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Abstract

There exists a small family of analytic SO(4)-invariant but time-dependent SU(2) Yang–Mills solutions 
in any conformally flat four-dimensional spacetime. These might play a role in early-universe cosmol-
ogy for stabilizing the symmetric Higgs vacuum. We analyze the linear stability of these “cosmic gauge 
fields” against general gauge-field perturbations while keeping the metric frozen, by diagonalizing the 
(time-dependent) Yang–Mills fluctuation operator around them and applying Floquet theory to its eigen-
frequencies and normal modes. Except for the exactly solvable SO(4) singlet perturbation, which is found 
to be marginally stable linearly but bounded nonlinearly, generic normal modes often grow exponentially 
due to resonance effects. Even at very high energies, all cosmic Yang–Mills backgrounds are rendered 
linearly unstable.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction: a tale of three anharmonic oscillators

Classical Yang–Mills fields play a central role in various areas of theoretical physics, from 
QCD confinement to spin-orbit interactions in condensed matter theory and early-universe cos-
mology. Concerning the latter, scenarios have been proposed and analyzed for isotropic inflation 
driven by non-Abelian gauge fields, such as gauge-flation or chromo-natural inflation, by em-
ploying a homogeneous and isotropic Yang–Mills background in a spatially flat Friedmann–
Lemaître–Robertson–Walker (FLRW) universe (for a review, see [1]. More minimalistically, 
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Friedan has recently put forward an evolution of the electroweak epoch based on the Standard 
Model and general relativity alone, where an oscillating isotropic SU(2) gauge field stabilizes 
the symmetric Higgs vacuum in a spatially closed FLRW spacetime [2]. It is therefore of natural 
interest to establish the stability features of such “cosmic Yang–Mills fields” against classical 
and quantum perturbations. While this has been done using cosmological perturbation theory in 
the context of gauge-flation, the issue remains unclear in the pre-inflation scenario of Friedan, 
despite some early partial analysis of Hosotani [3].

Here, we address this matter by performing a complete stability analysis of the only known 
family of analytic SU(2) Yang–Mills solutions in a closed FLRW universe. The situation differs 
from that of gauge-flation, since we do not break conformal invariance, and our homogeneous 
and isotropic gauge background would conformally map to an inhomogeneous Yang–Mills 
configuration in spatially flat FLRW spacetime. Our analysis is partial, however, in that we in-
vestigate only gauge-field fluctuations while keeping the metric fixed, for two reasons. Firstly, 
the background FLRW dynamics does not influence the gauge field, since the gauge sector is 
conformally invariant and we conformally map to a static metric. Secondly, the time scale of 
the gauge-field dynamics in the electroweak epoch is supposed to be hugely shorter than that 
of the spacetime geometry, thus we do not expect (non-conformal) metric fluctuations to exert a 
sizeable influence on the stability of the gauge-field configuration. Our results should therefore 
be relevant to Friedan’s scenario. Nevertheless, a full cosmological perturbation theory of the 
combined Einstein–Yang–Mills system requires turning on also metric perturbations, something 
we reserve for a future task.

Even without coupling to gravity and independent of potential cosmological applications, the 
perturbation theory around any analytic classical field configuration is of general interest for 
assessing its relevance for quantum properties, since the determinant of the second variation of 
the action yields the leading quantum correction to a saddle point in the semiclassical analysis of 
the path integral. This aspect has been investigated for many classical Yang–Mills solutions but 
not yet for the ones studied here, to our knowledge.

It is generally impossible to find analytic solutions to the coupled Einstein–Yang–Mills sys-
tem of equations, in part because they are coupled both ways. However, in a homogeneous and 
isotropic universe, where the metric is conformally flat, the Yang–Mills equations decouple due 
to their conformal invariance in four spacetime dimensions. Thus, if one can find isotropic Yang–
Mills solutions on Minkowski, de Sitter, or anti de Sitter space, then their energy-momentum 
tensor will be compatible with any FLRW metric (of the same topology) and allow for an ana-
lytic computation of the scale factor from the Friedmann equation.

Fortunately, for the de Sitter case and a gauge group SU(2), such Yang–Mills configurations 
with finite energy and action are available [4–6]. They are most easily constructed on the cylinder 
(0, π) × S3, which is related to de Sitter space by a purely temporal reparametrization and Weyl 
rescaling [3,7,8,2],

ds2
dS4

= −dt2 + �2 cosh2 t
�

d�2
3 = �2

sin2τ

(−dτ 2 + d�2
3

)
for t ∈ (−∞,+∞) ⇔ τ ∈ (0,π) ,

(1.1)

where d� 2
3 is the round metric on S3, and � is the de Sitter radius. This provides an explicit 

relation between co-moving time t and conformal time τ , and it fixes the cosmological constant 
to � = 3/�2. One employs the identification SU(2) � S3 to write an S3-symmetric ansatz for 
the SU(2) gauge potential Aμ, which produces a solvable ODE for a parameter function ψ(τ) of 
conformal time. This ODE has the form of Newton’s equation for a mass point in a double-well 
potential
2
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V (ψ) = 1
2 (ψ2 − 1)2 , (1.2)

yielding a first anharmonic oscillator. A two-parameter family of (in general time-dependent) so-
lutions can be given in terms of Jacobi elliptic functions and describe SO(4) invariant Yang–Mills 
fields on the Lorentzian cylinder over S3.

These Yang–Mills solutions then exist (at least locally) in any conformally related spacetime, 
but the conformal transformation will ruin isotropy unless we restrict ourselves to spatially closed 
FLRW metrics,

ds2 = −dt2 + a(t)2 d� 2
3 = a(τ)2(−dτ 2 + d� 2

3

)
for t ∈ (0, tmax) ⇔ τ ∈ I ≡ (0, T ′) ,

(1.3)

where we impose a big-bang initial condition a(0)=0, so that

dτ = dt

a(t)
with τ(t=0)= 0 and τ(t=tmax)=: T ′ <∞ . (1.4)

The lifetime tmax of the universe can be infinite (big rip, a(tmax)=∞) or finite (big crunch, 
a(tmax)=0). Bouncing cosmologies as in (1.1) are also allowed but will not be pursued here. 
Since the energy-momentum tensor of our Yang–Mills configurations is SO(4) symmetric, their 
gravitational backreaction will keep us inside the FLRW framework and merely modify the cos-
mic scale factor a(τ). The latter is fully determined by the Friedmann equation in the presence of 
the Yang–Mills energy-momentum and a cosmological constant �, whose value may be dialed. 
It is well known that the Friedmann equation takes the form of another Newton equation. Its 
(cosmological) potential for the case at hand reads

W(a) = 1
2a2 − �

6 a4 , (1.5)

which is our second anharmonic oscillator (although inverted). Each pair (ψ, a) of solutions 
to the two systems (1.2) and (1.5) yields an exact classical Einstein–Yang–Mills configuration. 
One parameter in ψ is the conserved mechanical energy E in the potential V , which in turn 
determines the mechanical energy Ẽ for a in the potential W . This one-way coupling is the only 
relation between the two anharmonic oscillators.

For a physical embodiment of the cosmological constant, we may add a third player, for 
instance a complex scalar Higgs field φ in the fundamental SU(2) representation. The standard-
model Higgs potential

U(φ) = 1
2 λ2 (φ†φ − 1

2v2)2 , (1.6)

where v/
√

2 is the Higgs vev and λv is the Higgs mass, gives us a third anharmonic oscillator. 
The dictate of SO(4) invariance, however, allows only the zero solution, φ ≡ 0, which provides 
us with a definite positive cosmological constant of

� = κ U(0) = 1
8 κ λ2v4 , (1.7)

where κ is the gravitational coupling. The full Einstein–Yang–Mills–Higgs action (in standard 
notation),

S =
∫

d4x
√−g

{
1

2κ
R + 1

8g2 trFμνF
μν −Dμφ†Dμφ −U(φ)

}
, (1.8)

reduces in the SO(4)-invariant sector to
3
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S[a,ψ,�] = 12π2

T ′∫
0

dτ
{

1
κ

(− 1
2 ȧ2 +W(a)

)+ 1
2g2

( 1
2 ψ̇2 − V (ψ)

)}
, (1.9)

where g is the gauge coupling, and the overdot denotes a derivative with respect to conformal 
time.

For large enough “gauge energy” E, the universe undergoes an eternal expansion, which is 
accompanied by rapid fluctuations of the gauge field. The latter’s coupling to the Higgs field sta-
bilizes the symmetric vacuum φ ≡ 0 at the local maximum of U as a parametric resonance effect, 
as long as a is not too large. Eventually, when a exceeds a critical value aEW, the Higgs field will 
begin to roll down towards a minimum of U , breaking the SO(4) symmetry. The corresponding 
time tEW signifies the electroweak phase transition in the early universe. This scenario was put 
forward recently by D. Friedan [2].

