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Abstract: The interaction of light with semiconducting materials becomes the center of a wide range
of technologies, such as photocatalysis. This technology has recently attracted increasing attention
due to its prospective uses in green energy and environmental remediation. The characterization
of the electronic structure of the semiconductors is essential to a deep understanding of the pho-
tocatalytic process since they influence and govern the photocatalytic activity by the formation of
reactive radical species. Electron paramagnetic resonance (EPR) spectroscopy is a unique analytical
tool that can be employed to monitor the photoinduced phenomena occurring in the solid and liquid
phases and provides precise insights into the dynamic and reactivity of the photocatalyst under
different experimental conditions. This review focus on the application of EPR in the observation of
paramagnetic centers formed upon irradiation of titanium dioxide and niobium oxide photocatalysts.
TiO2 and Nb2O5 are very well-known semiconductors that have been widely used for photocatalytic
applications. A large number of experimental results on both materials offer a reliable platform
to illustrate the contribution of the EPR studies on heterogeneous photocatalysis, particularly in
monitoring the photogenerated charge carriers, trap states, and surface charge transfer steps. A de-
tailed overview of EPR-spin trapping techniques in mechanistic studies to follow the nature of the
photogenerated species in suspension during the photocatalytic process is presented. The role of the
electron donors or the electron acceptors and their effect on the photocatalytic process in the solid or
the liquid phase are highlighted.

Keywords: EPR; TiO2; Nb2O5; spin trapping; mechanistic studies

1. Introduction

Heterogenous photocatalytic processes, although attractive for solar energy conversion
and environmental remediation, are extremely complex [1–5]. Photon absorption, exciton
separation, carrier diffusion, carrier transport, catalytic efficiency, and mass transfer all play
major roles [6,7] and can make (or break) the efficiency of the process. Powerful techniques
to analyze every step in detail are thus of fundamental importance to overcome bottlenecks
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and improve efficiency. Electron paramagnetic resonance (EPR) spectroscopy, also known
as electron spin resonance (ESR), differentiates itself from other techniques by providing
exceptional sensitivity and specificity towards species with unpaired electrons. Species that
can be monitored and characterized by EPR include organic and inorganic radicals, crystal
defects (e.g., vacancies or interstitials), dopant atoms, and both free and trapped charger
carriers. Photocatalytic reactions (which are radical in nature, see below) and materials are
thus very amenable to their study by EPR.

In this short review, we aim to briefly provide the fundamentals of EPR, together
with selected examples of its application on well-known photocatalysts, TiO2 and N2O5.
We refer the reader interested to have an in-depth view on EPR to the excellent textbooks
of Weil and Bolton [8] and Brustolon and Giamello (editors) [9]. Earlier reviews on EPR
applied to heterogeneous photocatalysis are also strongly recommended [10–12].

This article is structured as follows. Sections 1.1–1.5, briefly describe the fundamentals
of heterogeneous photocatalysis and the EPR technique, together with some special consid-
erations that must be kept in mind when combining them; some important variations on
the basic (continuous wave) EPR spectroscopy; and a comparison with other techniques
that could be used in a similar fashion. Sections 2 and 3 reviews applications of EPR
centered on the photocatalyst itself, covering bare TiO2 and Nb2O5, and surface-modified
TiO2 and Nb2O5 systems. Finally, Section 4 presents an overview of EPR applied on the
liquid phase in the presence of TiO2 and Nb2O5 materials to elucidate reaction mechanisms,
by means of detecting radicals.

1.1. Basic Mechanism of Heterogeneous Photocatalysis

As with all photochemical processes, heterogeneous photocatalytic reactions are initiated
by the absorption of light (“Grotthuss-Draper law”). As represented on Scheme 1, excitation
of a semiconducting photocatalyst (most commonly TiO2) with photons carrying enough
energy leads to the promotion of an electron from the valence band to the conduction band
(e−CB), leaving behind a hole in the former (h+

VB), Equation (1):

TiO2 + hν→ TiO2
(
e−CB + h+

VB
)

(1)
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In the first instance, both can be thought to be “free”, i.e., occupying delocalized
states on the respective electronic bands. The fate of most of them is the electron-hole
recombination [1], releasing heat to the environment (note: from now on “TiO2” is omitted
for brevity), Equation (2):

e−CB + h+
VB → heat (2)
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Among the (small) fraction of charge carriers that escape this fate, some are transferred
to localized (“trap”) states in the semiconductor or its surface, Equations (3) and (4):

e−CB → e−Trap (3)

h+
VB → h+

Trap (4)

The exact nature of trapped charge carriers has been the subject of much controversy.
However, to a first approximation, electrons can be considered to be trapped at Ti(IV)
centers, that could be located either at the surface or bulk of the material (Scheme 1),
Equation (5):

e−CB + Ti4+surf/bulk → Ti3+surf/bulk ≡ e−Trap (5)

The situation for holes is less clear; regardless, holes are usually considered to be
trapped at oxygen atoms on the surface (formally, oxide ions), Equation (6):

h+
VB + O2−

surf + H+ → HO•surf ≡ h+
Trap (6)

Depending on the energy difference to the bands, trap states are normally classified as
“deep” or “shallow” [1]. Deeply trapped charge carriers are irreversibly trapped, and less
reactive as well, due to the energy dissipation incurred upon trapping. On the other hand,
shallowly trapped charge carriers are very close in energy to the valence or conduction
band edges, and thus can be excited back just by thermal energy, thus retaining their
reactivity [14].

Alternatively, charge carriers (free or shallowly trapped) can be transferred to suitable
electron donors (D) and acceptors (A), adsorbed on the semiconductor, Equations (7) and (8):

e−CB/Trap + A→ A•− (7)

h+
VB/Trap + D→ D•+ (8)

The oxidized and reduced donor and acceptor (D•+ and A•−, respectively), being
radical species, commonly react further via either dark or light-induced reactions to give
the final products of the photocatalytic reaction. Common examples are dioxygen as
electron acceptor (initially reduced to O•−2 ) [15] and organic molecules as electron donors
(e.g., methanol is initially oxidized to CH2OH•, acetate and oxalic acid) [16,17]. Some
authors also consider that holes can be transferred to water to form OH• radicals, although
this idea has been repeatedly challenged [18].

1.2. Brief Fundamentals of EPR Spectroscopy

The EPR technique is based on the Zeeman effect, that is, the splitting of electronic
energy levels by a magnetic field B0. For the simple case of a free electron, its spin quantum
number is s = 1

2 , with quantized magnetic components ms = + 1
2 or ms = − 1

2 . Its magnetic
moment can thus be aligned either parallel or antiparallel (respectively) to the magnetic
field (Scheme 2), resulting in different energies, Equation (9):

E = msgµBB0 (9)

where g is the so-called g-factor (for a free electron, g = ge =2.0023), and µB is the Bohr
magneton (9.274 × 10−24 J T−1 in SI units). In the absence of a magnetic field (B0 = 0) both
magnetic components obviously yield the same energy; while in its presence, the difference
in energy (EPR resonance condition) is given by Equation (10):

∆E = gµBB0 (10)
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Importantly, for a bound electron, its g-factor is sensitive to the nature of the paramag-
netic center (more specifically, to the atomic or molecular orbital containing the electron).
For instance, organic radicals usually exhibit a g factor between 2.002 and 2.006; Cu2+

species, between 2.0 and 2.4; and low spin Fe3+, between 1.4 and 3.1.
The different g-factors arise through spin-orbit coupling, which is an anisotropic

interaction (related to orbital motion). In consequence, the g-factor is in reality a second-
rank tensor (a 3 × 3 matrix), that can be diagonalized to reduce it to three components
along the principal axes, Equation (11):

[g] =

 gxx gxy gxz
gyx gyy gyz
gzx gzy gzz

 =

 gx 0 0
0 gy 0
0 0 gz

 (11)

Considering this, the resonance condition becomes (Equation (12)):

∆E = µB

(
gxBx + gyBy + gzBz

)
(12)

where Bx, By, and Bz are the components of the magnetic field along the principal axes.
This is relevant, for instance, in the case of rhombic crystal structures (e.g., brookite TiO2). If
there is axial symmetry (as in anatase and rutile TiO2), two of the components are identical:
gx = gy; the two different components are usually labeled as gx = gy = g∆ and gz = g||.
In fluid media, all orientations are averaged, resulting in a single, isotropic (averaged) g
value, Equation (13):

giso =
1
3

(
gx + gy + gz

)
(13)

In addition to the Zeeman interaction, the interaction between the magnetic moment
of the electron with the magnetic dipole moment of the nuclei of the paramagnetic center
and surrounding atoms (I) must also be considered. Usually smaller in magnitude than the
Zeeman interaction, the incorporation of this so-called “hyperfine interaction” affects the
resonance condition as follows (Equation (14)):

∆E = gµBB0 + ∑
i

SAiIi (14)

where the index i runs overall interacting nuclei, Ai is the hyperfine matrix corresponding
to nucleus i, and S = 1

2 for a radical. Generally, the hyperfine interaction has isotropic
and anisotropic components, resulting in a matrix that describes this effect. Importantly,
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as a consequence of the hyperfine interaction, each EPR line is split into several lines.
In the simple case of a single nucleus with nuclear spin I, the spectrum will consist of
2I + 1 lines; more generally, for k nuclei, there will be ∏ 2Ik + 1 lines. Additional types of
interactions, such as the superhyperfine splitting, are described elsewhere and are generally
less important [9].

