contain the field
strengths of the 2-form gauge potential and of the R-gauge field, i.e., derivatives of the
auxiliary fields.

The subject of this article is an off-shell formulation [6,7] of D = 4, N = 1 supergravity
which overcomes this obstacle of new minimal supergravity. This formulation is a con-
sistent deformation of new minimal supergravity coupled to an abelian gauge multiplet
wherein the 2-form gauge potential mutates into an ordinary auxiliary field without gauge
degrees of freedom and the R-gauge field mutates from an auxiliary field into a physical
gauge field. The physical fields of the supergravity multiplet of this formulation are the
vierbein, the R-gauge field, the gravitino and a spin-1/2 field, the auxiliary fields are a
real antisymmetric two-component tensor field without gauge degrees of freedom and a
real scalar field. This supergravity multiplet, according to the usual counting, has off-shell
16 bosonic degrees of freedom (6 from the vierbein, 3 from the R-gauge field, 6 from the
auxiliary antisymmetric tensor field, 1 from the auxiliary scalar field) and 16 fermionic
degrees of freedom (12 from the gravitino, 4 from the spin-1/2 field), and on-shell 4 bosonic
degrees of freedom (from the vierbein and the R-gauge field) and 4 fermionic degrees of
freedom (from the gravitino and the spin-1/2 field). Elimination of the auxiliary fields
provides a supergravity model as in [8] with gauged R-symmetry and spontaneously
broken supersymmetry. A similar model has been found recently in [9].
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In [6,7], it was noted already that the coupling of the supergravity multiplet to other
supersymmetry multiplets (“matter multiplets”) is analogous to the coupling of the new
minimal supergravity multiplet to these multiplets. However, details were not given. The
present paper is committed to providing these details and elaborating on related features
of the theory. In Section 2, the model of [6,7] is revisited. In Section 3, a supercovariant
tensor calculus is presented and the symmetry transformations of the component fields
of matter multiplets are given explicitly as nilpotent Becchi–Rouet–Stora–Tyutin (BRST)
transformations. In Section 4, locally supersymmetric actions for the matter multiplets are
constructed and the elimination of the auxiliary fields is discussed. Section 5 contains a
brief discussion of the results.

The conventions used here are the same as in [10] and differ from those of [11] basically
only in the choice of the Minkowski metric which is ηab ∼ (1,−1,−1,−1). In particular,
spinors are Weyl spinors in the van der Waerden notation. Throughout the paper, the
component formalism of supergravity is used. Superfields and superspace techniques are
not used at all. Instead, BRST techniques are used which are briefly recapitulated in the
Appendixes A and B.

2. Supergravity Multiplet and Its Lagrangian

Our starting point is the deformation [6,7] of new minimal supergravity coupled to an
abelian gauge multiplet. The fields of that supergravity model are the components fields
of the new minimal supergravity multiplet which are the vierbein eµ

a, the gravitino ψµ,

a real 2-form gauge potential with components tµν = −tνµ and a real R-gauge field A(r)
µ ,

and the component fields of the abelian gauge multiplet which are a real gauge field Aµ,
a complex spinor field λ and an auxiliary real scalar field D. The Lagrangian LSG for these
fields derived in [6,7] reads:

LSG = M2
PlL1 + g−2

0 L2 + g2L3 (1)

L1/e = 1
2 R− 2εµνρσ(ψµσν∇ρψ̄σ + c.c.)− 3Hµ Hµ − 2εµνρσ A(r)

µ ∂νtρσ (2)

L2/e = − 1
4 (Fµν + g1tµν)(Fµν + g1tµν) + 1

2 D2 − 1
8 g1

2

+ 3
2 λσµλ̄ Hµ − 1

2 [iλσµ∇µλ̄ + ig1ψµσµλ̄

+εµνρσ(Fµν + g1tµν)ψρσσλ̄− 2ψµσµνψνλ̄λ̄ + c.c.] (3)

L3/e = D + λσµψ̄µ + ψµσµλ̄ + εµνρσ(Aµ∂νtρσ +
1
4 g1tµνtρσ) (4)

where

e = det(eµ
a) (5)

εµνρσ = eµ
aeν

beρ
ceσ

dεabcd (6)

R = 2eν
aeµ

b(∂[µων]
ab −ω[µ

caων]c
b) (7)

Hµ = εµνρσ( 1
2 ∂νtρσ + iψνσρψ̄σ) (8)

Fµν = 2(∂[µ Aν] + iλσ[µψ̄ν] + iψ[µσν]λ̄) (9)

∇µψν = ∂µψν − 1
2 ωµ

abψνσab − iA(r)
µ ψν (10)

∇µλ = ∂µλ− 1
2 ωµ

abλσab − iA(r)
µ λ (11)

ωµ
ab = eνaeρb(ω[µν]ρ −ω[νρ]µ + ω[ρµ]ν) (12)

ω[µν]ρ = eρa∂[µeν]
a − iψµσρψ̄ν + iψνσρψ̄µ. (13)

MPl , g0, g1 und g2 are real coupling constants. eµ
a denotes the inverse vierbein fulfilling

eµ
aeν

a = δ
µ
ν , eµ

beµ
a = δa

b .
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The three contributions L1, L2 and L3 to the Lagrangian (1) are separately invariant
up to a total divergence, respectively, under general coordinate transformations, local su-
persymmetry transformations, local Lorentz transformations, local R-transformations and
local gauge transformations of tµν and Aµ. The local supersymmetry transformations and
the gauge transformations of tµν and Aµ are, written as part ŝ of the BRST transformations
of these fields:

ŝeµ
a = 2i(ξσaψ̄µ − ψµσa ξ̄) (14)

ŝψµ = ∂µξ − 1
2 ωµ

abξσab − iA(r)
µ ξ − iξHµ − iξσµνHν (15)

ŝtµν = 2∂[νQµ] − 2i(ξσ[µψ̄ν] + ψ[µσν] ξ̄) (16)

ŝA(r)
µ = ξσµS̄ + Sσµ ξ̄ (17)

ŝAµ = ∂µC− iξσµλ̄ + iλσµ ξ̄ + g1Qµ (18)

ŝλ = ξ( 1
2 g1 − iD)− ξσµν(Fµν + g1tµν) (19)

ŝD = ξσµ
[
∇µλ̄− ψ̄µ(iD + 1

2 g1)− σ̄νρψ̄µ(Fνρ + g1tνρ) +
3i
2 λ̄Hµ

]
+ c.c. (20)

where S in (17) is the spin- 1
2 portion of the supercovariant gravitino field strength,

S = 2(∇µψν)σ
µν + 3i

2 ψµHµ, S̄ = −2σ̄µν∇µψ̄ν − 3i
2 ψ̄µ Hµ. (21)

ξα are ghosts of local supersymmetry transformations, Qµ are ghosts of reducible gauge
transformations of tµν and C is a ghost of local gauge transformations of Aµ.

