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Abstract: The last decade has seen rapid developments in the areas of carbon fiber technology, addi-
tive manufacturing technology, sensor engineering, i.e., wearables, and new structural reinforcement
techniques. These developments, although from different areas, have collectively paved way for
concrete structures with non-corrosive reinforcement and in-built sensors. Therefore, the purpose
of this effort is to bridge the gap between civil engineering and sensor engineering communities
through an overview on the up-to-date technological advances in both sectors, with a special focus
on textile reinforced concrete embedded with fiber optic sensors. The introduction section highlights
the importance of reducing the carbon footprint resulting from the building industry and how this
could be effectively achieved by the use of state-of-the-art reinforcement techniques. Added to
these benefits would be the implementations on infrastructure monitoring for the safe operation of
structures through their entire lifespan by utilizing sensors, specifically, fiber optic sensors. The paper
presents an extensive description on fiber optic sensor engineering that enables the incorporation
of sensors into the reinforcement mechanism of a structure at its manufacturing stage, enabling
effective monitoring and a wider range of capabilities when compared to conventional means of struc-
tural health monitoring. In future, these developments, when combined with artificial intelligence
concepts, will lead to distributed sensor networks for smart monitoring applications, particularly
enabling such distributed networks to be implemented/embedded at their manufacturing stage.

Keywords: textile reinforcement; structural health monitoring; fiber optic sensors; smart sensing;
sensors in civil engineering; reinforcement of structures

1. Introduction

The Paris Agreement aims to address the threat of climate change by keeping the
global temperature rise within the century to be below 2 degrees above pre-industrial
levels. Environmental impact resulting from human activity continues to make this task
challenging. Due to the building industry, concrete is the second-most utilized material
in the world, as it requires a high consumption of raw materials and is responsible for a
considerable amount of CO2 emissions. The production of cement results in 6.5% of the
total CO2 emissions, which is approximately three times the amount emitted by global
aviation [1,2]. Although the construction industry consumes the majority of all resources
worldwide, most buildings have a limited lifespan, i.e., of 40 to 80 years. This would mean
that most infrastructure scarcely has lifespan longer than that of an average human being,
while consuming more energy and resources. The combination of such a relatively short
life span and associated costs is unacceptable and unjustifiable in an economical sense,
even before environmental impact can be considered. In addition, in line with the global
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challenge of environmental protection and mitigation of the effects of climate change, new
research is being conducted on the utilization of appropriate engineering that reduces CO2
emissions incurred by the building industry, while maintaining the safety and durability
of building infrastructure. To do so, novel means of concrete reinforcement techniques
are researched upon, with low carbon footprint, high reliability in their long-term use and
safety.

In conventionally built structures, reinforcement consists of deformed steel bars,
i.e., steel reinforced concrete (SRC), with a yield strength of around 450–500 MPa, and
is by far the most used combination [3] due to its ductility, low cost, robustness and
ease of placement. The ribs/indentations of the deformed bars enable adequate bonding
with concrete to transmit the force of the bars to the concrete. This is further facilitated
by the fact that concrete and steel reinforcement have a similar coefficient of thermal
expansion [3]. The issue with the conventional steel reinforcement, however, is the fact that
it is environmentally damaging and corrosive. What is more, steel reinforcement requires a
concrete coating to be sufficiently protected against corrosion, thus more concrete needs
to be produced for the protection of the reinforcement. A considerable amount of the
deterioration of reinforced concrete structures is due to the corrosion of the steel-reinforced
bars [4]. Thus, even with a thicker layer of concrete, corrosion is inevitable.

There has been interest in developing fiber-reinforced composites for civil infrastruc-
ture in as far back as the mid-1990s, due to their high performance to weight as well as their
inherent corrosion and fatigue resistance [5]. Even so, steel-reinforced concrete has been
continuously utilized and a competitive alternate, in practice, has not been available. This
may also have been owing to the cautious nature of the civil/structural engineering sector
who must fully address all risk factors in new technologies, even when effective latest de-
velopments are available, albeit within laboratory settings. Therefore, even when advanced
technology is present at the laboratory level or indeed through nationally/internationally
led research, these developments take a considerable time to reach the industry until they
are practically tested and thoroughly evaluated in terms of their feasibility, safety and
long-term use.

The last decade, however, has seen various alternative suggestions to SRC and their
evaluations on practical implementations which address the issues present in conven-
tional steel reinforcement. With the introduction of non-metallic reinforcement methods,
i.e., textile reinforced concrete (TRC), for example, the use of steel reinforcement in building
construction is becoming a technique of the past. TRC is a composite material consisting
of non-metallic reinforcement and concrete, where the grid-like reinforcement consists of
impregnated yarns with up to thousands of filaments. TRC can be characterized depending
on the material used, i.e., timber, carbon, alkali resistant glass (ARG), aramid, basalt etc.,
where carbon and ARG are the most common [6]. In addition to the environmental factors,
the life-time durability of TRC depends on various other factors, such as the filament
material, i.e., carbon, glass, etc., the impregnation material, and the physical dimensions of
the yarns, as well as the production process [7].

When adding textile reinforcement, e.g., made by fiber, to a fine-tuned mortar, a
flexible cement composite is produced. This composite would have adequate tensile
capacity to the extent that steel reinforcement can be omitted. The advantage of such
a result is the capability to access the freedom of shape that is inherent to fluid fresh
concrete [8]. The high pH requirement of concrete, in the case of steel reinforcement, is for
the protection of the reinforcement bar, i.e., steel, and therefore, if the reinforcement does
not have a corrosion possibility, the pH level of concrete would no longer matter. Since
glass/polymer does not tend to corrode, there is no requirement for excessive concrete
coverage. Therefore, the thickness of structural elements of non-metallic reinforcement
can be kept limited to a few centimeters, enabling thin and elegant structures [9] that
provide comparable strength while utilizing fewer resources, thus reducing the overall
CO2 emissions.
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As discussed afore, the concepts of non-metallic reinforcement, in particular fiber-
based reinforcement, are initiated by the inherent characteristics they possess, which
provides a number of advantages over conventional SRC, i.e., conservation of resources,
light weight, longer lifespan, thermal and electrical properties, ease of molding despite high
strength, flexibility of fabrication, and immunity to risk of corrosion and thus minimum
requirements of maintenance. Further, fiber-based reinforcement can be constructed in thin
layers with high tensile strength, saving a considerable amount of concrete, i.e., reducing
its carbon footprint, while delivering aesthetically flexible construction, which would
allow a wider variety for architectural designs. It is predicted that a considerable amount
of the concrete volume could be saved this way [10]. Due to the thermal and electrical
conductivity of carbon, sensors can be directly installed in the structure, which makes it
suitable for intelligent building construction [11–13].

However, while offering many advantages, the relatively thinner concrete also poses
new challenges, i.e., the current manufacturing technologies might not possess adequate
production capabilities to produce these types of reinforcement in bulk and within a short
span of time, there might be limited established methods available to ensure successful
installations and integration of the increasingly thinner concrete, and the curing methods
may require improvements in order to achieve thin concrete layers. Thus, effective and
efficient process chains needs to be in place prior to the wider uptake of fiber-reinforced
concrete composites by the industry. In addition to these, considerations have to be made
on the textile nature of the reinforcement. Grid dimensions have to be carefully chosen
to avoid aggregates getting stuck in them [14]. There is also the possibility of abrupt
de-bonding of the fabric from the concrete, and thus the bonding characteristics need
comprehensive investigation.