The goal of the current paper is a stability analysis of these classical oscillating “cosmic” 
Yang–Mills fields. To begin with, Section 2 describes the geometry of S3 and reviews the classi-
cal configurations (Aμ, gμν) in terms of Newtonian solutions (ψ, a) for the anharmonic oscillator 
pair (V , W). To investigate arbitrary small perturbations of the gauge field departing from the 
time-dependent background Aμ parametrized by the “gauge energy” E, Section 3 linearizes the 
Yang–Mills equation around it and diagonalizes the fluctuation operator to obtain a spectrum of 
time-dependent natural frequencies. To decide about the linear stability of the cosmic Yang–Mills 
configurations we have to analyze the long-time behavior of the solutions to Hill’s equation for all 
these normal modes. In Section 4 we employ Floquet theory to learn that their growth rate is de-
termined by the stroboscopic map or monodromy, which is easily computed numerically for any 
given mode. We do so for a number of low-frequency normal modes and find, when varying E, 
an alternating sequence of stable (bounded) and unstable (exponentially growing) fluctuations. 
The unstable bands roughly correspond to the parametric resonance frequencies. With growing 
“gauge energy” the runaway perturbation modes become more prominent, and some of them per-
sist in the infinite-energy limit, where we detect universal natural frequencies and monodromies. 
A special role is played by the SO(4)-invariant fluctuation, which merely shifts the parameter E

of the background. We treat it exactly and beyond the linear regime in Section 5. This “singlet” 
mode turns out to be marginally stable, i.e. it has a vanishing Lyapunov exponent. Its linear 
growth, however, gets limited by nonlinear effects of the full fluctuation equation, whose ana-
lytic solutions exhibit wave beat behavior. Finally, some explicit data for the first few natural 
frequencies are collected in an Appendix.

2. Cosmic Yang–Mills solutions

In order to describe the classical Yang–Mills solutions we need to develop some elements of 
the spatial S3 geometry. Taking advantage of the fact that

S3 � SU(2) and so(4)� su(2)L ⊕ su(2)R (2.1)

we introduce a basis {La} for a = 1, 2, 3 of left-invariant vector fields on S3 generating the right 
multiplication on SU(2) and forming the su(2)L algebra

[La,Lb] = 2 ε c
ab Lc . (2.2)

It is dual to a basis {ea} of left-invariant one-forms on S3, i.e. ea(Lb) = δa
b , subject to

dea + εa eb ∧ ec = 0 and eaea = d� 2 . (2.3)
bc 3

4
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One may obtain this basis by expanding the left Cartan one-form

�
L
(g) = g−1 dg = ea La . (2.4)

Here, the group element g provides the identification map

g : S3 → SU(2) via (α,β) → −i

(
β α∗
α −β∗

)
with |α|2 + |β|2 = 1 , (2.5)

which sends the S3 north pole (0, i) to the group identity 12. We shall coordinatize S3 by an 
SU(2) group element g. The su(2)R half of the three-sphere’s so(4) isometry is provided by 
right-invariant vector fields Ra belonging to the left multiplication on the group manifold and 
obeying

[Ra,Rb] = 2 ε c
ab Rc . (2.6)

The differential of a function f on I × S3 is then conveniently taken as

df = dτ ∂τ f + eaLaf . (2.7)

Functions on S3 can be expanded in a basis of harmonics Yj (g) with 2j ∈ N0, which are 
eigenfunctions of the scalar Laplacian,1

−�3 Yj = 2j (2j+2)Yj = 4j (j+1)Yj = − 1
2 (L2 +R2)Yj , (2.8)

where L2 = LaLa and R2 = RaRa are (minus four times) the Casimirs of su(2)L and su(2)R , 
respectively,

− 1
4L2 Yj = − 1

4R2 Yj = − 1
4�3Yj = j (j+1)Yj . (2.9)

The left-right (or toroidal) harmonics Yj ;m,n are eigenfunctions of L2 =R2, L3 and R3,

i
2 L3 Yj ;m,n = mYj ;m,n and i

2 R3 Yj ;m,n = nYj ;m,n (2.10)

for m, n =−j, −j+1, . . . , +j , and hence the corresponding ladder operators

L± = (L1 ± iL2)/
√

2 and R± = (R1 ± iR2)/
√

2 (2.11)

act as
i
2 L± Yj ;m,n =

√
(j∓m)(j±m+1)/2Yj ;m±1,n and

i
2 R± Yj ;m,n =

√
(j∓n)(j±n+1)/2Yj ;m,n±1 .

(2.12)

The gauge potential is an su(2)-valued one-form on our spacetime. We use the I × S3

parametrization and write

A = Aτ (τ, g)dτ +
3∑

a=1

Aa(τ, g) ea(g) with g ∈ SU(2) . (2.13)

It has been shown [5,2] that the requirement of SO(4) equivariance enforces the form

Aτ (τ, g) = 0 and Aa(τ, g) = 1
2

(
1+ψ(τ)

)
Ta (2.14)

1 The SO(4) spin of these functions is actually 2j , but we label them with half their spin, for reasons to be clear below.
5
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with some function ψ : I→R, where Ta denotes the su(2) generators subject to

[Ta,Tb] = 2 ε c
ab Tc , (2.15)

so that the adjoint representation produces tr(TaTb) =−8 δab . The corresponding field strength 
reads

F = dA+A∧A = ∂τAa dτ∧ea + 1
2

(
R[bAc] − 2ε a

bc Aa + [Ab,Ac]
)
eb∧ ec

= 1
2 ψ̇ Ta dτ∧ea + 1

4εa
bc(ψ

2−1) Ta eb∧ec
(2.16)

where ψ̇ ≡ ∂τψ . The Yang–Mills action on this ansatz simplifies to

S = −1

4g2

∫
I×S3

tr F ∧∗F = 6π2

g2

∫
I

dτ
[ 1

2 ψ̇2−V (ψ)
]

with V (ψ) = 1
2 (ψ2−1)2 ,

(2.17)

where I = [0, T ′] and g here denotes the gauge coupling. Due to the principle of symmetric 
criticality [9], solutions to the mechanical problem

ψ̈ + V ′(ψ) = 0 (2.18)

will, via (2.14), provide Yang–Mills configurations which extremize the action. Conservation of 
energy implies that

1
2 ψ̇2 + V (ψ) = E = constant , (2.19)

and the generic solution in the double-well potential V is periodic in τ with a period T (E).
Hence, fixing a value for E and employing time translation invariance to set ψ̇(0) = 0

uniquely determines the classical solution ψ(τ) up to half-period shifts (see Fig. 1). Its explicit 
form is

ψ(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

k
ε

cn
(

τ
ε
, k
)

with T = 4 ε K(k) for 1
2 < E <∞

0 with T =∞ for E = 1
2

±√2 sech
(√

2 τ
)

with T =∞ for E = 1
2

± k
ε

dn
(

k τ
ε

, 1
k

)
with T = 2 ε

k
K( 1

k
) for 0 < E < 1

2

±1 with T = π for E = 0

, (2.20)

where cn and dn denote Jacobi elliptic functions, K is the complete elliptic integral of the first 
kind, and

2 ε2 = 2k2−1 = 1/
√

2E with k = 1√
2
,1,∞ ⇔ E =∞, 1

2 ,0 . (2.21)

For E� 1
2 , we have k2→ 1

2 , and the solution is well approximated by 2
ε

cos
( 2

√
π3

�(1/4)2
τ
ε

)
. At the 

critical value of E= 1
2 (k=1), the unstable constant solution coexists with the celebrated bounce 

solution, and below it the solution bifurcates into oscillations in the left or right well of the 
double-well potential, which halfens the oscillation period. The two constant minima ψ = ±1
correspond to the vacua A = 0 and A = g−1dg. Actually, the time translation freedom is broken 
by the finite range of I , so that time-shifted solutions differ in their boundary values ψ(0) and 
ψ(T ′) and also in their value for the action.
6
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Fig. 1. Plots of ψ(τ) over one period, for different values of k2: 0.500001 (top left), 0.9999999 (top right), 1.0000001
(bottom left) and 2 (bottom right).

The corresponding color-electric and -magnetic field strengths read

Ea = F0a = 1
2 ψ̇ Ta and Ba = 1

2ε bc
a Fbc = 1

2 (ψ2−1) Ta , (2.22)

which yields a finite total energy (on the cylinder) of 6π2E/g2 and a finite action [8,10]

g2S[ψ] = 6π2
∫
I

dτ
[
E − (ψ2−1)2] = 6π2

∫
I

dτ
[
ψ̇2 −E

] ≥ −3π2T ′ . (2.23)

The energy-momentum tensor of our SO(4)-symmetric Yang–Mills solutions is readily found as

T = 3E

g2a2

(
dτ 2 + 1

3 d�2
3

)
, (2.24)

which is traceless as expected.
The Einstein equations for a closed FLRW universe with cosmological constant � reduce to 

two independent relations, which can be taken to be its trace and its time-time component. In 
conformal time one gets, respectively,{ −R+ 4� = 0

Rττ + 1
2R a2 −�a2 = κ Tττ

}
⇔

⎧⎨⎩ ä +W ′(a) = 0

1
2 ȧ2 +W(a) = κ

2g2 E =: E′

⎫⎬⎭
(2.25)

with a gravitational coupling κ = 8πG, a gravitational energy E′ and a cosmological potential

W(a) = 1a2 − �a4 . (2.26)
2 6
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Fig. 2. Plots of the cosmological potential W(a) for �=1 and the double-well potential V .