The Lagrangian (1) and the symmetry transformations given above are deformations
of the Lagrangian and symmetry transformations of new minimal supergravity coupled to
Aµ, λ and D with deformation parameters g1 and g2. Only the symmetry transformations
of Aµ, λ and D are deformed by the g1-dependent terms in (18)–(20).

Now, a first observation is that the dependence on g1 of the symmetry transformations
can be completely removed by the following rescalings of fields:

A′µ = g−1
1 Aµ, λ′ = g−1

1 λ, D′ = g−1
1 D, C′ = g−1

1 C. (22)

A second observation is that for g1 6= 0 the Lagrangian (1), up to a total divergence,
and the symmetry transformations depend on tµν and Aµ only via the combination

bµν = tµν + ∂µ A′ν − ∂ν A′µ (23)

because A′µ does not contribute to Hµ when Hµ is written in terms of bµν and the terms in
L3 depending on tµν are equal to 1

4 g1eεµνρσbµνbρσ up to a total divergence. Redefining also
the deformation parameters as

g′1 = (g1/g0)
2, g′2 = g1g2 (24)

the Lagrangian (1) can for g1 6= 0 be written, up to a total divergence, as

LSG = M2
PlL1 + g′1L′2 + g′2L′3 (25)

L1/e = 1
2 R− 2εµνρσ(ψµσν∇ρψ̄σ + c.c.)− 3HµHµ − 2εµνρσ A(r)

µ ∂νbρσ (26)

L′2/e = − 1
4 bµνbµν + 1

2 D′2 − 1
8 + 3

2 λ′σµλ̄′Hµ + 2(λ′σ[µψ̄ν])(ψ
µσνλ̄′)

− 1
2 (iλ

′σµ∇µλ̄′ + iψµσµλ̄′ + 2ibµνψµσνλ̄′ + εµνρσbµν ψρσσλ̄′

+ψµσµνψνλ̄′λ̄′ − 3
2 ψµψµλ̄′λ̄′ + c.c.) (27)

L′3/e = D′ + λ′σµψ̄µ + ψµσµλ̄′ + 1
4 εµνρσbµνbρσ (28)
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with Hµ now defined in terms of bµν according to

Hµ = εµνρσ( 1
2 ∂νbρσ + iψνσρψ̄σ). (29)

The fields in the Lagrangian (25) are the vierbein eµ
a, the gravitino ψµ, the R-gauge

field A(r)
µ , the spin-1/2 field λ′ and the auxiliary fields bµν and D′. The complete BRST

transformations of these fields are:

seµ
a = Cν∂νeµ

a + (∂µCν)eν
a + Cb

aeµ
b + 2i(ξσaψ̄µ − ψµσa ξ̄) (30)

sψµ = Cν∂νψµ + (∂µCν)ψν +
1
2 Cabψµσab + iC(r)ψµ

+∂µξ − 1
2 ωµ

abξσab − iA(r)
µ ξ − iξHµ − iξσµνHν (31)

sA(r)
µ = Cν∂ν A(r)

µ + (∂µCν)A(r)
ν + ∂µC(r) + ξσµS̄ + Sσµ ξ̄ (32)

sλ′ = Cµ∂µλ′ + 1
2 Cabλ′σab + iC(r)λ′ + ξ( 1

2 − iD′)− ξσµνbµν (33)

sbµν = Cρ∂ρbµν + 2bρ[ν∂µ]C
ρ − 2i

(
∂[µ[ξσν]λ̄

′] + ξσ[µψ̄ν] − c.c.
)

(34)

sD′ = Cµ∂µD′ +
(

ξσµ[∇µλ̄′ − ψ̄µ(
1
2 + iD′)− σ̄νρψ̄µbνρ +

3i
2 λ̄′Hµ] + c.c.

)
(35)

where S and S̄ are as in (21) with Hµ as in (29). Cµ are ghosts of general coordinate
transformations, Cab = −Cba are ghosts of local Lorentz transformations and C(r) is a ghost
of local R-transformations. The ghosts Cµ, Cab and C(r) are real and Graßmann odd, the
supersymmetry ghosts ξα are complex and Graßmann even, with ξ̄ α̇ denoting the complex
conjugate of ξα. The BRST transformations of the ghosts are

sCµ = Cν∂νCµ + 2iξσµ ξ̄ (36)

sξ = Cµ∂µξ + 1
2 Cabξσab + iC(r)ξ − 2iξσµ ξ̄ ψµ (37)

sCab = Cµ∂µCab + CcaCc
b − 2iξσµ ξ̄ ωµ

ab + 2iεabcdξσc ξ̄ Hd (38)

sC(r) = Cµ∂µC(r) − 2iξσµ ξ̄ A(r)
µ . (39)

In the BRST transformations (30) through (39), all spinor fields have upper spinor indices.
These transformations are strictly nilpotent off-shell (s2 = 0), i.e., the algebra of the
corresponding local symmetry transformations closes off-shell. The three portions L1, L′2,
L′3 of the Lagrangian (25) are separately invariant up to a total divergence, respectively,
under the BRST transformations (30) through (35) as these portions arise from L1, L2, L3,
respectively. The gauge field Aµ and the ghosts Qµ and C have completely disappeared
from the theory, along with the corresponding gauge symmetries. We shall use this
formulation in the following analysis. Of course, one can return to the formulation with
Lagrangian (1) by undoing the field redefinitions (22) and (23).