The discussion presented thus far is focused on the reinforcement of concrete. One
vital element when it comes to reinforcement of civil infrastructure, the majority of which
is built with concrete, is termed Structural Health Monitoring (SHM). SHM involves
the diagnosis of the “state” of the constituent materials, of the different parts, and of
the full assembly of these parts constituting the whole structure, in all stages during its
service life [15]. The inherent use of large infrastructure made of concrete, i.e., buildings,
bridges, pipelines used for utilities, etc., involves not only the continuous exposure to harsh
environmental conditions, but also the bearing of high loads throughout its existence. Any
structural damage resulting from whatever cause, may it be natural or man-made, may
lead to eventual catastrophic failure, which may cause loss of life. Thus, SHM is needed for
continuous damage detection and disaster mitigation. To this end, physical parameters,
such as strain, are measured in most reinforced structures to identify structural deformation,
i.e., arising from cracks in the concrete and corrosion of the reinforcement [16–18]. The
suitability of the types of sensors that can be deployed in concrete would depend on factors
such as ease of fabrication, the ability to withstand the rigors of being cast into concrete,
robustness of the sensor packaging, flexibility of fabrication in a range of geometries
and durability against the highly alkaline nature of concrete. Although conventional
sensors, i.e., mostly electronic-based, such as strain gauges and accelerometers, have
been traditionally employed in SHM systems, these sensors are prone to electromagnetic
interference, are tedious to embed, i.e., pools of wires, and could only provide localized,
i.e., point, measurements. This would mean that to pick up any indication of a damage, a
sensor needs to be present at the location of damage. Thus, with such monitoring systems,
there is a considerable likelihood of not obtaining data pertaining to the actual status of the
structure.

Fiber Optic Sensors (FOSs), on the other hand, have considerable potential for this
purpose and have additional advantages, such as, immunity to electromagnetic interfer-
ence and their light weight [19]. This is an important aspect for some civil infrastructure,
i.e., railways where the lines are electrified [20]. Thus, there has been in depth research
on the feasibility and deployment of FOSs for SHM purposes [21–23]. The characteristics
desired for the ideal FOS for strain measurement in civil structures would include [24]:
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adequate sensitivity and dynamic range; linear response; sensitivity to the direction of
measurand field change; being single-ended, i.e., to minimize the number of leads; insen-
sitivity to thermal fluctuations; non-perturbativity to the structure; immunity to power
interruptions; ability to multiplex; ease of mass production, and durability for the entire
lifetime of the structure.

The most recent development in FOSs for SHM purposes is the fabrication of textile,
i.e., for reinforcement, with sensors already embedded within the textile at the manufactur-
ing stage [25]. Compared to conventional FOSs, which have to be externally bonded to the
structure, i.e., such as the case for strain monitoring of bridges [26–28], this new technique
of sensor-embedded-reinforcement would mean that concrete can be directly poured over
the textile and no further implementations would be necessary. Such improvements would
not only greatly reduce the labor costs to the service provider, but enhance the monitoring
of deformations on a wider area of the structure, i.e., compared to point sensors.

Recent reviews on the subject of new developments in structural reinforcement offer
comprehensive information from civil and mechanical engineering perspectives. The
available literature on sensors in reinforced concrete had been mainly focused on piezo-
electrical-based sensors [29–31] and the utilization of the electrical conductivity of carbon
fiber [11–13]. There is a plethora of literature available on the embedding of FOSs in
concrete, especially embedding FOSs on either steel or carbon reinforcement bars. Indeed,
currently FOSs are frequently embedded into concrete beams for load tests. These sensors,
however, are embedded at a later stage in the lifetime of the structure, i.e., most commonly
by attaching the sensors on the surface of the structure. On the other hand, the concept
of TRC is relatively new. Embedding FOSs at the manufacturing stage of the structure
and directly on a grid-reinforcement inside the arrangement is an upcoming technology,
which is not yet widely taken up by the industry. It is our strong belief that the field will
increasingly gain interest in the near future as the technology to embed sensor systems
into TRC continues to be improved and widely used, although its potential is still far from
being fully exploited. This is evident from the significantly limited literature on the topic
of FOSs embedded in the latest structural reinforcement techniques, particularly in TRC, at
the manufacturing stage. This communication aims to address this gap and provide the
state-of-the-art and challenges faced when utilizing FOSs for the SHM of civil structures,
particularly on structures made using TRC.

2. Textile-Based Concrete Reinforcement

In TRC, multi-axial textile fabrics are used in combination with high-strength fine-
grained concrete. Typically, a TRC substrate consists of a matrix with a maximum aggregate
grain size between 1 and 2 mm and high-performance continuous multifilament yarns
made of ARG, carbon, or polymer [32]. Multi-axial reinforcement fabrics are built from
multiple filament yarns, i.e., rovings, which contain several hundred to several thousand
individual filaments of roughly 5–25 µm in diameter [32]. These yarns can be placed
according to the expected stresses by varying their amount and the filament orientation [33].
The thus fabricated rovings structure provides sufficient dimension of contact with the
concrete composite. The fibers would typically be placed in the main stress direction of
the composite, which leads to a higher effectiveness in comparison to the use of randomly
distributed short fibers [34]. The main advantages of TRC are its high tensile strength and
flexible ductile behavior, which enables relatively thin-structured concrete elements, as
described in Section 1. TRC has been extensively investigated, particularly by TU Dresden
and RWTH Aachen University, for nearly two decades to date [35–37], where the potential
for its use in the industry is well confirmed [9].

The inherent characteristics of the fiber material used, and the amount and the arrange-
ment would influence the performance of the composite TRC to ensure its safe operation
within the expected lifespan. The material should also withstand the alkaline medium
while maintaining its inherent properties. In addition, the modulus of elasticity of the fiber
and the tenacity and ductility of the fiber should be taken into account when potential
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candidate materials are considered. For example, the modulus of elasticity of the fiber
should be higher than that of the concrete matrix. Failure to meet this requirement could
result in the formation of cracks that would have detrimental effects on the stiffness of the
concrete/structure. The fiber should also possess adequate bonding capabilities between
the reinforcement itself and the concrete so that effective transfer of the measurand data
could be achieved. Other practical considerations would involve cost effectiveness and
ease of manufacturing. The use of ARG and carbon for the design and fabrication of textile
reinforcements essentially meets these requirements [34].