EPR spectroscopy experiments can be performed at different resonant frequencies.
The most common one is the so-called X-band: by applying a magnetic field B0 of ~3480 G,
the resonance frequency υ is ca. 9.75 GHz (the exact values depend on the g-factor), i.e., in
the microwave region, Equation (15):

∆E = hυ = gµBB0 (15)

For practical reasons, typically the microwave frequency is kept fixed, while the
magnetic field is varied to sweep the region of interest. In addition, the field is usually
modulated; this allows to apply lock-in amplification, improving the sensitivity of the
technique. As a result, EPR spectra are normally measured as the first derivative of the
absorption spectra. The latter can be easily recovered by integrating the measured signal;
double integration yields peak areas, proportional to the number of spins in the sample.

1.3. Special Considerations and Limitations on the Use of EPR

In relation to the photocatalysts materials, the paramagnetic species involved on the
photocatalytic processes include the trapped photogenerated carriers, that is, electrons and
holes, some inorganic active species on EPR as transition metal ions, or also the species
formed on the photocatalyst surface by the redox reactions such as reactive oxygen species,
and organic radicals. More detailed information regarding paramagnetic species on hetero-
geneous photocatalysis and the EPR technique was reviewed by Wang and coauthors [10].
In relation to the radicals formed by the photocatalyst after the redox reactions, although
EPR is extremely sensitive, species with unpaired electrons are generally very reactive.
Thus, even if a radical of interest is continuously produced (e.g., by continuous irradia-
tion), its steady-state concentration may be too low for it to be detected. An extensively
employed workaround is the use of so-called “spin-traps”, diamagnetic compounds that
readily undergo addition reactions with radicals to produce a new radical species with
higher stability (and thus allow their detection). Generally, hyperfine splitting results in a
distinctive spectrum for different adducts, allowing their identification.

A commonly used group of compounds are nitrones, which can “trap” a radical R′′•

as follows, Equation (16):

RHC = N+O−R′ + R
′′• → RR

′′•HC = NO•R′ (16)

For instance, DMPO (5,5-Dimethyl-1-Pyrroline-N-Oxide) is commonly employed to
trap OH• [19], CO−•2 , and the organic radicals [20–23]. It can also be employed to detect
the superoxide radical O•−2 , although in that case the trapping reaction is hindered by
a slow rate, and the formed adduct presents a similar spectrum to that of other peroxyl
adducts [24].

The use of low temperature (below 77 K) can also improve detection by decreasing
diffusion rates–and thus reactivities. This is particularly important to monitor charge carri-
ers in photocatalysts, where room temperature measurements are commonly impossible
due to fast recombination. In fact, Howe and Grätzel were the first to detect the presence
of trapped electrons and did so by freezing degassed acidic suspensions of colloidal TiO2
after room temperature irradiation [25].

In the case of Ti3+ species, the situation is worsened by the very short spin-lattice
relaxation times that decrease EPR sensitivity towards these species. Remarkably, Grela
and coworkers were able to detect Ti3+ centers at room temperature by irradiating chloride-
containing ethanolic TiO2 sols [26], although generally speaking this is not feasible with
photocatalytic materials, and liquid nitrogen temperatures are mandatory. It is important
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to note, however, that the conclusions drawn under such conditions may not be completely
transferrable to the photocatalytic process under operando conditions.

1.4. Comparison with Other Techniques

Several techniques can monitor photogenerated charge carriers and radical species
produced during photocatalytic reactions. The main distinguishing factor of EPR is the
fact that it is exclusively and strongly sensitive to species with unpaired electrons. Since
closed-shell species are EPR-silent, signal assignment is simplified with respect to more
general techniques; in addition, minute amounts (in the order of 109 spins) of unpaired
species can be readily detected. As described above, trapped charge carriers, and the
species produced after electron transfer to (from) acceptors (donors), are radicals, and thus
EPR provides an invaluable tool to study photocatalytic processes (Scheme 1). Its main
shortcomings are those described in Section 1.3.

A commonly employed alternative technique is transient absorption spectroscopy
(TAS) [27]. A clear advantage of TAS over EPR is its very high time resolution, in the order
of ns (or even shorter timescales for pump-probe setups), which can provide fundamental
information on the processes. However, interpretation is usually very complex: band as-
signments are hindered by the confounding facts of low spectral resolution, inherent noise
in the measurements, broadness of the signals, and most importantly, the low specificity of
the technique (i.e., most species show a signal in TAS). An additional problem relative to
transient absorption techniques applied to photocatalysis is that spectral characteristics
are strongly dependent on particle size [28], crystal phase, and surface conditions, ren-
dering direct comparison of spectra corresponding to differently prepared photocatalysts
a difficult task. Finally, the (usually) large number of electron-hole pairs generated per
particle upon laser excitation may not adequately reflect the properties of the system under
weaker irradiation.

Diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) has also been
employed to monitor free and trapped charge carriers in TiO2 [29,30]. An important
shortcoming of this technique is that both water and organic solvents strongly absorb in
the infrared region, practically preventing their use [31]. If the process of interest occurs in
the suspension or liquid phase, as is usually the case, the conclusions from DRIFTS studies
may not be transferrable. In addition, at least in the case of TiO2, it is believed that only
electrons (i.e., not holes) present a signal in DRIFTS [31].

Another technique that can be used to get insights into photogenerated charge carriers
is time-resolved microwave conductivity (TRMC) [32–34]. In this case, an important
shortcoming is the fact that only free electrons are detectable by TRMC. On the other hand,
it is possible to perform TRMC measurements under conditions relatively similar to those
of photocatalytic reactions.

In some cases, a combination of different techniques would provide additional infor-
mative results. For example, by combining EPR with IR techniques, it has been demon-
strated that free carriers in TiO2 samples are EPR silent and only trapped species can be
detected [35]. The situation in ZnO quantum dots is completely different. In this oxide,
free conduction-band electrons can be readily monitored by EPR spectroscopy at room
temperature, and its g values correlate with the nanocrystal size [36]. By exploiting this
finding, unexpected electron transfer between electron-charged and uncharged capped
nanoparticles [37] was recently discovered by Gamelin and coworkers. It is apparent
that the ability of monitoring primary carriers in conditions that closely match practi-
cal operational situations will provide new insights into nanoscale ET processes, in the
near future.

Interestingly, EPR is able to sense the local environment of the trapped species. This
possibility has recently been exploited to get some understanding for the enhanced photo-
catalytic activity of mixed-phase anatase- rutile TiO2 specimens [38] and to study the effect
of shape and size on the paramagnetic species formed upon UV excitation of TiO2.



Catalysts 2021, 11, 1514 7 of 37

1.5. EPR Derivatives

Generally speaking, the spectra in the continuous wave EPR method (CW EPR) are
recorded by putting a sample into an MW irradiation field of constant frequency ν and
sweeping the external magnetic field B0 until the resonance condition is fulfilled. In pulse
EPR the spectrum is recorded by exciting a large frequency range simultaneously with a
single high-power MW pulse of given frequency ν at a constant magnetic field B0. Pulse
EPR technique is extremely useful for the study of spin-dependent transport processes,
and it opens the door of the time-domain realm and in turn to the Fourier transform of
the time traces for a frequency-domain characterization. Therefore, pulse EPR is relevant
in understanding the photocatalytic behavior of materials such as TiO2 [1,10,11]. By
means of pulse-EPR hyperfine techniques, the problem of the localization of the electron
spin density can be tackled. Employing this technique, Chiesa et al. [39] were able to
prove the substantial difference, in terms of wavefunction localization between anatase
(electrons trapped in regular lattice sites exhibiting delocalized electron density) and
rutile (interstitial sites showing localized electron density). With the help of pulse EPR,
Dimitrijevic et al. [40] have observed different spin dynamics for different shapes of anatase
nano-objects which in turn results in differences in the charge separation efficiencies and
electron-hole recombination probabilities.

In addition, a recent innovation in the EPR approach to study trapped electrons and
holes there is the use of the 17O isotope. This isotope, bearing a nuclear spin I = 5

2 , when
introduced in the oxide, allows the observation of hyperfine interactions that are not visible
when oxygen is present in its natural abundance (essentially 16O with zero nuclear spin).
This approach, coupled with the highly sensitive pulsed EPR techniques (since the 17O
hyperfine couplings are usually very small, they escape detection with classic CW-EPR),
which has allowed the description of the coordination sphere of either chemically generated
or photogenerated Ti3+ centers. Using selective isotopic enrichment, it was possible to
discriminate the Ti3+ located in the bulk from those located at the surface, for instance,
in interstitial centers in TiO2 rutile [41], in TiO2 anatase [42], and TiO2 rutile and brookite
polymorphs [43].

2. Titanium Dioxide Photocatalyst

Titanium dioxide (TiO2) is a solid material used in large-scale practical applications,
including photocatalysis. It has been used in many photocatalytic reactions, e.g., the miner-
alization of water and air pollutants, super hydrophilicity, and solar energy conversion [44].
Titanium dioxide has three polymorphs, i.e., rutile (the thermodynamically stable phase),
anatase, and brookite. These polymorphs are built up by distorted octahedral TiO6 units,
in which the oxygen atoms are surrounded by three Ti ions (OTi3). Although some papers
have reported promising activity for the brookite phase, the most investigated polymorphs
are rutile and anatase They are differed from each other by their bandgap energy (3 and
3.2 eV for rutile and anatase, respectively), and by the more stable crystal faces (110 and 101
for rutile and anatase, respectively) [1].TiO2-based photocatalytic processes are induced
by an initial excitation through the irradiation by a suitable light source, having an energy
equal to or higher than the band-gap energy of the TiO2 [45].