The Lagrangian (25) is quite similar to the one given in Equations (4.16) and (4.17)
of [9]. Apart from different conventions, (25) differs from Equations (4.16) and (4.17) of [9]
in the use of bµν instead of its supercovariant counterpart Bab given below in Equation (43).
Furthermore, (25) differs from Equations (4.16) and (4.17) of [9] by the term 3

2 λ′σµλ̄′Hµ in
(27) (and possibly by some 4-fermion terms which are hard to check). The term 3

2 λ′σµλ̄′Hµ

is needed in order that (27) is invariant off-shell up to a total divergence under the BRST
transformations (30) through (35) and is present already in the undeformed model (i.e., for
g1 = 0); in fact, such a term occurs also in Equations (5.8) and (5.9) of [12] where it is present
in iλ̄ /̂Dλ, cf. Equations (2.2) and (2.1) of [12]. It is an open issue whether this difference
between (25) and Equations (4.16) and (4.17) of [9] is significant or resolvable, for instance
by field redefinitions (It is not evident whether or not such field redefinitions exist. For
instance, a redefinition Ã(r)

µ = A(r)
µ − 3

8 M−2
Pl g′1λ′σµλ̄′ of the R-gauge field removes the term

3
2 λ′σµλ̄′Hµ from (25) but introduces a 4-fermion coupling proportional to λ′λ′λ̄′λ̄′ which
apparently has no counterpart in Equations (4.16) and (4.17) of [9]).
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3. Matter Multiplets and Supercovariant Tensor Calculus

In order to couple matter multiplets to the supergravity multiplet and to construct
supersymmetric actions for these multiplets, we use a supercovariant tensor calculus. The
calculus comprises supercovariant derivatives Da, spinorial anti-derivations Dα, D̄α̇ and
generators δI of a structure group which are realized on supercovariant tensors (see below)
and fulfill the graded commutator algebra

[DA,DB} = −TAB
CDC − FAB

IδI , [δI ,DA] = −gIA
BDB, [δI , δJ ] = f I J

KδK (40)

where the index A of DA runs over Lorentz vector indices a and spinor indices α, α̇.
[DA,DB} denotes the commutator [DA,DB] if A or B is a Lorentz vector index and the
anticommutator {DA,DB} if both A and B are spinor indices. The f I J

K denote struc-
ture constants of the Lie algebra G of the structure group which is the direct sum of the
Lorentz algebra and a further reductive Lie algebra which at least comprises the generator
δ(r) of R-transformations and may comprise further generators δi of a Yang-Mills gauge
group with or without abelian factors. Denoting the generators of the Lorentz algebra by
lab = −lba, we have

{DA} = {Da,Dα, D̄α̇}, {δI} = {lab, δ(r), δi}.

The sum over indices of G is defined with a factor 1/2 for the Lorentz generators,
such as

FAB
IδI =

1
2 FAB

ablab + FAB
(r)δ(r) + FAB

iδi

and the sum over indices A, B, . . . is defined with upper first spinor index, such as

TAB
CDC = TAB

cDc + TAB
γDγ + TAB

γ̇D̄γ̇.

gIA
B are the entries of a matrix gI which represents δI on the DA. The only nonvanish-

ing gIA
B occur for δI ∈ {lab, δ(r)} with

[lab,Dc] = ηbcDa − ηacDb, [lab,Dα] = −σabα
βDβ, [lab, D̄α̇] = σ̄ab

β̇
α̇D̄β̇ (41)

[δ(r),Da] = 0, [δ(r),Dα] = −iDα, [δ(r), D̄α̇] = iD̄α̇. (42)

The matter multiplets treated here are chiral multiplets [13], super-Yang–Mills multi-
plets (in WZ gauge) [14–16] and linear multiplets [17]. The component fields of the chiral
multiplets are denoted by φm, χm

α , Fm and their complex conjugates φ̄m̄, χ̄m̄
α̇ , F̄m̄ where φm,

Fm are complex scalar fields and χm are complex spinor fields. The component fields of the
super-Yang–Mills multiplets are denoted by Ai

µ, λi
α, λ̄i

α̇, Di where Ai
µ are real gauge fields,

Di are real scalar fields, λi are complex spinor fields and λ̄i is the complex conjugate of λi.
The component fields of the linear multiplets are denoted by ϕM, AM

µν, ψM
α , ψ̄M

α̇ where ϕM

are real scalar fields, AM
µν = −AM

νµ are real components of 2-form gauge potentials, ψM are
complex spinor fields and ψ̄M is the complex conjugate of ψM.

The supercovariant tensors, which the supercovariant algebra (40) is realized on, are
φm, χm, Fm, φ̄m̄, χ̄m̄, F̄m̄, λi, λ̄i, Di, ϕM, ψM, ψ̄M, λ′, λ̄′, Bab, D′, Ha = eµ

aHµ, Tab
α, T̄ab

α̇,
Fab

I , LM
a and supercovariant derivatives of these tensors, with Hµ as in (29) and Bab, Tab

α,
T̄ab

α̇, Fab
I and LM

a given by:
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Bab = eµ
aeν

b(bµν + 2iλ′σ[µψ̄ν] + 2iψ[µσν]λ̄
′) (43)

Tab
α = 2eµ

aeν
b(∇[µψν] − iH[µψν] + iHρψ[µσν]ρ)

α (44)

T̄ab
α̇ = 2eµ

aeν
b(∇[µψ̄ν] + iH[µψ̄ν] + iHρσ̄ρ[µψ̄ν])

α̇ (45)

Fab
cd = 2eµ

aeν
b[∂[µων]

cd −ω[µ
ecων]e

d + iψ[µ(σν]T̄
cd − 2σ[cT̄d]

ν])