Thus, it is of no surprise that the two most used materials for reinforcement in TRC
are ARG and carbon. ARG typically includes 15–20% of zirconium, which improves the
durability of the glass in alkaline environments [38]. The number of filaments in one
roving follows the filament diameter and the fiber coarseness in g/km (tex, Titer), where,
with a diameter of about 27 µm, a 2400 tex roving consists of nearly 1600 filaments, as
shown in Figure 1. Given such minute dimensions possessed by the fiber strands, further
investigations would be necessary to evaluate whether their physical parameters affect
their functionality. To that end, Scheffler et al. [39] provided a detailed analysis on the
effects of varying the diameter of ARG fiber, see Figure 2 for an example, and its influence
on surface sizing and coating. They achieved an improved durability of the ARG fibers by
nano-coatings based on self-crosslinking styrene–butadiene polymer, where the sizing and
compatible coating on ARG and carbon fibers are characterized as the basis for increased
tensile strength that is also influenced by the filament diameters and the thickness of the
sizing/coating layer. Tailored sizing and compatible coatings provide a basis to achieve
enhanced mechanical performance for both glass and carbon, while nanotubes in the sizing
enhance the fiber tensile strengths additionally.
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There has also been some interest on the practical applications of TRC. For example,
Cauberg et al. [7] presents work on the production of thin, doubly curved shell elements



Sensors 2021, 21, 4948 6 of 24

that can be used as façade panels, self-bearing roofing structures, or permanent formwork
elements. It would be challenging to produce and reinforce these with conventional
techniques. One main advantage of utilizing glass fiber TRC shells is that the thickness
of the concrete will not be restricted by corrosion cover recommendations, i.e., as is for
steel-reinforcement. Thus, the combination of TRCs with a flexible fabric formwork enables
curved shells, and indeed other shapes, without the conventional limitations on the shape
or thickness. Another example of TRC in practice is the work by Pan et al. [41] who presents
an experimental investigation on the impact fatigue behavior of the glass fiber polymer
mesh-reinforced Engineered Cementitious Composites (ECC), i.e., a cement-based ductile
composite with a strain hardening behavior in tension, for runway pavement applications
under the design aircraft pressure.

In terms of TRC based on carbon fiber, the composite material consists of high-
performance concrete and carbon. Carbon reinforcement has very low weight, i.e., density
is four times lighter than of steel, has a high load-bearing capacity, and is resistant to
corrosion, enabling the reinforcement to be positioned close to the surface [42]. Thus, it has
the desirable feature of facilitating thinner structural designs. It can be estimated that by
the use of carbon concrete composites, material consumption can significantly be reduced
while improving durability [42]. Projects such as the Carbon Concrete Composite (C3)
initiative in Germany [1,2] aim to investigate the possibility of using CRC as an alternative
to traditional steel reinforcement in building construction. However, in order to facilitate
mass production and wider uptake of C3, it is necessary to maximize the process of C3

manufacturing, i.e., from carbon fiber manufacture to the production of the C3. A recent
study by Bohm et al. [43] explores efficient means to manufacture carbon fiber for the
purpose of TRC in detail, compare Figure 3 for one of several possible configurations.
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Another interesting recent development in the building industry is the 3D printing of
concrete and specifically those with textile reinforcement in place. Formwork, i.e., used
for the casting of concrete, constitutes approximately 60% of the total cost of concrete
construction [45]. As such, it represents a significant source of waste worldwide. With latest
advances in robotics, automation and building-scale additive manufacturing processes, the
construction industry is seeing a rapid uptake of the state-of-the-art for improved efficiency,
flexibility and safety [46]. Thus, 3D-printed concrete has gained significant interest in both
the academic and commercial arenas. However, as well as the technology itself, much
attention is focused on the equipment and material with which 3D printing of concrete can
be made efficient, economical and practical [47].

Asprone et al. [3] introduces the term “Smart Dynamic Casting” (SDC) as a robotic
prefabrication technique for concrete structures that are non-standard. The adaptable
rheology of fresh concrete is utilized by pouring it onto a moving formwork. At the
bottom of the formwork, concrete is in a hydrated state but has adequate strength to be
self-sustaining. Finally, the hydration process is digitally controlled by an automatic sensor
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system [48]. Thus, SDC enables digital fabrication of complex column structures in a
continuous casting process. The main challenge in constructing these structures is the
need to deform the steel bars according to the complex geometry of the vertical element.
However, this challenge is addressed using robotic reinforcement techniques, i.e., mesh
mold technology. In [3], the reinforcement integrated in the SDC technique is fabricated
before the casting of concrete. This was achieved by the utilization of numerically controlled
bending processes in 3D. The advantage of such a scheme is the fact that is allows the
utilization of standard and inexpensive deformed steel bars, even for complex structures.
One such example is the production of variable-cross-Section 3 m tall mullions for the
DFAB HOUSE [49] in the NEST building at Empa in Dübendorf, Switzerland, see Figure 4.
Another example is shown in Figure 5.
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Although steel reinforcement is used for SDC at present, the uptake of TRC for the
purpose would widen the potential for SDC technology in many aspects. For example, the
main challenge of deforming the steel bars according to the geometry of the structure can
be easily achieved using TRC. The corrosion possibility of the steel reinforcement can also
be fully eliminated using TRC, which would also minimize the amount of concrete that
needs to be used, i.e., a thick layer of concrete is needed in order to protect the steel bar.
This would enable 3D-printed structures utilizing TRC, having a low carbon footprint and
being elegant in their design. However, TRC may lack the tensile strength and ductility
that is needed for complex geometric shapes and therefore might have limitations on its
uptake. Thus, this is an area of research that is still in its infancy and requires extensive
exploration prior to its use in the industry.
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The discussion presented thus far showcases the progression of concrete reinforcement
from conventional steel reinforcement to the most recent developments in the building
industry, i.e., 3D printing of concrete structure. As highlighted in the introduction section,
and having had a brief description on state-of-the-art on textile reinforcement, the subse-
quent section of this communication focuses on the utilization of FOSs for the SHM of civil
infrastructure, particularly those equipped with TRC.

3. Fiber Optic Sensors (FOSs) for the SHM of Concrete Structures
3.1. Optical Fiber Technology and Sensors

The development of optical fiber saw a rapid increase in the 1990s for telecommunica-
tions purposes. Indeed, most of the optical sources, detectors, and related consumables
that are still in use, i.e., connectors, couplers, etc., operate at the wavelengths that were ini-
tially focused on telecommunication windows, i.e., 1550 nm and 1300 nm. In recent years,
fiber optics has also drawn considerable attention in the sensors field owing to its many
advantages over the conventional electrical-based sensors, such as immunity to electromag-
netic interference, multiplexing capability, high temperature capability, chemical inertness,
robustness, and light weight. A FOS system consists of a transducer device, i.e., the sensing
element or mechanism, a communication channel which carries the measurand data, and a
subsystem that provides energy and detects/processes and conditions the received signal.
Since several sensors can be embedded along a single fiber, creating a distributed sensors
network, the detection of local damage such as strain, cracks, and corrosion, becomes a
possibility. The conventional electrical sensors must have two wires for each sensor to form
an electrical loop. In comparison, the multiplexing capability of the optical fiber network
is far easier to implement and install. FOSs can be used either as point sensors or in a
distributed sensor configuration, making the design of the sensor or the sensor network
more flexible and application specific. Thus, depending on the transduction mechanisms
used, a variety of physical and chemical sensors can be developed, which have potential
applications in a wide range of industries.

