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Abstract: The Cenomanian Mata Amarilla Formation (MAF) in southern Patagonia (~55◦ S paleolat-
itude, Austral-Magallanes Basin, Argentina) is composed mainly of stacked fluvial deposits with
intercalated paleosols, which document Cenomanian environments at high-paleolatitudes in the
Southern Hemisphere. We performed a multiproxy study of the paleosols and sediments of the
MAF in order to (1) understand the composition of the soil- and sediment-derived organic matter
(OM), (2) apply carbon isotope stratigraphy as a tool to correlate patterns obtained from the MAF
with existing marine and non-marine δ13Corg records worldwide, and (3) investigate the relationship
between variations in spore-pollen assemblages of the MAF and the climatic conditions prevailing in
the Cenomanian Southern Hemisphere. An integrated dataset was generated, including total organic
carbon content, Rock-Eval pyrolysis data, stable isotope (δ13Corg) composition, and palynological
data, combined with published paleosol-derived mean annual temperatures and mean annual pre-
cipitations. The results indicated that the OM preserved in the MAF paleosols allowed its use as a
chemostratigraphic tool. The MAF δ13Corg curve showed the rather stable pattern characteristic for
the Early to Late Cenomanian interval. The absence of the major positive carbon isotope excursion
associated with oceanic anoxic event 2 provided an upper limit for the stratigraphic range of the
MAF. The palynological data suggested the development of fern prairies during warmer and moister
periods at the expense of the background gymnosperm-dominated forests. Overall, the multiproxy
record provided new insights into the long-term environmental conditions during the Cenomanian
in the high latitudes of the Southern Hemisphere.

Keywords: carbon isotopes; carbon cycle; terrestrial deposits; palynology; mid-cretaceous;
Southern Gondwana

1. Introduction

The early Late Cretaceous (Cenomanian–Turonian; 100.5–89.4 Ma) was an interval
characterized by exceptional warmth, caused by enhanced atmospheric pCO2 concen-
trations, probably related to elevated rates of continental fragmentation and increased
oceanic crust production, together with the formation of large igneous provinces [1]. The
pronounced greenhouse climate was marked by globally averaged mean annual temper-
atures (MATs) being ~8 ◦C warmer than present day MATs [2–10]. Exceptionally warm
temperatures and the acceleration of the hydrological cycle [11–15] led to increased primary
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productivity, causing oceanic anoxia [16,17], expressed in the widespread deposition of
organic carbon-rich strata representing the so-called oceanic anoxic events (OAEs; [18–20]).
Cretaceous OAEs are typically associated with relatively long-lasting positive and/or
negative carbon isotope excursions (CIEs) in the range of several per mil (‰), which are
interpreted to record shifts in the global carbon cycle [6,19,21,22]. The Mid-Cenomanian
Event (MCE) and the Ocean Anoxic Event 2 (OAE2), which span the Cenomanian-Turonian
boundary (ca. 94.1 Ma, [14,23,24]), both show a distinct positive CIE well documented
from marine successions worldwide [9,25–27]. The prominent CIE (3–4‰) associated with
the OAE2 has also been documented in the carbon isotopic composition of land plant-
derived terrestrial organic matter (OM) obtained from deep marine [28,29] or paralic and
continental strata [30,31].

The MCE is a smaller-scale positive CIE (1–1.2‰) recorded in hemipelagic basins of
the western Tethyan Sea, North and Tropical Atlantic Ocean [27,32–36] and in continental
deposits from Japan [37,38]. Integrated astronomical age models from the Western Interior
Seaway of North America date the onset of the MCE to 96.57 ± 0.12 Ma, the peak of the
MCE 1a at 96.49 ± 0.15 Ma, and the end of the MCE to 96.36 ± 0.12 Ma [24,39,40].

Herein, we have presented total organic carbon (TOC) contents, Rock-Eval pyrolysis
data and organic carbon isotope (δ13Corg) analyses of the sedimentary OM combined with
palynological analyses from a Cenomanian high-latitude non-marine succession located
in Southern Patagonia, Argentina. We discussed the composition of the soil-derived OM,
as well as its preservation, decomposition and transformation in the different types of
paleosols. We used carbon isotope stratigraphy as a tool to correlate patterns observed in
the Cenomanian terrestrial δ13Corg record from Patagonia, with published δ13C records
from successions located in North America and Europe. Finally, we compared the organic
geochemical and palynological data with published results of paleosol-derived MATs and
mean annual precipitation (MAP) from the same succession in order to understand the
relationship between variations in spore-pollen assemblages and the climatic conditions
prevailing in the mid-Cretaceous Southern Hemisphere.

2. Sedimentological-Paleopedological Context

The Austral-Magallanes Basin is located on- and off-shore of the southernmost tip of
South America (Argentina and Chile), in the area of southern Patagonia (Figure 1) and
contains mainly siliciclastic deposits (e.g., [41,42]). The basin formed during two major
phases including (i) a rift stage during the Early Cretaceous and (ii) a foreland stage
during the Late Cretaceous and Cenozoic (e.g., [41,43]). In response to the regional change
from an extensional towards a compressive regime, the Cardiel-Tres Lagos depocenter of
the Austral-Magallanes Basin was infilled with estuarine-terrestrial deposits of the Mata
Amarilla Formation (MAF) [42,44,45]. The paleolatitude of the study site is estimated at
~55◦ S during the early Late Cretaceous [46].

The MAF crops out extensively in southwestern Santa Cruz Province (Figure 1) and
is composed mainly of stacked fluvial deposits intercalated with paleosols [8,44,47,48].
The succession is characterized by an alternation of grey and black mudstones and thick
white fine- to medium-grained sandstones [47,48]. Based on sedimentological observations
and sequence stratigraphic analysis, the MAF was divided informally [48] into three units.
The lower unit represents a coastal plain and lagoon environment, the middle one a
fluvial meandering system, and the upper unit is characterized by more distal fluvial
meandering/coastal plain deposits.