The irradiation of TiO2 by a suitable light leads to a charge spatial separation, i.e., the
promotion of an electron (e−) in the conduction band (CB) and the formation of a hole,
(h+) in the valence band (VB). These charge carriers can be then migrated and trapped at
the surface of TiO2, before their transfer to the adsorbed species at the surface [46]. The
trapped electrons and trapped holes can also be promoted due to chemical modifications
of TiO2. While anatase has shown better photocatalytic activity than rutile, the mixed-
phase Degussa P25 has demonstrated, in some cases, better activity due to the presence
of an interface between the anatase and rutile, which improves the spatial separation
of the photo-generated charge carriers [47]. Nevertheless, the recombination of charge
carriers, the nature and location of the charge traps, and the stability of the trapped
charge carriers are important phenomena that affect the overall photocatalytic activity. The
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photocatalytic activity of TiO2 is highly related to its surface properties and, therefore, it is
of high importance to investigate TiO2 from the surface science point of view. Titanium
dioxide is considered a reducible metal oxide because it can lose oxygen, forming oxygen
vacancies and excess electrons, as can be seen in Equation (17) [48]. The insulating TiO2
turns into an n-type semiconductor due to oxygen depletion, while the excess electrons are
stabilized into the reduced solid and trapped as Ti3+ centers. Thus, when excess electrons
are photogenerated in TiO2, they are usually stabilized by Ti cations with the formation of
Ti3+ ions.

O−2 + 2Ti4+ → 1
2

O2 + V••O + 2Ti4+ + 2e− → 1
2

O2 + V••O + 2Ti3+ (17)

V••O is an empty vacancy in the Kröger–Vink notation.
The generation of Ti3+ upon the irradiation of TiO2 has been detected by Electron

Energy Loss Spectroscopy (EELS) [49], stopped-flow spectrophotometry [50], laser-flush
photolysis [44], polarized optical spectroscopy [51], photoelectron spectroscopy [52], and
Electron Paramagnetic Resonance spectroscopy (EPR) [53]. EPR spectroscopy is considered
as a sensitive technique to follow the surface defects and the radical formation at semicon-
ductor surfaces, especially the paramagnetic species and the hyperfine interaction. EPR
spectroscopy has been mainly employed to investigate the surface chemistry of polycrys-
talline TiO2, i.e., the formation of Ti3+ centers under irradiation or other conditions and its
reactivity towards different adsorbed species. It is also very useful in clarifying the charge
trapping and the surface charge transfer upon irradiating the surface of TiO2.

2.1. Trapped Electrons and Holes in TiO2: EPR and g Tensor

TiO2 has been mainly investigated employing the Continuous Wave-EPR (CW-EPR)
technique, which commonly uses X-band microwaves having 9.5 GHz frequency and
generates the spectrum of the first derivative of the microwave absorption as a function
of the magnetic field (Tesla or Gauss). Upon irradiation, the photogenerated electrons
are trapped as Ti3+ centers, which have paramagnetic properties (S = 1

2 ) having a 3d1

configuration. When the metal ion is octahedrally coordinated, as in the case of all TiO2
polymorphs, the free-ion ground state is split into two subgroups having three t2g and
two eg orbitals separated by the energy term ∆O. The degeneracy of the t2g and eg levels
owing to a tetragonal (Scheme 3A) or trigonal (Scheme 3B) distortion leads to anisotropic g
values [39].

When the distortion compresses the tetragonal (D4h), the dxy orbital is the ground state,
however, if the distortion elongates this tetragonal, the ground state is a degenerate dxy,
dyz orbital. The g values for a Ti3+ in a tetragonally distorted octahedral environment are:

gII ≈ ge − (8λ/δ2) and gI ≈ ge − (2λ/δ1)

where λ is the spin-orbit coupling constant for Ti3+ (154 cm−1), δ1 and δ2 are the energy
separation between the d-orbitals (Scheme 3A) [39].

On the other hand, the photoexcitation of TiO2 photocatalyst produces a paramagnetic
center, i.e., O− ion due to the hosting of the unpaired electron in the 2P orbital of the
oxygen atom (O2− + h+ → O−). In this case, the g tensor can be either axial (gII = gzz ≈ ge;
gI = ge + 2λ/∆E) or rhombic (gzz ≈ ge; gxx = ge + 2λ/∆E1; gyy = ge + 2λ/∆E2) depending
on the symmetry of the environment (Scheme 4) [39].
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2.2. Charge Trapping Centers in Photoexcited TiO2

In-situ EPR investigations have been widely done especially for anatase, rutile, and
mixed-phase P25 TiO2 photocatalysts under irradiation. These investigations were per-
formed either for TiO2 suspensions in aqueous phases, or for dehydrated TiO2 powders
at the solid-gas interfaces. In the former case, the presence of hydroxyl ions and water
molecules on the surface of TiO2 stabilizes longer the charge carriers.

In their premier work to study the paramagnetic species on semiconducting photocat-
alysts, Howe and Grätzel [25] have reported an EPR observation of trapped electrons in
irradiated colloidal TiO2. Although a blue coloration of TiO2 suspension appeared upon the
irradiation of degassed acidic solution of colloidal TiO2 in the presence of PVA (polyvinyl
alcohol), no EPR signals were detected at room temperature. However, the authors were
able to detect such signals at 77 K after the irradiation at room temperature. They showed
that the collected spectra consisted mainly of two overlapping signals: (i) a broad signal at
g = 1.92, and (ii) a smaller and narrower feature at g = 1.988, which was more pronounced
in lower concentrated solutions as presented in Figure 1b. In alkaline solution, the broad
signal at g = 1.93 was less intense and the signal at g = 1.988 was better resolved as the
perpendicular component of an axially symmetric signal with the corresponding parallel
component of g = 1.957 (Figure 1c).
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Figure 1. EPR spectra of colloidal TiO2 solutions at pH 2.2 containing PVA after irradiation at room
temperature (recorded at 77 K): (a) 13 g of Ti0 dm−3; (b) 5.3 g of TiO2 dm−3; EPR spectra of colloidal
TiO2 solutions at pH 10.6 containing PVA after irradiation at room temperature recorded at 77 K (c);
EPR spectra of colloidal TiO2 solutions irradiated at 77 K: (d) pH 2.2, 5.5 g dm−3, containing PVA;
(e) the same solution without PVA. Adapted from [25]. Copyright 1985 American Chemical Society.

However, the authors noticed that a narrow axial signal was most prominent when
the irradiation and the detection were carried out at 77K as can be seen in Figure 1d. They
clarified that in all signals the g values below 2 were due to the formation of Ti3+ species
and the insensitivity of the narrow line to changes in pH reveals that Ti3+ species are
located in the interior of colloid particles. They commented also that the values of the
g-tensor components for the colloid Ti3+ signals are significantly lower than those for Ti3+ in
powdered TiO2. The authors have also found that the presence of a hole scavenger induced
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many electrons to be trapped at surface Ti4+ sites, generating Ti3+ species with distorted
octahedral that responsible for the blue color and the broad EPR signals. Using a hole
scavenger in the absence of oxygen, both surface and bulk trapped electrons were stable
at room temperature. The irradiation of the suspension in presence of a hole scavenger at
77 K produced faster bulk trapped electrons than those trapped at the surface Figure 1d,e.
The authors suggested that the origin of the blue color in irradiated colloids was not due
to electrons trapped at oxide vacancies because no EPR signals at g = 2.0 were observed.
Hence, they distinguished the surface Ti3+ species from the interstitial Ti3+ species and
showed that increasing the acidity and temperature of the suspension induces the trapping
of electrons in surface sites.

In another publication, Howe and Grätzel [55] did an EPR study of hydrated anatase,
in which a high-vacuum sample cell was immersed in the liquid helium (4.2 K) or in the
liquid nitrogen (77 K) and irradiated with a 450-W xenon lamp. Upon the irradiation at
4.2 K, hydrated anatase produced an EPR spectrum that consisted of two signals as shown
in Figure 2a: a low-field slightly nonaxial signal (signal B) and a high-field axial signal
(signal A), which was disappeared in the presence of traces of residual oxygen. These
signals were stable with time, however, they decayed rapidly when the lamp was turned
off. On the other hand at 77 K, an order of magnitude less intense identical signals have
appeared. In this case, signal B was only produced upon the irradiation in the presence of
O2 and was stable even in the dark (Figure 2b). While the authors attributed the high-field
signal A (g1 = 1.990, g2 = 1.990, g3 = 1.960) to interstitial Ti3+ cations, they assigned the low-
field signal B (g1 = 2.016, g2 = 2.012, g3 = 2.002) to the trapping of positive holes at lattice
oxide ions. The trapped holes could be located in the subsurface layer as Ti4+O−Ti4+OH
since signal B was not broadened by the presence of O2. The authors considered different
possible pathways for the generation of these paramagnetic species. Upon the irradiation at
4.2 K, most of the charge carriers are trapped, i.e., electrons as Ti3+ and holes at subsurface
oxide ions, which are then quickly recombined each other after turning off the lamp,
decaying the EPR signals. The adsorbed oxygen prevents recombination and stabilizes
the trapped holes by scavenging the trapped electrons through a multielectron process.
They concluded also that the existence of hydroxyl radicals on the surface appears to be
transient and they were apparently not primary products of hole trapping.
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Micic et al. [56] investigated the trapped holes on colloidal TiO2 by EPR spectroscopy,
in which they assigned the signals at g < 2 (see Figure 3a) to the capture of electrons on by
Ti4+ ions. They showed a broad asymmetric EPR signal at g = 1.928 of Ti3+ species at surface
sites, in addition to a narrower EPR signal at g = 1.987 of trapped electrons at interior sites
since it was not affected by the presence of electron scavengers. The authors clarified that
as the photogenerated electrons can be located on Ti4+, in the bulk lattice as (Ti3+)latt, at the
surface as (Ti3+)surf, and in the conduction band [e−CB]. On the other hand, the signals
with g = 2.007, g = 2.014, and the shoulder at about g = 2.020–2.028 were assigned to hole
centers on the surface or subsurface layers because their intensities had been suppressed
in the presence of polyvinyl alcohol or KI as hole scavengers. They explained that the
surface of anatase TiO2 is covered with hydroxide ions or water molecules with an average
number of 5–15 OH− groups per nm2. Part of these hydroxide ions that are located on the
(110) surface of TiO2 can therefore trap the photogenerated holes. Such hydroxide ions are
present as acidic Ti4+-O(H)-Ti4+ and basic Ti4+-OH groups. Because the latter has a higher
electron density, it is expected to be the primary hole trapping site. They showed also that
the relative intensities of the EPR signals at g = 2.014 and 2.007 changed with pH. This was
associated with the ionic form dominated by Ti4+-OH groups (Equations (18) and (19)). The
authors investigated as well the EPR signals of anatase and rutile TiO2 powders suspended
in water as presented in Figure 3b,c. Same signals were obtained for anatase as for the
colloidal TiO2 but with lower intensities. The authors attributed that to the smaller surface
area for suspended anatase TiO2 powder. Nevertheless, a very weak signal was noticed for
rutile powder that was similar to one of those found in anatase particles. The authors ruled
out the OH radicals to be the species produced by hole trapping. They suggested instead
an oxygen-centered radical, which can most probably be a hole trap on the basic OH-group
having an energy level below the valance band of TiO2 as illustrated in Equation (20). This
was explained by the fact that such a group has a higher electron density. Such trapped
holes can react through a direct transfer mechanism with chemical substrates adsorbed on
the surface as in the case of methanol in the aqueous colloidal TiO2 solution.