The two anharmonic oscillators (see Fig. 2), with potential V for the gauge field and potential W

for gravity, are coupled only via the balance of their conserved energies,

1

κ

[ 1
2 ȧ2 +W(a)

] = 1

2g2

[ 1
2 ψ̇2 + V (ψ)

]
, (2.27)

which is nothing but the Wheeler–DeWitt constraint H = 0.
The Friedmann equation (2.25), being a mechanical system with an inverted anharmonic po-

tential (2.26), is again easily solved analytically,

a(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
3
�

1
2ε′

√
1−cn

( τ
ε′ ,k

′)
1+cn

( τ
ε′ ,k

′) with T ′ = 2 ε′K(k′) for 3
8�

< E′ <∞√
3

2�
tanh
(
τ/
√

2
)

with T ′ =∞ for E′ = 3
8�√

3
�

1
2ε′

√
1−dn

( k′τ
ε′ ,

1
k′
)

1+dn
( k′τ

ε′ ,
1
k′
) with T ′ = 2 ε′

k′K( 1
k′ ) for 0 < E′ < 3

8�

0 with T ′ = π for E′ = 0

,

(2.28)

where we abbreviated2

2 ε′2 = 2k′2−1 = 1/
√

8�
3 E′ so that k′ = 1√

2
,1,∞ ⇔ E′ =∞, 3

8�
,0 .

(2.29)

For E′� 3
8�

, we have k′2→ 1
2 , and the solution is well approximated by 

√
3
�

1
2ε′ tan

( √
π3

�(1/4)2
τ
ε′
)
. 

We only listed solutions with initial value a(0) = 0 (big bang). There exist also (for E′ < 3
8�

) 

bouncing solutions, where the universe attains a minimal radius amin =
[ 3

2�
(1 +√1− 8�

3 E′)
]1/2

between infinite extension in the far past (t=−∞ ↔ τ=0) and the far future (t=+∞ ↔ τ=T ′). 
For E′>0 they are obtained by sending dn→−dn in (2.28) above. The quantity T ′ listed there is 
the (conformal) lifetime of the universe, from the big bang until either the big rip (for E′ > 3

8�
) 

or the big crunch of an oscillating universe (for E′ < 3
8�

). The solution relevant to our Einstein–
Yang–Mills system is entirely determined by the Newtonian energy E characterizing the cosmic 
Yang–Mills field: above the critical value of

2 Our k′2 should not be confused with the dual modulus 1−k2, which is often denoted this way.
8
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Fig. 3. Plots of a(τ) over one lifetime, for �=1 and different values of k′2: 0.505 (top left), 0.9999999 (top right), 
1.0000001 (bottom left) and 1.1 (bottom right).

Ecrit = 2g2

κ

3

8�
(2.30)

the universe expands forever (until tmax =∞), while below this value it recollapses (at tmax =∫ T ′
0 dτ a(τ)) (see Fig. 3). It demonstrates the necessity of a cosmological constant (whose role 

may be played by the Higgs expectation value) as well as the nonperturbative nature of the cosmic 
Yang–Mills field, whose contribution to the energy-momentum tensor is of O(g−2).

3. Natural perturbation frequencies

Our main task in this paper is an investigation of the stability of the cosmic Yang–Mills solu-
tions reviewed in the previous section. For this, we should distinguish between global and local 
stability. The former is difficult to assess in a nonlinear dynamics but clear from the outset in 
case of a compact phase space. The latter refers to short-time behavior induced by linear pertur-
bations around the reference configuration. We shall look at this firstly, in the present section and 
the following one. Here, we set out to diagonalize the fluctuation operator for our time-dependent 
Yang–Mills backgrounds and find the natural frequencies.

Even though our cosmic gauge-field configurations are SO(4)-invariant, we must allow for all 
kinds of fluctuations on top of it, SO(4)-symmetric perturbations being a very special subclass of 
them. A generic gauge potential “nearby” a classical solution A on I × S3 can be expanded as

A+� = A(τ, g) +
3∑

�
p
0 (τ, g)Tp dτ +

3∑ 3∑
�

p
a (τ, g)Tp ea(g) (3.1)
p=1 a=1 p=1

9
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with, using (μ) = (0, a),

�p
μ(τ, g) =

∑
j,m,n

�
p

μ|j ;m,n
(τ )Yj ;m,n(g) , (3.2)

on which we notice the following actions (supressing the τ and g arguments),

(La�
p
μ)j ;m,n =�

p

μ|j ;m′,n
(
La)

m′
m , (Sa�)

p

0 = 0 , (Sa�)
p
b =−2εabc �

p
c ,

(Ta�)pμ =−2εapq �q
μ ,

(3.3)

where the La matrix elements are determined from (2.10) and (2.12), and Sa are the components 
of the spin operator. The (metric and gauge) background-covariant derivative reads

Dτ� = ∂τ� and Da� = La�+ [Aa,�] with Aa = 1
2

(
1+ψ(τ)

)
Ta ,

(3.4)

which is equivalent to

Da�
p
b = La�

p
b − εabc�

p
c + [Aa,�b]p since Da eb = La eb − εabc ec = εabc ec .

(3.5)

The background A obeys the Coulomb gauge condition,

Aτ = 0 and LaAa = 0 , (3.6)

but we cannot enforce these equations on the fluctuation �. However, we may impose the Lorenz 
gauge condition,

Dμ�p
μ = 0 ⇒ ∂τ�

p

0 −La�
p
a − 1

2 (1+ψ)(Ta�a)
p = 0 , (3.7)

which is seen to couple the temporal and spatial components of � in general. We then linearize 
the Yang–Mills equations around A and obtain

DνDν�μ −Rμν�
ν + 2[Fμν,�

ν] = 0 (3.8)

with the Ricci tensor

Rμ0 = 0 and Rab = 2δab . (3.9)

After a careful evaluation, the μ=0 equation yields[
∂2
τ −LbLb + 2(1+ψ)2]�p

0 − (1+ψ)Lb(Tb�0)
p − ψ̇(Tb�b)

p = 0 , (3.10)

while the μ=a equations read[
∂2
τ −LbLb + 2(1+ψ)2+4

]
�

p
a − (1+ψ)Lb(Tb�)

p
a −Lb(Sb�)

p
a

− 1
2 (1+ψ)(2−ψ)(SbTb�)

p
a − ψ̇(Ta�0)

p = 0 .
(3.11)

It is convenient to package the orbital, spin, isospin, and fluctuation triplets into formal vectors,

�L= (La) , �S = (Sa) , �T = (Ta) , ��= (�a) , (3.12)

respectively, but they act in different spaces, hence on different indices, such that �S2 = �T 2 =−8
on �. In this notation, (3.7), (3.10) and (3.11) take the compact form (suppressing the color 
index p)
10
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∂τ�0 − �L· ��− 1
2 (1+ψ) �T · �� = 0 , (3.13)[

∂2
τ−�L2 + 2(1+ψ)2]�0 − (1+ψ) �L· �T �0 − ψ̇ �T · �� = 0 , (3.14)[

∂2
τ−�L2− 1

2
�S2+2(1+ψ)2]�a − (1+ψ) �L· �T �a − �L·(�S �)a − 1

2 (1+ψ)(2−ψ) �T ·(�S �)a

− ψ̇ Ta�0 = 0 . (3.15)

A few remarks are in order. First, except for the last term, (3.14) is obtained from (3.15) by 
setting �S = 0, since �0 carries no spin index. Second, both equations can be recast as[

∂2
τ − 1−ψ

2
�L2 − 1+ψ

2 ( �L+ �T )2 − 2(1+ψ)(1−ψ)
]
�0 = ψ̇ �T · �� , (3.16)[

∂2
τ − (1−ψ)(2+ψ)

4
�L2 − ψ(1+ψ)

4 ( �L+ �T )2 + ψ(1−ψ)
4 ( �L+�S)2 − (1+ψ)(2−ψ)

4 ( �L+ �T+�S)2

− 2(1+ψ)(1−ψ)
] ��= ψ̇ �T �0,

(3.17)

which reveals a problem of addition of three spins and a corresponding symmetry under

ψ ↔ −ψ , �L ↔ �L+ �T+�S and �L+�S ↔ �L+ �T . (3.18)

Third, for constant backgrounds (ψ̇=0) the temporal fluctuation �0 decouples and may be 
gauged away. Still, the fluctuation operator in (3.17) is easily diagonalized only when the co-
efficient of one of the first three spin-squares vanishes, i.e. for �L=0 (j=0), for the two vacua 
ψ=±1, or for the “meron” (or “sphaleron”) ψ=0. The latter case has been analyzed by Hosotani 
and by Volkov [3,7].

Let us decompose the fluctuation problem (3.13)–(3.15) into finite-dimensional blocks ac-
cording to a fixed value of the spin j ∈ 1

2N,

�L2 �
p
μ|j = −4 j (j+1)�

p
μ|j (3.19)

and suppress the j subscript. We employ the following coupling scheme,3

�L+ �T =: �U then �U+�S = ( �L+ �T )+�S =: �V . (3.20)

Clearly, �U and �V act on �� in su(2) representations j ⊗ 1 and j ⊗ 1 ⊗ 1, respectively. On �0, we 
must put �S=0 and have just �V= �U act in a j⊗1 representation. Combining the coupled equations 
(3.14) and (3.15) to a single linear system for (�p

μ) = (�
p

0 , �p
a ), we get a 12(2j+1) ×12(2j+1)

fluctuation matrix �2
(j)

,[
δpq
μν ∂2

τ + (�2
(j))

pq
μν

]
�q

ν = 0 . (3.21)

Actually, there is an additional overall (2j+1)-fold degeneracy present due to the trivial action 
of the su(2)R generators Ra , which plays no role here and will be suppressed. Roughly speaking, 
the 3(2j+1) modes of �0 are related to gauge modes,4 and we still must impose the gauge con-
dition (3.13), which also has 3(2j+1) components. Therefore, a subspace of dimension 6(2j+1)

inside the space of all fluctuations will represent the physical gauge-equivalence classes in the 
end.