In the study area (Cerro Waring locality; Figures 1 and 2a), the MAF covers ~125 m in
thickness and the entire sequence is exposed (i.e., lower, middle and upper sections/units; [44]).
The contact between the underlying Piedra Clavada Formation and the base of the MAF
was assigned to the Albian-Cenomanian boundary (~100 Ma; [44]) based on the occurrence
of Mohria-like spores [49]. Recent U/Pb radiometric age dates based on zircons from the
uppermost Piedra Clavada Formation in the Cerro Waring locality constrain the age to
101 ± 0.9 Ma ([50]; Figure 2A). A U/Pb zircon age obtained from the middle section of
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the MAF gave an age of 96.23 ± 0.71 Ma (Middle Cenomanian; [44]; Figure 2A). The MAF
succession at Cerro Waring was erosionally truncated by an unconformity surface. Above,
the Campanian La Anita Formation was deposited, according to detrital zircon maximum
depositional ages ([51–53]; Figure 2A).

Figure 1. (A) Geological setting of the Austral-Magallanes Basin and location of the study area (green rectangle). (B) Geological
map of the study area showing the mid-Cretaceous units and the study locality (modified from Varela et al., 2012a).

In the Cerro Waring area, the MAF contained a succession of stacked paleosols that
showed a trend from Histosols and Vertisols in the lower section towards Vertisols, In-
ceptisols and vertic Alfisols in the middle section and finally ended with Histosols and
Vertisols in the upper section ([8,44]; Figure 2A). Macro- and micromorphological analyses
together with clay mineralogical, and geochemical data (Table 1) indicated that vertization
(shrink-swell processes related to Vertisol formation), hydromorphism, clay illuviation, and
bioturbation were the main pedogenic processes that took place in the MAF’s paleosols [8].
Histosols (25% of all paleosols in the measured sections) represent wetland paleosols (i.e.,
paleosols developed in lowland coastal areas) formed under impeded drainage conditions,
which conditioned the hydromorphism that was the primary pedogenic process. Vertisols
and Inceptisols (60 and 12%, respectively) developed within the fluvial system and formed
paleocatenas (i.e., Vertisols developed in proximal floodplain settings, and Inceptisols
formed in distal floodplain areas). Although vertization constituted the main pedogenic
processes in these Vertisols, hydromorphism was evident in both Vertisols and Inceptisols.
Vertic Alfisols (3%) exclusively developed right above the sequence boundary between the
lower and the middle section of the MAF (Figure 2A), and were related to a forced regres-
sive surface associated with the widespread preservation of a podocarp-dominated fossil
forest over a vast area (more than 5400 km2) [54,55]. Clay illuviation and vertization were
the principal pedogenic processes that formed the vertic Alfisol ([55]; Table 1). Paleosol
features (see Table 1) and paleosol-derived climofunctions (see below) suggested that they
developed under moderate hydrolysis and under a wide range of weathering conditions.
The abiotic-based reconstructed climate was considered as subtropical temperate—warm
and seasonally humid with MATs throughout the sequence averaging 12 ± 2.1 ◦C, with
mean annual precipitations (MAP) averaging 1404 ± 108 mm/yr [8]. Biotic (i.e., paleob-
otanical) proxies indicated similar climatic conditions [55–58].
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Figure 2. (A) Schematic sedimentary log of the Mata Amarilla Formation at Cerro Waring, showing the sedimentary facies
and paleosol−types vertical distribution. Stratigraphic U/Pb zircon ages from Varela et al. (2012a) and Poiré et al. (2017).
TOC content and δ13Corg composition of the Mata Amarilla Formation are shown with red lines representing the average
values of TOC and δ13Corg, respectively. Red stars indicate peaks or intervals characterized by increased TOC. Positive
shifts δ13Corg were labeled with the capital letters from “A” to “F”. (B) Mean, maximum and minimum δ13Corg values
for the different lithostratigraphic intervals of the Mata Amarilla Formation. (C) XY-plot of δ13Corg versus TOC values
illustrating the lack of covariance.
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Table 1. Main macro- and micromorphological pedofeatures, clay-mineral assemblages, and geochemical data of the
paleosols of the Mata Amarilla Formation. The coarse/fine-grained (c/f) related distribution terms: enaulic, porphyric,
monic, gefuric and chitonic describe the spatial distribution of coarse grains and soil matrix. Birefringence fabric (b-fabric)
of the paleosol matrix terms (undifferentiated and cross-striated) describe the orientation of the clay-minerals packages in
the paleosol matrix.

Main Pedofeatures and Compositional Data of the Paleosols of the Mata Amarilla Formation

Paleosol-Type Macromorphological
Pedofeatures

Micromorphological
Pedofeatures

Clay-Mineral
Assemblages (XRD

Analysis)
Geochemical Data

Histosols

Stacks of thin Oe-A-Bg
horizons, dark grey to

black mottles of
carbonaceous remains,

orange and purplish-blue
mottles, rhizoliths,

fossil roots

Enaulic, close porphyric or
double space to open and

close porphyric c/f-related
distribution. Abundant

coarse organic components.
Undifferentiated b-fabric

disguised by Fe-oxides and
organic matter.