TiIV −O− TiIV −OH + H+ ↔ TiIV −O− TiIV −OH+
2 (18)

TiIV −O− TiIV −OH ↔ TiIV −O− TiIV −O−+H+ (19)

H+ + TiIV −O− TiIV −OH → TiIV −O− TiIV −O•−+H+ (20)
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In another work, Micic et al. [57] presented an EPR study for the hole transfer from
irradiated TiO2 colloids to methanol in an aqueous solution. Upon the excitation of
degassed solutions of alkoxide TiO2 colloids at different temperatures, they noticed three
different signals around g = 2. At high laser pulse intensities, a quartet EPR signal (1:3:3:1)
and a doublet signal with a 130-G separation appeared at 4.2 K as shown in Figure 4a
and were attributed to the methyl (CH3) and formyl (CHO) radicals (Equations (21)–(24)),
respectively. However, at 60 K (Figure 4b), the EPR signal of the methyl radical disappeared,
while the other signal can be related to the methanol radical [CH3O(H)]. The authors
suggested possible pathways for radical formation as per, Equations (25) and (26). On the
other hand, the EPR signal for trapped holes on hydrous TiO2 colloids showed resonances
at g = 2.014 and g = 2.007 of O•− radical with an additional signal at g = 1.989 of electron
trapping in the bulk lattice. In this case, hydroxide ions on the surface can be the trap
centers for photogenerated holes. Then they obtained at 1.9 K EPR signals of methanol
radical (20-G splitting around g = 2) and Ti3+ centers at (g = 1.980, g = 1.960, and g = 1.942)
due to the addition of methanol to the aqueous TiO2 solution as can be seen in Figure 5,
suggesting that •CH2OH radicals are the first hole trapping sites.

TiO2
hv→ n

(
e− + H+) TiO2 (21)

e− + TiIV −O− TiIV −OCH3 ↔ TiIV −O− TiIV −O−+CH•3 (22)

h+ + TiIV −O− TiIV −OCH3 ↔ TiIV −O− TiIV −O•CH2 + H+ (23)

TiIV −O− TiIV −O•CH2 + H2O hv→ •CHO + H2 + TiIV −O− TiIV −OH (24)

h+ + TiIV −O− TiIV −OH → TiIV −O− TiIV −O•+H+ (25)

h+(TiO2) + CH3OH → •CH2OH + TiO2 + H+ (26)
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Figure 4. EPR spectra of degassed colloidal Ti02 at pH 8 prepared in methanolic solution, evaporated,
and then dissolved in water, recorded immediately after laser irradiation at 4.2 K with laser intensity
120 mJ/pulse (a); laser intensity 120 mJ/pulse, recorded at 60 K (b). Adapted with permission
from [57]. Copyright 2001 American Chemical Society.
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Coronado et al. [58] investigated the surface characteristics of anatase TiO2 under UV
Irradiation using EPR spectroscopy. At room temperature, the EPR spectrum of amorphous
TiO2 gel showed a signal with g1 = 2.023, g2 = 2.009, and g3 = 2.004, which was very
close to those corresponding to Ti4+-O2− species. It showed a broader signal as well with
g = 1.93 of Ti3+ centers that were identical to those found in the spectra of colloidal TiO2
after UV irradiation. On the other hand, the authors investigated the effect of the TiO2
preparation method, i.e., hydrothermal and thermal, on EPR spectra. While the irradiated
samples prepared by the hydrothermal method showed Ti3+ centers, only weak signals
associated with oxygenated radicals were observed for the samples prepared by the thermal
method. They found that after UV irradiation of crystalized TiO2 at 77 K under vacuum,
the signal at g > 2.00 that corresponds to Ti4+-O2− species were overlapped. However,
a narrow signal with g = 1.990 and gII = 1.960 was observed, which could be related to
the electrons stabilized in Ti cations located at crystallization defects or at surface sites
(O2−)x-Ti3+-(OH−)y. In another experiment, the authors examined the EPR spectra of
irradiated samples after the adsorption of oxygen. As oxygen is considered as an electron
scavenger competing effectively with recombination, a higher amount of radicals was
formed in this case. The simulation of the spectra has revealed three or four overlapping
signals according to the sample examined. They assigned the signal at g1 = 2.024, g2 = 2.013,
and g3 = 2.003 to photogenerated holes trapped by subsurface lattice oxygens, giving O−

species. They explained that the signal of Ti3+ ions was located at the surface or within a
few monolayers of the surface because of their rapid suppression upon the introduction of
oxygen. Interestingly, Paranelli and coauthors have clarified the hole trapping sites’ nature
in the anatase polymorph by coupling CW-EPR and ENDOR (pulse electron-nuclear double
resonance) techniques [59]. In their studies, the surface and subsurface holes in anatase
were discriminated, in which the interaction of surface trapped holes with surface adsorbed
water molecules was first measured using ENDOR. Water molecules play an important
role in stabilizing the surface hole centers, where a complex environment composed by
both surface hydroxyl groups and less close physisorbed water molecules are necessary.

Chiesa et al. [39] used CW-EPR spectroscopy to study charge carrier trapping in
anatase and rutile TiO2 polymorphs, in which they irradiated fully dehydrated samples
kept under vacuum. At 77 K, photogenerated electrons gave an EPR signal at gII = 1.962
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and gI = 1.992, which had been assigned to trapped electrons on lattice titanium ions.
However, they clarified that the trapped hole signal can be related to at least two akin
species with similar but distinct parameters. These holes were trapped at the surface since
they reacted with molecular hydrogen acting as a hole scavenger. One dominant species of
trapped holes appeared at g1 = 2.027, g2 = 2.015, g3 = 2.003.

Yan et al. [60] studied the photoinduced electron-trapping states of anatase TiO2
nanoparticles in two anaerobic systems, i.e., a proton-free system consisting of iodide ions
in acetonitrile as a hole scavenger, and a protonated system consisting of methanol as a hole
scavenger. Under UV illumination TiO2 nanoparticles in the methanolic system exhibited
a broad visible absorption peak at 725 nm and blue color of the electron-trapping state
on TiO2 nanoparticles (Figure 6a). In contrast, low absorption from 400 to 600 nm was
observed in the LiI/MeCN system related to the absorption spectra of I3− that was formed
due to the oxidation of I− by photoinduced holes (Figure 6b). EPR spectroscopy was then
used to detect •O2− radicals produced under UV illumination from the reaction between O2
and TiO2 nanoparticles in different systems (O2 + eCB

−→•O2−). The authors only detected
•O2− signals in the methanol system, indicating that photoinduced electrons under the
proton-free condition are not able to react with O2 to produce •O2− radicals. They used
then low-temperature (4 K) EPR spectroscopy to distinguish the different photoinduced
electron-trapping states on TiO2 nanoparticles. As shown in Figure 6c, a rapid increase of a
signal at g = 1.979 in systems containing methanol, ethanol, or acetonitrile was observed,
in addition to a weak signal at g = 1.930 that appeared after 4 h of irradiation. While the
first signal can be attributed to surface distorted four-coordinate tetrahedral Ti4c

3+ species,
the latter can be assigned to anatase surface six-coordinate octahedral Ti6c

3+ species. The
authors, thus, explained that the use of different electron donors in the presence of protons
allowed the photoinduced electrons to be trapped mainly as surface Ti4c

3+ species with
some surface Ti6c

3+ species. However, in LiI/MeCN proton-free electron donor system
(Figure 6d), only an increasing peak at g⊥ = 1.990 corresponds to the anatase lattice
octahedral Ti6c

3+ state was observed. The authors, thus, explained that in the absence
of protons, photoinduced electrons are trapped as interior interstitial Ti6c

3+ species in
the lattice of the TiO2 nanoparticles. The authors have finally concluded that the visible
absorption signature at around 700 nm is dependent on the location of the trapped electrons,
which can be controlled by protons’ content. Hence, the presence of protons is required to
induce the conventional blue coloration of TiO2 in order to stabilize trapped electrons as
surface Ti4c