3 Another (less convenient) scheme couples �L+�S, then ( �L+�S)+ �T =: �V .
4 Strictly, they are gauge modes only when ψ̇=0. Otherwise, the gauge modes are mixtures with the �a modes.
11
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Our goal is to diagonalize the fluctuation operator (3.21) for a given fixed value of j . It has a 
block structure,

�2
(j) =

(
N̄ −ψ̇ T �

−ψ̇ T N

)
, (3.22)

where N̄ and N are given by the left-hand sides of (3.16) and (3.17), respectively. We introduce 
a basis where �U2, �V 2 and V3 are diagonal, i.e.

�U2 |uvm〉 = −4u(u+1) |uvm〉 and �V 2 |uvm〉 = −4v(v+1) |uvm〉
with m=−v, . . . , v ,

(3.23)

and denote the irreducible su(2)v representations with those quantum numbers as 
[ v

u

]
. On the 

�0 subspace, u is redundant since u=v as �S=0. Working out the tensor products, we encounter 
the values[ v

u

]= [ j−2
j−1

] ; [ j−1
j−1

]
,
[ j−1

j

] ; [ j

j−1

]
,
[ j

j

]
,
[ j

j+1

] ; [ j+1
j

]
,
[ j+1

j+1

] ; [ j+2
j+1

]
on ��,[ v

u

] = [ j−1
j−1

] ; [ j
j

] ; [ j+1
j+1

]
on �0,

(3.24)

with some representations obviously missing for j<2.
Let us treat the ψ̇ T term in (3.22) as a perturbation and momentarily put it to zero, so that 

�2
(j) is block-diagonal for the time being. Then, it is easy to see from (3.16) and (3.17) that 

[ �V , N̄ ] = [ �U, N̄ ] = 0 and [ �V , N ] = 0, even though [ �U, N ] �= 0 because ( �L+�S)2 is not diagonal 
in our basis. Therefore, we have a degeneracy in m. Furthermore, both N̄ and N decompose 
into at most three respectively five blocks with fixed values of v ranging from j−2 to j+2 and 
separated by semicolons in (3.24). Moreover, the N̄ blocks are irreducible and trivially also carry 
a value of u=v. In contrast, N is not simply reducible; its �V representations have multiplicity 
one, two or three. Only the N blocks with extremal v values in (3.24) are irreducible. The other 
ones are reducible and contain more than one �U representation, hence the u-spin distinguishes 
between their (two or three) irreducible v subblocks. The only non-diagonal term in N is the 
( �L+�S)2 contribution, which couples different copies of the same v-spin to each other, but of 
course not to any u=v block of N̄ , and does not lift the V3=m degeneracy. As a consequence, 
the unperturbed fluctuation equations for �0=�(v̄) and ��=�(v,α) take the form (suppressing the 
m index)

1(v̄)

[
∂2
τ + ω̄2

(v̄)

]
�(v̄) = 0 and 1(v)

[
∂2
τ + ω2

(v,α)

]
�(v,α) = 0 for ψ̇ = 0

with v̄ ∈ {j−1, j, j+1} and v ∈ {j−2, j−1, j, j+1, j+2} ,

(3.25)

where 1(v) denotes a unit matrix of size 2v+1, and α counts the multiplicity of the v-spin repre-
sentation in N (between one and three). According to (3.16) the unperturbed frequency-squares 
for N̄ are the eigenvalues

ω̄2
(v̄) = 2(1−ψ)j (j+1)+ 2(1+ψ) v̄(v̄+1)− 2(1+ψ)(1−ψ) (3.26)

with multiplicity 2v̄+1, hence we get
12
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ω̄2
(j−1) = 2ψ2 − 4j ψ + 2(2j2−1) ,

ω̄2
(j) = 2ψ2 + 2(2j2+2j−1)

ω̄2
(j+1) = 2ψ2 + 4(j+1)ψ + 2(2j2+4j+1) .

(3.27)

Considering N in (3.17), we can read off the eigenvalues at v = j±2 because in these two 
extremal cases ( �L+�S)2 = �U2 is already diagonal in the 

{|uvm〉} basis. For the other v-values 
we must diagonalize a 2×2 or 3×3 matrix to find

ω2
(j−2) = root of Qj−2(λ) = −2(2j−1)ψ + 2(2j2−2j+1) ,

ω2
(j−1,α) = two roots of Qj−1(λ) ,

ω2
(j,α) = three roots of Qj(λ) ,

ω2
(j+1,α) = two roots of Qj+1(λ) ,

ω2
(j+2) = root of Qj+2(λ) = 2(2j+3)ψ + 2(2j2+6j+5) ,

(3.28)

each with multiplicity 2v+1, where Qv denotes a linear, quadratic or cubic polynomial.5

Let us now turn on the perturbation ψ̇ T , which couples N with N̄ , and consider the charac-
teristic polynomial Pj (λ) of our fluctuation problem,

Pj (λ) := det
(

N̄−λ −ψ̇T �

−ψ̇T N−λ

)
= det(N−λ) · det

[
(N̄−λ)− ψ̇2 T �(N−λ)−1T

]
= [∏v det(N(v)−λ)

] · det
[
(N̄−λ)− ψ̇2 T �{⊕v(N(v)−λ)−1}T ] , (3.29)

where we made use of

〈uv m|N |u′v′m′ > = (N(v)

)
uu′ δvv′δmm′ . (3.30)

Since T furnishes an su(2) representation (and not an intertwiner) it must be represented by 
square matrices and thus cannot connect different v representations. Hence the perturbation does 
not couple different v sectors but only links N and N̄ in a common v̄=v sector. Therefore, it 
does not affect the extremal sectors v = j±2. Moreover, switching to a diagonal basis {|αvm〉}
for N we can simplify to

T �{⊕v(N(v)−λ)−1}T ] = ⊕v̄{T �(N−λ)−1T }(v̄)

= ⊕v̄

{∑
α(ω2

(v̄,α)−λ)−1(T �|α〉〈α|T )
(v̄)

}
.

(3.31)

Observing that 
(
T �|α〉 〈α| T )

(v̄)
= −tv̄,α

( �T 2
)
(v̄)
= 8 tv̄,α1(v̄) with some coefficient functions 

tv̄,α(ψ), with 
∑

α tv̄,α = 1, we learn that the V3 degeneracy remains intact, and we arrive at 
(v̄ ∈ {j−1, j, j+1})

Pj (λ) = [∏vQv(λ)2v+1] ·∏v̄

{
(ω̄2

(v̄)−λ)− 8ψ̇2∑
αtv̄,α(ω2

(v̄,α)−λ)−1}2v̄+1

= (ω2
(j−2)−λ)2j−3 · (ω2

(j+2)−λ)2j+5 ·∏v̄

{
(ω̄2

(v̄)−λ)Qv̄(λ)− 8ψ̇2Pv̄(λ)
}2v̄+1

= (ω2
(j−2)−λ)2j−3 · (ω2

(j+2)−λ)2j+5 ·∏v̄Rv̄(λ)2v̄+1 , (3.32)

5 For j<2 some obvious modifications occur due to the missing of v<0 representations.
13
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where Pv̄ =Qv̄

∑
α tv̄,α(ω2

(v̄,α)−λ)−1 is a polynomial of degree one less than Qv̄ since all poles 
cancel, and Rv̄ is a polynomial of one degree more. We list the polynomials Qv, Pv̄ and Rv̄ for 
j≤2 in the Appendix.

To summarize, by a successive basis change (m′ = −j, . . . , j and m =−v, . . . , v){|μp m′〉} ⇒ {|v̄m〉, |uvm〉} ⇒ {|v̄m〉, |αvm〉} ⇒ {|βvm〉} (3.33)

we have diagonalized (3.21) to[
∂2
τ −�2

(j,v,β)

]
�(v,β) = 0 with v ∈ {j−2, j−1, j, j+1, j+2} , (3.34)

where �2
(j,v,β) are the distinct roots of the characteristic polynomial Pj in (3.32), and (for j≥2) 

the multiplicity label β takes 1, 3, 4, 3, 1 values, respectively:

�2
(j,j±2) = ω2

(j±2) , �2
(j,j±1,β) = three roots of Rj±1(λ) ,

�2
(j,j,β) = four roots of Rj (λ) .

(3.35)

The reflection symmetry (3.18) implies that �2
(v,j,·)(ψ) =�2

(j,v,·)(−ψ). For j<2, obvious mod-
ifications occur due to the absence of some v representations.