+i(Tcdσ[µ + 2T[c
[µσd])ψ̄ν] − 2iψ[µσeψ̄ν]ε

cd
e f H f ] (46)

Fab
(r) = 2eµ

aeν
b(∂[µ A(r)

ν]
− ψ[µσν]S̄ + Sσ[µψ̄ν]) (47)

Fab
i = 2eµ

aeν
b(∂[µ Ai

ν] +
1
2 f jk

i Aj
µ Ak

ν + iψ[µσν]λ̄
i + iλiσ[µψ̄ν]) (48)

LM
a = eµaεµνρσ( 1

2 ∂ν AM
ρσ − ψνσρσψM + ψ̄Mσ̄ρσψ̄ν − 2iϕMψνσρψ̄σ) + 2ϕM Ha

= eµaεµνρσ( 1
2 ∂ν AM

ρσ + ϕM∂νbρσ − ψνσρσψM + ψ̄Mσ̄ρσψ̄ν). (49)

δ(r) is represented on supercovariant tensors according to Table 1 where rm are real
constants (“R-charges” of the φm). For the respective complex conjugate supercovariant
tensors, we have δ(r)Φ̄ = δ(r)Φ where Φ̄ denotes the complex conjugate of Φ, and δ(r)Φ
denotes the complex conjugate of δ(r)Φ. Real supercovariant tensors, such as Di, ϕM, Bab,
D′, Fab

I and LM
a , have vanishing R-transformation.

Table 1. R-transformations.

Φ φm χm Fm λi ψM λ′ Tab
α

δ(r)Φ irmφm i(rm − 1)χm i(rm − 2)Fm iλi −iψM iλ′ iTab
α

Dα is realized on supercovariant tensors according to Table 2 with (in the last row)
Tαa

β, Fαα̇
cd and Faα

cd as in Equations (52), (54) and (55), respectively.
Sα and S̄α̇ are as in (21) and are the spin-1/2 parts of Tab

α and T̄ab
α̇:

Sα = Tab
βσab

β
α, S̄α̇ = −σ̄abα̇

β̇T̄ab
β̇. (50)

D̄α̇ is obtained from Dα by complex conjugation, using

D̄α̇T̄ = (−)|T |DαT

where |T | denotes the Graßmann parity of T .
The nonvanishing TAB

C and FAB
I in (40) are Tab

α, Tab
α̇ = −T̄ab

α̇ and Fab
I given in

Equations (44) through (48), and the TAB
C and FAB

I are given by

Tαβ̇
c = Tβ̇α

c = 2iσc
αβ̇

(51)

Tαb
γ = −Tbα

γ = −iδγ
α Hb + iHcσcbα

γ (52)

Tα̇b
γ̇ = −Tbα̇

γ̇ = iδγ̇
α̇ Hb + iHcσ̄cb

γ̇
α̇ (53)

Fαβ̇
cd = Fβ̇α

cd = 2iεabcdσaαβ̇Hb (54)

Fαb
cd = −Fbα

cd = −iT̄cdα̇σb αα̇ + 2iσ[c
αα̇T̄d]

b
α̇ (55)

Fα̇b
cd = −Fbα̇

cd = iTcdασb αα̇ − 2iσ[c
αα̇Td]

b
α (56)

Fαb
(r) = −Fbα

(r) = σbαα̇S̄α̇ (57)

Fα̇b
(r) = −Fbα̇

(r) = σbαα̇Sα (58)

Fαb
i = −Fbα

i = −iσbαα̇λ̄iα̇ (59)

Fα̇b
i = −Fbα̇

i = iσbαα̇λiα. (60)
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Table 2. Dα-transformations.

Φ DαΦ
φm χm

α
χm

β εβαFm

Fm 0
φ̄m 0
χ̄m

α̇ −2iDαα̇φ̄m

F̄m (2iDαα̇ + Hαα̇)χ̄mα̇ − 4(λi
αδi − iSαδ(r))φ̄

m

λiβ −iδβ
α Di − σab

α
βFab

i

λ̄iα̇ 0
Di (Dαα̇ +

3i
2 Hαα̇)λ̄iα̇

Fab
i −2iD[aλ̄iα̇σb]αα̇ + H[aσb]αα̇λ̄iα̇ − iεabcd Hcσd

αα̇λ̄iα̇

ϕM ψM
α

ψM
β 0

ψ̄M
α̇ −iDαα̇ ϕM − LM

αα̇

LM
a 2iσabα

βDbψM
β + 1

2 ψM
α Ha

λ′β δ
β
α (

1
2 − iD′)− σab

α
βBab

λ̄′α̇ 0
D′ (Dαα̇ +

3i
2 Hαα̇)λ̄′α̇

Bab −2iD[aλ̄′α̇σb]αα̇ + H[aσb]αα̇λ̄′α̇ − iεabcdHcσd
αα̇λ̄′α̇

Ha i
2 εabcdσbαα̇T̄cd

α̇

Fab
(r) 2D[aS̄α̇σb]αα̇ + iH[aσb]αα̇S̄α̇ + εabcdHcσd

αα̇S̄α̇

Tab
β −iδβ

α (Fab
(r) + 2D[aHb])− 1

2 Fab
cdσcdα

β

−iDaHcσbcα
β + iDb Hcσacα

β − 3HcH[aσbc]α
β

T̄ab
α̇ 0

Fab
cd −2D[aFb]α

cd + 2Tα[a
βFb]β

cd + T̄ab
α̇Fαα̇

cd

The supercovariant derivative Da is defined on supercovariant tensors T according to

DaT = eµ
a(∂µ − 1

2 ωµ
ablab − A(r)

µ δ(r) − Ai
µδi − ψα

µDα + ψ̄α̇
µD̄α̇)T . (61)

DaHa and DaLM
a fulfill the identities

Da Ha = 0, DaLM
a = 2HaDa ϕM − iSψM + iψ̄MS̄. (62)

D[aBcd] and Ha are related by

D[aBbc] =
1
3 εabcdHd + iT[abσc]λ̄

′ − iλ′σ[aT̄bc]. (63)

For later purposes, we remark that−iS plays the role of the gaugino of R-transformations,
cf. Equations (58) and (60), and that one has

DαSβ = δ
β
α (− 1

4 Fab
ba + 3

2 Ha Ha)− iFab
(r)σab

α
β (64)

which shows that − 1
4 Fab

ba + 3
2 Ha Ha plays the role of the D-field of R-transformations.

