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Abstract: The re-use of wastewater is an increasingly important subject. Most recently, several
attempts were reported to convert wastewater in harmless or even valuable substances by the use
of electrical current. Electrochemistry is an old approach. The renewed interest stems from the fact
that electrical current is often available in abundance, for example from solar energy in arid regions,
while clean water is not. Experimentally, one has to deal with very many products which are the
result of many reaction steps. Here, theory can help. Using Car–Parrinello molecular dynamics, we
simulate the first few reaction steps of the electrolysis of wastewater. On the basis of previous studies,
we investigate the reaction of carbon dioxide and nitrogen compounds. The results show a great
variety of reaction steps and resulting products. Some of them are technologically interesting, such
as hydrogen and formic acid.

Keywords: ab initio molecular dynamics; reaction mechanisms; electrolysis; wastewater; power-to-
fuel

1. Introduction

The removal of wastewater is an industrial process in all regions of the world. The
reasons for this are manifold. There are huge amounts of municipal wastewater in re-
gions with high population density as metropolitan areas. Additionally, agricultural and
industrial plants produce contaminated water in their processes [1].

One way to get rid of bioorganic and inorganic contamination in wastewater is the
electrolysis of the pollutants. Thereby, different strategies are pursued. One way is the
degradation of all chemicals to gaseous, harmless species like H2, N2, O2 and CO2. The
second way is to produce different chemicals which contain higher energies in concepts
such as “power to fuel” [2–4] and “power to gas” [5–8] or summarized as “power to
chemicals” [9,10]. The electrolytic conversion of wastewater pollutants has the benefit of
combining two advantages. While electrolytic reactions can lead to desired products, the
degradation simultaneously taking place can lead to further synthesis routes, e.g., Fischer-
Tropsch synthesis [11,12], with H2 and CO2. Experimentally, the number of compounds
which may be generated is vast. Theoretical studies may help to find the most important
intermediates and products [13]. The reactivity of biomolecules, such as peptides and
urea, that are likely to be found in municipal and agricultural wastewater were studied in
previous publications [14,15]. The outcomes of these studies in the picosecond timescale
were solutions containing ammonia, ethanimine, and carbon dioxide which are going to
be investigated in this work. For the electrolytic reaction of ammonia several mechanisms
were stated in the past [16–18]. These results were mainly derived from experimental data,
which focus on the products of the reaction, determined with the help of various methods.

In this work the ultra-fast reactions taking place under electrolytic conditions are
investigated for their mechanism with focus on intermediate products and their energetics.
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In contrast to other studies [19,20], we focus on the outer Helmholtz layer only. That is,
we investigate the reactions which occur without direct contact with the surface of an
electrode. Conditions at a distance from the electrode surface are simulated by creating OH
or H radicals solvated in the aquatic environment of the simulation. The performance of
our approach for such a system was investigated in reference [21]. In our simulations the
radicals are created via simply removing nuclei and electrons from water molecules after
an equilibration phase [14,15,22]. This approach models the situation immediately after
the electron transfer. The electron transfer itself is not part of our simulations. Simulating
this electron transfer would be difficult because our simulation boxes are small, and we
use self-consistent field theory. Ionic species would be discharged by electronic tunneling
already at a distance from the electrode surface. The radicals resulting from our simulations
are reactive open shell molecules, which attack the molecules in the solution in different
ways. The reactions are taking place in the picosecond timescale, so for investigations on
the reaction mechanism, Car–Parrinello molecular dynamics (CPMD) [23–25] with up to
0.1 femtosecond timesteps can be used for the simulation. The use of the CPMD method
has various advantages. CPMD describes the movement of all parts of a system in a limited
timestep. This on-the-fly approach offers the advantage that reaction pathways can be
found and not only known ones can be analyzed. CPMD describes the movement of both,
the nuclei and the electrons of the system which leads to a good description of the reaction
path and the mechanism [26]. However, the simulation of the movement of the whole
molecular system leads to the disadvantage of high computing times. And as a result of
these high computational efforts the strength of this molecular dynamics method causes
also its limitation on a relative low number of timesteps. This makes CPMD only useful for
the description of very fast reactions.

