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Abstract
Agriculture is by far the biggest water consumer on our planet, accounting for 70 per cent of all

freshwater withdrawals. Climate change and a growing world population increase pressure on

agriculture to use water more efficiently (‘more crop per drop’). Water-use efficiency (WUE) and

drought tolerance of crops are complex traits that are determined by many physiological

processes whose interplay is not well understood. Here, we describe a combinatorial engineering

approach to optimize signalling networks involved in the control of stress tolerance. Screening a

large population of combinatorially transformed plant lines, we identified a combination of

calcium-dependent protein kinase genes that confers enhanced drought stress tolerance and

improved growth under water-limiting conditions. Targeted introduction of this gene combi-

nation into plants increased plant survival under drought and enhanced growth under water-

limited conditions. Our work provides an efficient strategy for engineering complex signalling

networks to improve plant performance under adverse environmental conditions, which does

not depend on prior understanding of network function.

Introduction

At least 20% of all developing countries will face water shortages

by 2030 (Food and Agriculture Organization of the United

Nations: http://www.fao.org/english/newsroom/focus/2003/wate

r.htm), making drought tolerance, growth under limited water

availability and the efficient use of water by crop plants (and,

consequently, the saving of water for irrigation) one of the

highest priorities in agriculture. Water-use efficiency (WUE) of

plants refers to the ratio of water used in metabolism to water

lost through transpiration and other processes. The WUE deter-

mines the plant’s ability to cope with moderate or severe soil

water deficit, represents a major factor in plant survival under

drought stress, and is the key determinant of crop yield under

conditions of limited water availability. Therefore, increasing the

WUE of agricultural crops represents a major goal of breeding

and genetic engineering efforts (Lawlor, 2013; Nuccio et al.,

2015).

The mechanisms underlying drought tolerance and WUE are

highly complex, and a number of physiological processes and

signal transduction pathways have been suggested as potential

targets to improve WUE and stress adaptation upon water

limitation in vascular plants. These include the light reactions of

photosynthesis (Glowacka et al., 2018), photosynthetic carbon

fixation (Flexas et al., 2016), plant hormones and associated

signalling pathways (Yang et al., 2016), stomatal function

(Papanatsiou et al., 2019; Takahashi et al., 2018) and trichome

density on the leaf surface (Galdon-Armero et al., 2018). To

improve the primary response to water limitation, modulating the

perception of the stress hormone abscisic acid (ABA) appears to

represent a promising strategy (Mega et al., 2019; Yang et al.,

2016). In addition, numerous targets in the pathways of stress

recognition and signalling are explored to increase tolerance to

water limitation (Gong et al., 2020; Hirayama and Shinozaki,

2010). These pathways offer particularly attractive targets in that

they have been implicated in natural variation in stress tolerance

(Bechtold et al., 2018; Wu et al., 2012). This may be due to them

exerting control over multiple downstream pathways, and/or

genetic alterations in sensing and signalling having a higher

probability of being phenotypically neutral (compared to consti-

tutive manipulations of metabolic pathways or developmental

processes involved in stress protection). A major challenge in

exploring signalling mechanisms as targets lies in the complex

organization of the underlying networks and the (partial) genetic

redundancy, with network components often being encoded by

large gene families and/or sharing overlapping functions.

Calcium signalling networks have emerged as major regulators

of abiotic and biotic stress responses in plants (Batistic and Kudla,

2004; Hepler, 2005; Luan, 2008). Although calcium signalling

represents an ancient signalling mechanism in eukaryotes, the

protein families involved in decoding calcium signals have

undergone substantial expansion during evolution of the green
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lineage (Hrabak et al., 2003; Kolukisaoglu et al., 2004). One of