Simple-packing voids,
chambers, channels, and

plant residues.
Fe-Mn nodules

S-P assemblage
(palygorskite-rich
association with

dominant smectite), >S-K
assemblage

(kaolinite-rich association
with smectite and other
clays), >S assemblage
(smectite-dominated

association)

Average of Al/bases
ratio: 0.54, Ba/Sr
ratio: 1.05; Al/Si

ratio: 0.16; CIA-K: 79;
PWI: 32

Vertisols

Thick well-developed
profiles with A-Bss;

Btss-Bssg-Cg horizons,
greenish-gray matrix with
low chromas, slickensides,
angular peds, rhizoliths,
mottles, Fe-Mn nodules

Double space to open
porphyric c/f-related

distribution.
Undifferentiated b-fabric

disguised by Fe-oxides and
organic matter or

cross-straited b-fabric.
Compound-packing voids,
chambers, channels, and

rhizoliths. Laminated and
non-laminated clay

coatings; Fe-Mn nodules

S assemblage
(smectite-dominated

association), >S-K
assemblage

(kaolinite-rich association
with smectite and

other clays)

Average of Al/bases
ratio: 0.54, Ba/Sr
ratio: 1.43; Al/Si

ratio: 0.17; CIA-K: 80;
PWI: 35

Inceptisols

Thin moderately to poorly
developed and stacked
profiles with A-Bw or

B/C-C horizons, poorly
developed horizonation,

gley colors, rhizoliths,
mottles, Fe-Mn nodules,

massive or poor ped
developments

Gefuric to chitonic and
monic c/f-related

distribution.
Undifferentiated b-fabric.
Simple-packing voids and

chambers. Thin
non-laminated clay

coatings; Fe-Mn nodules

S assemblage
(smectite-dominated

association)

Average of Al/bases
ratio: 0.65, Ba/Sr
ratio: 1.67; Al/Si

ratio: 0.14; CIA-K: 76;
PWI: 39

Vertic Alfisols

Thick well-developed
profiles with A-A/E-Bt-Bss
horizons, dark gray co-lors,
well-structured Bt horizons

with prismatic peds and
Bss horizons with angular

peds, abundant cutans,
slickensides, mottles,

Fe-Mn nodules

Monic, chitonic to double-
or simple-space porphyric

c/f-related distribution.
Undifferentiated or

cross-striated b-fabric.
Compound-packing voids,

channels, and rhizoliths.
Laminated to

microlaminated clay
infillings

S assemblage
(smectite-dominated

association)

Average of Al/bases
ratio: 0.51, Ba/Sr
ratio: 1.13; Al/Si

ratio: 0.20; CIA-K: 81;
PWI: 37

3. Materials and Methods

All samples were taken from ~30 cm deep trenches in order to obtain fresh, nonweath-
ered material and avoid contamination with modern organic carbon (OC) sources. A total
of 97 bulk rock samples were collected, including all types of paleosols (with sampling fo-
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cusing on the B-horizons) and channel, crevasse splay and lacustrine deposits to determine
the δ13Corg of the sedimentary OC. In addition, TOC content measurements and Rock-Eval
pyrolysis were carried out on 68 bulk samples derived from Histosols, Inceptisols, Vertisols,
and lacustrine deposits. A total of 13 samples were processed for palynology and the
spore-pollen assemblage was analyzed.

The sedimentary OM analysis was performed using a Rock-Eval 6 pyrolysis (Vinci
Technology), available at the University of Lausanne, Switzerland, described in [59,60].
About 50–60 mg of sample powder was analyzed for each paleosols horizon and lacustrine
deposit. The method is based on the stepwise pyrolysis and combustion of OM, releasing
CO and CO2 gases monitored by a flame ionization detector (FID) for pyrolysis and an
infrared detector (IR) for combustion under an artificial air supply (N2O2 20/80). TOC
content, Hydrogen Index (HI) and Oxygen Index (OI) were calculated by integrating
the amounts of hydrocarbon compounds (HC), CO, and CO2 produced during thermal
cracking of OM and oxidative decomposition of carbonate, between defined temperature
limits [59,60]. Although 69 bulk samples of the MAF were analyzed, two of them were
dismissed because TOC values were extremely high (29.77 and 27.38%, respectively). These
off-scale TOC values may reflect the presence of pieces of coal or large plant debris within
the samples. On the other hand, samples with TOC contents below 0.11 wt% and OI higher
than 500 (n = 26) exhibited poor reproducibility and consequently, they were excluded
from further interpretation.

Measurements of δ13Corg were carried out on decarbonated samples. Powdered sam-
ples were treated twice with 6M HCl for 12 h to remove any carbonate phases and rinsed
subsequently with deionized H2O until neutrality was reached. The δ13C composition of
bulk OC was determined using an organic elemental analyzer (Thermo Scientific Flash
2000) connected online to a Thermo Fisher Scientific Delta V Advantage IRMS, available
at the Leibniz University Hannover, Germany. The analytic accuracy and reproducibility
are checked by replicate analyses of international standards (NBS 22). Reproducibility was
better than ±0.1‰ for δ13Corg. Values are expressed in conventional delta notation relative
to the Vienna-Pee Dee Formation belemnite (VPDB) international standard, in per mil (‰).

For palynological analysis, rock samples were treated with HCl to remove carbon-
ates and with HF for silicate removal. Residues were sieved, dehydrated with alcohol,
and mounted in a UV-curable acrylate following procedures described by [61]. Strew
mounts were investigated using a Leica DM500 transmitted light microscope and pho-
tographed with a Leica ICC50 HD camera. For palynomorph quantification, a minimum
of 250 individual sporomorphs were counted (average 299 sporomorphs). The individual
spore-pollen grains were assigned to floral groups according to their botanical affinity [62].
The stratigraphic frequency distribution of the palynomorphs is shown as a percentage of
the total assemblage.