We still have to discuss the gauge condition (3.13), which can be cast into the form

0 = ∂τ�0 −
[ 1

2 (1−ψ) �L+ 1
2 (1+ψ) �U] · �� = ∂τ�(v̄,m̄) −K

v,m,α
v̄,m̄ (ψ)�(v,m,α) (3.36)

with a 3(2j+1)×7(2j+1) linear (in ψ ) matrix function K .6 Here the v sum runs over 
(j−1, j, j+1) only, since the gauge condition (3.13) has components only in the middle 
three v sectors, like the gauge-mode equation (3.14). It does not restrict the extremal v sec-
tors v = j±2, since these fluctuations do not couple to the gauge sector �0 and are entirely 
physical. For the middle three v sectors (labeled by v̄), the ψ̇ T perturbation leads to a mixing 
of the N modes with the N̄ gauge modes, so their levels will avoid crossing. Performing the 
corresponding final basis change, the gauge condition takes the form[

L
v̄′,m̄′,β
v̄,m̄ (ψ) ∂τ −M

v̄′,m̄′,β
v̄,m̄ (ψ)

]
�(v̄′,m̄′,β) = 0 (3.37)

with certain 3(2j+1)×10(2j+1) matrix functions L and M . This linear equation represents 
conditions on the normal mode functions �(v̄,m̄,β) and defines a 7(2j+1)-dimensional subspace 
of physical fluctuations, which of course still contains a 3(2j+1)-dimensional subspace of gauge 
modes. For j<1, these numbers are systematically smaller. Together with the two extremal v sec-
tors, we end up with (7 − 3 + 2)(2j+1) = 6(2j+1) physical degrees of freedom for any given 
value of j (≥2), as advertized earlier.

We conclude this section with more details for the simplest examples, which are constant 
backgrounds and j=0 backgrounds. For the vacuum background, say ψ =−1, which is isospin 
degenerate, one gets(

∂2
τ − 1

2
�L2 − 1

2 ( �L+�S)2) �� = 0, �L· ��= 0 , �0 = 0 . (3.38)

It yields the positive eigenfrequency-squares

ω2
(j,u′) = 2j (j+1)+ 2u′(u′+1) =

⎧⎪⎨⎪⎩
4j2 at j≥1 for u′ = j−1

4j (j+1) for u′ = j

4(j+1)2 for u′ = j+1

(3.39)

6 We have to bring back the m indices because the gauge condition is not diagonal in them.
14
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for j = 0, 12 , 1, . . ., but the �L· ��= 0 constraint removes the u′=j modes. Clearly, all (constant) 
eigenfrequency-squares are positive, hence the vacuum is stable.

For the “meron/sphaleron” background, ψ ≡ 0, one has(
∂2
τ − 1

2
�L2 − 1

2 ( �L+ �T+�S)2 − 2
) �� = 0,

( �L+ 1
2
�T ) · ��= 0 , �0 = 0 . (3.40)

In this case, we read off

ω2
(j,v) + 2 = 2j (j+1)+ 2v(v+1)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

4(j2−j+1) for v = j−2 (0 to 1 times)

4j2 for v = j−1 (0 to 2 times)

4j (j+1) for v = j (1 to 3 times)

4(j+1)2 for v = j+1 (1 to 2 times)

4(j2+3j+3) for v = j+2 (1 times)

, (3.41)

but the constraint removes one copy from each of the three middle cases (and less when j<1). 
We end up with a spectrum {ω2} = {−2, 1, 6, 7, 10, . . .} with certain degeneracies [3,7]. The 
single non-degenerate negative mode ω2

(0,0)=−2 is a singlet, �p
a = δ

p
a φ(τ), and it corresponds 

to rolling down the local maximum of the double-well potential. The meron is stable against all 
other perturbations.

For a time-varying background, the natural frequencies �(j,v,β) inherit a τ dependence from 
the background ψ(τ). Direct diagonalization is still possible for j=0, where we should solve

∂τ�0 − 1
2 (1+ψ) �T · �� = 0 ,[

∂2
τ + 2(1+ψ)2]�0 − ψ̇ �T · �� = 0 ,[

∂2
τ + 2(3ψ2−1)− 1

4 (1+ψ)(2−ψ)(�S+ �T )2] ��− ψ̇ �T �0 = 0 ,

(3.42)

with

(�S+ �T )2 = �V 2 = −4v(v+1) = 0,−8,−24 for v = 0,1,2 . (3.43)

It implies the unperturbed frequencies (suppressing the j index)

ω̄2
(1) = 2(ψ+1)2 (3×) , ω2

(0) = 2(3ψ2−1) (1×) ,

ω2
(1) = 2(2ψ2+ψ+1) (3×), ω2

(2) = 2(3ψ+5) (5×)
(3.44)

for

(�0)
p ≡ (�(v̄=1)

)p =: δpbφ̄b ,

( ��)
p
a ≡
(
�(0) +�(1) +�(2)

)p
a
=: φ δ

p
a + ε

p
ab φb + (φ(ab)−δabφ)δbp ,

(3.45)

as long as ψ̇ is ignored. There are no v-spin multiplicities (larger than one) here. Turning on ψ̇
and observing that ( �T · ��)p ∼ δpbφb , the characteristic polynomial of the coupled 12×12 system 
in the |uvm〉 basis reads

P0(λ) = det

⎛⎜⎜⎜⎜⎝
(ω̄2

(1)−λ)13 0 −ψ̇ T �(1) 0

0 (ω2
(0)−λ)11 0 0

−ψ̇ T(1) 0 (ω2
(1)−λ)13 0

0 0 0 (ω2 −λ)1

⎞⎟⎟⎟⎟⎠ . (3.46)
(2) 5
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Fig. 4. Plots of �2
(0,v,β)

(τ ) over one period, for different values of k2: 0.51 (top left), 0.99 (top right), 1.01 (bottom left) 
and 5 (bottom right).

Specializing the general discussion above to j=0, we find just t1=1 so that P1=1 and arrive at

P0(λ) = (ω2
(0)−λ)1(ω2

(1)−λ)3(ω2
(2)−λ)5[(ω̄2

(1)−λ)− 8ψ̇2(ω2
(1)−λ)−1]3

= (ω2
(0)−λ)(ω2

(2)−λ)5{(ω̄2
(1̄)
−λ)(ω2

(1)−λ)− 8ψ̇2}3 .
(3.47)

We see that the frequencies �2
(0)=ω2

(0) and �2
(2)=ω2

(2) are unchanged and given by (3.44), while 

the gauge mode ω̄2
(1̄)

gets entangled with the (unphysical) v=1 mode to produce the pair

�2
(1,±) = 1

2 (ω̄2
(1̄)
+ω2

(1)) ±
√

1
4 (ω̄2

(1̄)
+ω2

(1))
2 − ω̄2

(1̄)
ω2

(1) + 8ψ̇2

= 3ψ2+3ψ+2 ±
√

ψ2(ψ−1)2 + 8ψ̇2
(3.48)

with a triple degeneracy. There are avoided crossings at ψ=0 and ψ=1. Removing the unphysi-
cal and gauge modes in pairs, we remain with the singlet mode �2

(0,0) and the fivefold-degenerate 

�2
(0,2)

. For all higher spins j>0, analytic expressions for the natural frequencies �(j,v,β) now 
require merely solving a few polynomial equations of order four at worst. We have done so up 
to j=2 and list them in the Appendix but refrain from giving further explicit examples here. We 
display the cases of j=0 and j=2 in Figs. 4 and 5, respectively, with similar coloring for like 
v values, whose curves avoid crossing each other. One can see that some of the normal modes dip 
into the negative regime, i.e. their frequency-squares become negative, for a certain fraction of 
the time τ . Because of this and, quite generally, due to the τ variability of the natural frequencies, 
it is not easy to predict the long-term evolution of the fluctuation modes. Clearly, the stability of 
the zero solution �≡0, equivalent to the linear stability of the background Yang–Mills configu-
ration, is not simply decided by the sign of the τ -average of the corresponding frequency-square.
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Fig. 5. Plots of �2
(2,v,β)

(τ ) over one period, for different values of k2: 0.505 (top left), 0.550 (top right), 0.999 (bottom 
left) and 1.001 (bottom right).

4. Stability analysis: stroboscopic map and Floquet theory

The diagonalized linear fluctuation equation (3.34) represents a bunch of Hill’s equations, 
where the frequency-squared is a root of a polynomial of order up to four with coefficients given 
by a polynomial of twice that order in Jacobi elliptic functions. A unique solution requires fixing 
two initial conditions, and so for each fluctuation �(j,v,β) there is a two-dimensional solution 
space. It is well known that Hill’s equation, e.g. in the limit of Mathieu’s equation, displays 
parametric resonance phenomena, which can stabilize otherwise unstable systems or destabilize 
otherwise stable ones.

For oscillating dynamical systems with periodically varying frequency, there exist some gen-
eral tools to analyze linear stability. Switching to a Hamiltonian picture and to phase space, it 
is convenient to transform the second-order differential equation into a system of two coupled 
first-order equations (suppressing all quantum numbers),

[
∂2
τ −�2(τ )

]
�(τ) = 0 ⇔ ∂τ

(
�

�̇

)
=
(

0 1

−�2 0

)(
�

�̇

)
=: i �̂(τ )

(
�

�̇

)
,

(4.1)

where the frequency �(τ) is T -periodic (sometimes T
2 -periodic) in τ . The solution to this first-

order system is formally given by(
�

�̇

)
(τ ) = T exp

{ τ∫
0

dτ ′ i �̂(τ ′)
} (�

�̇

)
(0) , (4.2)

where T denotes time ordering. Because of the time dependence of �, the time evolution oper-
ator above is not homogeneous thus does not constitute a one-parameter group, except when the 
propagation interval is an integer multiple of the period T . For τ=T , one speaks of the strobo-
scopic map [11]
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M := T exp
{ T∫

0

dτ i �̂(τ )
}

⇒
(

�

�̇

)
(nT ) = Mn

(
�

�̇

)
(0) . (4.3)

The linear map M is a functional of the chosen background solution ψ and hence depends on 
its parameter E or k. This background is Lyapunov stable if the trivial solution �≡0 is, which 
is decided by the two eigenvalues μ1 and μ2 of M . Since the system is Hamiltonian, detM=1, 
and we have three cases:

|trM|> 2 ⇔ μi ∈R ⇔ hyperbolic/boost ⇔ strongly unstable ,

|trM| = 2 ⇔ μi =±1 ⇔ parabolic/translation ⇔ marginally stable ,

|trM|< 2 ⇔ μi ∈U(1) ⇔ elliptic/rotation ⇔ strongly stable .