the major protein families mediating responses to stress-induced

changes in intracellular calcium concentration are the calcium-

dependent protein kinases (CDPKs or, in Arabidopsis, CPKs), in

which a protein kinase effector domain is directly linked with a

calcium-binding sensor domain within one molecule. The family

comprises 34 members in the model plant Arabidopsis thaliana

(Cheng et al., 2002; Edel et al., 2017). CDPK family members

have been implicated in diverse biological functions, including

long-term growth and developmental processes as well as short-

term rapid signalling responses to abiotic and biotic stress stimuli

(Brandt et al., 2015; Edel et al., 2017; Huang et al., 2018; Liu

et al., 2017; Schulz et al., 2013). Furthermore, within the calcium

signalling network, evidence for joint or consecutive action of

CPKs or concerted action with other calcium sensor protein

kinases (Maierhofer et al., 2014; Zhao et al., 2013) on specific

target proteins in the plasma membrane has been obtained. The

large number of CPKs, the complex structure of the signalling

network they form (including potential functional interconnection

and synergistic action of family members) and the great diversity

of physiological responses CPK family members are involved in

(Cheng et al., 2002; Edel et al., 2017; Schulz et al., 2013)

suggests that the engineering of individual network components

may have limited (durable) effects on stress tolerance and yield

stability. Unfortunately, next to nothing is known about the

functional interconnection and synergistic action of the family

members. We, therefore, decided to explore a combinatorial

approach based on synthetic network selection towards the

identification of gene combinations that enhance stress toler-

ance, using drought tolerance and plant growth under water

limitation as biological readout. To this end, we employed

combinatorial genetic transformation, a large-scale co-transfor-

mation technology that has successfully been applied to

metabolic pathway engineering in plants (Zhu et al., 2008; Naqvi,

Farr�e et al., 2009; Naqvi, Zhu et al., 2019; Fuentes et al., 2016;

reviewed, e.g. in Naqvi, Farr�e et al., 2009; Naqvi, Zhu et al., 2019,

Bock, 2013). We reasoned that combinatorial transformation

should also provide a suitable approach to engineer complex

signalling networks and, thus, significantly expand our available

toolbox for the engineering of crops for improved stress

tolerance. Its application to calcium signalling provides the

potential advantage of maintaining spatial and temporal control

of kinase activities through the plant’s own calcium signals as

triggered by environmental stimuli.

Results

Combinatorial genetic transformation of tobacco plants
with a large set of CPK genes

Combinatorial transformation relies on the generation of a large

library of transgenic plants carrying random combinations of

transgenes that are cloned into individual plasmids and co-

transformed biolistically (Bock, 2013; Naqvi, Farr�e et al.,2009;

Naqvi, Zhu et al.,2019). Combinatorial transformation experi-

ments require highly efficient biolistic transformation protocols,

making tobacco (Nicotiana tabacum) a suitable host species

(Fuentes et al., 2016). However, it needs to be borne in mind

that, when ten or more transgenes are used, only a small part of

the combinatorial space can be explored, given that, in a

simplified manner, the total space can be considered as a

combination with repetition problem (with n being the total

number of transgenes and k any possible number of transgenes

that integrate, with the additional complication that not all k are

equally likely). Initiation and propagation of stress-related

calcium signalling in plants often occur at the plasma mem-

brane. The calcium sensor proteins involved typically carry N-

terminal lipid modifications (myristoylation and/or palmitoylation)

that anchor them to the membrane (Cheng et al., 2002; Held

et al., 2011; Schulz et al., 2013). We, therefore, selected CPKs

from Arabidopsis that are predicted to be membrane associated

(according to the SUBA database; Heazlewood et al., 2007). We

used Arabidopsis because, when the project was initiated, no

draft genome of Nicotiana tabacum was available, making gene

identification in this allotetraploid species very challenging (Sierro

et al., 2014). The corresponding 15 CPK genes (Figure 1a) were

cloned as cDNAs into individual expression cassettes using three

different strong, constitutive promoters (SUPERR, ACT2, UBQ10)

and two different terminators (nos, HSP18.2) to minimize

potential silencing effects. In this way, 15 plasmids were

generated and combined with an additional plasmid that

harboured an nptII cassette for kanamycin selection of trans-

genic lines. The mix of 16 plasmids was loaded onto gold

particles and bombarded into tobacco cells (Figure 1b).