3+ species.
Kumar et al. [61] studied in situ EPR for anatase (Hombikat UV100) and rutile TiO2

nanoparticles under UV irradiation in air and vacuum conditions. The measurements
were done at liquid helium (He) at a temperature of (4.2 K). EPR spectrum of anatase TiO2
(Figure 7a) showed two signals, i. e., trapped electrons (signal A) at g1 = 2.016, g2 = 2.012,
g3 = 2.002 and g| = 1.958, g⊥ = 1.988, and trapped holes (signal B) at g1 = 2.016, g2 = 2.012
and g3 = 2.002. The authors assigned the sharp signal at g⊥ and g| to surface electron
trapping sites, while the latter signal was related to photogenerated holes trapped at the
lattice oxygen atoms located in the subsurface layer as Ti4+O•−Ti4+OH− radical. Based on
their observations, they suggested a charge-transfer mechanism in anatase TiO2. On the
other hand, EPR signals of rutile TiO2 illuminated at 4.2 K (Figure 7b) were characterized
by two sets of g values, g⊥ = 1.969, g| = 1.947 (signal F) and g1 = 2.019, g2 = 2.014, g3 = 2.002
(signal G). The authors have assigned signals F and G to the surface electron traps as Ti3+

and rutile hole trapping sites Ti4+O•−Ti4+OH, respectively. They noticed also a third signal
(H) at g = 1.91 that was related to vacancy-stabilized Ti3+ in the lattice sites. The authors
noticed also that the trapped electrons generated by irradiation at 4.2 K in anatase and
rutile were stable below 85 K and vanished upon increasing temperature, while trapped
holes are more stable up to ∼150 K. Nevertheless, heating to ambient temperature showed
the disappearance of hole trapping sites due to electron-hole recombination.
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Figure 7. EPR spectra of (a) anatase and (b) rutile TiO2 nanopowders at 4.2 K after 1 h of UV illumination. Adapted with
permission from [61]. Copyright 2006 American Chemical Society.

In order to investigate the role of platinum as an electron scavenger on the surface
of TiO2, AlSalka et al. [21] investigated the paramagnetic centers produced upon the
irradiation of self-prepared Pt/TiO2 anatase powders via in situ EPR spectroscopy under
an argon atmosphere at 77 K. In the presence of pre-adsorbed oxalic acid as a hole scavenger,
the EPR spectra of irradiated Pt/TiO2 showed two signals (Figure 8), weak signal H (g > 2)
of trapped holes and signal ET (g < 2) of trapped electrons.
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The authors assigned signal H (gx = 2.004, gy = 2.014, gz = 2.018) to the photogen-
erated holes trapped near the hydrated anatase surface at the oxygen atoms in the form
of Ti4+-O−•-Ti4+-OH-. In addition, they attributed signal ET (gII = 1.962 and g⊥ = 1.992)
to the photogenerated electrons trapped in the bulk as Ti3+ ions. The authors clarified
that the appearance of such a signal of trapped electrons even in the presence of platinum
nanoparticles attached to the surface of TiO2 can only be interpreted as not all the photogen-
erated electrons were scavenged by the loaded Pt NPs. Hence, not all the electrons can be
used, thereafter, in reduction reactions, i.e., the hydrogen evolution reaction. Interestingly,
the authors noticed another broad and unfeatured signal (ES) centered at 3450 gausses
with increasing intensity over the irradiation time. They have explained this signal to the
injection of electrons from •CO2

− radicals formed through the oxidation of oxalic acid by
photogenerated holes, which can be then spread on the surface of TiO2. Such a signal was
also observed by Chiesa et al. [39] due to the excess electrons near the surface of anatase
TiO2 through the injection of electrons in the solid. Micic et al. [57] have also reported
a broad asymmetric EPR signal at g = 1.981 of trapped electrons on the surface due to
electron injection from methanol radicals into TiO2 particles.

Al-Madanat et al. [62] compared the EPR spectra of 1.0 wt% Pt-loaded P25 and UV100
TiO2 in the N2 atmosphere to investigate the effect of the photocatalyst nature and PtNPs
on the photogenerated electron and hole paramagnetic species. Upon illumination, both
materials showed two main features shown in Figure 9a,b, i.e., the signals at g > 2.00
of the surface trapped holes and the signals at g < 2.00 of the trapped electrons. They
explained that Pt-loaded UV100 showed the hole trapping site at g-tensor components
gx = 2.004, gy = 2.015, and gz = 2.019 that corresponds to the anatase oxygen site, while
the small-signal at g⊥ = 1.992 and the shoulder at gII = 1.965 were related to the anatase
lattice trapping electron site as Ti+3. On the other hand, the signals of trapped holes in
Pt-loaded P25 TiO2 having g-tensor components gx = 2.003, gy = 2.019, and gz = 2.026
were not completely resolved, considering a combination of trapped oxygen sites from
anatase and rutile. However, the Ti+3 signal from anatase can be observed clearly at the
same g-tensor components assigned for Pt-loaded UV100. Moreover, two other signals at
g⊥ = 1.980 and gII = 1.945 were attributed to Ti+3 sites for trapped electrons in the rutile
lattice. The authors showed that around 20% higher relative intensity of trapped holes was
noticed in Pt-loaded UV100, while Pt-loaded P25 had more intense signals of both trapped
Ti+3 sites. In this case and because no hole scavenger was used, the authors believed
that UV100 exhibited better electron transfer to Pt islands than P25, inhibiting the charge
carriers’ recombination and increasing the photocatalytic activity.
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The authors have then made the experiment in the presence of naphthalene to inves-
tigate the naphthalene radical cation generated through the reaction via single-electron
transfer with photogenerated holes. Both materials as can be seen in Figure 9c produced
similar EPR signals at gx = 2.002, gy = 2.006. However, Pt-loaded UV100 produced relatively
higher signals of organic radicals and trapped electrons, which could be due to its better
charge carrier separation.

Al-Madanat et al. [63] have also investigated the effect of platinum loading method
on TiO2, i.e., through photodeposition or physical mixing after the laser ablation, on
the e–/h+ populations under irradiation in N2 or N2-methanol atmosphere using EPR
spectroscopy and commercial TiO2 (anatase UV100). As shown in Figure 10a, upon
illumination, two groups of signals were recorded for all the materials used, the first
at (gx = 2.004, gy = 2.015, and gz = 2.019) and the second at (g‖ = 1.992 and g⊥ = 1.961) and
(g‖ = 1.961 and g⊥ = 1.94–1.93), which were assigned to trapped holes at or near the surface
and trapped electrons in the bulk and at the surface, respectively. In an inert atmosphere,
Pt/TiO2 prepared via the photodeposition method showed the strongest h+ signal and
the weakest e– signal, indicating a better electron transfer to Pt than in the other samples.
However, this was also evidence of the non-complete scavenging of electrons by Pt. In the
N2-methanol atmosphere (Figure 10b), a triple signal of the •CH2OH radical was produced
with a simultaneous appearance of stronger signals of the trapped electrons attributed
to the current doubling effect. Pt/TiO2 prepared via the photodeposition showed again
the smallest electron signal, confirming the best charge carrier separation among other
samples, and thus the highest photocatalytic activity.
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3. Niobium(V) Oxide Photocatalyst

Apart from the TiO2-based photocatalysts, Nb2O5 is also a widely used semiconduc-
tor oxide due to its properties such as thermal and chemical stability, and appropriate
electronic and morphological properties for photocatalytic applications [64,65]. Nb2O5 is
a polymorphic material with different crystalline phases related to the preparation con-
ditions, with their structures formed by different arrangements of NbO6 octahedra [66].
Its surface contains strong redox ability and both Lewis (LASs) and Brønsted acid sites
(BASs), offering rich surface chemistry. In addition, the values of Nb2O5 bandgap energy
are found to be between 3.0 and 3.4 eV, being suitable for photocatalytic reactions [67].
Similar to TiO2, under excitation by suitable wavelength energy, an electron (e−) is pro-
moted to the conduction band (CB) while a hole (h+) is formed in the valence band (VB).
Nb2O5 has not been yet so deeply investigated by EPR but, in general, it does not present
so many characteristic signals as observed in the literature for TiO2. Nevertheless, the
EPR technique can also bring up much insights about the processes on the surface of the
photocatalyst. Some reported works have shown the presence of new states as Nb(IV)
centers or oxygen vacancies by using EPR measurements on doped Nb2O5 [68,69]. Be-
sides, Nb2O5 photocatalyst can also be combined with other materials, including TiO2, to
promote better efficiencies. One work regarding the heterojunction of TiO2 and Nb2O5
was reported by Li and coworkers [70]. The authors prepared ultra-fine niobium oxide
nanoparticles on the surface of rutile TiO2 and evaluated their different proportions and ac-
tivities for photocatalytic oxidation of phenylethanol and methanol photoreforming. They
investigated the prepared materials employing EPR (Figure 11). Under dark conditions, no
signal was detected for pure Nb2O5 but one weak peak (g = 2.001) was observed for pure
rutile TiO2 and Nb2O5/TiO2 composites which attributed to O− formed from O2 onto the
surface. In addition, when the proportion of Nb2O5 in the Nb2O5/TiO2 composites was
increased, the intensity of this signal decreased, indicating that Nb2O5masked the defect
sites of TiO2, which seemed to work as nucleation centers for niobium oxide. When the
samples were exposed to UV-vis irradiation, typical EPR signals assigned to superoxide
species (g1 = 2.002, g2 = 2.009, g3 = 2.028) were identified. The authors reported that more
superoxide species were produced on Nb2O5/TiO2 heterojunctions. Furthermore, two
signals corresponding to the bulk Ti3+ species (g = 1.982 and 1.978) were also found higher
for the heterojunction. These facts evidence a better charge separation efficiency for the
composite’s materials.
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The group of Tanaka and coworkers performed many EPR studies towards the surface
of Nb2O5 when applied for organics photooxidation. Firstly, they explore the photoox-
idation of alcohols at low temperatures and in organic solvent-free conditions by using
niobium oxide in an oxygen atmosphere [71,72]. The prepared Nb2O5 was identified as TT
phase (a kind of Nb2O5 phase) and a pseudohexagonal structure. A remarkable result ob-
served by the author was the photooxidation of 1-pentanol under irradiation up to 480 nm,
even though bare Nb2O5 is not able to absorb wavelengths higher than 390 nm. This fact
could indicate that the photooxidation occurred by a different pathway rather than the
expected electron transfer from the excited semiconductor. Based on EPR investigations, in
Figure 12, the mechanism for 1-pentanol photooxidation was then clarified. Firstly, when
Nb2O5 was irradiated in presence of an excess of 1-pentanol (123 K), a broad ESR signal
assigned to Nb4+ (g = 1.9) was observed (Figure 12c). In the presence of O2, this signal
disappeared, indicating that Nb4+ was oxidized to Nb5+ (Figure 12d). Other EPR analyses
showed a signal related to alkenyl radical (g = 2.006, AH1 = 2.0 mT, AH2 = 4.4 mT) which
was not significantly affected by the addition of O2. Besides, no oxygen anion radicals
were detected, supporting the selectivity of the reaction. The mechanism of 1-pentanol
to produce carbonyl compound was correlated to an electron transfer from the absorbed
alcoholate to Nb2O5 forming Nb4+ centers. The alcoholate was further converted to the
carbonyl compound and the Nb4+ sites are reoxidized to Nb5+ by the molecular oxygen.