The BRST transformation sT of a supercovariant tensor T is

sT = (Cµ∂µ + ξαDα + ξ̄ α̇D̄α̇ + CIδI)T = (ξ̂ADA + ĈIδI)T (65)
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wherein Ci are ghosts of Yang–Mills gauge transformations and ξ̂A and ĈI are “covariant
ghosts” given by

ξ̂a = Cµeµ
a, ξ̂α = ξα + Cµψα

µ, ξ̂ α̇ = ξ̄ α̇ − Cµψ̄α̇
µ (66)

Ĉab = Cab + Cµωµ
ab, Ĉ(r) = C(r) + Cµ A(r)

µ , Ĉi = Ci + Cµ Ai
µ. (67)

The BRST transformations of Ai
µ and AM

µν are

sAi
µ = Cν∂ν Ai

µ + (∂µCν)Ai
ν + ∂µCi + f jk

i Aj
µCk − iξσµλ̄i + iλiσµ ξ̄ (68)

sAM
µν = Cρ∂ρ AM

µν + (∂µCρ)AM
ρν + (∂νCρ)AM

µρ + ∂νQM
µ − ∂µQM

ν

+2(ξσµνψM − ψ̄Mσ̄µν ξ̄) + 4i(ψ[µσν] ξ̄ + ξσ[µψ̄ν])ϕM (69)

where QM
µ are real Graßmann odd ghosts of reducible gauge transformations of AM

µν. The
BRST transformations of the ghosts Ci and QM

µ are

sCi = Cµ∂µCi + 1
2 f jk

iCkCj − 2iξσµ ξ̄ Ai
µ (70)

sQM
µ = ∂µQM + (∂µCν)QM

ν − 2iξσν ξ̄ AM
µν + 2iξσµ ξ̄ ϕM (71)

where QM are purely imaginary Graßmann even “ghosts for ghosts” with ghost number 2
whose BRST transformations are

sQM = Cµ∂µQM − 2iξσµ ξ̄ QM
µ . (72)

Covariant ghosts for ghosts Q̂M are defined analogously to (66) and (67) according to

Q̂M = QM + CµQM
µ + 1

2 CµCν AM
µν. (73)

The BRST transformations of the covariant ghosts and ghosts for ghosts are

sξ̂A = − 1
2 (−)

|B| ξ̂B ξ̂CTCB
A + ĈI gIB

A ξ̂B (74)

sĈI = − 1
2 (−)

|A| ξ̂A ξ̂BFBA
I + 1

2 fKJ
IĈ JĈK (75)

sQ̂M = 1
6 ξ̂a ξ̂b ξ̂cεabcd(LMd − 2Hd ϕM)− 2iξ̂α ξ̂αα̇ ξ̂ α̇ ϕM

+ξ̂a ξ̂b(ξ̂ασabα
βψM

β − ψ̄M
α̇ σ̄ab

α̇
β̇ ξ̂ β̇) (76)

where |a| = 0 and |α| = |α̇| = 1.
The BRST transformations given above are strictly nilpotent off-shell. As is recapit-

ulated in Appendix A, the off-shell nilpotency of s (s2 = 0) on all fields (including the
ghosts) except on AM

µν, QM
µ and QM, and the construction of Tab

α, T̄ab
α̇ and Fab

I according to
Equations (44) through (48) can be deduced elegantly from the supercovariant algebra (40)
and the corresponding Bianchi identities. The nilpotency of s on AM

µν, QM
µ and QM and

the construction of LM
a according to Equation (49) can be checked separately (In other

words, one can check explicitly that s squares to zero on AM
µν, QM

µ and QM and that the
BRST transformation of AM

µν given in (69) and the BRST transformations of ϕM and ψM

arising from (65) imply that LM
a defined according to Equation (49) transforms according

to Equation (65) with DαLM
a as in Table 2. The BRST transformations of AM

µν, ϕM and ψM

and the definition of LM
a are compatible with Equation (2.4) of [12]). Furthermore, the

identities (62) can be checked explicitly.
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4. Invariant Actions and Elimination of Auxiliary Fields

The supercovariant algebra (40) and the way it is realized on the matter multiplets
are exactly the same as in new minimal supergravity. In particular, the additional fields λ′

and D′ do not occur in the supersymmetry transformations of any component field of the
matter multiplets, and the field bµν contributes to these supersymmetry transformations
only via Hµ given in (29), precisely as the 2-form gauge potential tµν in new minimal
supergravity. In addition, the supercovariant algebra (40) is realized off-shell also on λ′,
D′ and on the supercovariant tensor Bab given in (43). For these reasons, one can adopt
methods and results derived in [10,12,18,19] for new minimal supergravity to construct
locally supersymmetric actions involving the matter multiplets and the fields λ′ and D′ in
the present theory.

In particular, the results derived in [10,19] for invariant actions in new minimal
supergravity can be extended straightforwardly to the presence of linear multiplets and of
the additional supercovariant tensors λ′, D′ and Bab. One obtains that Lagrangians which
are invariant off-shell up to a total divergence, respectively, under the BRST transformations
given in Sections 2 and 3 are

L4/e = (D̄2 − 4iψµσµD̄ + 16ψµσµνψν)[A(φ̄, λ̄, λ̄′, S̄, W̄) +D2B(T )] + c.c. (77)

L5/e = µia(Dia + λia σµψ̄µ + ψµσµλ̄ia + εµνρσ Aia
µ ∂νbρσ) (78)

L6/e = κia M[ 1
2 εµνρσ Aia

µ ∂ν AM
ρσ − ϕMDia + (iλia ψM − ϕMλia σµψ̄µ + c.c.)] (79)

where in (78) and (79) µia and κia M denote real coupling constants and the sum over ia runs
over the abelian factors of G including the R-transformation with the identifications (cf. text
around Equation (64))