To accelerate the reactions and to observe as many reactions as possible, we use a very
high density of active species. This may lead to reaction mechanisms that are not relevant
under conditions that are closer to experiment. However, it is possible to monitor if, for a
certain reaction, the simultaneous attack of two reactive species is needed. Hence, we must
discuss in the end which reactions are overestimated due to the high number of reactive
species. The products depend strongly on the initial conditions after equilibration; hence,
we must perform as many simulation runs as possible.

Under such highly reactive conditions as they are to be found during electrolysis,
many different reactions are taking place so that a selection which ones to discuss had
to be made. For this reason, the selected reactions which are discussed in this work, was
limited to stable products. The complete simulation data including the unstable open shell
products can be found in the Supplementary Materials.

To limit the amount of CPU time used for the molecular dynamic simulations, we
are restricted to GGA functionals such as BLYP-D3 [27–29] which has an incredible ac-
curacy/cost relation, but also has well-known weaknesses. Hence, while the molecular
dynamics runs were performed using CPMD in combination with BLYP-D3, the energetic
properties of the products have been calculated with various methods as implemented
in the Gaussian program code [30]. Wave-function, DFT and hybrid methods were used,
further detail is given in the Methods section. The electronic energies ∆rE and the heat of
reaction ∆rH were calculated and compared to the experiment. The complete results are
summarized in the Supplementary Materials.

2. Methods

Car–Parrinello molecular dynamics simulations using the CPMD code [23] were
performed using the Becke–Lee–Yang–Parr (BLYP) [31,32] functional in connection with
the Grimme dispersion correction [33]. The time step was chosen as 2 a.u. (0.048 fs) and the
fictitious electron mass as 200 a.u. Troullier–Martins pseudopotentials as optimized for the
BLYP functional were employed for describing the core electrons [34,35]. The plane-wave
cutoff, which determines the size of the basis set, was set to 70.0 Rydberg. The simulation
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cells were 20 × 20 × 20 a.u.3 or 10.6 × 10.6 × 10.6 Å3. For the reactive simulations, the
unrestricted version of Kohn–Sham theory was employed [36,37].

The density of the created solutions is higher than that of pure water (1.00 g/cm3)
because several water molecules are substituted with CO2, which has a higher molecular
weight. Solutions with a density of roughly 1.22 g/cm3 were generated (8 ammonia,
9 carbon dioxide and 19 water molecules named system 1 or 7 ammonia, 9 carbon dioxide
and 19 water molecules named system 2). Additionally, solutions with ethanimine were
generated (4 ethanimine, 9 carbon dioxide, and 21 water molecules named system 3 or
4 ethanimine, 9 carbon dioxide and 22 water molecules named system 4). The solutions
of systems 3 and 4 had a density of roughly 1.34 g/cm3. After the equilibration of stable,
neutral, closed-shell systems, reactive species were generated in two ways: by removing
eight hydrogen radicals, leading to OH radicals in order to simulate anodic conditions and
by removing eight OH radicals, leading to eight hydrogen radicals in order to simulate
cathodic conditions. For the reactive simulations, the spin-unrestricted version of Kohn–
Sham theory was employed. To check the radical character of the observed species, we
computed Mulliken charges.

The geometry optimizations were performed with the Gaussian 16 program pack-
age [30]. All geometry optimizations and vibrational frequency calculations were per-
formed using the BLYP-D3 [31–33] functional, the B3LYP-D3 [38,39] hybrid functional, the
B2PLYP-D3 [39] double hybrid functional, the Hartree–Fock method, the second order
Møller–Plesset perturbation method MP2 [40], and the coupled cluster CCSD method in
combination with the 6-311G(d,p) basis set [41]. Additionally, further calculations were
performed using the CCSD method with the aug-cc-pVTZ basis set which will be referred
to as CCSD/aug. In all calculations solvent effects for water were taken into account with
the PCM continuum solvation model [42]. The thermodynamic data were calculated using
the freq keyword function of the Gaussian 16 program.