Combinatorial transformation experiments followed by large-

scale selection of transgenic lines produced more than 450

primary kanamycin-resistant lines. As from an agricultural

perspective, increased stress tolerance should come without a

growth penalty, lines displaying atypical growth and/or devel-

opment were discarded and not further analysed (even though

this may have eliminated some events with particularly pro-

nounced effects on stress tolerance). 231 lines readily developed

roots on phytohormone-free medium, 206 of which displayed

normal growth in sterile culture and were transferred to the

greenhouse for seed production. Upon growth in the green-

house, 52 lines showed growth impairment and/or developmen-

tal aberrations and were discarded. Another 51 lines exhibited

low fertility and/or poor seed production and were also excluded

from further analysis. The remaining 103 lines displayed wild

type-like growth and seed set, and the T1 seeds harvested from

them were used in subsequent screens for elevated drought

tolerance (Figure 1b,c).

Screening of the population of combinatorially
transformed plants for drought tolerance

In an initial high-throughput screen for combinatorially trans-

formed lines with enhanced drought tolerance, batches of 40

plants were grown together in one tray to ensure that the

drought stress sets in synchronously and affects all plants equally.

To this end, two transgenic lines (16 T1 individuals each) were

grown together with eight wild-type plants. It is important to

note that the T1 generation represents the progeny of the

primary transgenic lines which are hemizygous for the transgenes

they contain. Consequently, the T1 generation will typically

segregate into transgene-containing and transgene-free individ-

uals in a 3:1 ratio (assuming that all transgenes integrated into a

single genomic locus, which is usually the case in combinatorial

transformation; Bock, 2013; Fuentes et al., 2016; Naqvi, Farr�e

et al.,2009; Naqvi, Zhu et al.,2019; Zhu et al., 2008).

To screen for drought tolerance, water was withheld for 23

days, and, 7 days after re-watering, the number of surviving

individuals was counted. In this initial screen, 19 lines displayed

enhanced drought tolerance (assayed as increased survivorship;

Figure 1c,d). To eliminate false positives, the screen was repeated

with a larger number of individuals (now growing only one

ª 2020 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd, 19, 74–86

Combinatorial engineering of plant signalling 75

 14677652, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pbi.13441 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [17/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



transgenic line and the wild type together in one tray). This

second screening experiment confirmed the drought tolerance of

nine of the 19 lines that had been identified in the initial screen

(Figure 1c). The nine confirmed tolerant lines were then geno-

typed by PCR and assayed for the presence of the 15 CPK

transgenes (by amplification of their full-length coding regions).

The transgene sets detected in the drought-tolerant lines

(Figure 1e) were then inspected to identify genes and gene

combinations that were frequently represented in the lines.

CPK3 and CPK30 were identified in four lines each (Figure 1e).

Their presence was not unexpected, as both genes had been

associated with ABA signalling and stomatal closure previously

(Mori et al., 2006; Sheen, 1996). Somewhat unexpectedly, CPK5,

a gene previously associated with biotic stress tolerance, also

appeared in four lines (Boudsocq et al., 2010; Dubiella et al.,

2013). The two most abundant transgenes present in the

drought-tolerant lines were CPK28 and CPK29, both of which

were found five times. Moreover, the two genes co-occurred in

four of the five lines. Neither CPK28 nor CPK29 have been

implicated in abiotic stress responses so far. While CPK29 has not

yet been functionally characterized, CPK28 was shown to

participate in balancing innate immune signalling, and jasmonic

acid and gibberellic acid homeostasis during development (e.g.

Matschi et al., 2015; Matschi et al., 2013; Monaghan et al.,

2014).