Similarly, the authors further studied the partial photooxidation of hydrocarbons by
Nb2O5 and also compared its efficiency with TiO2 [73]. In principle, Nb2O5 showed higher
selectivity than TiO2 for some hydrocarbons such as cyclohexane and ethylbenzene. At
this time, no significant activity was observed under visible light irradiation showing that
the photooxidation mechanism involves the Nb2O5 excitation. The EPR analysis (77 K)
at first showed the formation of O2

− species from absorbed O2 by excited electrons on
the oxide. Then, when ethylbenzene was adsorbed on Nb2O5 and exposed to irradiation,
signals related both to ethylbenzyl radical (g = 2.003, AH1 = 6.0 mT, AH2 = 2.0 mT) and Nb4+

centers (g = 1.933) were observed. These results could support the proposed mechanism
in which the benzylic C–H bond of ethylbenzene was oxidized by the photogenerated
hole while the excited electrons formed the Nb4+ centers. When the sample was exposed
to O2, the signal for ethylbenzyl radical vanished and the oxygen radical was detected,
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indicating the formation of diamagnetic alkyl peroxide anion (ROO−) or hydroperoxide
(ROOH). Along with other analyses, the suggested mechanism was based on the oxidation
of alkyl radical to alkyl hydroperoxide and then, after protonation, the alkyl hydroperoxide
produced ketone and water. The higher selectivity found for Nb2O5 was related to the
lower amount of oxygen radicals and also to the absence of O3

− species which are strong
oxidizing radicals when compared to TiO2.
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The group also showed an effective photoactivity by LMCT (ligand to metal charge
transfer) transitions between small aromatic hydrocarbons and the surface of Nb2O5 [74].
The material was able to selectively photooxidative hydrocarbons to carbonyl compounds
under visible light irradiation. In this case, a pre-treatment was performed; the catalyst
powder was first evacuated and then heated (573 K) in a reactor in situ, which showed
enhanced activity for toluene photooxidation with high selectivity. In principle, the treat-
ment did not affect the Nb2O5 structure as the surface area, crystal phase, and crystallinity,
and just a very slight change was observed in the UV-vis spectra. In fact, the enhanced
photoactivity was explained by the toluene adsorption on treated Nb2O5 which generated
an additional visible light absorption. This transition was related to an LMCT from toluene
to Nb5+. Interestingly, the same phenomenon was not observed for TiO2 even when the
pre-treatment was applied. In the case of toluene as an electron donor, it was assumed that
Nb2O5 had a higher affinity to the electrons in comparison to TiO2. In the EPR measure-
ments (77 K), the treated Nb2O5 in absence of toluene did not show any signal also under
visible light irradiation. In contrast, when toluene was absorbed on Nb2O5 surface, a EPR
signal was observed and assigned to toluene radical cation (g = 2.003, ACH3 = 0.58 mT,
AH2,6 = 0.81 mT, AH3,5 = 0.59 mT, and AH4 = 0.78 mT), which was confirmed by a simulated
spectrum as shown in Figure 13. At this time, the authors did not observe the signal related
to Nb4+ formation. They suggested that the excited electrons would be delocalized in the
conduction band of the oxide. When the sample was exposed to O2 in the dark, the intensity
of the toluene radical signal did not change; evidencing that O2 itself could not oxidize
toluene. Thus, the mechanism was based on the formation of superoxide radicals from
the excited Nb2O5, which provoked the cleavage of the benzyl C−H bond of the toluene
radical cation to form benzyl (Ph−CH2

•) and hydroperoxyl (•OOH) radicals. In sequence,
the benzyl radical was converted to benzylperoxy radical by the intercalation of adsorbed
O2. The main product of the toluene photooxidation was found to be benzaldehyde.
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Other organic compounds also investigated by Tanaka’s group for selective photooxi-
dation over Nb2O5 were amines [75]. Similar to the previous works, the reaction to produce
imines was active under visible light irradiation. This time, the mechanism was related to
the adsorbed amine on Nb2O5 which gave rise to a donor level localized in the nitrogen
from the amine species. In the EPR analysis (77 K), under visible light irradiation, the
spectrum of Nb2O5 in presence of butylamine showed signals related to both the organic
radical (g = 2.005) and Nb(IV) (g ∼ 1.92). Based on this result and some DFT calculations,
it was explained that the photoactivation of the surface complex formed by the amine and
Nb2O5 occurred via an electronic transfer from the N 2p orbital to the Nb 4d orbitals from
the oxide conduction band. Thus, the amine oxidative dehydrogenation to form imine
was based on the photoexcitation of the Nb2O5−amide surface complex which was active
under visible light.

4. Spin Trapping in the Liquid Phase

After the pioneering works of Janzen et al. in 1969 [76] and Lagercrantz in 1970 [77],
the free radical trapping technique “spin trapping” has been intensively introduced as a
valuable tool in different fields, such as chemistry, physics, biology, and medicine for the
detection and identification of the transient radicals formed in the reaction system [78–82].
Since these formed radicals have a very short lifetime usually nanoseconds half-lives, the
base of this method is to add a new diamagnetic reagent; spin trap agent, to the reaction
medium which reacts with these radicals producing a new and more stable persistent
paramagnetic species “spin adduct” that can be registered, qualified and quantified by the
electron paramagnetic spectroscopy (EPR), Scheme 5 [76,83].
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Nitroso and nitrone derivatives have been widely used as the main types of spin
trapping agents (Chart 1). The former is characterized by the faster trapping rate and
trapping the carbon-center radical, while, the latter is more suitable for trapping the
oxygen-centered radicals [84,85]. However, due to the limitations of the linear nitrone
to facilitate the identification of the trapped radicals, new spin traps based on pyrroline
N-oxide derivatives have been developed [85,86].
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Recently, the spin trapping technique is widely employed in the photocatalytic reaction
as a valuable tool to study the reaction mechanism [21,87]. Among several spin traps
agents, such as 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), 4-hydroxy-5,5-dimethyl-
2- trifluoromethylpyrroline-1-oxide (FDMPO), α-(4-pyridyl-1-oxide)-N-tert-butyl nitrone
(POBN), and N-tert-butyl-a-phenylnitron (PBN), 5,5-Dimethyl-1-pyrrolin-N-oxid (DMPO)
is the most used spin trap due to the well resolved and characteristic EPR spectra with
the superoxide and hydroxyl radicals [10,86–88]. Figure 14 shows the EPR spectra for
the DMPO-OH and DMPO-O2 adducts after the reaction of the hydroxyl radicals and
superoxide with DMPO under irradiation.
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In the photocatalytic process over TiO2, it has been frequently claimed that the hy-
droxyl radical is produced during the irradiation of an aqueous TiO2 suspension through the
decomposition of the water molecule by the photogenerated hole (Equations (27) and (28)).
The hydroxyl radical was introduced as the most important reactive species “oxidant”
generated during the photocatalysis process.

TiO2
hv→ TiO2

(
e− + h+) (27)

h+ + H2O → H+ + •OH (28)

Besides, in the presence of molecular oxygen (O2) in the photocatalytic system, it
is likely that the adsorbed O2 on TiO2 surfaces will react with the conduction band pho-
togenerated electron to produce superoxide radicals (perhydroxyl radical), according to
Equations (29) and (30).

e− + O2 → O•−2 (29)

O•−2 + H+ ↔ HO•2 (pKa = 4.8) (30)

Jaeger and brad [90] employed the spin trapping technique to detect the formed free
radical species in situ during the irradiation of the aqueous suspension of TiO2 and Pt-TiO2
(anatase) in the presence of the spin traps PBN or POBN at room temperature. The authors
did not observe any EPR signal in the dark, however, immediately after the illumination of
the TiO2 suspension with a light (>3.2 eV), the EPR signal was observed in the presence of
both spin traps. The authors attributed the signal in the PBN\TiO2 system to the formation
of 4 different paramagnetic species. Two of them was assigned to the formation of the •OH
and HO•2 (perhydroxyl radical). Although the authors are not certain from the origin and
kind of the others two species, they are suggested that these species are formed due to the
decomposition of t+he spin trap. Moreover, by using the spin trap POBN at different pH
(4, and 7), they confirmed the formation of the •OH and HO•2 species. On the other hand,
using the pristine TiO2 instead of the Pt-TiO2 leads to the formation the •OH and HO•2 ,
however, their concentrations are lower than that in the case of Pt-TiO2.