The use of FOSs for the SHM of concrete was first suggested by Mendez et al.
(1990) [50]. Since the first development from Mendez et al., many different FOSs have been
conceived for SHM of concrete through the measurement of cracks [51], strains [52,53]
as well as Relative Humidity (RH) [54] and pH [55,56], for instance. In general, the FOS
concepts can be categorized into (i) integrated, (ii) point, (iii) quasi-distributed and (iv) dis-
tributed sensing, depending on the spatial distribution and sensing mechanism [57]. The
different categories of FOSs and their corresponding sensing mechanisms are summa-
rized in Figure 6, followed by an explanation on their operating mechanisms and their
utilizations in exemplary applications.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 24 
 

 

subsequent section of this communication focuses on the utilization of FOSs for the SHM 
of civil infrastructure, particularly those equipped with TRC. 

3. Fiber Optic Sensors (FOSs) for the SHM of Concrete Structures 
3.1. Optical Fiber Technology and Sensors 

The development of optical fiber saw a rapid increase in the 1990s for telecommuni-
cations purposes. Indeed, most of the optical sources, detectors, and related consumables 
that are still in use, i.e., connectors, couplers, etc., operate at the wavelengths that were 
initially focused on telecommunication windows, i.e., 1550 nm and 1300 nm. In recent 
years, fiber optics has also drawn considerable attention in the sensors field owing to its 
many advantages over the conventional electrical-based sensors, such as immunity to 
electromagnetic interference, multiplexing capability, high temperature capability, chem-
ical inertness, robustness, and light weight. A FOS system consists of a transducer device, 
i.e., the sensing element or mechanism, a communication channel which carries the meas-
urand data, and a subsystem that provides energy and detects/processes and conditions 
the received signal. Since several sensors can be embedded along a single fiber, creating a 
distributed sensors network, the detection of local damage such as strain, cracks, and cor-
rosion becomes a possibility. The conventional electrical sensors must have two wires for 
each sensor to form an electrical loop. In comparison, the multiplexing capability of the 
optical fiber network is far easier to implement and install. FOSs can be used either as 
point sensors or in a distributed sensor configuration, making the design of the sensor or 
the sensor network more flexible and application specific. Thus, depending on the trans-
duction mechanisms used, a variety of physical and chemical sensors can be developed, 
which have potential applications in a wide range of industries. 

The use of FOSs for the SHM of concrete was first suggested by Mendez et al. (1990) 
[50]. Since the first development from Mendez et al., many different FOSs have been con-
ceived for SHM of concrete through the measurement of cracks [51], strains [52,53] as well 
as Relative Humidity (RH) [54] and pH [55,56], for instance. In general, the FOS concepts 
can be categorized into (i) integrated, (ii) point, (iii) quasi-distributed and (iv) distributed 
sensing, depending on the spatial distribution and sensing mechanism [57]. The different 
categories of FOSs and their corresponding sensing mechanisms are summarized in Fig-
ure 6, followed by an explanation on their operating mechanisms and their utilizations in 
exemplary applications. 

    
(a) (b) (c) (d) 

Figure 6. Graphical illustration of different FOS concepts: integrated (a), point (b), quasi-distributed (c), and distributed 
(d). The black line illustrates the fiber optic link. The red and blue lines represent the sensing length and measurement 
points respectively. 

3.2. Integrated FOSs 
In case of integrated FOSs, the measurement is integrated along the whole length of 

the optical fiber that is exposed to the measurand, i.e., when the FOS element is exposed 
to spatially different stimulus, only one final total measurement value is obtained. Typical 

Figure 6. Graphical illustration of different FOS concepts: integrated (a), point (b), quasi-distributed (c), and distributed (d).
The black line illustrates the fiber optic link. The red and blue lines represent the sensing length and measurement points
respectively.



Sensors 2021, 21, 4948 9 of 24

3.2. Integrated FOSs

In case of integrated FOSs, the measurement is integrated along the whole length of
the optical fiber that is exposed to the measurand, i.e., when the FOS element is exposed
to spatially different stimulus, only one final total measurement value is obtained. Typi-
cal examples of integrated FOSs are intrinsic Sagnac and Mach-Zehnder interferometric
sensors. The term intrinsic means that the throughput properties are modulated by an
impacting environmental signal where the interaction (sensing) between the light and the
target measurand takes place within/with the fiber and thus the optical fiber itself would
be the sensor. For instance, a fiber optic Sagnac Interferometer (SI) usually consists of a
polarized broadband light source, a 3 dB fused fiber coupler, a Polarization Controller (PC),
an Optical Spectrum Analyzer (OSA) and a fiber optic sensing element based on High
Birefringent (HB) Polarization Maintaining (PM) fibers. Light from the optical source is
split into two counter-propagating beams using the fused fiber coupler. The two counter-
propagating beams propagate through the optical fiber element and recombine at the fused
fiber coupler, where the corresponding interference pattern is recorded using the OSA. The
phase of the interference pattern depends on the birefringence of the applied optical fiber.
The PC is used to control the polarization of the light source. Fiber optic SIs have been
applied to determine parameters such as strain [58] or pressure [59], for instance. Moreover,
when applying low-temperature sensitive HB PM Photonic Crystal Fibers (PCFs), the
cross-sensitivity to temperature can be compensated [58]. In terms of SHM of concrete
structures, fiber optic SIs have been successfully used to measure the corrosion of steel
bars, as shown in Figure 7 [60].
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In contrast, a fiber-optic Mach-Zehnder Interferometer (MZI) can be built by using
two 3 dB couplers that split the light from an optical source to single-mode fiber optic
reference/sensor arms as well as recombine it to create an inference pattern at the detector.
Any induced length change of the measurement arm due to thermal expansion, force, or
strain causes a phase difference between the light traveling in both fiber arms, which in
turn results in an interference pattern change. In general, the integrated interferometric
techniques have the benefit of allowing a relatively accurate and cost-efficient approach to
the characterization of FOSs that are embedded into concrete structures in SHM applica-
tions. A fiber optic Mach-Zehnder set-up that was built to characterize the strain transfer
between a textile-based carbon reinforcement structure and an optical glass fiber is shown
in Figure 8.

3.3. Point-Based FOSs

Point-based FOSs are used when the measurement is only obtained at a discrete
point along the structure to be monitored. This concept can be designed to operate in
transmission or reflection mode, depending on the requirement/application. In addition, it
has the advantage that, depending on the principle of operation, point-based FOSs can be
designed to be relatively low-cost, robust and compact.
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3.3.1. Grating-Based FOSs

Grating-based FOSs consist of a periodic perturbation of the refractive index of the
optical fiber core [61]. This modulation of the optical fiber core can be formed by different
laser exposure techniques [62]. In general, depending on the coupling properties, the
mechanism of the grating-based FOSs can be categorized into co- and counter-propagating
coupling [61]. In case of co-propagating coupling, light is coupled between modes prop-
agating in the same direction within the optical fiber. Since the grating periods that are
required to compensate for the propagation constant mismatch between the modes to
be coupled are in the order of several hundred micrometers, this type of grating struc-
ture is called Long-Period Grating (LPGs). In contrast, for counter-propagating coupling,
light is coupled between two counter-propagating modes within the optical fiber and the
corresponding fiber element is called a Fiber Bragg Grating (FBG).