MAT proxies were calculated based on the salinization ratio (SAL)
(MAT = −18,516 (SAL) + 17,298), where SAL = (Na + K)/Al); and PWI (Paleosol Weather-
ing Index) based (MAT = 2.74 ln (PWI) + 21.39, where PWI = 100 × [(4.20 ×Na) + (1.66 ×Mg)
+ (5.54 × K) + (2.05 × Ca)] [8]. MAP was calculated with different quantitative prox-
ies. (i) MAP estimation based on ΣBases/Al where MAP = −259.3 ln (ΣBases/Al) + 759;
(ii) MAP proxy based on the CIA-K index where MAP = 221.12e 0.0197(CIA-K); and
(iii) MAP proxy based on the CALMAG index, where MAP = 22.69 (CALMAG)–435.8 [8].

4. Results

All organic geochemical analyses (including δ13Corg, TOC, Rock-Eval pyrolysis),
paleosol-derived geochemical climofunctions (MAT and MAP; [8]) and palynological
investigations were carried out using the same bulk rock sample (see Figure 2) in order to
provide a consistent data-set and to eliminate potential stratigraphic errors.
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5. TOC and Rock Eval Pyrolysis

The TOC content of the MAF deposits ranged from 0.02% to 0.81%, with an average
value of 0.22% (Figures 2A and 3A). Samples of the same type of lithology showed con-
siderable variability in TOC contents (see Figure 3A), suggesting significant heterogeneity
of organic richness of the paleosols/sedimentary deposits. Lower mean TOC contents
were recorded in Inceptisols samples, while highest mean TOC contents were observed in
Histosols and lacustrine deposits (Figure 3A). The stratigraphic TOC trend across the MAF
showed several intervals characterized by increased TOC (Figure 2a). In the lower part of
the MAF (between 0 and 30 m) there were two intervals (1 and 2 in Figure 2A) with TOC
maxima reaching up to ~0.60 wt. %. In the middle section (between 45 and 60 m) another
interval was identified (interval 3 in Figure 2A) with TOC values of up to 0.81 wt. % TOC.
Finally, in the upper part of the section (between 105 and 130 m) TOC content reached up
to 0.70 wt. %.
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Figure 3. (A) TOC content (incl. mean, min. and max.) of the different paleosols and the lacustrine deposits of the Mata
Amarilla Formation. Red line corresponds to the average TOC value of all analyzed lithologies. Lower part of diagram
shows TOC content (incl. mean, min. and max.) of the different lithostratigraphic intervals. (B) Pseudo-Van-Krevelen
Diagram (HI = mg HC/g TOC), vs. OI = mg CO2/g TOC) showing a total of 39 samples with TOC values > 0.11 wt. % and
OI values < 500, in order to illustrate the kerogen types obtained from the different paleosols and lithologies.

Rock-Eval pyrolysis of the kerogen yielded HI values ranging from 9 to 123 mg HC/g
TOC (avg. 73 mg HC/g TOC), OI values ranging from 47 to 479 mg CO2/g TOC (avg.
178 mg CO2/g TOC), and Tmax values fluctuating from 400 to 601 ◦C (avg. 452 ◦C). HI
and OI values showed certain variability between samples of the same type of paleosol
(Figure 3B). The highest and lowest HI and OI values were recorded in Vertisols. The
average HI value of Histosols (~56), Vertisols (~53) and Inceptisols (~71) were close to the
general average (~73) and lower than the HI value of the lacustrine deposits (~111). On
the other hand, OI values of lacustrine strata (~198), and average values of Vertisols and
Inceptisols (~198 and ~189, respectively) were similar to the general OI average (~178). The
average OI of Histosols (~129) was lower.

The assessment of the kerogen type was based on a pseudo-Van-Krevelen diagram
(Figure 3B). The sedimentary OM preserved in the MAF can predominantly be assigned to
kerogen types III and IV (e.g., [63,64]).
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5.1. Carbon Isotope Analysis

The average δ13C composition of the sedimentary OM in the analyzed MAF succession
was −24.5‰, with values ranging from −23.3‰ to −30.2‰ (Figure 2A). The different
sediment types and paleosols were all characterized by a rather similar average δ13Corg
composition but showed differences in their isotopic variability (Figure 2B). Amongst
paleosols, Inceptisols showed the smallest internal variability (−23.7‰ to −26.1‰, avg.
−24.7‰) whereas Histosols showed a much larger scatter (−23.5‰ to −30.3‰, avg.
−24.8‰). Vertisols showed moderate variation in their δ13Corg composition (−23.3‰ to
−28.2‰, avg. −24.3‰). Alfisols (−23.8‰, single analysis) were less negative compared
to the average pedogenic OM. The OM preserved in lacustrine deposits showed consid-
erable variation (−24.6‰ to −28.2‰) and comparatively low values (avg. −25.9‰). In
contrast, crevasse-splay and channel deposits showed values of −24.7‰ and −23.9‰,
respectively. The δ13C signature of the bulk OM did not show a covariance with TOC
content (Figure 2C).

The stratigraphic δ13Corg trend was relatively stable throughout the succession, inter-
rupted only by a few distinctive negative peaks (Figure 2A). Positive shifts (>1‰ above
average) were labeled with capital letters from “A” to “F” (Figure 2A). The lower section of
MAF showed a positive trend “A” (1.1‰) with maximum δ13Corg values reaching −23.4‰
(at 25 m), which was abruptly terminated by a distinct negative peak reaching values of
−30.2‰ (at 36 m). The middle section of the MAF was characterized by positive trends
“B” (−23.4‰; at 40 m) and “C” (−23.6‰; at 55 m), which coincided with the radiometric
age of 96.23 ± 0.71 Ma [44]. This was followed by a negative peak (−28.20‰) at 75 m,
which coincided with the onset of lacustrine strata. Then, values remained stable until the
positive trend “D” (−23.3‰, at 92 m), which gave way to a negative peak (−28.16‰, at
97 m). The upper section of the MAF started with a positive shift “E” (−23.5‰, at 103 m),
which was followed by a second positive shift “F” (−23.6‰, at 118 m). The uppermost
part of the MAF ends with a negative peak (−26.9‰, at 129 m).