λ
(r)
α ≡ −iSα, λ̄

(r)
α̇ ≡ iS̄α̇, D(r) ≡ − 1

4 Fab
ba + 3

2 Ha Ha. (80)

In (77), we used the notation

D̄2 = D̄α̇D̄α̇, D2 = DαDα, W̄α̇β̇γ̇ = −T̄ab(α̇σ̄ab
β̇γ̇) (81)

and A(φ̄, λ̄, λ̄′, S̄, W̄) denotes any function of the supercovariant tensors φ̄m, λ̄i
α̇, λ̄′α̇, S̄α̇

and W̄α̇β̇γ̇ (but not of supercovariant derivatives thereof) which has R-charge −2 and is
invariant under all other generators δI , and B(T ) is any function of supercovariant tensors
which is invariant under all δI ,

δ(r)A = −2iA, ∀I 6= (r) : δIA = 0, ∀I : δIB = 0. (82)

L4 is a generic Lagrangian which provides, amongst others, a standard locally su-
persymmetric Yang–Mills portion arising from a contribution to A proportional to λ̄iλ̄jgij
(with G-invariant metric gij), locally supersymmetric kinetic terms for the chiral multiplets
arising from a contribution b(φ, φ̄) to B, superpotential terms for the chiral multiplets aris-
ing from a contribution a(φ̄) to A and locally supersymmetric kinetic terms for the linear
multiplets arising from a contribution c(ϕ) to B. In addition, L4 provides Lagrangians
with various higher derivative terms, such as four-derivative terms with the square of
the Weyl tensor arising from a contribution W̄W̄ to A and/or with quartic terms in the
Yang–Mills field strengths arising from a contribution to B bilinear both in λs and λ̄s
(of course, L4 provides further higher derivative terms; in particular, terms with more than
four derivatives). Furthermore, contributions to A given by 1

16 λ̄′λ̄′ and i
8 λ̄′λ̄′ reproduce

L′2 and L′3 given in (27) and (28), respectively.
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L5 and L6 are “exceptional Lagrangians” that cannot be written in the form of L4. A
contribution to L5 with ia 6= (r) contains a Fayet–Iliopoulos term eDia and can thus con-
tribute to supersymmetry breaking [20] and to the cosmological constant. The contribution
to L5 with ia = (r) reproduces for µ(r) = −2M2

Pl the L1-portion of the Lagrangian (25) as
may be verified by explicitizing Fab

ba, S and S̄. L6 can contribute, amongst others, mass
terms for component fields of linear multiplets.

In Appendix B, solutions of the so-called descent equations are given which corre-
spond to L4, L5 and L6, respectively. It is easier to verify these solutions using reasoning
given in [19] than to check the invariance of L4, L5 and L6 directly.

We now discuss the elimination of auxiliary fields for Lagrangians L = L4 + L5 + L6
with A and B of the form

A = F(φ̄, λ̄, λ̄′), B = G(φ, φ̄, ϕ) = G(φ, φ̄, ϕ). (83)

Such Lagrangians contain only terms with at most two derivatives and thus may be
termed “low energy Lagrangians”. The fields Fm, F̄m̄, Di and D′ occur in L undifferentiated
and at most quadratically as can easily be checked. Hence, these fields can be eliminated
algebraically using their equations of motion. However, the direct algebraic elimination
of the field bµν is hindered by terms in L that are quadratic in Hµ. Such terms are present
both in the contribution to L5 with ia = (r) and (generically) in L4 because L4 contains,
amongst others,

Gm D̄2D2φm = −2 Gm D̄2Fm = 8iGm ( 1
2 Fab

ba − 3HaHa)δ(r)φ
m + . . . (84)

where

Gm =
∂G(φ, φ̄, ϕ)

∂φm .

Now, one may remove the terms quadratic in Hµ by a suitable redefinition of the
R-gauge field A(r)

µ . To show this, we collect all terms in L containing A(r)A(r), A(r)H or
HH. A straightforward computation yields that these terms can be written as ∆L with
(Here, we used δ(r)G = Gmδ(r)φ

m + Gm̄δ(r)φ̄
m̄ = 0 where Gm̄ = ∂G/∂φ̄m̄).

∆L/e = ( 3
2 µ(r) − G(r))HµHµ + G(r)(r)A(r)

µ A(r)µ + 2(µ(r) + G(r))A(r)
µ Hµ (85)

where
G(r) = 48iGm δ(r)φ

m, G(r)(r) = 32 Gmn̄ (δ(r)φ
m)(δ(r)φ̄

n̄) (86)

with

Gmn̄ =
∂2G(φ, φ̄, ϕ)

∂φ̄n̄∂φm .

We now make the following ansatz for a redefined R-gauge field:

A′(r)µ = A(r)
µ + mHµ. (87)

Using (87) in (85), one obtains

∆L/e = u HµHµ + G(r)(r)A′(r)µ A′(r)µ + 2(µ(r) + G(r) −mG(r)(r))A′(r)µ Hµ (88)

with
u = m2G(r)(r) − 2m(µ(r) + G(r)) +

3
2 µ(r) − G(r). (89)
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In order to remove all HH-terms from L by the redefinition (87), m has to be chosen
such that u vanishes. Obviously this can be achieved if G(r)(r) vanishes:

G(r)(r) = 0 : u = 0 ⇔ m =
3µ(r) − 2G(r)

4(µ(r) + G(r))
. (90)

However, G(r)(r) = 0 is a rather special case. For instance, G(r)(r) = 0 holds when
all φm have vanishing R-charge which also implies G(r) = 0 and m = 3

4 but forbids a
superpotential. When G(r)(r) does not vanish, u vanishes if(

m−
µ(r) + G(r)

G(r)(r)

)2

=
G(r)(r)(G(r) − 3

2 µ(r)) + (µ(r) + G(r))
2

(G(r)(r))
2 . (91)

Now, m must be real in order that A′(r)µ is real. In order to solve (91) with real m, the
numerator on the right hand side of Equation (91) must not be negative (G(r) and G(r)(r)
are real. Indeed, G(r)(r) obviously is real because G is real. Furthermore, δ(r)G = 0 implies
G(r) = 24iGmδ(r)φ

m − 24iGm̄δ(r)φ̄
m̄ = 24iGmδ(r)φ

m + c.c.. For this reason m in (90) is real
too). Whether or not this numerator is non-negative depends on the R-charges of the φm

and is not further discussed here.
When m is chosen such that u vanishes and A′(r)µ instead of A(r)

µ is used, the Lagrangian
L does not contain terms which are quadratic in derivatives of bµν, and then bµν may
be eliminated algebraically using the equations of motion if F(φ̄, λ̄, λ̄′) contains a term
quadratic in λ̄′.