In terms of SHM applications, FBG sensors are the most mature grating-based sensors
and have been applied to measure parameters such as strain [63,64], temperature [65], and
RH [21,54], among others. When light is coupled into a FBG, only light of a particular
wavelength is reflected (the so-called Bragg wavelength), while the rest propagates through
to the end of the fiber, as shown in Figure 9. The Bragg wavelength is defined by the
effective refractive index of the modes to be coupled as well as the grating period. Both
parameters depend on external perturbations, temperature, and strain and therefore by
monitoring the shift of the reflected Bragg wavelength, the change of the external perturba-
tion, i.e., temperature or strain, can be monitored. Moreover, since a FBG is sensitive to two
measurands, i.e., temperature and strain, two FBGs with different material properties [66]
or packaged on an asymmetric elastic substrate [67], can be applied to distinguish between
the two measurands and thus to compensate for this inherent cross-sensitivity.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 24 
 

 

3.3. Point-Based FOSs 
Point-based FOSs are used when the measurement is only obtained at a discrete point 

along the structure to be monitored. This concept can be designed to operate in transmis-
sion or reflection mode, depending on the requirement/application. In addition, it has the 
advantage that, depending on the principle of operation, point-based FOSs can be de-
signed to be relatively low-cost, robust and compact. 

3.3.1. Grating-Based FOSs 
Grating-based FOSs consist of a periodic perturbation of the refractive index of the 

optical fiber core [61]. This modulation of the optical fiber core can be formed by different 
laser exposure techniques [62]. In general, depending on the coupling properties, the 
mechanism of the grating-based FOSs can be categorized into co- and counter-propagat-
ing coupling [61]. In case of co-propagating coupling, light is coupled between modes 
propagating in the same direction within the optical fiber. Since the grating periods that 
are required to compensate for the propagation constant mismatch between the modes to 
be coupled are in the order of several hundred micrometers, this type of grating structure 
is called Long-Period Grating (LPGs). In contrast, for counter-propagating coupling, light 
is coupled between two counter-propagating modes within the optical fiber and the cor-
responding fiber element is called a Fiber Bragg Grating (FBG). 

In terms of SHM applications, FBG sensors are the most mature grating-based sen-
sors and have been applied to measure parameters such as strain [63,64], temperature [65], 
and RH [21,54], among others. When light is coupled into a FBG, only light of a particular 
wavelength is reflected (the so-called Bragg wavelength), while the rest propagates 
through to the end of the fiber, as shown in Figure 9. The Bragg wavelength is defined by 
the effective refractive index of the modes to be coupled as well as the grating period. Both 
parameters depend on external perturbations, temperature, and strain and therefore by 
monitoring the shift of the reflected Bragg wavelength, the change of the external pertur-
bation, i.e., temperature or strain, can be monitored. Moreover, since a FBG is sensitive to 
two measurands, i.e., temperature and strain, two FBGs with different material properties 
[66] or packaged on an asymmetric elastic substrate [67], can be applied to distinguish 
between the two measurands and thus to compensate for this inherent cross-sensitivity. 

 
 

(a) (b) 

Figure 9. (a) Principle of operation of FBGs: periodic modulation of the refractive index of the fiber core which causes that 
only the Bragg wavelength is reflected and all other wavelengths to propagate through to the end of the optical fiber. (b) 
Example of a packaged FBG sensor that has been applied for the measurement of relative humidity. Reprinted with per-
mission from ref. [68]. Copyright 2016 Procedia Technology. 

3.3.2. Point-Based Interferometric FOSs 
Compared to integrated interferometric FOSs, point-based interferometric FOSs con-

sist of a light modulator element as well as input and output fibers, in order to carry light 
to and from the light modulator. Since the light modulator element converts physical 
changes to phase differences between two interference light waves, the light modulator 

Figure 9. (a) Principle of operation of FBGs: periodic modulation of the refractive index of the fiber core which causes
that only the Bragg wavelength is reflected and all other wavelengths to propagate through to the end of the optical fiber.
(b) Example of a packaged FBG sensor that has been applied for the measurement of relative humidity. Reprinted with
permission from ref. [68]. Copyright 2016 Procedia Technology.
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3.3.2. Point-Based Interferometric FOSs

Compared to integrated interferometric FOSs, point-based interferometric FOSs con-
sist of a light modulator element as well as input and output fibers, in order to carry light to
and from the light modulator. Since the light modulator element converts physical changes
to phase differences between two interference light waves, the light modulator acts as a
sensing element. Therefore, the optical fiber only represents the light transmission medium
and external stimulus can be monitored by discrete sensing elements along the optical
fiber link. This is termed as an extrinsic sensor setup. With respect to SHM, the most com-
mon point-based interferometric FOS is the so called Extrinsic Fabry-Perot Interferometer
(EFPI) [69]. Compared to intrinsic sensor elements, in the case of extrinsic sensors, the light
propagating inside the optical fiber is modulated by an external/extrinsic optical element.
EFPI FOSs can be realized by two optical fibers that are separated by a gap of usually
several tens to hundred micrometers and are aligned and mounted using a glass capillary.
The optical end-faces of the optical fibers results in a low-finesse interferometer where
any length change of the gap between the two fibers due to thermal expansion, strain, or
pressure is converted into a phase difference of the interferometric signal. One advantage of
EFPI FOSs is their capability to operate even at very high temperatures [70]. Furthermore,
the fully packaged EFPI FOS can be designed to be compact with a length of only a few
millimeters and hence can be embedded into structural components without impacting
their properties. An EFPI FOS that was used to measure pressure and temperature inside
rock samples, is shown in Figure 10.
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Copyright 2012 International Journal of Rock Mechanics and Mining Sciences.

3.3.3. Micro-Bend FOSs

In case of micro-bend FOSs, optical losses are induced by the measurand that modu-
lates the amplitude of the light propagating inside the optical fiber and, thus, modulates
the power loss of the optical fiber link. In order to modulate the amplitude of the light prop-
agating inside the optical fiber, a transducer mechanism, which can be based on two plates
with saw-shaped edges [72] or spiral wires wrapped around the optical fiber [54,68,73],
is applied. In both cases, the bending of the optical fiber causes light coupling from the
core mode to the cladding modes, which are highly attenuated by the primary coating of
the fiber and, thus, induces light attenuation as a direct result of the bend experienced
by the fiber. A schematic, as well as a picture of a fiber optic leakage sensor based on the
spire wire technique, is illustrated in Figure 11 [54]. The fiber optic leakage sensor was
developed for the SHM of sewerage pipes.
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3.3.4. Other Point-Based FOSs

Chemical FOSs have also been developed for SHM. In case of the SHM of concrete
structure, chemical parameters such as pH, carbonation, or corrosion would be of inter-
est [57]. In order to measure these parameters, a direct or indirect detection technique
can be applied. The direct detection mechanisms would work only when the measurand
is able to directly modulate the optical light by its spectroscopic fingerprint, for instance.
In case of indirect measurement techniques, an intermediate material is applied, whose
mechanical or optical properties depend on the measurand. Examples of intermediate
materials are polymer, hydrogels, and dye indicators. For instance, polyimide (PI) has been
applied for RH measurements [21,54,68]. PI has the property of swelling when exposed
to humidity and thus would induce a strain, which can then be measured using a FBG
configuration. Hydrogel polymers have the inherent characteristic of varying their optical
absorption, refractive index, and volume when exposed to moisture [57], for instance. In
addition, in order to measure pH, dye indicators can be applied and depending on the pH
concentration the detectable fluorescence would change [74]. To monitor the change of the
optical properties of the intermediate material, different fiber optic sensing schemes can
be applied, employing, for example, FBGs, LPGs, tapered optical fibers, or simply optical
fiber end-faces.