5.2. Palynology

The spore-pollen assemblage obtained from the MAF (Figure 4) was dominated
by different pteridophyte spores (mainly Cyathidites sp., avg. 48.4%), and pollen grains
produced by Cheirolepidiaceae (Classopollis spp.; avg. 35.1%). Other sporomorphs assigned
to Bryophyta accounted for only 4.5% on average. Araucariaceae (Cyclusphaera ssp.) and
Podocarpaceae (mainly Podocarpidites spp.) pollen grains also showed low values on
average, with 5.5% and 3.8%, respectively. Angiosperm pollen represented the smallest
fraction of the assemblage, with an average of 2.6%.
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Figure 4. General stratigraphic scheme for the Mata Amarilla Formation showing organic geo-
chemical data (δ13Corg and TOC), paleosol−derived geochemical climofunctions (MAT and MAP;
Varela et al., 2018), and stratigraphic frequency distribution of the spores and pollen (in % of the
total assemblage).
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Cheirolepidiaceae pollen and fern spores showed opposing stratigraphic trends. When
the Cheirolepidiaceae rose in abundance, ferns decreased in their proportions, and on the
contrary, when the Cheirolepidiaceae receded, ferns showed high proportions (Figure 4).
Podocarpaceae and Araucariaceae were more abundant in the uppermost lower section
and the base of the middle section. In the upper half of the succession, the proportions
of Podocarpaceae and Araucariaceae decreased significantly. Angiosperm proportions
were low throughout the succession (0.4–1.5%), with the highest proportion concentrated
toward the base of the middle section (6.8–13.8%) (Figure 4).

6. Discussion
6.1. Composition of the Paleosol-Derived (and Sedimentary) Organic Matter

The accumulation of OC in fossil soils was influenced by an array of preservation and
degradation factors, including redox state as a primary control. Additionally, depth of the
soil horizon, texture and type of horizon, clay mineralogy, sulfur content, abundance of
amorphous mineral phases and diagenetic alteration were identified as important factors
affecting the composition and distribution of OM in paleosols [65,66]. The dominant source
of OC in soils is plant litter, microbial biomass and/or metabolites. Selective microbial
decomposition of the more labile OM fraction results in OC loss and relative enrichment
of the more recalcitrant compounds and particles in fossil soils (e.g., [67]). Compared to
modern soil counterparts, paleosols contained only a fraction of the original soil OC due to
burial decomposition [65].

Fossil soils developed in alluvial/fluvial depositional environments represent favor-
able settings for the storage of OC [66]. The MAF is composed of stacked fluvial deposits
intercalated with abundant paleosols, which account for 81% of the total succession. Pa-
leosol types represent Histosols, Vertisols, Inceptisols and subordinate vertic Alfisols,
which formed under a temperate–warm, seasonally humid climate at a paleolatitude of
55◦ S [8,54].

The particulate OM observed in the MAF paleosols was essentially composed of
translucent and opaque woody fragments, charcoal particles, and cuticle debris, as well
as spores and pollen grains. The good preservation of the OM indicated that the level
of diagenesis did not overprint the primary pedogenic signature. A well preserved pa-
lynological assemblage of the MAF was described by [58] with individual sporomorphs
showing delicate wall ornamentation, which illustrated the overall good preservation
state of the particulate OM fraction. The OM is considered to be mainly autochthonous in
origin with only limited contribution from detrital OC inputs via eolian transport or from
weathering/erosion of pre-Cretaceous strata in the hinterland. Average TOC content of
0.25% of the MAF paleosols are similar to Cenomanian paleosols from SW Japan, where
the average TOC content is 0.2% [68], and Cenomanian paleosols of the Western Interior
Basin (USA), where the average TOC is < 0.3% [31]. TOC content varies depending on
paleosol type, with the highest average TOC contents of 0.26% observed in Histosols and
interpreted to reflect attenuated burial decomposition due to soil formation under reducing
and waterlogged conditions. In contrast, lower average TOC contents of 0.14% have been
observed in Inceptisols, which represent weakly developed and poorly structured paleosols
formed over relatively coarse textures in levees and crevasse-splay deposits under well
drained conditions. Under such conditions, soil OM is more rapidly oxidized. Vertisols
occur in the MAF in the form of moderately developed smectite-rich soils that formed
under moderate to poor drainage conditions. Average TOC contents of 0.23% indicated
preservation of a certain particulate OM fraction. All MAF paleosols showed strong vari-
ability in TOC contents, which may reflect the fragmentary preservation/fossilization
of original surface-to-depth TOC gradients [65]. Additionally, lacustrine strata lacking
pedogenesis was characterized by moderate TOC contents of 0.27%, interpreted to reflect
OM accumulation under predominantly oxic/dysoxic conditions.