We also remark that 1
6 (G(r) − 3

2 µ(r)) is a generally field dependent prefactor of the
Riemann curvature scalar in L/e, cf. Equation (84) (due to Fab

ba = R + . . .). This prefactor
may be made field independent by a Weyl rescaling of the vierbein and corresponding
redefinitions of other fields that convert the Lagrangian from Brans–Dicke form into
conventional Einstein form, cf. [18] for a detailed discussion of these field redefinitions in
new minimal supergravity, which analogously applies in our case. Furthermore, we note
that Gmn̄ is the “metric” in the kinetic terms eGmn̄∂µφm∂µφ̄n̄ of the φm and φ̄m̄ in L (after
integration by parts). If this metric is positive definite, G(r)(r) is non-negative (However,
according to [18], Gmn̄ need not be positive definite in order that the kinetic terms for the
φm and φ̄m̄ are positive after converting the Lagrangian into Einstein form).

5. Discussion

The formulation of D = 4, N = 1 supergravity studied in this paper is similar to new
minimal supergravity. This, by itself, is not surprising as this formulation was obtained as
a consistent deformation of new minimal supergravity. Nevertheless, the deformation has
some unusual and surprising features.

One of these features is that in this formulation, using the fields bµν, λ′ and D′, a
Lagrangian, without or with matter fields included, in the simplest case differs from the
corresponding Lagrangian of the new minimal formulation of supergravity only by an
added extra portion proportional to L′2 given in (27) (In addition, one may include L′3 given
in (28) but this does not make much difference). This extra portion is separately invariant
up to a total divergence under local supersymmetry transformations, and the remaining
contributions to the Lagrangian are the same as in new minimal supergravity. The reason
is that the fields λ′ and D′ which are not present in new minimal supergravity do not occur
in the symmetry transformations of other fields except in the transformations of λ′ and D′

themselves and in the modified supersymmetry transformation of bµν. Furthermore, even
though the symmetry transformations of bµν are modified as compared to new minimal
supergravity, the symmetry transformations of Hµ defined in (29) are not modified. Since
the symmetry transformations of all other fields except λ′ and D′ depend on bµν at most
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via Hµ, the modification of the symmetry transformations of bµν then has no impact on the
Lagrangian as compared to new minimal supergravity except for the added extra portion.

In particular, this implies that one may simply add to any Lagrangian of new mini-
mal supergravity, without or with matter fields included, the extra portion proportional
to L′2. The resultant theory again is an off-shell formulation of supergravity in which
now bµν is a standard auxiliary field without gauge degrees of freedom (which may be
eliminated algebraically, at least for reasonable low energy Lagrangians, cf. Section 4)
and the R-gauge field is a physical field. Furthermore, if supersymmetry was unbroken
before adding the extra portion, the inclusion of the extra portion inevitably introduces a
cosmological constant, cf. Equation (27), and breaks supersymmetry spontaneously (recall
that sλ′ = 1

2 ξ + . . ., cf. Equation (33), i.e., λ′ then is a goldstino that may be eaten by the
gravitino). Thus, the addition of the extra portion particularly provides an alternative
mechanism for spontaneously breaking local supersymmetry in new minimal supergravity,
different from the familiar breaking mechanisms by Fayet–Iliopoulos terms or F-terms.

On the other hand, in addition to or in place of L′2 given in (27) and optionally L′3
given in (28), one may include other terms in the Lagrangian depending on bµν, λ′ and
D′, such as terms arising from contributions to A in (83) which depend on both λ̄′ and
some φ̄m̄. This may have a more subtle effect on the theory as compared to new minimal
supergravity and may be worth a further study.
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Appendix A. BRST Approach to Off-Shell Supergravity

In this Appendix, we recapitulate briefly a BRST approach to off-shell supergravity
theories which was used also in [10,19] and applies a general framework [21] of treating
theories with local and/or global symmetries. The approach is based on a supercovariant
algebra (40) and corresponding Bianchi identities

∑
ABC
◦ (−)|A| |C|(DATBC

D + TAB
ETEC

D + FAB
I gIC

D) = 0 (A1)

∑
ABC
◦ (−)|A| |C|(DAFBC

I + TAB
DFDC

I) = 0 (A2)

where ∑◦ XABC = XABC + XBCA + XCAB denotes the cyclic sum.

The supercovariant algebra (40) and the Bianchi identities (A1) and (A2) are supposed
to be realized off-shell on supercovariant tensor fields. The approach uses a differential
which is the sum of the BRST differential s and the exterior derivative d = dxµ∂µ and is
denoted by s̃,

s̃ = s + d. (A3)

This differential acts on total forms and has total degree 1. A total form generally is
a sum of local p-forms with various form degrees p. The total degree is the sum of the
ghost number and the form degree. Hence, a total form ω̃g with definite total degree g
(“total g-form”) generally is a sum ω̃g = ∑p ωp,g−p of local p-forms ωp,g−p where ωp,g−p

has ghost number g− p.
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The generators DA and δI of the algebra (40) are related to total 1-forms constructed
of the ghosts and corresponding 1-forms according to

ξ̃a = ξ̂a + dxµeµ
a = (Cµ + dxµ)eµ

a (A4)