3. Results and Discussion

The most complex and important processes were observed during simulations of
anodic conditions, that is why it makes more sense to begin the discussion with their
detailed description. In order to better simulate the real systems, two new cells were created
for each neutral equilibrated system, which differed only in the positions of created OH
radicals. As expected, the formation of various reactive oxygen-based species was observed
(e.g., hydrogen peroxide HOOH, HOO radical, O2). Furthermore, ammonia molecules
were oxidized to several inorganic compounds, such as NHO, NO, NH2OH, NH2O, and
NH2. Furthermore, ethanimine molecules were oxidized to several organic compounds,
such as RNHO, nitrene radical, RNO radical, oxime. R is equal to ethylidene group.

3.1. Ammonia and Carbon Dioxide in Aqueous Solution
3.1.1. Anodic Reactions

The first reaction observed is the formation of an HNO molecule out of NH3. The
mechanism is shown in Figure 1.
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Figure 1. Sequence of elementary reaction steps that lead to the formation of HNO molecule in system 1. The initial
temperature of the system was set to 250 K.

Its first reaction step corresponds to the abstraction of hydrogen radical from ammonia
by OH radical which results in the formation of NH2 radical after 0.16 ps of simulation.
The formed reactive intermediate is attacked further by a second OH radical within 0.02 ps.
As a result, the stable closed-shell hydroxylamine molecule is formed. Key bond lengths
for first and second reaction steps are depicted in Figure 2. Afterwards the hydrogen atom
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of the hydroxyl group is attacked by a third OH radical which results in the formation of
an NH2O radical and a water molecule. The new reactive intermediate is stabilized during
the last step of the reaction via hydrogen radical abstraction, which is performed by the
fourth OH radical. The closed-shell stable HNO molecule is formed after 0.35 ps. Key bond
lengths for the third and fourth reaction steps are depicted in Figures 3 and 4.
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Figure 2. Sketch of the first and second reaction steps of ammonia with OH radicals observed for
system 1. The most relevant bonding interactions deduced from Car–Parrinello simulations are
highlighted. An extremely short-lived intermediate can be identified in the time regime 0.15–0.30
ps. Both the N-H and the O-H bonds are oscillating at the length of a hydrogen bridge. Color-code:
blue—nitrogen, red—oxygen; white—hydrogen.

Among the reactions observed another mechanism for the formation of HNO was
found for system 2, and it is depicted in Figure 5.
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The first reaction step corresponds to the attack of a hydroxyl radical on ammonia,
which results in the formation of an NH3OH radical after 0.15 ps of simulation. The formed
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reactive and very unstable intermediate is attacked further by a second OH radical within
less than 0.01 ps resulting in the formation of the closed-shell NH2OH product and a water
molecule. Key bond lengths for the first and second reaction steps are depicted in Figure 6.
During the third step the highly reactive hydroxylamine reacts with a second NH3 molecule
yielding the NH2O radical intermediate and a neutral ammonium radical after 0.02 ps. The
reaction step is depicted in Figure 7. The last step is the attack of a hydroxyl radical, which
abstracts a hydrogen radical yielding a stable closed-shell NHO molecule and water. The
reaction is completed within 0.39 ps. Key bond lengths for the fourth reaction step are
depicted in Figure 8.
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simultaneously, another OH radical is attacking, leading to the elimination of water and the formation
of hydroxylamine. Color-code: blue—nitrogen, red—oxygen; white—hydrogen.

Energies 2021, 14, 6510 7 of 22 
 

 

 

 
Figure 7. Sketch of the third reaction step (system 2). The hydroxylamine molecule is attacked by 
ammonia, leading to the formation of an NH2O-radical and a NH4 radical. Color-code: blue—
nitrogen, red—oxygen; white—hydrogen. 

. 

Figure 8. Sketch of the fourth reaction step (system 2). The attack of another OH radical on the NH2O 
radical and the following elimination of water leads to the formation of the closed-shell HNO 
molecule. Color-code: blue—nitrogen, red—oxygen; white—hydrogen. 

  

Figure 7. Cont.



Energies 2021, 14, 6510 7 of 22

Energies 2021, 14, 6510 7 of 22 
 

 

 

 
Figure 7. Sketch of the third reaction step (system 2). The hydroxylamine molecule is attacked by 
ammonia, leading to the formation of an NH2O-radical and a NH4 radical. Color-code: blue—
nitrogen, red—oxygen; white—hydrogen. 

. 