Based on Rock-Eval pyrolysis, small-scale variations in HI and OI average values
of the MAF paleosols were observed. Inceptisols showed, on average, slightly higher
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HI values (~71) compared to other paleosols (~53 and 56 for Vertisols and Histosols,
respectively). These relatively slightly high HI values could be due to the fact that the
Inceptisols formed rapidly during a short time-span, which was not sufficient to allow the
transformation of organics into humic and fluvic acids. Similarly, the moderate OI values of
the Inceptisols (~189) could reflect their formation over relatively coarse-textured sediments
(i.e., levees and crevasse splay deposits) under well drained conditions [8], which allowed
the rapid oxidation of the OM. These HI and OI values of the Inceptisols indicated that
the kerogen essentially derived from land plants deposited under predominantly oxic
conditions (Type III) and from refractory OM (Type IV) (e.g., [69]). Although Vertisols and
Histosols presented similar HI average values, Vertisols showed a wider range compared
to Histosols. Relatively low HI in the Vertisols is in agreement with their formation under
shrinking and swelling of smectite clays, which allowed the transformation of OM into
humic acids and, to a lesser extent, into fulvic acids. Meanwhile, low HI in Histosols
attested to a low modification of organics. Vertisols showed the highest OI average value
(~198), which could be due to their formation under moderate−poor drainage conditions
with subordinate oxidation during dry seasons [8]. Such conditions could have prevented
the extensive oxidation of the OM that is reflected in high OI values. In the case of the
Histosols, waterlogged conditions, typically of this paleosol type, were reflected in the
lowest OI average values (~129) of the MAF’s paleosols. Subtle differences between
Vertisols and Histosols can also be attributed to different analyzed horizons being organo-
mineral (O or A horizons) in Histosols and mineral (B horizons) ones in Vertisols (e.g., [70]).
In general, the low HI and the variable OI of the Vertisols and Histosols typically represent
the kerogen Type IV, which is derived from refractory OM that may have been altered by
subaerial weathering and/or microbial oxidation in swamps or soils (e.g., [63]). Kerogen
Type IV with relatively low OI as those of the Histosols and some Vertisols reflects more
anoxic conditions than soils with moderate–high OI (i.e., several Vertisols). However, a
small population of Vertisols corresponded to kerogen Type III (e.g., [63,64]). The OM in
the lacustrine deposits of the MAF came mainly from the fluvial system; small HI values
may reflect a predominantly terrestrial origin, but it is possible that in situ production
of algae could have contributed to the total sedimentary OM. In summary, all analyzed
paleosols showed only minor variations in HI and OI values, indicating a similar OM
composition throughout the MAF.

In general, no significant transformation of the primary plant-derived δ13C signature
occurs during decomposition of plant litter and subsequent incorporation of organic
byproducts into the soil OM pool [71]. Hence, the δ13C composition of soil OC was
expected to predominantly reflect the isotopic signature of the original plant community
contributing OC to the soil. The fluvial settings and coastal plains preserved in the MAF
were covered by a conifer-dominated vegetation with a fern understory as indicated by
palynological findings and by remnants of a podocarp-dominated fossil forest [55,58]. The
overall average δ13C composition of paleosol-derived OM in the MAF was −24.5‰, which
corresponded well to reported values for mid-Cretaceous C3 plant vegetation. Similar δ13C
signatures have been reported for Cenomanian (pre-OAE2) fossil wood fragments derived
from deep-water siliciclastics deposited along the NE and NW Pacific margin [29] as well as
from time-equivalent bulk terrestrial (plant-derived) OM deposited in the Western Interior
Basin [31]. The stratigraphic carbon isotope trend of the MAF was punctuated by several
isolated negative δ13Corg shifts reaching values as low as −30.2‰. Such significantly
depleted values in the bulk OM signature may indicate higher contributions from aquatic
sources (i.e., algae) and/or incorporation of methanotrophs (i.e., organisms which consume
isotopically negative methane; [72,73]), or marine-derived OM contribution in coastal plain
environments [31]. Alternatively, the negative OM signature may reflect extreme aerobic
microbial degradation in carbon-poor soils or might be related to closed canopy conditions
and enhanced CO2 recycling in the understory [72–74]. An isolated negative peak at
75m corresponded to lacustrine strata, which is often characterized by rather negative
δ13Corg signatures.
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However, based on more recent observations from modern soils and Cenozoic pale-
osols, [72] were able to demonstrate substantial δ13C fractionation during OC decomposi-
tion resulting in preferential enrichment of 13C of up to ~6‰ in the residual OC preserved.
Despite the observed scatter in δ13C values obtained from the MAF paleosols, no values
exceeding −23.3‰ were observed, which contradicted strong fractionation due to progres-
sive decomposition and 12C removal. The absence of a clear relationship between paleosol
TOC and δ13C values in the MAF (Figure 2C) did not support the idea of enhanced OC
decomposition paralleled by 13C enrichment. Visual and geochemical inspection provided
no evidence for strong alteration of the δ13C signature during deep burial diagenesis since
the overall preservation was good and the OM was thermally immature. In general, it
is assumed that variations in δ13C signatures of plant/soil OC caused by ecological and
physiological vital effects are averaged spatially due to incorporation of plant debris from
various sources into floodplain sediments and soils [75]. The carbon isotope measurements
from the MAF were independent of paleosol type and depositional environment, which
demonstrated that the δ13C signature of pedogenic OC, although altered, was not strongly
biased due to taphonomic/pedogenic processes. Therefore, isotopic analyses of bulk OC
in the MAF deposits approximate the many-species average sample that best minimize
physiological vital effect bias [75] and can serve as a tool to track changes in the global
ocean-atmosphere δ13C reservoir.

6.2. Comparison with Existing Marine and Terrestrial Carbon Isotope Records

CIEs are widely used as stratigraphic markers and considered to record isotopic vari-
ations isochronous on a global scale [22,76]. Some major CIEs have been reported from
both, marine and non-marine sedimentary successions, which indicates involvement of
the entire ocean-atmosphere system (e.g., [31,77,78]). Common substrates used for carbon
isotope studies in continental environments are pedogenic nodules, lacustrine or palustrine
carbonates [77,79,80] as well as fossil wood or other plant-derived particles [81–85]; mean-
while, bulk OC from terrestrial sediment or paleosol is less frequently used (e.g., [79,86,87]).
Despite variations in absolute values and an often higher stratigraphic variability in ter-
restrial substrates, the overall trends and changes observed in marine reference curves
are well reproduced in continent-derived δ13C records (e.g., [33,37,78]). Due to the lack
of carbonate nodules or fossil wood particles in the paleosols of the MAF, and in order
to obtain regularly spaced sampling throughout the studied succession, a δ13Corg record
based on bulk OM was established. The carbon isotope trend of the paleosol-derived OM
elucidated a detailed chemostratigraphy for the Cenomanian stage of southernmost South
America. The pattern visible in the δ13Corg record was independent of changes in lithology
and not strongly affected by the type of paleosol or TOC content.