Several research groups have been explored the photocatalytic activity, as well as
the photocatalytic mechanism involved in the presence of different photocatalysts em-
ploying the EPR spin trapping techniques [19,21,86–88,91]. Fu et al. [92] investigated the
photocatalytic degradation of 4-chlorophenol (4-CP) using N-doped TiO2 prepared by
the high-temperature nitridation of commercial P25 (Degussa) and undoped P25-TiO2
annealed with N2 in the same process as a reference sample, under UV and visible light
(λ > 420 nm). The authors observed that P25-TiO2 exhibited higher activity for 4-CP de-
composition than that of N-doped TiO2, while, under visible light irradiation, P25-TiO2
did not exhibit photocatalytic activity for degradation of the 4-CP degradation, since it was
not visible-light active material. The degradation of 4-CP, however, was observed from
N-doped TiO2, suggesting that N doping for TiO2 is an effective approach for achieving
visible-light-driven photocatalysis.

To explain the different activities between the studied materials the authors employ the
ESR spin-trap technique using DMPO, to monitor the intermediate radicals and probe the
nature of the reactive oxygen species generated during the UV and visible light irradiation
in both systems. No EPR signals were observed by the authors in the dark in the presence
of the catalysts or when 4-CP was absent (Figure 15). Under UV irradiation, the signal of
DMPO−OH adduct (quartet peaks with a 1:2:2:1 intensity) was observed after a 20 s of
illumination, and its intensity further increased after 80 s of irradiation in the presence
of both photocatalysts, however, the peak intensity of DMPO−OH adduct generated by
N-doped TiO2 was less than that of TiO2, suggested that the lower production of •OH.
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(B) N-doped TiO2: catalyst loading, 0.5 g L−1; 4-CP concentration, 10 mg L−1; DMPO concentration,
1.6 × 10−2 M. Reprinted with permission from [92]. Copyright 2006 American Chemical Society.

In the previous experiments, although the formation of the superoxide radical (O•−2 )
was expected through the scavenging of the conduction band electrons by O2, the authors
did not observe such signal. They explained that to the instability of this radical in the
aqueous medium, where it reacts with the present proton (Equation (31)) to produce H2O2
and O2 (k = 6.6× 103 M−1 s−1), due to the slow reactions between •OOH/O2

•− and DMPO
(k = 10 M−1 s−1). Therefore, they performed the same experiment in an ethanolic medium
to confirm the formation of DMPO-•OOH/O•−2 , and they observed a similar trend to the
•OH production in both systems.

2 O•−2 + 2 H+ → O2 + H2O2 (31)

On the other hand, when 4-CP/N doped TiO2 suspension in H2O and ethanolic
solution irradiated with visible light, both DMPO-OH and DMPO-OOH adducts were
registered, respectively, and the EPR signal intensity was enhanced gradually with in-
creasing illumination time (Figure 16). However, the signal intensities were found weaker
than those under UV light. Based on these results, the authors concluded that the pho-
tocatalytic degradation of 4-CP over N-doped TiO2 under UV or visible light occurs in a
similar mechanism, mainly by the radical reaction, which is similar to TiO2 under UV light
irradiation. According to the EPR results, the authors considering that the formation of
DMPO-OH/OOH adducts give direct evidence that (•OH and O2

•−) are the main active
species responsible for the photodegradation of 4-CP, strongly suggesting that the photocat-
alytic reaction of organic compounds over N-doped TiO2 proceed via surface intermediates
of oxygen reduction or water oxidation (indirect path), not via direct reactions with holes
trapped at the N-induced midgap level.

To better understand the interfacial interactions between the acetate and the TiO2
at different pH, Belhadj et al. [88] investigated the adsorption and the photocatalytic
degradation of acetate on anatase surface (UV100) by combining the EPR and attenuated
total reflection Fourier transform infrared (ATR-FTIR) techniques. In this study, the authors
employed DMPO as a spin trap to probe the formed reactive oxygen species during the
photocatalytic degradation of acetate in H2O and D2O under aerobic conditions at different
pH. At pH 6.0 in H2O and pD 6.4 in D2O, similar EPR signals were registered under
the UV(A) irradiation in the presence of DMPO (Figure 17), which was attributed to the
formation of DMPO-OH and DMPO-OD adducts, respectively. While, at pH 9 in H2O, a
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stronger signal for DMPO-OH was only registered (Figure 18a). In contrast, a different
EPR signal containing several peaks was observed at pH 3 (Figure 18b). A negligible
DMPO-OH signal was formed at pH 3 compared to that at pH 9. The authors attributed
this signal to the formation of different DMPO adducts; i.e., DMPO-OH, DMPO-OOH, and
DMO-OCH3. Based on these results and the ATR-FTIR result, the authors suggested that
the photocatalytic degradation of acetate at pH 9 mainly occurred by indirect oxidation by
the •OH attack, as it is being predominately formed by oxidation of the adsorbed hydroxyl
ions on the TiO2 surfaces. On the other hand, the formation and the increase of DMPO-
OCH3 adduct signal during the irradiation at pH 3 suggested that the photooxidation of
acetate occurs mainly through direct oxidation by the hole (h+). These results show the
existence of different radical intermediates at different pH, which would provide new
insight into the mechanism of the oxidation of acetate at different pH.
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Although the EPR spin trapping has been always considered as a useful technique to
confirm the involvement of the hydroxyl radical in the photocatalytic process, however,
this technique can be also used to confirm the opposite. Al-Madanat et al. [87] employed
this technique during the study of the photocatalytic mechanism of naphthalene reforming
over Pt-TiO2 (UV100, anatase) to obtain additional insights regarding the role of •OHfree
in the photocatalytic reforming process. In this study, the authors performed the photo-
catalytic reforming reaction of naphthalene in the presence of two scavengers, potassium
iodide (KI) as a hole scavenger and 2-methylpropan-2-ol ((CH3)3COH, TBA) as a hydroxyl
radical (•OH) scavenge to determine the involvement of different active species in the
photoreforming process. They found that the conversion of naphthalene is completely
inhibited in the presence of KI. while, the addition of TBA does not affect the photocatalytic
process, which suggested that the presence of free hydroxyl radicals (•OHfree) has a very
limited contribution in the naphthalene conversion. To prove that, they performed the
photoreforming naphthalene in the presence of either TBA or KI and DMPO. The authors
observed the formation of DMPO−OH adduct in all the detected samples, as shown in
Figure 19.
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Figure 19. EPR spectra recorded during the photocatalytic reforming of naphthalene after 15 s in
the presence of DMPO, DMPO–TBA, and DMPO–KI. [Catalyst], 1 g L−1; 156 µmol L−1 aqueous
solution of naphthalene; 20 mmol L−1 of KI and TBA; microwave frequency, 9.51 GHz. Reprinted
with permission from [87]. Copyright 2020 American Chemical Society.
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However, the authors observed that in the presence of TBA the adduct signal shows a
decrease of 35%, confirming •OH-scavenging properties of TBA. Nevertheless, this lower
quantity of available •OH radicals do not impact degradation of naphthalene as the authors
mentioned before according to the scavenger experiments, providing evidence against a
degradation mechanism initiated by the attack of •OHfree. On the other hand, the addition
of KI to the system practically nullifies the adduct formation, as could be expected from
the efficient hole consumption by this scavenger. Therefore, according to these results, the
authors excluded the involvement of the •OHfree in the degradation of naphthalene during
the photocatalytic process.

The EPR spin trapping technique was also used to study the mechanism of the photo-
catalytic reaction in the presence of other reactive species than the •OH and O•−2 radicals
such as •CO−2 [93,94] and organic radicals [22,23,95]. Besides, it was also used to confirm
the activity differences between the employing photocatalysts [21,96]. Alsalka et al. [21]
studied the photocatalytic reforming of oxalic acid employing self-prepared TiO2 photocata-
lysts loaded with different noble metals (Pt and/or Au). By using DMPO as a spin-trapping
agent, the authors traced the nature of the photogenerated species during the oxalic acid
degradation under anaerobic conditions. The registered EPR spectra under irradiation that
present in Figure 20 showed that all the photocatalysts (bare and modified) exhibited the
same spectra, however, the intensities of the signals were different. In this study, it was
found that the higher amount of photocatalyzed H2 formed by employing Pt-TiO2 as a
photocatalyst, which become in agreement with the presented results in Figure 20 as the
sample that contains the Pt-TiO2 (Figure 20c) exhibit the stronger signal.
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Figure 20. EPR spectra of aqueous suspensions of oxalic acid (5.5 mmol L−1 at pH ≈ 3)/DMPO (0.8 mmol L−1) under
UV irradiation in the presence of (1 g L−1) bare TiO2 (a) Au/TiO2 (b) Pt/TiO2 (c) and Au–Pt/TiO2 (d) in O2 free system.
Adapted with permission from [21]. Copyright 2020 American Chemical Society.