Figure 8. Sketch of the fourth reaction step (system 2). The attack of another OH radical on the NH2O 
radical and the following elimination of water leads to the formation of the closed-shell HNO 
molecule. Color-code: blue—nitrogen, red—oxygen; white—hydrogen. 

  

Figure 7. Sketch of the third reaction step (system 2). The hydroxylamine molecule is attacked
by ammonia, leading to the formation of an NH2O-radical and a NH4 radical. Color-code: blue—
nitrogen, red—oxygen; white—hydrogen.

Figure 8. Sketch of the fourth reaction step (system 2). The attack of another OH radical on the
NH2O radical and the following elimination of water leads to the formation of the closed-shell HNO
molecule. Color-code: blue—nitrogen, red—oxygen; white—hydrogen.

Another reaction observed for system 1 is the formation of NO out of NH3 with HNO
as intermediate product, as depicted in Figure 9.
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simulation. The formed reactive intermediate is attacked further by a second OH radical
within 0.05 ps resulting in the formation of the NH2OH intermediate. Key bond lengths for
the first and second reaction steps are depicted in Figure 10. During the third step hydroxyl
amine reacts with a second NH3 molecule yielding an NH2O radical intermediate and a
neutral ammonium radical after 0.14 ps of simulation. The NH2O radical reacts further
with an OH radical resulting in the formation of a water molecule and closed-shell HNO
The last step is represented by the attack of a third OH radical on formerly formed HNO,
which yields NO and a water molecule. The reaction is completed within 0.20 ps. Key
bond lengths for the third and fourth reaction steps are depicted in Figures 11 and 12 and
for the last step in Figure 13.
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In addition to HNO and NO, hydroxylamine NH2OH is formed during the 
simulation of reactions in system 2, depicted in Figure 14 hydroxylamine is also an 
intermediate of the mechanism shown in Figure 9. 
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temperature was set to 300 K. 

The first reaction step of the first mechanism corresponds to the homolytic 
dissociation of the N-H bond, which results in the formation of NH2 and H radicals after 
0.15 ps of simulation. The formed hydrogen radical is coordinated by a second equivalent 
of ammonia. To be more specific, a hydrogen atom is located between two nitrogen 
centers. The second step is represented by the recombination of OH radical with NH2 
yielding closed shell hydroxyl amine within 0.04 ps. The key bond lengths for the first and 
second reaction steps are depicted in Figure 15. During the third step hydroxyl amine 
reacts with a second OH radical yielding an HNOH radical intermediate and a water 
molecule after 0.01 ps. The last step is the recombination of NHOH radical with H radical 
and simultaneous loss of coordination by a second equivalent of ammonia, which leads 
to the formation of stable closed-shell hydroxylamine. The reaction is completed within 
0.23 ps. Key bond lengths for the third and fourth reaction steps are depicted in Figure 16. 
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In addition to HNO and NO, hydroxylamine NH2OH is formed during the simulation
of reactions in system 2, depicted in Figure 14 hydroxylamine is also an intermediate of the
mechanism shown in Figure 9.
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Figure 14. Sequence of elementary reaction steps that lead to the formation of NH2OH molecule in system 2. The initial
temperature was set to 300 K.

The first reaction step of the first mechanism corresponds to the homolytic dissociation
of the N-H bond, which results in the formation of NH2 and H radicals after 0.15 ps
of simulation. The formed hydrogen radical is coordinated by a second equivalent of
ammonia. To be more specific, a hydrogen atom is located between two nitrogen centers.
The second step is represented by the recombination of OH radical with NH2 yielding
closed shell hydroxyl amine within 0.04 ps. The key bond lengths for the first and second
reaction steps are depicted in Figure 15. During the third step hydroxyl amine reacts with a
second OH radical yielding an HNOH radical intermediate and a water molecule after 0.01
ps. The last step is the recombination of NHOH radical with H radical and simultaneous
loss of coordination by a second equivalent of ammonia, which leads to the formation of
stable closed-shell hydroxylamine. The reaction is completed within 0.23 ps. Key bond
lengths for the third and fourth reaction steps are depicted in Figure 16.
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3.1.2. Cathodic Reactions 
Under cathodic conditions, reactions with CO2 in the solution were also observed. 