Detailed Cenomanian δ13Ccarb records have been established for certain parts of
Europe, including those from the United Kingdom [32,88,89] and from the Vocontian Basin
of SE France [90] which are regularly used as references in global comparisons [36]. The
Early Cenomanian δ13Ccarb trend from European records is characterized by a relatively
stable pattern [25,32], which is replicated also in the δ13Corg stratigraphic record obtained
from the Western Interior Basin of North America [91]. Likewise, stable Early Cenomanian
carbon isotope values have been reported from Japan [37,38] and from sections in Peru [92].
A similar stable pattern has been observed in the Lower Cenomanian part of the paleosol-
based δ13Corg curve from southern Patagonia (Figure 5).

The stable Early Cenomanian δ13C global trend is terminated by a short-lasting, small-
amplitude positive CIE located at the onset of the Middle Cenomanian at ~96 Ma [25,26,89].
This so-called MCE [93] is recognized globally and typically composed of two closely
spaced positive δ13C peaks, MCE Ia and MCE Ib [26]. Although the MCE Ia is characterized
by the occurrence of black shale deposits in ODP Leg 207 [94], it is not considered as an OAE.
The MCE also differs from OAEs by its lower amplitude CIE of about 1‰ compared to
about 3‰ for OAE2 [26,36]. The positive δ13Ccarb anomaly of the MCE observed in Europe,
North America and Asia is not well expressed in the MAF δ13C record. Its stratigraphic
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position can be approximately constrained based on the U-Pb age of 96.23 ± 0.71 Ma
at ~55 m [44]. The presence of two low-amplitude positive δ13Corg shifts “B” and “C”
(0.9 and 1.8‰, respectively) may correspond to the reported δ13Ccarb shifts of 0.8 and
1.2‰, which are associated with the MCE in sections of the English Chalk ([88]; Figure 5).
Similarly, positive shifts in δ13Corg in the order of 0.9 and 1.2‰ have been recorded for the
MCE in Japan ([37,38]; Figure 5). In a δ13Ccarb curve obtained from northern Peru, similar
tendencies are displayed and have been assigned to the MCE [92].
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The absence of further geochronological data or of higher-resolving terrestrial bios-
tratigraphy for the upper part of the studied section hampered any detailed stratigraphic
correlations. However, when comparing the trends of the paleosol-derived δ13C record
from southern Patagonia with global curves, some general statements can be made.

The remaining part of the Middle Cenomanian and the early Late Cenomanian showed
a gentle increase in δ13Ccarb, which abruptly gave way to the prominent positive CIE associ-
ated with OAE2 [36,95]. For the same interval, the δ13Corg records showed a slightly differ-
ent stratigraphic pattern, characterized by a stable or gradual trend toward more negative
δ13Corg values [34,36]. A significant and abrupt increase of carbon isotopes values (~2–3‰)
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was the main characteristic feature of the OAE2 (e.g., [31,33,34,36,38,88,89,92,96,97] among
others) and could be correlated in stratigraphic sections distributed worldwide (Figure 5).
Comparisons of the δ13Corg curve from southern Patagonia with high-resolution curves
from North America, the equatorial Atlantic, Europe and Asia revealed the absence of
the characteristic positive MCE and Late Cenomanian-Turonian CIE in the studied MAF
(Figure 5).

The absence of the MCE and Late Cenomanian-Turonian CIE could be explained due
to (i) a preservation issue, (ii) masking of the CIE due to changes on OM composition,
or (iii) erosion/non-deposition. The pronounced CIE associated with the OAE2 has been
recorded previously in various types of continent-derived substrates including fossil wood,
terrestrial particulate OM and plant wax-derived n-alkanes [28,29,31,96,98]. This clearly il-
lustrated that the carbon cycle perturbation associated with the Late Cenomanian-Turonian
event did affect the entire ocean-atmosphere system, including the δ13C composition of at-
mospheric carbon species. Since the dominant source for OM in paleosols is plant-derived
debris, a δ13C change in the order of several per mil (‰) of atmospheric CO2 would be
expected to be recorded in this type of substrate.

Changes in the composition of sedimentary bulk OM (e.g., change in the ratio of
aquatic vs. land plant-derived OM) can have a significant impact on its δ13C compo-
sition [31,73,82]. A local and persistent shift towards OC with a more negative carbon
isotopic composition (e.g., [31]) could theoretically counterbalance the impact of a global
positive anomaly. However, neither optical inspection nor RockEval pyrolysis results pro-
vided evidence for a major change in OM composition in the upper stratigraphic interval
of the MAF.

The studied succession of the MAF in the Austral-Magallanes Basin was predomi-
nantly composed of nonmarine strata, essentially represented by fluvial siliciclastic alter-
nating with paleosols [8,44]. Continental deposits are known to be highly fragmentary
and prone to erosion; stratigraphic continuity cannot be expected (e.g., [99]). The top
of the MAF is marked by an erosive unconformity, which forms the base of the Cam-
panian deposits of the La Anita Formation ([51–53]; Figure 2A. This unconformity has
been related to the foreland stage in the Austral-Magallanes Basin and the growth of the
proto-Andes [100]. The absence of the Late Cenomanian-Turonian CIE in the MAF is best
explained by non-deposition and/or post-depositional erosion due to regional tectonic
activity [42,48].