Moreover, the authors suggested that the complex EPR signal (Figure 20) was formed
due to the overlapping of different DMPO spin adducts produced during the photoreform-
ing of oxalic acid. By simulating this spectrum (Figure 21), they claimed that DMPO•–CHO,
DMPO•–(CO–CO−2 ), and DMPO•–CO−2 were formed during this process. Although the
authors did not observe the formation of •OH, however, they could not exclude their con-
tribution in the photocatalytic process. However, the authors in another publication [97]
performed EPR spin-trap experiments as described before but with the presence of KI as a
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second hole scavenger in the addition to oxalic acid. They noticed that DMPO•-CO2-spin
adduct is the lonely signal detected in the presence of KI with much lower EPR intensities
as presented in Figure 22. They explained this result by suggesting different pathways
including the inhibition of by-products formation and lower •CO2

− radicals’ production
when KI was added to the suspension.
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Figure 21. EPR spin-trap experiment in the absence of O2 for a UV-irradiated oxalic acid suspension; (a) experimental
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spin adduct. Adapted with permission from [21]. Copyright 2020 American Chemical Society.
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Although the TiO2 has a thermodynamically feasible band structure for the water
splitting (for both proton reduction and water oxidation under UV light irradiation) to
H2 and O2, vast studies of the photocatalytic water splitting at TiO2-based nanomaterials
have shown that H2 but not O2 evolved during the photocatalytic process. To explain
this phenomenon, Li et al., [98] studied the photocatalytic overall water splitting over
three different phases of TiO2, namely, anatase, rutile, and brookite. The authors found
that the overall water splitting can only take place on rutile, while, it becomes feasible on
anatase and brookite under prolonged UV irradiation. To explain these results, the authors
employed the EPR spin-trap technique using DMPO as a spin trapping agent to probe the
reactive oxygen species derived on the surface of different phases of TiO2 under UV light
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irradiation and Ar atmosphere. Under dark, no signal was detected for all photocatalysts,
while, they obtained different signals for the three TiO2 phases under light irradiation. Both
anatase and brookite showed the same EPR signal consisting of four characteristic peaks
with standard ratios of intensities 1:2:2:1, ascribed to •DMPO-OH adduct. On the other
hand, the seven-line EPR signal that was detected for rutile TiO2 ascribed to •DMPO-X
generated from the oxidation of DMPO by peroxide, which can be easily decomposed to
produce O2 on rutile as the authors speculated. In the case of anatase and brookite TiO2,
the formed •OH radical may be strongly absorbed on the surface and its amount increases
with the prolonged UV irradiation. Thus, at saturation of absorption, the coupling of the
formed •OH radicals leads to evolving O2 on the surface of the TiO2.

Moreover, the spin trapping technique was not only used to detect and monitor the
formed reactive species such as the oxygen and nitrogen reactive radicals [94,99] during the
photocatalytic degradation process, but also is employed within the mechanistic pathway
to monitor and/or to be involved in controlling the experimental conditions during the
photocatalysis organic synthesis [82,100–102]. The involvement of TEMPO derivative
radical within a mechanistic pathway of the synthesis reaction is assumed to act as a
selective redox mediator involved in reactions of the generated reactive oxygen species.
Balayeva et al. [101] studied the visible-light-induced dehydrogenation of N-heterocycles
such as tetra-hydroquinolines, tetrahydroisoquinolines, and indolines compounds on the
surface of TiO2 in an aerated system yielding the corresponding heteroarenes compounds.
In this study, the authors found that 4-amino-TEMPO exhibits a beneficial role, as it im-
proved the yield and increased the selectivity of the dehydrogenation reaction. According
to the authors, the low conversion and selectivity in the absence of 4-amino-TEMPO were
attributed to the formation of H2O2/TiO2 surface complexes (Equation (32)), thus, pre-
venting the formation of the N-heterocycle−TiO2 surface complex, which is necessary
for the efficient electron transfer from the excited organic moiety to the TiO2 conduction
band. However, in presence of the TEMPO (paramagnetic), it will be oxidized to TEMPO+

(not paramagnetic) and reduces the O2 to O−•2 , Equation (33). The formed cation further
reacts with H2O2/TiO2 surface complex generated superoxide radical O−•2 , Equations (34)
and (35). To confirm their hypothesis, the authors employed the EPR technique in this
reaction to monitor the 4-amino-TEMPO signal under visible light illumination in this
system. They found that the 4-amino-TEMPO signal slightly decreases upon illumination,
which suggests that the cation 4-amino-TEMPO+ is formed upon visible-light illumination.

H2O2 + TiIV(surf.) ↔ TiIV −OOH(surf.) + H+ (32)
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demonstrated that the photocatalytic reaction of the azo dyes (methyl orange and acid
orange 7) on the surface of the TiO2 can be switched from the degradation path to the
reductive path by introducing the sodium formate in the system. This change in the
reaction conditions leads to the transformation of the azo dyes into useful products. In
the absence of the sodium formate, the photocatalytic degradation of the azo dyes via the
photogenerated hydroxyl radical leading to the formation of several independent pieces
as secondary pollutants. The formation of the •OH radical in this system was confirmed
by photoexcitation of deaerated azo dye/TiO2 suspensions in the presence of the spin
trapping agent DMPO, which leads to the formation of a quartet EPR signal ascribable to
the formation of •DMPO-OH adduct (Figure 23).
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However, the presence of the formate ion anion in the system leads to scavenge
the photogenerated holes, thereby inhibiting the hydroxyl radical formation. Therefore,
protons derived from the oxidation of formate by the photogenerated valance band holes
and promoted electrons in the TiO2 conduction band lead to the reductive cleavage of N=N
bonds yielding reduced valuable intermediates such as sulfanilic acid. The EPR signal that
formed in this system in the presence of formate ions showed a triplet of doublets signal
(•DMPO-CO2) attributed to the formation of CO−•2 from oxidation of formate ions.

Some interesting mechanism studies were also performed in the literature using EPR
measurements of Nb2O5 in suspension. Jiao and coworkers recently published a notewor-
thy case where simulated natural environment conditions were applied for photocatalytic
studies [103]. They investigate some materials such as plastic bags, containers, and wrap
films for food, and some of their components to be photoconverted by Nb2O5 without any
sacrificial agents. The oxide was prepared in a way to obtain Nb2O5 layers composed of a
single-unit-cell thickness, in order to maximize the available surface. The photoreaction
was found to produce CO2 which was further selectively photoreduced to CH3COOH.
By in situ EPR analysis, the oxide suspension evidenced the formation of DMPO-OH•

and DMPO-O2
•− using pure water and methanol as the solvent, respectively. This result

indicated that Nb2O5 photoexcited holes could oxidize H2O into •OH radicals and mean-
while the photogenerated electrons could reduce O2 into O2

•−, H2O2 and H2O. Along with
further studies and other techniques, the mechanism was based on the oxidative C–C bond
cleavage by O2 and •OH radical to form CO2 which formed in sequence CH3COOH by
reductive photoinduced C–C coupling of •COOH intermediates.

The same radicals have been reported in the work of Chen and coworkers [104]. The
authors have prepared Nb2O5 nanospheres by the hydrothermal method which were
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identified with the orthorhombic phase. The samples showed good photoactivity for
Rhodamine B degradation under visible light. When EPR analysis was performed using a
dispersion with Nb2O5 (Figure 24), DMPO, and the dye under visible light irradiation, the
generation of •OH was observed in water suspension whereas O2

•− radicals were found
in the presence of methanol. The higher intensity for the latter one could indicate that
it would be the main active radical for the photodegradation of Rhodamine B. This fact
was confirmed by photoluminescence experiments using different scavengers. Finally, the
mechanism was explained based on a photosensitization for the photocatalytic oxidation
and degradation of the dye on Nb2O5 under visible light.
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Niobium oxide is also well known for H2 evolution application and in many cases;
deposited platinum is applied as a co-catalyst. In this sense, Zhang and coworkers have
shown the performance of mesoporous Pt–Nb2O5 photocatalysts evaluating two different
procedures, a sol-gel one-step method and by impregnation [105]. The materials were
applied to H2 generation in a methanolic solution under UV irradiation in which the sample
prepared by one-step method resulted in a higher rate (9.79 mmol h−1). The photocatalytic
activity mechanism, in relation to the generated radicals and their whole reaction, was
deeply investigated by EPR studies. In principle, the same kinds of radicals mentioned
before were found also in this case. In presence of methanol, both O2

•− and CH2OH•

were detected for the tested samples under irradiation. Their intensities were higher for
the one-step prepared sample, followed by the one produced by impregnation and then,
the bare Nb2O5. When the analysis was run in water, •OH radicals were identified with
intensities following the same trend as for the other radicals. According to these results,
it was possible to conclude that the efficiency of photogenerated charge carriers transfer
from the photocatalyst has been enhanced by Pt nanoparticles, especially when applying
the one-step method.

5. Conclusions

Tackling global warming and future fuel is one of the key challenges in the recent cen-
tury. Amongst all the techniques to be used photocatalytic-based processes have the unique
advantages that they solely utilize the most abundant solar energy without increasing
greenhouse gases emissions. However, engineering a highly active photocatalytic material
that fulfills all the industrial requirement strongly rely on a deep understanding of the fate
of the photogenerated charge carriers upon irradiation of this material. Being amongst the
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most suitable materials from the industrial point of view, TiO2 and more recently Nb2O5
have been the focus of many researchers worldwide. EPR is a powerful technique that is
practically beneficial in understanding the chemistry that occurs on the surface of metal
oxide photocatalysis due to the low frequency of the electromagnetic radiation used for the
spin resonance of electrons. This advantage assures no interference from the frequency of
the light, allowing measuring the EPR spectra under irradiation in addition to the measure-
ment in dark conditions. By means of the EPR technique, researchers are able to understand
the effect of different factors on the intensity of the photogenerated electron-hole pairs in
the bulk, at the surface, or on the trapping centers. This in turn influences the probability of
electron transfer reactions and thus the overall process efficiency. These factors include the
crystallinity and available phases of the material, the particle size, the presence of trapping
centers and vacancies, loading with co-catalysts, as well as the surrounding media. As we
have seen from the herein presented examples, a substantial research effort is needed to
improve both the fundamental understanding of the numerous physicochemical effects
involved in the photocatalytic processes and the means of translating these effects into
practical outcomes. This makes the metal oxide-based photocatalysis field both exciting
and challenging, especially for multidisciplinary collaborations.
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