To exclude possible biases in the representation of the

individual CPK transgenes in the population of combinatorially

transformed lines, the presence of two transgenes that had been

identified as potentially overrepresented in the drought-tolerant

lines (Figure 1e) was exemplarily assayed in the entire population

(Table S1). Both transgenes (CPK3 and CPK29) were present in

approximately 20% of the 103 lines (Figure 1c; Table S1),

indicating that their abundance in the population reflects the

1:1 stoichiometry of the plasmids used for combinatorial trans-

formation. By contrast, CPK3 was present in 44.4% and CPK29 in

55.5% of the drought-tolerant lines, suggesting that the two

transgenes had been selected for in our screen for drought

tolerance. However, it should be noted that a somewhat uneven

representation of CPK genes in the population of transgenic lines

is to be expected, because lines showing impaired growth or

development were discarded (see above) or may not even be

recoverable as transgenic events, thus potentially leading to an

underrepresentation of some genes and/or gene combinations.

This is exemplified by the fact that, for example, CPK6, CPK8 and

CPK32 are found not even once in the drought-tolerant lines,

possibly suggesting that they were selected against (Figure 1e).

The combination of CPK28 and CPK29 is required to
enhance drought stress tolerance in Arabidopsis

The identification of CPK28 and CPK29 as the two most

frequently occurring transgenes in the drought-tolerant combi-

natorially transformed lines and their co-occurrence in most lines

(Figure 1e) prompted us to test whether these two genes,

individually or collectively, can confer increased drought toler-

ance. CPK28 and CPK29 proteins share the conserved CDPK

domain structure (Figure S1A) and show a partial overlap in their

gene expression patterns during plant development (Figure S1B,

C).

To test whether each of the two genes confers drought

tolerance or the combination of CPK28 and CPK29 is necessary

(and sufficient), three vectors for plant transformation were

generated (Figure 2a): two plasmids for individual expression of

CPK28 (vector pA-28) and CPK29 (vector pA-29) and one for the

combined expression of CPK28 and CPK29 (vector pA-28/29). The

constructs were introduced into Arabidopsis plants by stable

Agrobacterium-mediated transformation, and transgenic lines

(subsequently referred to as A-28, A-29 and A-28/29 lines,

respectively) were isolated. 54 independent A-28/29 lines, 26 A-

29 lines and 27 A-28 lines were obtained, and all of them grew

Figure 1 Combinatorial transformation and screening for drought

tolerance. (a) Schematic representation of the vectors used for

combinatorial transformation of tobacco. See text and Methods for

details. (b) Workflow of the combinatorial transformation experiment,

screening and genotyping. The approximate timeline is given at the right.

(c) Diagram showing the number of combinatorially transformed lines

assayed (103), the number of drought-tolerant lines identified in the first

screening experiment (19), and the final number of confirmed tolerant

lines (9). (d) Identification of a combinatorially transformed line (N-L285)

that segregates drought-tolerant plants in the T1 generation. (e)

Transgene contents of the nine drought-tolerant lines, as determined by

PCR assays.
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normally, were phenotypically inconspicuous and indistinguish-

able from the wild type (Figure 2b). This is in contrast to CPKs

involved in biotic stress responses, whose overexpression often

results in mutant phenotypes such as stunted growth and/or

formation of necrotic lesions (Dubiella et al., 2013; Durian et al.,

2020) as a consequence of enhanced and prolonged stress

signalling.

Next, we conducted drought tolerance assays with homozy-

gous transgenic lines by exposing plants to severe drought stress

followed by re-watering (Figure 2c). Remarkably, A-28/29 lines

showed a significant increase in survival, whereas the single gene

overexpressing lines A-28 and A-29 were not significantly

different from the wild type (Figure 2c,d; Figure S2A). This result

clearly demonstrates the functional significance of the co-

occurrence of the two genes seen in our screen of the

combinatorially transformed population for drought tolerance.