From the comparison with the global curves, it was suggested that the uppermost
part of the MAF would be restricted to the Upper Cenomanian, just before the onset of the
OAE2 (Figure 5), generating a temporary stratigraphic constraint that was not available
until now.

6.3. The Mata Amarilla Formation as Environmental Archive

Palynological data from the Lower Cenomanian of the MAF indicated a conifer forest
dominated by Cheirolepideaceae with a lush understory composed of ferns and bryophytes
(Figure 4). [101] proposed that the xeromorphic characteristics present in the leaves of
Cheirolepidiaceae helped them to reduce loss through respiration and transpiration during
the long periods of winter darkness in higher latitudes. These features would make the
Cheirolepidiaceae the most suitable conifer group to flourish in the MAF, since the study
area was located at ~55◦ S paleolatitude during the Cenomanian, resulting in long and dark
winters [8]. However, other factors must have affected the abundance of the Cheirolepidi-
aceae in the MAF (e.g., mean annual precipitation), since their abundances varied strongly
throughout the succession (Figure 4). Subsequently, the Cheirolepidiaceae proportion
decreased sharply and the proportions of ferns, Araucariaceae and Podocarpaceae rose.
This type of vegetation is similar to the extensive open conifer-dominated forests developed
in wet lowland areas under a warm climate described by [55] for the Middle Cenomanian
of the MAF. Large forest glades resulted in multiple open spaces that were occupied mainly
by ferns.
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During the early Middle Cenomanian, low abundances of gymnosperm pollen were
accompanied by the highest fern spore and angiosperm pollen proportions recorded in
the section. This could be interpreted as a reduction of the gymnosperm density, allowing
the development of a fern prairie: a system dominated by ferns as thicket-forming plants
(e.g., [102–104]). A strong drop in MAP values (from 1400 to 1100 mm/year) during
this interval was coincident with a short-lasting decline in ferns and angiosperms and a
modest recovery of gymnosperms (Figure 4). In the late Middle Cenomanian, the spore
and conifer pollen proportions showed similar values compared to those recorded in the
Early Cenomanian. During the early Late Cenomanian, alternating conditions may be
suggested for the fluctuating proportions of ferns and Cheirolepidiaceae (Figure 4).

Throughout the section, there were two intervals interpreted to reflect the expansion
of fern prairies at the expense of Cheirolepidiaceae-dominated forest: the early Middle
Cenomanian and the early Late Cenomanian. Both intervals were associated with a similar
rise in MAP values, but showed significant differences in the abundance of angiosperm
pollen. The highest proportion of angiosperms was recorded during the early Middle
Cenomanian (6.8–13.8%), probably related to ideal conditions during this phase [35,94].
During intervals considered as climatic optima, the abundance and diversity of angiosperm
pollen rose (e.g., [105–108]). Alternatively, besides climatic variations, changes in the
depositional environment may also have affected the distribution of vegetation.

Ref [58] compared the palynoflora obtained from the MAF with existing mid- and
high-latitude Albian-Turonian formations from the Southern Hemisphere (eastern and
western Gondwana). These authors found that the Patagonian palynofloras showed differ-
ent affinities depending on their paleolatitude. Palynofloras from high-latitude areas of
Patagonia (MAF, Piedra Clavada/Kachaike formations ([57,58,109–117]) were related with
Antarctica (Whisky Bay; [118,119]) and New Zealand (Tupuangi; [120,121]) palynofloras,
based on the presence of widespread taxa, including Classopollis, Podocarpidites, Cyathidites,
Microcachryidites, Tricolpites and Clavatipollenites. On the other hand, mid-latitude pa-
lynofloras from northern Patagonia (Cañadón Seco and Huincul formations; [122–125])
had similarities with Australian palynofloras (Toolebuc, Mackunda, Winton, Allaru and
Bathurst Island formations; [126–129]). The reasons for this clustering are still unclear.

During the Late Cretaceous in the Northern Hemisphere, the Normapolles Province
extended from southern and eastern North America (including northernmost Mexico)
via Europe to West Siberia [130]. This palynological province was characterized by the
abundance of angiosperm pollen grains assigned to the Normapolles complex, together
with conifer-derived bisaccate and Classopollis pollen as quantitatively significant elements.
Gleicheniaceae, Anemiaceae, and Matoniaceae are the most common spores found in those
regions (e.g., [97,131–134]). However, higher latitude regions show a different microfloral
composition during the Cenomanian, dominated by gymnosperms [135–138] and/or
ferns [139,140], with angiosperm pollen forming only a minor component. In this sense, the
MAF palynoflora from Patagonia shows certain similarities with high-latitude Northern
Hemisphere assemblages, but lacks the typical Normapolles elements.

7. Conclusions

1. This study provided a new detailed δ13Corg Cenomanian record for a continental
sedimentary succession from southern South America.

2. The carbon isotope record from the MAF was largely independent of paleosol type
and depositional environment, demonstrating that the δ13C signature of soil-derived
OC was not strongly biased due to taphonomic/pedogenic processes.

3. Comparisons of the δ13Corg curve of southern Patagonia with high-resolution trends
from elsewhere in the world revealed the absence of the characteristic positive CIE ex-
pected to mark the Cenomanian-Turonian boundary. The absence of the Cenomanian-
Turonian CIE was interpreted to reflect erosional processes and/or non-deposition as
indicated by an unconformity surface at the very base of the overlying Campanian
deposits of the La Anita Formation.
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4. The comparison of the δ13Corg record, TOC values, and palynological data with
paleosol-derived MAP provided a better understanding of the mid-Cretaceous cli-
mate/biota interaction in the Southern Hemisphere. During warmer and moister
periods, fern prairies developed at the expense of the background conifer-dominated
forest. Angiosperms formed only a minor component of the Cenomanian Southern
Hemisphere high-latitude vegetation.
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