(4.4)

Clearly, |trM| determines the linear stability of our classical solution.
Let us thus try to evaluate the trace of the stroboscopic map M , making use of the special 

form of the matrix �̂,

trM =
∞∑

n=0

in
T∫

0

dτ1

τ1∫
0

dτ2 . . .

τn−1∫
0

dτn tr
[
�̂(τ1) �̂(τ2) · · · �̂(τn)

]

= 2+
∞∑

n=1

(−1)n

T∫
0

dτ1

τ1∫
0

dτ2 . . .

τn−1∫
0

dτn Hn(τ1, τ2, . . . , τn)�2(τ1)�2(τ2) · · ·�2(τn)

with Hn(τ1, τ2, . . . , τn)= (τ1−τ2)(τ2−τ3) · · · (τn−1−τn)(τn−τ1+1) and H1(τ1)= 1.

(4.5)

It is convenient to scale the time variable such as to normalize the period to unity,

τ = T x and �2(T x)=: ω2(x) , H({T x})=: h({x}) , (4.6)

hence

trM = 2+
∞∑

n=1

(−T 2)n 1∫
0

dx1

x1∫
0

dx2 . . .

xn−1∫
0

dxn hn(x1, x2, . . . , xn)ω2(x1)ω2(x2) · · ·ω2(xn)

=
∞∑

n=0

2

(2n)!Mn

(−T 2)n =: 2−M1T
2 + 1

12M2T
4 − 1

360M3T
6 + 1

20160M4T
8 − . . . .

(4.7)

It is impossible to evaluate the integrals Mn without explicit knowledge of ω2(x). As a crude 
guess, we replace the weight function by its (constant) average value

〈hn〉 := 1

n!
1∫

0

dx1

x1∫
0

dx2 . . .

xn−1∫
0

dxn hn(x1, x2, . . . , xn) = 2n!
(2n)! (4.8)

and obtain
18
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Fig. 6. Plot of 〈�2
(0,0)

〉 as a function of k, with detail on the right.

Mn = (2n)!
2

〈hn〉
1∫

0

dx1

x1∫
0

dx2 . . .

xn−1∫
0

dxn

n∏
i=1

ω2(xi) =
( 1∫

0

dx ω2(x)
)n =: 〈ω2〉n ,

(4.9)

which yields

trM = 2
∞∑

n=0

(−1)n

(2n)! 〈ω
2〉n T 2n = 2 cos

(√〈ω2〉T ) . (4.10)

This expression indicates stability as long as 〈ω2〉 > 0. However, the result for the j=0 singlet 
mode ω2 =�2

(0,0) in (4.11) below already shows that the averaged frequency-squared may turn 
negative in certain domains thus changing the cos into a cosh there.

To do better, let us look at the individual terms Mn in (4.7) for the simplest case of the SO(4) 
singlet fluctuation, i.e. �2

(0,0) = 6ψ2−2 in (3.44). Its average frequency-square is easily com-
puted to be

〈�2
(0,0)〉 =

1

ε2

(
6

E(k)

K(k)
+ 4k2 − 5

)
, (4.11)

where E(k) and K(k) denote the second and first complete elliptic integrals, respectively. Plot-
ting this expression as a function of the modulus k, we see that it becomes negative only in a very 
narrow range around k=1, namely for |k−1| � 0.00005 (see Fig. 6). We have only been able to 
analytically evaluate (with k<1 for simplicity)

M1 = 〈�2
(0,0)〉 and M2 = 〈�2

(0,0)〉2 −
1

ε4

(
9

2−k2

K(k)2 − 27
E(k)

K(k)3 +
9π2

4K(k)4

)
,

(4.12)

which does not suffice to rule out instability. Indeed, numerical studies show that Mn as a function 
of k looses its positivity in a range around k=1 which increases with n, where the series (4.7)
ceases to be alternating. Moreover, even in the limit of a very large background amplitude, k2→
1
2 , we find that

〈�2
(0,0)〉 →

24π2

ε2 �( 1 )4
≈ 1.37

ε2 ⇒
√
〈�2〉T → √

24π ≈ 8.68 , (4.13)

4
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implying that we must push the series in (4.7) at least to O(M10T
20), even though it turns out 

that Mn < 〈 �2
(0,0)

〉n at k2 = 1
2 for n > 1.

For a more complete analysis of linear stability in an oscillating system with time-dependent 
frequency we can take recourse to Floquet theory. It tells us that a general fundamental matrix 
solution

�̂(τ ) =
(

�1 �2

�̇1 �̇2

)
(τ ) ⇒ ∂τ �̂(τ ) = i �̂(τ ) �̂(τ ) (4.14)

of our system (4.1) with some initial condition �̂(0) = �̂0 can be expressed in so-called Floquet 
normal form as

�̂(τ ) = Q(τ) eτR with Q(τ+2T ) = Q(τ) , (4.15)

where Q(τ) and R are real 2×2 matrices, so that the time dependence of the frequency can be 
transformed away by a change of coordinates,

�(τ) := Q(τ)−1�̂(τ ) ⇒ ∂τ�(τ) = R �(τ) . (4.16)

Due to the identity

�̂(τ+T ) = �̂(τ ) �̂(0)−1 �̂(T ) = �̂(T ) �̂(0)−1 �̂(τ ) = M �̂(τ) (4.17)

we see that our stroboscopic map M is nothing but the monodromy, and

M2 = �̂(2T ) �̂(0)−1 = Q(0) �̂(0)−1 �̂(2T )Q(0)−1 = Q(0) e2RT Q(0)−1 , (4.18)

so that its eigenvalues (or characteristic multipliers)

μi = eρiT for i = 1,2 (4.19)

define a pair of (complex) Floquet exponents ρi whose real parts are the Lyapunov exponents. 
Since μ1μ2 = 1 implies that ρ1+ρ2 = 0, our system is linearly stable if and only if both eigen-
values ρi of R are purely imaginary (or zero).

Generally it is impossible to find analytically the monodromy pertaining to a normal 
mode �(j,v,β).7 However, we can evaluate it numerically for a number of examples. Before 
doing so, let us estimate at which energies E or, rather, moduli k, possible resonance frequencies 
might occur. To this end, we determine the period-average of the natural frequency �(j,v,β) and 
compare it to its modulation frequency 2π

T
. If we model

�2(τ ) ≈ 〈�2〉 (1+ h(τ)
)

with 〈�2〉 = 1
T

T∫
0

dτ �2(τ ) and h(τ) ∝ cos(2πτ/T ) ,

(4.20)

where T = 4 ε K(k), then the resonance condition is met for√
〈�2〉 = �

π

T
⇒ k = k�(j, v,β) for �= 1,2,3, . . . . (4.21)

Since this model reproduces only the rough features of �2(τ ), we expect potential instability due 
to parametric resonance effects in a band around or near the values k�.

7 An exception is the SO(4) singlet perturbation �(0,0) , to be treated in the following section.
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Fig. 7. Plot of trM(k) for (j, v) = (2, 0), with detail on the right. Would-be resonances marked in red. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 8. Plots of trM(k) for (j, v)= (2,2) and β = 1,2,3,4. Would-be resonances marked in red.

Our expectation is confirmed by precise numerical evaluation of various monodromies as a 
function of k. Above we display in Figs. 7 and 8, together with the would-be resonant values k�, 
the function trM(k) for the sample cases of (j, v) = (2, 0) and (2, 2). One sees that, on both 
sides of the critical value of E= 1

2 (or k=1), corresponding to the double-well local maximum, 
the k� values accumulate at the critical point. But while for k>1 (energy below the critical point) 
trM(k) oscillates between values close to 2 in magnitude and thus exponential growth is rare and 
mild, for k<1 (energy above the critical point) the oscillatory behavior of trM(k) comes with an 
amplitude exceeding 2 and growing with energy. Hence, in this latter regime stable and unstable 
bands alternate. This is supported by long-term numerical integration, as we demonstrate in Fig. 9
by plotting �(τ) for (j, v, β) = (2, 2, 1) with initial values �(0)=1 and �̇(0)=0 on both sides 
of the first transition from instability to stability for trM(2,2,1) shown in Fig. 8 (at the highest 
value of E or the lowest value of k).
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Fig. 9. Plot of �(τ) for (j, v,β)= (2,2,1) and k=0.73198 (left) and k=0.73199 (right).