3.4. Quasi-Distributed FOSs

Quasi-distributed FOSs consist of a network of multiplexed point-based FOSs and
allow the continuous monitoring of large structures, see Figure 12. Furthermore, since
many point-based FOSs share the same interrogation unit, quasi-distributed FOSs networks
can also become more economically efficient. The multiplexing techniques for quasi-
distributed FOSs are adopted from optical fiber communications sector and are mainly
based on Wavelength Division Multiplexing (WDM) [75], Time Division Multiplexing
(TDM) [76], frequency domain multiplexing (FDM) [77], Code Division Multiplexing
(CDM) [78] or a combination of these techniques. For instance, by combining WDM and
CDM a sensor network consisting of 2000 FBG sensors could be interrogated [79]. In terms
of SHM applications, the condition of a sewerage tunnel could be monitored [68] or the
eigen-modes of a marine propeller could be studied using several FBG sensors that are
multiplexed using WDM [80].
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3.5. Distributed FOSs

For the SHM of large infrastructure such as railway tracks [81], pipelines [82], dikes [83],
tunnels [84], and bridges [85], distributed fiber optic sensing approaches are the best can-
didates since they allow a continuous measurement profile over the entire length of the
optical fiber. Therefore, in this case, the optical fiber acts as both the transmission and
sensing medium. Depending on the physical effects of the operating principle, distributed
fiber optic sensors can be categorized into (i) Rayleigh scattering, (ii) Brillouin scattering,
and (iii) Raman scattering, compare Figure 13.
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3.5.1. Rayleigth Scattering-Based Distributed FOSs

The elastic scattering of light by particles much smaller than the light wavelength
is known as Rayleigh scattering and forms the basis for sensing techniques such as Op-
tical Time Domain Reflectometry (OTDR) and Optical Frequency Domain Reflectometry
(OFDR). In the case of standard OTDRs, an optical light pulse, from a light source which
has a coherence length that is shorter than the pulse length, is coupled into an optical fiber
and the backscattered light due to the Rayleigh scattering is recorded using a photodetec-
tor. When the received light is recorded with a time stamp, the attenuation profile of an
optical fiber link can be evaluated, through which the location of splices and connectors as
well as breakages of the optical fiber link, can be determined. For instance, the standard
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OTDR technique in combination with a fiber optic leakage sensor has been proposed for
distributed SHM of sewerage tunnels [54]. In the event of a leak in the sewerage tunnel, the
leakage sensor introduces an attenuation in the optical fiber link and, by using the OTDR,
the location of the attenuation, and thus the leak, can be detected. Another technique used
for the purpose is Coherent Optical Time Domain Reflectometry (COTDR). In this case, the
coherent length of the applied light source is longer compared to the pulse length and, thus,
the optical fiber acts as a distributed interferometer with a gauge length almost equal to the
pulse length. Therefore, external stimulus acting on the optical fiber causes a variation in
the amplitude and phase of the backscattered light, which can be detected in the backscat-
tered light profile of the COTDR. This type of system has high sensitivity to strain and
temperature changes and is applied, among others, for Distributed Acoustic Sensing (DAS).
In terms of SHM, DAS is applied for large infrastructures such as pipelines [86]. In contrast,
the OFDR is a hybrid technique based on Rayleigh backscattering and swept wavelength
interferometry [87]. Here, a swept laser source and an interferometer are applied to mea-
sure Rayleigh backscattering as a function of the optical fiber length. External stimulus,
such as strain and temperature, causes a shift in the measured Rayleigh backscattered
length profile of the optical fiber and, thus, a distributed strain and temperature profile can
be obtained.

3.5.2. Brillouin Scattering Based Distributed FOSs

Brillouin scattering is a nonlinear phenomenon caused by the interaction of acoustic
waves and the monochromatic light propagating inside the optical fiber. The acoustic waves
responsible for the interaction can be created by spontaneous thermal motions of particles
and their propagation causes a periodic modulation of the refractive index of the optical
fiber. This in turn leads to light scattering that has a frequency shift compared to the incident
light (Brillouin frequency shift). Furthermore, the shift of the Brillouin frequency depends
on the properties of the optical fiber, i.e., stress and temperature. Different distributed FOSs
based on Brillouin scattering have been reported, such as Brillouin Optical Time Domain
Reflectometer (BOTDR) [88] and Brillouin Optical Time Domain Analysis (BOTDA) [89]. In
case of BOTDR, a light pulse is coupled into an optical fiber, which acts as both the sensing
and the light guiding medium, and is partially scattered back due to Brillouin scattering
when propagating along the optical fiber. Since the Brillouin frequencies of the partially
scattered light depend on the local temperature and strain profile of the optical fiber, the
BOTDR is capable of measuring both parameters by mapping the measured Brillouin
frequency and its time of arrival. In comparison, the BOTDA technique uses stimulated
Brillouin scattering that occurs when the frequency difference between a pulsed pump laser
and a counter-propagating continuous wave probe laser is equal to the Brillouin frequency
of the optical fiber and causes an amplification of the probe laser. Therefore, when scanning
the probe laser frequency and measuring the increase in the continuous light as a function
of time, the Brillouin spectrum of the optical fiber can be measured as a function of space,
resulting from the spatial frequency shift due to strain and/or temperature changes.

3.5.3. Raman Scattering Based Distributed FOSs

When light propagates inside an optical glass fiber, part of the light is backscattered
due to molecular oscillations at a wavelength shift relative to the incident light wavelength.
The latter effect is the so-called Raman scattering, which is another nonlinear phenomenon.
Raman scattering consists of a Stokes and an anti-Stokes band. The intensities of both
bands depend on the temperature, with the anti-Stokes band showing a higher temperature
sensitivity than the Stokes band. Therefore, the temperature at any location along the
optical fiber can be determined from the ratio of the intensities of the anti-Stokes and Stokes
bands. When using the Raman Optical Time Domain Reflectometry (ROTDR) [90], the
temperature profile along the optical fiber can be measured as a function of location and
time.
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4. Functionalizing Textile-Based Reinforcement Structure with FOSs

On the basis of our discussion in Section 1, FOSs have many advantages compared to
conventional electrical-based sensors, especially in the civil engineering sector. However,
although FOSs are ideally suited for SHM of reinforced concrete, the logistical challenges
during their installation and construction must be addressed. For example, the fiber leads
are vulnerable to breakage at the point of exit from the concrete. This would demand
appropriate protection, not only due to the exit point, but also due to the harsh environment
the sensors are most likely be exposed to, during installation as well as throughout its
lifespan. Therefore, the direct integration of FOSs into concrete forms a new field of
research which requires considerations on the durability of the said integration and thus its
practicality in the long-term use. For example, it is of vital importance to evaluate whether
the physical construction of the optical glass fiber is able to withstand its host environment,
i.e., concrete.