The most promising reaction which took place is the formation of formic acid, which is 
depicted in Figure 17. 
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3.1.2. Cathodic Reactions

Under cathodic conditions, reactions with CO2 in the solution were also observed.
The most promising reaction which took place is the formation of formic acid, which is
depicted in Figure 17.
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The first reaction step corresponds to the attack of hydrogen radical on carbon in CO2,
which results in the formation of an HCOO radical after 0.05 ps of simulation and the
formation of the H-C bond. The second reaction step is the hydrogen radical transfer from
an H3O radical to the formerly formed intermediate yielding closed-shell formic acid after
0.32 ps of simulation. Key bond lengths for the first and second reaction steps are depicted
in Figures 18 and 19.
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Figure 18. Sketch of the single reaction step of hydrogen radical reaction with carbon dioxide. The
relevant bonding interaction deduced from Car–Parrinello simulations is highlighted. Color-code:
red—oxygen; black—carbon; white—hydrogen.
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3.2. Ethanimine and Carbon Dioxide in Aqueous Solution
3.2.1. Anodic Reactions

Additionally, the reactions of ethanimine under electrolytic conditions in systems 3
and 4 are under investigation. The chemically most interesting reactions took place under
anodic properties, that is, with the participation of OH radicals. The first two reactions
observed led to the formation of the stable zwitter-ionic species nitrosoethane, shown
in Figure 20.

The first reaction step of mechanism 1 corresponds to the attack of a hydroxyl radical
on the nitrogen atom of ethanimine, which results in the formation of an RNHOH radical
after 0.09 ps of simulation. The formed reactive intermediate is attacked further by a second
OH radical within 0.02 ps. As a result, a stable closed-shell zwitter-ionic species is formed.
Key bond lengths for the first and second reaction steps are depicted in Figure 21. The
process of zwitter-ion formation takes 0.27 ps in the Car–Parrinello MD simulation.

The single reaction step shown in Figure 22 corresponds to the hydrogen radical
transfer between the unstable open-shell intermediate, the formation mechanism of which
was part of the reaction shown in Figure 20, and a second ethanimine molecule.
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Figure 22. Sequence of elementary reaction steps that lead to the formation of zwitter-ion in system 3. The initial temperature
of the system was set to 250 K.

The reaction yields the zwitter-ionic closed-shell species and an ethylamine radical
after 0.25 ps of simulation. Key bond lengths for the single reaction step are depicted
in Figure 23.

Furthermore, the formation of (E)-acetaldehydeoxime has been observed during the
simulation, which is depiceted in Figure 24.

There are two different possible mechanism for this reaction, which are shown in
Figures 23 and 25. The first reaction starts with the attack of a hydroxyl radical on the
nitrogen atom of ethanimine, and this results in the formation of an RNHOH radical after
0.08 ps of simulation. The formed reactive intermediate is attacked further by a second
OH radical within 0.01 ps, so the reaction is completed within 0.11 ps. As a result, two
stable closed-shell species are formed: oxime and water. Key bond lengths for the first and
second reaction steps are depicted in Figure 25.
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Figure 24. Sequence of elementary reaction steps that lead to the formation of an oxime molecule in system 4. The initial
temperature of the system was set to 250 K.

Not only the formation of the (E)-isomer of acetaldehydeoxime can be observed, but
also the formation of (Z)-acetaldehydoxime, which is depicted in Figure 26.

In the second reaction the first step corresponds to the hydrogen radical abstraction
by hydroxyl radical after 0.05 ps of simulation. The first step is completed after 0.01 ps and
yields a nitrene radical. The second step is represented by the addition of a second hydroxyl
radical to the previously formed open-shell intermediate. The reaction is completed after
0.36 ps of simulation. Key bond lengths for the first and second reaction steps are depicted
in Figure 27.
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molecule. Color-code: blue—nitrogen, red—oxygen; white—hydrogen.

Energies 2021, 14, 6510 16 of 22 
 

 

 
Figure 25. Sketch of the two reaction steps taking place. In the first step the reactive intermediate is 
formed via attack of the first hydrogen radical. In the second step the intermediate radical is attacked 
by the second OH-radical. Elimination of water leads to the formation of the closed-shell oxime 
molecule. Color-code: blue—nitrogen, red—oxygen; white—hydrogen. 