Most relevant for the cosmological application is the regime of very large energies, E→∞
(or k→ 1/

√
2). In this limit, we observe the following universal behavior. Because the period T

collapses with ε=√k2−1/2, we rescale

τ
ε
= z ∈ [0,4K( 1

2 )] , ε ψ = ψ̃ , ε2ψ̇ = ∂zψ̃ , ε2�2 = �̃2 , ε2λ= λ̃

(4.22)

so that the tilded quantities remain finite in the limit, and find, with ω̄2
(v̄) → 2ψ2,8

Q(v±2) ∼ λ̃ ,

Q(v±1) ∼ λ̃ (λ̃− 4ψ̃2) ,

R(v±1) ∼ λ̃
[
(λ̃− 2ψ̃2)(λ̃− 4ψ̃2)− 8(∂zψ̃)2] ,

Q(v) ∼ λ̃ (λ̃− 4ψ̃2)(λ̃− 6ψ̃2) ,

R(v) ∼ λ̃
[
(λ̃− 2ψ̃2)(λ̃− 4ψ̃2)− 8(∂zψ̃)2](λ̃− 6ψ̃2) ,

(4.23)

because all j -dependent terms in the polynomials are subleading and drop out in the limit. Fac-
torizing the R polynomials, we find the four universal natural frequency-squares

�̃2
1 = 0 , �̃2

2 = 3 ψ̃2 −
√

ψ̃4 + 8(∂zψ̃)2 ,

�̃2
3 = 3 ψ̃2 +

√
ψ̃4 + 8(∂zψ̃)2 , �̃2

4 = 6 ψ̃2 .

(4.24)

One must pay attention, however, to the fact that the avoided crossings disappear in the ε→ 0
limit. Therefore, the correct limiting frequencies to input into[

∂z − �̃2
(j,v,β)

]
�̃(j,v,β) = 0 (4.25)

are

�̃2
(j,j±2) = 0 ,

�̃2
(j,j±1,β) ∈

{
min(�̃2

1, �̃
2
2), max(�̃2

1, �̃
2
2), �̃2

3

}
,

�̃2
(j,j,β) ∈ {min(�̃2

1, �̃
2
2), max(�̃2

1, �̃
2
2), min(�̃2

3, �̃
2
4), max(�̃2

3, �̃
2
4)
}

,

(4.26)

of which we show in Fig. 10 the last list as a function of z. The monodromies are easily computed 

8 For the cases (j, v) = (0, 1) and (1, 0), the factor λ̃ is missing; for (j, v) = (0, 0), one only has R =Q ∼ (λ̃−6ψ̃2).
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Fig. 10. Plot of the universal limiting natural frequency-squares �̃2
(j,v,β)

for v=j and β = 1,2,3,4.

numerically,9

trM(j,j±2)(E→∞) = 2 ,

trM(j,j±1,β)(E→∞) ∈ {306.704, −1.842, −1.659
}

,

trM(j,j,β)(E→∞) ∈ {306.704, −1.842, 2.462, −1.067
}

,

(4.27)

in agreement with the figures above. In particular, the extremal v-values become marginally 
stable, while part of the non-extremal cases are unstable for high energies.

Of course, for each non-extremal value of v we still have to project out unphysical modes by 
imposing the gauge condition (3.37). However, in the 12(2j+1)-dimensional fluctuation space 
the gauge condition has rank 3(2j+1) while we see that (for j≥2) in total 4(2j+1) normal 
modes are unstable at high energy. Therefore, the projection to physical modes cannot remove 
all instabilities. We must conclude that, for sufficiently high energy E, some fluctuations grow 
exponentially, implying that the solution �≡0 is linearly unstable, and thus is the Yang–Mills 
background.

5. Singlet perturbation: exact treatment

Even though the Floquet representation helped to reduce the long-time behavior of the per-
turbations to the analysis of a single period T , it normally does not give us an exact solution to 
Hill’s equation. However, for the SO(4) singlet fluctuation around ψ(τ), we can employ the fact 
that ψ̇ trivially solves the fluctuation equation,

(ψ̇)·· = (ψ̈)· = −(V ′(ψ)
)· = −V ′′(ψ) ψ̇ = −(6ψ2−2) ψ̇ = −�2

(0,0)(τ ) ψ̇ , (5.1)

with a frequency function which is T
2 -periodic. This implies that all fluctuation modes are T -

periodic. With the knowledge of an explicit solution to the fluctuation equation we can reduce 
the latter to a first-order equation and solve that one to find a second solution. The normalizations 
are arbitrary, so we choose

�1(τ ) = − ε3

k
ψ̇(τ ) and �2(τ ) = �1(τ )

τ∫
dσ

�1(σ )2 = − k
ε3 ψ̇(τ )

τ∫
dσ

ψ̇2(σ )
,

9 For the cases (j, v) = (0, 1) and (1, 0) one gets {56.769, −1.659}; for (j, v) = (0, 0) we have trM = 2.
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Fig. 11. Plot of the SO(4) singlet fluctuation modes �1 and �2 over eight periods for k2=0.81.

(5.2)

which are linearly independent since

W(�1,�2) ≡ �1�̇2 −�2�̇1 = 1 . (5.3)

For simplicity, we restrict ourselves to the energy range 1
2<E<∞, i.e. 1>k2> 1

2 . Explicitly, 
we have (see Fig. 11)

�1(τ ) = ε sn
(

τ
ε
, k
)

dn
(

τ
ε
, k
)
,

�2(τ ) = 1
1−k2 cn

(
τ
ε
, k
)[

(2k2−1)dn2( τ
ε
, k
)− k2]

+ sn
(

τ
ε
, k
)

dn
(

τ
ε
, k
)[

τ
ε
+ 2k2−1

1−k2 E
(
am( τ

ε
, k), k

)]
,

(5.4)

where am(z, k) denotes the Jacobi amplitude and E(z, k) is the elliptic integral of the second 
kind. As can be checked, the initial conditions are

�1(0)= 0 , �̇1(0)= 1 and �2(0)=−1 , �̇2(0)= 0 , (5.5)

which fixes the ambiguity of adding to �2 a piece proportional to �1. Hence,

�̂(0) =
(

0−1

1 0

)
⇒ M = �̂(T )

(
0 1

−1 0

)
. (5.6)

We know that �1 ∼ ψ̇ is T -periodic, and so is �̇1, but not the second solution,

�2(τ+T ) = �2(τ )+ γ T �1(τ ) with γ = 1

T

T∫
0

dσ

�1(σ )2

∣∣∣∣
reg
=: k2

ε6

〈
ψ̇−2〉

reg ,

(5.7)

where the integral diverges at the turning points and must be regularized by subtracting the Weier-
straß ℘ function with the appropriate half-periods. Since �1 has periodic zeros, �2 does return 
to −1 at integer multiples of T . It follows that the �2 oscillation linearly grows in amplitude 
with a rate (per period) of

γ = 1

ε2

[
1+ 2k2−1

1−k2

E(k)

K(k)

]
, (5.8)

which is always larger than 7.629, attained at k≈ 0.882 (see Fig. 12).
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Fig. 12. Plot of the linear growth rate γ as a function of k.

In essence, we have managed to compute the monodromy

M =
(−�2(T ) �1(T )

−�̇2(T ) �̇1(T )

)
=
(

1 0

−γ T 1

)
= exp

{
−γ T

( 0 0

1 0

)}
(5.9)

and thus easily obtain the Floquet representation,

R =
(

0 γ

0 0

)
⇒ eτR =

(
1 γ τ

0 1

)
and Q(τ) =

(
�1 �2−�1γ τ

�̇1 �̇2−�̇1γ τ

)
.

(5.10)

Obviously, we have encountered a marginally stable situation, since M is of parabolic type. There 
is no exponential growth, and �1 is periodic thus bounded, but �2 grows without bound as long 
as one stays in the linear regime. Note that we never made use of the form of our Newtonian 
potential. In fact, this behavior is typical for a conservative mechanical system with oscillatory 
motion.

What to make of this linear growth? It can be (and actually is) easily overturned by nonlinear 
effects. Going beyond the linear regime, though, requires expanding the Yang–Mills equation 
to higher orders about our classical Yang–Mills solution (2.14). While this is a formidable task 
in general, it can actually be done to all orders for the singlet perturbation! The reason is that 
a singlet perturbation leaves us in the SO(4)-symmetric subsector, thus connecting only to a 
neighboring “cosmic background”, ψ → ψ̃ . Since (2.20) gives us analytic control over all solu-
tions ψ(τ), the full effect of such a shift can be computed exactly. Splitting an exact solution ψ̃

into a background part and its (full) deviation,

ψ̃(τ ) = ψ(τ) + η(τ) , (5.11)

inserting ψ̃ into the equation of motion (2.18) and remembering that V is of fourth order, we 
obtain

0 = η̈+V ′′(ψ)η+ 1
2V ′′′(ψ)η2+ 1

6V ′′′′(ψ)η3 = η̈+ (6ψ2−2) η+6ψ η2+2η3 , (5.12)

extending the linear equation (5.1) by two nonlinear contributions. Perturbation theory introduces 
a small parameter ε and formally expands
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η = εη(1) + ε2η(2) + ε3η(3) + . . . , (5.13)

which yields the infinite coupled system[
∂2

τ + (6ψ2−2)
]
η(1) = 0 ,[

∂2
τ + (6ψ2−2)

]
η(2) = −6ψ η2

(1) ,[
∂2

τ + (6ψ2−2)
]
η(3) = −12ψ η(1)η(2) − 2η3

(1) ,

. . . ,

(5.14)

which could be iterated with a seed solution η(1) of the linear system.
However, we know that the exact solutions to the full nonlinear equation (5.12) is simply 

given by the difference

η(τ) = ψ̃(τ )−ψ(τ) (5.15)

of two analytically known backgrounds. The SO(4)-singlet background moduli space is 
parametrized by two coordinates, e.g. the energy E (or elliptic modulus k) and the choice of an 
initial condition which fixes the origin τ=0 of the time variable. In (2.20), we selected ψ̇(0) = 0, 
but relaxing this we can reintroduce this collective coordinate by allowing shifts in τ . We may 
then parametrize the SO(4)-invariant Yang–Mills solutions as

ψk,�(τ ) = ψ(τ−�) with 2E = 1/(2k2−1)2 and � ∈R (5.16)

where ψ is taken from (2.20). Note that ψ̇k,� solves the background equation (5.1) with a 
frequency-squared ω2

k,� = 6ψ2
k,�−2. Without loss of generality we assign ψ = ψk,0 and ψ̃ =

ψk+δk,δ�, hence

η(τ) = δk ∂kψ(τ)− δ� ψ̇(τ )+ 1
2 (δk)2 ∂2

kψ(τ)− δkδ� ∂kψ̇(τ )+ 1
2 (δ�)2 ψ̈(τ )+ . . .