The combination of FOSs and geogrids for the strengthening of geotechnical structures
e.g., [91–93] or FOSs and reinforcing composite patches based on either fiber reinforced
plastics (FRPs) [94] or Fiber Reinforced Cementitious Matrix (FRCM) [95], for the rehabili-
tation of concrete structures, have been already explored in the literature. However, the
integration of optical fiber sensors in TRC is still in the early stages of development, and
thus, there is no sufficient literature available to compare their performance, structurally or
in terms of efficiency and economy. Nevertheless, given the trend with new reinforcement
techniques, combined with potential digital fabrication of concrete, it is possible to discuss
their potential.

4.1. Fabrication Techniques

The incorporation of optical fibers in concrete can either be performed manually
afterwards, or automatically during the fabrication of the reinforcement structure. However,
in terms of the mass production of large reinforcement structures, the latter incorporation
technique is more economical. A considerable amount of work on FOSs-integrated TRC has
been conducted by the Saxon Textile Research Institute (STFI) in Chemnitz, Germany, who
has developed different techniques for the automatic incorporation of optical fibers into
textile-based reinforcement structures. For the integration of optical fibers into Textile Net
Structures (TNS), STFI has developed an appropriate reel-to-reel knitting technique [51,68].
TNSs are biaxial grids consisting of alkaline-resistant glass multifilament that are arranged
in 0◦ and 90◦ directions and a polypropylene multifilament thread. They are fabricated
using a warp knitting machine and stabilized afterwards by applying a copolymer coating.
For the integration of optical fibers, the STFI fabricated a TNS with a spacing of 20 mm and
a 2400 tex alkaline-resistant glass multifilament as well as a 44 tex multifilament thread.
The optical glass fiber was integrated during the knitting process of the TNS. The stitching
technique not only enables adequate bonding between the optical fiber sensor and the TNS,
but also results in low light bend losses into the optical fiber. The warp knitting machine
that was applied to fabricate the TNS, i.e., with embedded FOSs, is shown in Figure 14 [51].
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For the fabrication of functionalized carbon structures (FCS), i.e., textile-based rein-
forcement structures consisting of carbon filaments and functionalized with optical glass
fibers, an appropriate embroidery technique was also developed at STFI [51]. In this case,
the optical fibers were “woven” simultaneously while manufacturing the textile-based
reinforcement structure based on carbon filaments to produce grid-like elements. The
fabrication technique developed allows the fabrication of tailored structures in that several
layers of carbon filaments in different shapes can be manufactured and hence the reinforce-
ment structures can be optimized for the targeted application. The modified embroidery
machine is illustrated in Figure 15. This is particularly developed for simultaneous pro-
cessing of carbon and optical fibers [51]. The interwoven carbon/optical-fiber strands were
obtained by embroidering the optical fiber and carbon filaments on a Polyvinyl Alcohol
(PVA) nonwoven substrate. In order to obtain the grid-like structure, multiple layers of
carbon fibers were then integrated on the PVA substrate, which was removed by dissolving
the PVA in hot water (in the range of 50 ◦C) upon completion of the fabrication process.
The fabricated functionalized grid reinforcement structure is shown in Figure 15. As can be
seen, the grid was embroidered on the PVA substrate as the initial step.
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4.2. Resistance against Highly Alkaline Concrete Environment

The water in the pores of Portland cement is alkaline with a pH in the range between
12.5 and 13.5 [96]. Therefore, when functionalized TRCs are embedded into concrete, the
highly alkaline environment might degrade the mechanical properties of both the optical
glass fiber and the textile filaments as well as the bond between the two components, thus
limiting the life-span and operation of the combined sensing and reinforcement structure.
Therefore, the impact of highly alkaline concrete environments on the functionalized
textile-based carbon reinforcement structure was investigated in [96]. In this study, the
resistance of the functionalized textile-based reinforcement structure against the highly
alkaline environments was explored depending on the coating of the optical glass fiber
(acrylate, polyimide and carbon) and the tex-number of the textile filament (400, 800 and
1600 tex) of 300 mm long one-dimensional structures that have been fabricated according
to the technique described in Section 4.1 [96]. Moreover, in order to simulate the highly
alkaline concrete environment, a 5% NaOH solution (pH 14) was used in this study and the
samples were exposed to this solution over a period of three months. From the investigation
in [96], the authors deduced that optical glass fibers with carbon coating showed the best
resistance against highly alkaline pore water [96]. Moreover, since PVA is used for the
fabrication of the functionalized textile-based reinforcement structures (which is relatively
inert against chemicals), the functionalized reinforcement structures are relatively stable
against alkaline pore water attack in general [96]. The best resistance was obtained for
textile-based reinforcement structures with higher tex numbers [96].
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4.3. Different Fiber Optic Configurations

In order to investigate whether the shape of the optical fiber inside the TRC has any
impact on the sensor response, three different integration configurations of the optical
fiber were explored in [96]. All three different optical fiber configurations are shown in
Figure 16. The first configuration is a straight optical fiber whereas in the second and third
configurations the optical fiber was integrated with an offset or a meander, respectively.
The latter two cases were chosen in order to investigate spatial variations and whether
such variations cause an optimized sensor response. The functionalized TRC structures
were fabricated using 1600 tex carbon filaments and acrylate coated optical SM glass fibers
(Corning CC) and the final size of each structure was 500 × 110 mm2 with a grid size of
10 mm × 10 mm. The characterization of the optical fiber sensor response was analyzed
using a fiber optic Mach-Zehnder interferometer approach and the obtained results are
shown in Figure 16 [96].
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For the straight (first case) and offset (second case) optical fiber configurations, linear
responses to applied force of 6.4 × 10−4 mm/N and 6.7 × 10−4 mm/N with relatively low
hysteresis of 4.4 × 10−5 mm/N and 1.9 × 10−5 mm/N, were measured, respectively [96].
However, for the meander configuration (third case), only a considerably low correlation
between the applied force and the length change of the optical fiber was measured [96].
From the results obtained in [96], the authors have deduced that for periodic spatial
variation of the optical fiber, and thus with less bonding length, the bonding between the
optical fiber and the textile filament is weaker and, hence, the functionalized textile-based
reinforcement structure is less sensitive to applied force [96]. Based on these experiments, a
minimum length of 150 mm for the bonding length between the optical fiber and the textile
filament was recommended [96].