Not only the formation of the (E)-isomer of acetaldehydeoxime can be observed, but 
also the formation of (Z)-acetaldehydoxime, which is depicted in Figure 26. 

 
Figure 26. Sequence of elementary reaction steps that lead to the formation of an oxime molecule in system 4. The initial 
temperature of the system was set to 250 K. 

In the second reaction the first step corresponds to the hydrogen radical abstraction 
by hydroxyl radical after 0.05 ps of simulation. The first step is completed after 0.01 ps 
and yields a nitrene radical. The second step is represented by the addition of a second 
hydroxyl radical to the previously formed open-shell intermediate. The reaction is com-
pleted after 0.36 ps of simulation. Key bond lengths for the first and second reaction steps 
are depicted in Figure 27. 

Figure 26. Sequence of elementary reaction steps that lead to the formation of an oxime molecule in system 4. The initial
temperature of the system was set to 250 K.

3.2.2. Cathodic Reactions

In another reaction taking place, an imine molecule is attacking a CO2 molecule under
cathodic conditions. The product of the reaction is the radical and zwitter-ionic species of a
carbamic acid derivative. The mechanism of the reaction is depicted in Figure 28.

Its first reaction step corresponds to the hydrogen radical abstraction by a free hy-
drogen radical after 0.04 ps of simulation. The first step is completed after 0.01 ps and
yields an imine radical. The second step is represented by the addition of the previously
formed reactive open-shell intermediate to carbon dioxide molecule, so a new C-N σ-bond
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the attack of a hydrogen radical is shown, leading to a reactive open shell intermediate. The second
step corresponds to the attack of a carbon dioxide on the prior formed ethanimine radical leading to
a carbamic acid-like radical. Color-code: blue—nitrogen, red—oxygen; white—hydrogen.

3.3. Energetics

The electronic energies and enthalpies of formation were calculated using various
methods in Gaussian 16 as stated in the method section. The complete results are to be
found in the Supplementary Materials. For comparison, experimental data from literature
are provided. From these electronic energies and enthalpies of formation the energies
for the corresponding reactions were calculated. The results are shown in Tables 1 and 2
for comparison of methods. The best results are provided using the BLYP-D3 functional,
certainly a fortuitous agreement. It shows the lowest deviation values from the experi-
mental data. Second best results are given by the Møller–Plesset perturbation method,
MP2. The B2PLYP-D3 double-hybrid functional and the B3LYP hybrid functional yield
comparable results. Comparable results to the previously mentioned hybrid functionals
are provided by the CCSD functional with the aug-cc-pVTZ basis set. The coupled cluster
CCSD method with a small basis set provides higher deviations from the experimental
data. In contrast to the basis set, the use of an implicit solvent hardly affects the results.
Finally, the worst results are obtained by the Hartree–Fock method, the deviations are in
the order of magnitude of the reaction enthalpies.

Table 1. Deviation of the reaction enthalpies ∆rH calculated with Gaussian 16 in comparison to the experimental values.

Deviation (theo-exptl)/kcal ·mol−1

Reaction
∆rH

(exptl)/kcal ·
mol−1

Source BLYP B3LYP B2PLYP HF MP2 CCSD CCSD/aug

4 ·OH + NH3 → HNO + 3
H2O −175.90 NIST [35] 7.86 18.81 16.41 110.71 1.36 25.25 18.19

2 NH3 + 4 ·OH→ NO· + NH4
+ 3 H2O −124.27 NIST [35],

ACTC [36,37] 7.91 22.36 20.99 109.99 15.59 35.70 20.16

NH3 + 2 ·OH→ NH2OH +
H2O −75.86 NIST [35],

ACTC [36,37] 1.44 6.55 6.91 55.78 1.90 13.04 8.86

2 NH3 + 3 ·OH→ HNO +
NH4 + 2 H2O −54.93 NIST [35],

ACTC [36,37] 5.73 19.71 20.22 97.45 14.91 32.52 18.24

2 ·OH + imin→ H2O + imOH −87.56 NIST [35],
ACTC [36,37] −2.22 3.64 3.90 56.48 −1.26 11.22 -
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Table 2. The deviation of the inner reaction energies ∆rE calculated with Gaussian 16 from the experimental reaction
enthalpies ∆Hr.