= δk ∂kψ(τ−δ�)+ 1
2 (δk)2 ∂2

kψ(τ−δ�)+ 1
6 (δk)3 ∂3

kψ(τ−δ�)+ . . . ,

(5.17)

because ∂�ψ = −ψ̇ . Clearly, a shift in � only shifts the time dependence of the frequency and 
does not alter the energy E, which is not very interesting. Its linear part corresponds to the 
mode �1 ∼ ψ̇ of the previous section. A change in k, in contract, will lead to a solution with 
an altered frequency and energy. Its linear part is given by �2, which grows linearly in time. 
However, due to the boundedness of the full motion, the nonlinear corrections have to limit this 
growth and ultimately must bring the fluctuation back close to zero. This is the familiar wave 
beat phenomenon: the difference of two oscillating functions, ψ̃ and ψ , with slightly different 
frequencies, will display an amplitude oscillation with a beat frequency given by the difference. 
This is borne out in Fig. 13 below. As a result, we can assert a long-term stability of the cosmic 
Yang–Mills fields against the SO(4) singlet perturbation, even though on shorter time scales an 
excursion to a nearby solution is not met with a linear backreaction.

6. Conclusions

We have revisited a cosmological scenario recently put forward by Friedan and based on the 
Standard Model plus gravity alone. An SO(4) symmetric sector is analytically solvable and re-
duces to three coupled anharmonic oscillators (for the metric, an SU(2) Yang–Mills field and the 
Higgs field, the latter being frozen to its vacuum state). We have presented a complete analysis 
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Fig. 13. Plots of the full perturbation η at k=0.95 for η(0)=0.02, η̇(0)=0, giving a beat ratio of ∼19.

of the linear gauge-field perturbations of the time-dependent Yang–Mills solution, by diagonal-
izing the fluctuation operator and studying the long-time behavior of the ensuing Hill’s equations 
using the stroboscopic map and Floquet theory. For parametrically large gauge-field energy (as 
is required in Friedan’s setup) the natural frequencies and monodromies become universal, and 
some unstable perturbation modes survive even in this limit. This provides strong evidence that 
such oscillating cosmic Yang–Mills fields are unstable against small perturbations, although we 
have not yet included metric fluctuations here. Their influence will be analyzed in follow-up 
work.
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Appendix A

j , v P(λ) Q(λ) R(λ)

0 , 0 N/A (−2 + 6ψ2) − λ −(2 − 6ψ2) + λ

0 , 1 1 (2 + 2ψ + 4ψ2) − λ (4 +12ψ+20ψ2+20ψ3+8ψ4−8ψ̇2) − (4 +6ψ+
6ψ2)λ + λ2

0 , 2 N/A (10 + 6ψ) − λ N/A
1
2 , 1

2 −(1 + 6ψ2) + λ −(1 +2ψ2+24ψ4) +(2 +
10ψ2)λ − λ2

−(1 +4ψ2+28ψ4+48ψ6−8ψ̇2−48ψ2ψ̇2) +(3 +
16ψ2 + 44ψ4 − 8ψ̇2)λ − (3 + 12ψ2)λ2 + λ3

1
2 , 3

2 −(7 + 3ψ) + λ −(49 + 42ψ + 32ψ2 +
12ψ3) + (14 + 6ψ +
4ψ2)λ − λ2

−(343 +588ψ+574ψ2+360ψ3+136ψ4+24ψ5−
56ψ̇2− 24ψψ̇2) + (147 + 168ψ + 124ψ2+ 48ψ3+
8ψ4 − 8ψ̇2)λ − (21 + 12ψ + 6ψ2)λ2 + λ3

1
2 , 5

2 N/A (17 + 8ψ) − λ N/A

1 , 0 1 (2 − 2ψ + 4ψ2) − λ (4 −12ψ+20ψ2−20ψ3+8ψ4−8ψ̇2) − (4 −6ψ+
6ψ2)λ + λ2

1 , 1 (36 + 36ψ2) −
(12 +6ψ2)λ +λ2

(216 +192ψ2+104ψ4) −
(108 + 92ψ2 + 24ψ4)λ +
(18 + 10ψ2)λ2 − λ3

(1296 + 1584ψ2 + 1008ψ4 + 208ψ6 − 288ψ̇2 −
288ψ2ψ̇2) − (864 + 960ψ2 + 432ψ4 + 48ψ6 −
96ψ̇2 − 48ψ2ψ̇2)λ + (216 + 188ψ2 + 44ψ4 −
8ψ̇2)λ2 − (24 + 12ψ2)λ3 + λ4

1 , 2 −(14 + 4ψ) + λ −(196 + 112ψ + 60ψ2 +
16ψ3) + (28 + 8ψ +
4ψ2)λ − λ2

−(2744 + 3136ψ + 2128ψ2 + 928ψ3 + 248ψ4 +
32ψ5−112ψ̇2−32ψψ̇2) +(588 +448ψ+236ψ2+
64ψ3 + 8ψ4 − 8ψ̇2)λ − (42 + 16ψ + 6ψ2)λ2 + λ3

1 , 3 N/A (26 + 10ψ) − λ N/A
3
2 , 1

2 −(7 − 3ψ) + λ −(49 − 42ψ + 32ψ2 −
12ψ3) + (14 − 6ψ +
4ψ2)λ − λ2

−(343 −588ψ+574ψ2−360ψ3+136ψ4−24ψ5−
56ψ̇2+ 24ψψ̇2) + (147 − 168ψ + 124ψ2− 48ψ3+
8ψ4 − 8ψ̇2)λ − (21 − 12ψ + 6ψ2)λ2 + λ3

3
2 , 3

2 (169 + 78ψ2) −
(26 +6ψ2)λ +λ2

(2197 + 962ψ2 +
216ψ4) − (507 +
204ψ2 + 24ψ4)λ +
(39 + 10ψ2)λ2 − λ3

(28561 + 16900ψ2+ 4732ψ4+ 432ψ6− 1352ψ̇2−
624ψ2ψ̇2) + (−8788 − 4628ψ2− 936ψ4− 48ψ6+
208ψ̇2 + 48ψ2ψ̇2)λ + (1014 + 412ψ2 + 44ψ4 −
8ψ̇2)λ2 − (52 + 12ψ2)λ3 + λ4

3
2 , 5

2 −(23 + 5ψ) + λ −(529 + 230ψ + 96ψ2 +
20ψ3) + (46 + 10ψ +
4ψ2)λ − λ2

−(12167 +10580ψ+5566ψ2+1880ψ3+392ψ4+
40ψ5 − 184ψ̇2 + 40ψψ̇2) + (1587 + 920ψ +
380ψ2 + 80ψ3 + 8ψ4 − 8ψ̇2)λ + (−69 − 20ψ −
6ψ2)λ2 + λ3

3
2 , 7

2 N/A (37 + 12ψ) − λ N/A

2 , 0 N/A (10 − 6ψ) − λ N/A

2 , 1 −(14 − 4ψ) + λ −(196 − 112ψ + 60ψ2 −
16ψ3) + (28 − 8ψ +
4ψ2)λ − λ2

−(2744 − 3136ψ + 2128ψ2 − 928ψ3 + 248ψ4 −
32ψ5−112ψ̇2+32ψψ̇2) +(588 −448ψ+236ψ2−
64ψ3 + 8ψ4 − 8ψ̇2)λ − (42 − 16ψ + 6ψ2)λ2 + λ3

2 , 2 (484 + 132ψ2) −
(44 +6ψ2)λ +λ2

(10648 + 2816ψ2 +
360ψ4) − (1452 +
348ψ2 + 24ψ4)λ + (66 +
10ψ2)λ2 − λ3

(234256 + 83248ψ2 + 13552ψ4 + 720ψ6 −
3872ψ̇2 − 1056ψ2ψ̇2) − (42592 + 13376ψ2 +
1584ψ4 + 48ψ6 − 352ψ̇2 − 48ψ2ψ̇2)λ + (2904 +
700ψ2 + 44ψ4 − 8ψ̇2)λ2 − (88 + 12ψ2)λ3 + λ4

2 , 3 −(34 + 6ψ) + λ −(1156 + 408ψ +
140ψ2 + 24ψ3) + (68 +
12ψ + 4ψ2)λ − λ2

−(39304 + 27744ψ + 11968ψ2 + 3312ψ3 +
568ψ4 + 48ψ5 − 272ψ̇2 − 48ψψ̇2) + (3468 +
1632ψ + 556ψ2 + 96ψ3 + 8ψ4 − 8ψ̇2)λ − (102 +
24ψ + 6ψ2)λ2 + λ3

2 , 4 N/A (50 + 14ψ) − λ N/A
28
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