4.4. Sensor Response of the Integrated FOSs

The response from the optical glass fiber inside the functionalized TRC that are
embedded into concrete elements were investigated in [51,68] for TNS and in [97] for FCS.
The TNS were functionalized with FOSs in order to design concrete crack sensors and, thus,
to determine the early failure of structures [51,68]. For this task, the TNS was designed to
transfer cracks of the concrete structure to the optical glass fiber. Moreover, the optical glass
fiber inside the TNS was pre-strained in order to amplify crack transfer from the concrete
structure and, thus, to break even at relatively small cracks. The sensor performance was
evaluated by embedding the functionalized TNS into concrete blocks (100 × 15 × 15 cm3).
This was done by breaking the concrete blocks at defined locations using a three-point
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bending test and measuring the crack size and the attenuation of the optical fiber inside the
TNS. The embedding of the functionalized TNS into the concrete block, the experimental
set-up, and the obtained results, are illustrated in Figure 17 [51]. While performing the
experiments and before the breakage of the optical glass fiber, a light attenuation of the
optical glass fiber of less than 0.09 dB was obtained [51]. Furthermore, the optical fiber
inside the TNS broke at a crack size of 1.4 mm, indicating the failure of the structure [51].
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FCS were investigated for point as well as for distributed-based fiber optic sensor
configurations in [97]. For the point sensor configuration, two FBG sensors were used,
which were arranged perpendicular to each other inside the functionalized textile-based
reinforcement structure. For the distributed sensor configuration, the OFDR technique
was applied and the optical fiber inside the functionalized TRC structure was arranged in
a meander shape in order to analyze the spatial resolution, i.e., the spatial resolution of
the FCS and, thus, of the sensor element itself. Both fiber optic sensor configurations are
illustrated schematically in Figure 18 [97]. The dimensions of the fabricated functionalized
textile-based carbon reinforcement structure were 500 × 110 mm2 and the structure was
fabricated using 1600 tex carbon filaments. Once the fabrication of the functionalized textile-
based carbon reinforcement structure was complete, the entire structure was embedded in
concrete blocks and cured over a period of at least 28 days. No optical fiber broke during
the embedding process and only an insignificant light attenuation was measured before
and after the embedding of sensors into concrete, which was mainly attributed to connector
tolerances. For the interrogation of the FBG sensors, a broadband light source, a 3 dB
fused fiber coupler and a spectrometer were used. For the OFDR, the Luna ODiSI-B from
Luna Innovations Incorporated was applied, with a spatial strain resolution of 1.28 mm.
Strain was induced to the concrete block, i.e., with embedded functionalized textile-based
reinforcement structure, using a three-point bending test. The responses of the FBG
sensors and the OFDR are shown in Figure 19. From the FBG sensor response, the authors
have deduced that depending on the position of FOSs relative to the load, the direction
of the force between transverse and longitudinal directions, can be discriminated and
the temperature cross-sensitivity of the FOS can be compensated [96]. Moreover, a linear
response was obtained to an applied strain of 0.44 nm/% with a relatively low hysteresis
(0.011%) for the FBG sensors [97]. In the case of the distributed FOS configuration and the
applied OFDR technique, it was demonstrated in [97] that the spatial strain profile of the
optical fiber of the functionalized textile-based reinforcement structure can be successfully
monitored within concrete elements by measuring four load points while performing the
three-point bending test (due to the meander shape, the optical fiber was exposed to the
applied force four times). In addition, the authors observed a broadening of the measured
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strain peaks for large loads, which has a negative effect on the spatial resolution of the
OFDR.
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5. Summary

The recent growth in the wearable sensor technology market, especially in the field
of biomedical and robotics sectors, indicates a clear direction that could be predicted for
civil infrastructure of the future. It can be inferred that textile reinforcement will take
over its conventional counterparts, and civil infrastructure will be fully embedded with
sensors and other capabilities to ensure its safety, comfort, and long-term durability while
minimizing the otherwise expected carbon footprint. In order to achieve these targets,
reliable and cost-effective sensors need to be in place. Much like the concrete reinforcement
sector, the infrastructure monitoring sensors sector has also seen a dramatic shift towards
new methods of sensing, i.e., adopting fiber optic sensors as opposed to conventional SHM
schemes such as strain gauges.

In terms of functionalizing these reinforcement structures with sensors for SHM ap-
plications, FOSs are the best candidates due to their advantages, such as their small size,
light weight, and remote interrogation and multiplexing capability. Optical fibers can
be integrated during the manufacturing process of the TRCs in large volumes or could
be tailor-made. Thus, such structures can be fabricated economically and optimized for
specific target applications. When FCSs are equipped with optical fibers, Bremer et al.
demonstrated in [97] that the corresponding sensor response depends linearly on the ap-
plied strain with a relatively low hysteresis and, depending on the integration direction, the
load direction can be discriminated between transverse and longitudinal loads. Moreover,
in terms of distributed sensing, it could also be verified that integrated optical fibers can be
applied to determine the applied strain profile. However, depending on the magnitude
of the applied load, the obtained load peak tends to broaden, and this reduces the spatial
resolution. Therefore, in [96] it was deduced that for the FOS response, the bonding length
between the optical fiber and the textile-base reinforcement structure is important, i.e., that
the bonding length is long enough and thus avoids directional variations of the optical
fiber at the point of measurement, so that the applied load can be sufficiently transferred
on to the FOS. Moreover, it was demonstrated that when embedding the functionalized
textile-based carbon reinforcement structure into highly alkaline concrete, the applied PVA
coating, which is relatively inert, provides substantial resistance against deterioration of
the structure [96]. In addition, functionalized TNS designed for the reinforcement and
crack detection of concrete structures have been reported in [51]. The optical glass fiber was
pre-strained during the fabrication process of the functionalized TNS in order to enhance
the crack detection mechanism. Furthermore, when embedding the functionalized TNS
into concrete, an insignificant light attenuation of 0.09 dB and a relatively high sensitivity
of crack detection, i.e., of ≥1.4 mm, was observed. The performance of functionalized TNS
and FCS are summarized for comparison in Table 1. Future directions of functionalized
TRCs clearly point towards increased exploitation of Rayleigh, Brillouin, and/or Raman
scattering for fiber-optic sensor networks, their implementation for structural health moni-
toring, as well as the combination with artificial intelligence algorithms for signal analysis
and sensitivity enhancement, see e.g., [98,99].

Table 1. Comparison of functionalized TNS and FCS. Values obtained from [51,68,95,96].

Host Structure Textile Net Structures (TNS) Functionalized Carbon Structure (FCS)

Sensing mechanism Point-based (e.g., power meter)
andDistributed (OTDR)

Point-based (e.g., FBG, EFPI),Quasi-distributed (FBG
network), andDistributed (e.g., DAS, OFDR, BOTDA)

Sensing parameter Cracks Strain
Sensitivity ≥1.4 mm 0.44 nm/%
Hysteresis Not specified 0.011%

Spatial resolution Not specified ≤0.5 m for distributed sensing
Fiber type Single-mode optical glass fiber Single-mode optical glass fiber

Optical attenuation ≤0.09 dB Insignificant light attenuation due to connector
tolerances

Fabrication technology Reel-to-reel knitting technique Modified embroidery technique
Estimated cost Low Moderate

Highlight Pre-strained optical glass fiber Relatively inert due to PVA coating
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