ξ̃α = ξ̂α + dxµψµ
α = ξα + (Cµ + dxµ)ψµ

α (A5)

ξ̃ α̇ = ξ̂ α̇ − dxµψ̄µ
α̇ = ξ̄ α̇ − (Cµ + dxµ)ψ̄µ

α̇ (A6)

C̃I = ĈI + dxµ AI
µ = CI + (Cµ + dxµ)AI

µ (A7)

where, in the present case, {AI
µ} = {ωµ

ab, A(r)
µ , Ai

µ}. s̃ acts on supercovariant tensors T
and on the total 1-forms ξ̃ A and C̃I according to

s̃ T = (ξ̃ ADA + C̃IδI) T (A8)

s̃ ξ̃A = − 1
2 (−)

|B| ξ̃B ξ̃CTCB
A + C̃I gIB

A ξ̃B (A9)

s̃ C̃I = − 1
2 (−)

|A| ξ̃A ξ̃BFBA
I + 1

2 fKJ
IC̃ JC̃K. (A10)

Using the algebra (40) and the Bianchi identities (A1) and (A2), one easily checks that s̃
squares to zero on supercovariant tensors T and on the total 1-forms ξ̃A and C̃I .

The ghost number 0 part of (A8) provides the supercovariant derivatives Da of super-
covariant tensors as it yields

∂µT = (eµ
aDa + ψµ

αDα − ψ̄µ
α̇D̄α̇ + AI

µδI)T

which can be solved for DaT and then gives Equation (61) in the present case. The ghost
number 1 part of (A8) provides the BRST transformations (65) of supercovariant tensors.

The ghost number 0 parts of (A9) for A = α and A = α̇ and of (A10) provide the field
strengths (or curvatures) Tab

α, Tab
α̇ and Fab

I , respectively. For instance, the ghost number 0
part of (A9) yields for A = α

∂µψν
α − ∂νψµ

α = eµ
aeν

bTab
α + . . .

which can be solved for Tab
α and then gives (44) in the present case. Analogously, one

obtains Equations (45) through (48) from (A9) and (A10). The ghost number 0 part of (A9)
for A = a provides analogously either Tbc

a, or it determines ωµ
ab when the constraint

Tbc
a = 0 is imposed. In the present case, this gives ωµ

ab as in Equations (12) and (13).
The ghost number 1 parts of (A9) and of (A10) provide the BRST transformations of eµ

a,
ψµ

α and AI
µ. In the present case, one obtains, in particular, Equations (30), (31), (32) and (68).

The ghost number 2 parts of (A9) and of (A10) then provide the BRST transformations of
the ghosts Cµ, ξα and CI . In the present case, this gives Equations (74) and (75) and then,
using in addition the BRST transformations of eµ

a, ψµ
α and AI

µ, Equations (36) through (39)
and Equation (70).

As we remarked at the end of Section 3, the BRST transformations of AM
µν, QM

µ and
QM given in Equations (69), (71) and (72) and the field strength LM

a given in Equation (49)
cannot be deduced from the algebra (40) in the same manner. Nevertheless, these equations
can also be written in a compact form which is analogous to (A9) and of (A10) and reads

s̃ Q̃M = 1
6 ξ̃a ξ̃b ξ̃cεabcd(LMd − 2Hd ϕM)− 2iξ̃a ξ̃ασaαα̇ ξ̃ α̇ ϕM

+ξ̃a ξ̃b(ξ̃ασabα
βψM

β − ψ̄M
α̇ σ̄ab

α̇
β̇ ξ̃ β̇) (A11)

where

Q̃M = Q̂M + dxµQM
µ + 1

2 dxµdxν AM
µν

= QM + (Cµ + dxµ)QM
µ + 1

2 (C
µ + dxµ)(Cν + dxν)AM

µν. (A12)
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Appendix B. Solutions of the Descent Equations

In this Appendix, we provide solutions of the so-called descent equations that contain
the Lagrangians L4, L5 and L6 given in Equations (77)–(79), respectively. These descent
equations read

0 < p ≤ 4 : sω
p,4−p
i + dω

p−1,5−p
i = 0, sω0,4

i = 0 (A13)

where ω
p,4−p
i is a local p-form with ghost number 4− p. The 4-form ω4,0

i = Lid4x contains
the respective Lagrangian Li for i = 4, 5, 6. The descent equations can be written compactly
by means of total 4-forms ω̃i as

s̃ ω̃i = 0, ω̃i =
4

∑
p=0

ω
p,4−p
i . (A14)

Total 4-forms ω̃4 and ω̃5 containing the Lagrangians L4 and L5, respectively, can be
obtained from [19]. They can be written as

ω̃4 = (−4iϑ̄ϑ̄− 4iη̄ D̄ + Ξ¯D̄2)[A(φ̄, λ̄, λ̄′, S̄, W̄) +D2B(T )] + c.c. (A15)

ω̃5 = µia(2C̃ia H̃ + λ̄ia η̄ + ηλia + Ξ Dia) (A16)

where

ϑ̄α̇ = ξ̃ α̇α ξ̃α, ηα = − i
6 ϑβ ξ̃βα̇ ξ̃ α̇α, η̄α̇ = i

6 ξ̃ α̇α ξ̃αβ̇ϑ̄β̇, Ξ = − 1
24 εabcd ξ̃a ξ̃b ξ̃c ξ̃d (A17)

H̃ = 1
6 ξ̃a ξ̃b ξ̃cεabcd Hd + iξ̃α ξ̃αα̇ ξ̃ α̇. (A18)

Using reasoning given in [19], it is actually not difficult to verify that ω̃4 and ω̃5
fulfill (A14). A total 4-form ω̃6 which contains the Lagrangian L6 is

ω̃6 = κia M[C̃ia s̃Q̃M − (ηλia + λ̄ia η̄)ϕM + Ξ(−Dia ϕM + iλia ψM − iψ̄Mλ̄ia)] (A19)

with s̃Q̃M as in (A11). s̃ω̃6 = 0 can be shown similarly to s̃ω̃5 = 0 in [19].
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