Deviation (∆rE(theo) − ∆Hr(exptl))/kcal ·
mol−1

Reaction
∆rH

(exptl)/kcal ·
mol−1

BLYP B3LYP B2PLYP HF MP2 CCSD CCSD/aug

4 ·OH + NH3 → HNO + 3
H2O −175.90 NIST [35] 3.29 13.78 11.02 104.60 −3.50 19.80 12.99

2 NH3 + 4 ·OH→ NO· + NH4
+ 3 H2O −124.27 NIST [35],

ACTC [36,37] 8.40 22.32 20.14 110.56 9.10 32.73 14.65

NH3 + 2 ·OH→ NH2OH +
H2O −75.86 NIST [35],

ACTC [36,37] −3.08 1.63 1.81 49.90 −3.07 7.79 3.75

2 NH3 + 3 ·OH→ HNO +
NH4 + 2 H2O −54.93 NIST [35],

ACTC [36,37] 8.42 21.72 21.51 99.72 12.61 31.49 14.58

2 ·OH + imin→ H2O + imOH −87.56 NIST [35],
ACTC [36,37] −11.53 −5.91 −5.74 46.42 −10.71 1.48 -

4. Conclusions

The electrolytic reactions of ammonia and ethanimine in a carbon dioxide enriched
aquatic solution were investigated by the use of Car–Parrinello molecular dynamics. A
variety of reaction mechanisms and products was determined. In the considered timescale
of 0.5 ps, the formation of both open- and closed-shell products was observed, among the
most important being consecutive products of hydroxylamine and formic acid. At this
point, it should be emphasized that our approach with many reactive species overestimates
reactions that demand the simultaneous attack of two reactive species. An example is the
NH2OH formation where the two reaction steps are nearly simultaneous. Additionally,
our picture is not complete in the sense that we cannot perform a sufficient number of
simulation runs to observe all the reactions that are possible in a system.

While we found a variety of reaction pathways, there are some characteristic patterns.
Under anodic conditions, typically the first reaction step is a simple hydrogen abstraction
by OH radicals. In the case of ammonia this attack is sometimes almost simultaneous
with the formation of an N-O bond corresponding to a radical recombination. Similarly,
water and hydroxylamine are formed. Further simple abstractions of hydrogen by OH
radicals lead to products like HNO. Under cathodic conditions the formation of molecular
hydrogen is predominant. Additionally, we observed the addition of nascent hydrogen
at the carbon atom of CO2. In the case of ethanimine two initial reactions predominate
under anodic conditions: the attachment of OH radicals to the nitrogen atoms and the
abstraction of the hydrogen atom bound to nitrogen. Under cathodic conditions it is one of
the hydrogen atoms of the methyl group which is abstracted by an OH radical. We observe
interesting further steps involving CO2.

How does this compare to the experiment? In contrast to the experiment [16–18],
we observe predominantly the formation of an N-O bond, but we never observe the
formation of an N-N bond, even if we use high ammonia concentrations. This supports the
mechanism assumed on the basis of experimental data, where the formation of N-N bonds
is postulated to be, at least in part, an effect of surface catalysis. Experimentally, NH2OH
and consecutive products are obtained at high voltages.

The energetic calculations that were performed show that all reactions observed
are energetically favored in good agreement with experimental data. The best values
in comparison to the experimental heats of formation are obtained using the BLYP-D3-
functional and the MP2 method. Under the aspect of “power to chemicals”, it is interesting
to note that the formation of formic acid and a carbamic acid species from CO2 were
observed. It is an interesting finding that CO2 can be converted into formic acid without a
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particular surface catalysis. The cathodic formation of molecular hydrogen is, of course,
interesting under the aspect of “power to fuel”. For the decontamination of wastewater
via the degradation of harmful substances, further investigation is necessary. Even if we
started from a relatively simple model (no electrolyte, no electrodes) a large number of
intermediates and products were observed. In view of the renewed interest in electrolysis
experiments, it makes sense to systematically enter this vast field stepwise from a theoretical
side, starting with systems that are as simple as possible.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/en14206510/s1.
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