To further verify that CPK28 and CPK29 must be expressed

together to confer drought tolerance, we crossed A-28 lines with

A-29 lines and tested the doubly transgenic offspring (harbouring

both genes) in drought tolerance assays. These analyses revealed

that A-28 x 29 lines exhibit a significantly higher survival rate

compared to the wild type and the A-28 and A-29 parental lines

Figure 2 The combinatorial module pA-28/29 confers drought tolerance to the model plant Arabidopsis. (a) Schematic representation of the vectors pA-

28, pA-29 and pA-28/29 used for stable transformation of Arabidopsis thaliana. (b) Representative images of transgenic Arabidopsis plants (A-28, A-29 and

A-28/29 lines) grown in soil in comparison with the wild type (A-WT). Scale bar: 3 cm. (c) Identification of Arabidopsis plants that survive severe drought

stress and show recovery after rewatering. Control plants were not exposed to drought stress. (d) Increased survival rate of transgenic lines produced by

transformation with vector pA-28/29. (e) Enhanced survival of doubly transgenic lines obtained from crosses of A-28 with A-29 lines (A-28 9 29). (f)

Increased biomass production of A-28/29 lines grown under mild osmotic stress (in the presence of 35 mM mannitol). (g) Increased biomass production of

A-28 9 29 lines grown under mild osmotic stress. Asterisks indicate statistically significant differences between transgenic lines and the wild type as

determined by one-way ANOVA followed by Dunnett’s multiple comparison (*P < 0.05, **P < 0.01). All data are presented as means � SD from three

independent experiments (d: n = 12 biological replicates, with 9 plants per line in each replicate; e: n = 26 biological replicates, with 3 plants per line in

each replicate; f: n = 12 biological replicates, with 10 plants per line and condition in each replicate; and g: n = 20 biological replicates, with 10 plants per

line and condition in each replicate).
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(Figure 2e; Figure S2B). To mimic mild drought conditions as

plants often experience them under field conditions (Skirycz et al.,

2011), we challenged our transgenic lines with moderate osmotic

stress. To this end, seeds were germinated in the presence of

35 mM mannitol (a concentration exerting osmotic stress without

causing a delay in germination) and plant biomass (fresh weight)

was measured after 14 days of growth. Under these conditions,

both the A-28/29 and the A-28 x 29 lines outperformed the wild

type and the A-28 and A-29 parental lines in that they displayed

substantially larger biomass production. Importantly, the

unstressed control plants showed no difference in growth

(Figure 2f,g; Figures S2C-E and S3), indicating that transgene

expression does not cause a growth penalty under normal

conditions.

The CPK28/29 module is transferable to a high-biomass
crop

Having obtained proof of concept in Arabidopsis, we next sought

to demonstrate that the combined expression of CPK28 and

CPK29 is necessary and sufficient to mediate stress tolerance in a

high-biomass crop. To this end, we created three constructs for

stable transformation of tobacco to express CPK28 or CPK29

alone, or co-express both genes (Figure 3a). Because initial

transformation experiments with constructs based on the ubiq-

uitin promoter were successful only for one of the constructs, the

promoter was exchanged by the CaMV 35S promoter in two of

the three vectors (Figure 3a). The resulting transgenic lines will

subsequently be referred to as N-28, N-29 and N-28/29 lines,

respectively. 19 independent N-28 lines, 16 N-29 lines and 6 N-

28/29 lines were obtained. Similar to the transgenic lines

generated in the model plant Arabidopsis (Figure 2), no growth

difference or phenotypic aberrations were seen upon plant

cultivation under standard conditions in any of the transgenic

lines (Figure 3b). Neither plant biomass (determined as both fresh

weight and dry weight; Figure 3c,d) nor total seed yield

(Figure 3e) were different between any of the transgenic lines

and the wild-type control.

To assay the transgenic lines for stress tolerance, we first

performed experiments under low (mannitol-induced) osmotic

stress. The data revealed that the N-28/29-1 and N28/29-3 lines

produced substantially more leaf biomass (measures as fresh

weight) under these conditions than the wild type or any of the

single-gene transformants (N-28 and N-29 lines; Figure 3f). When

tested in drought tolerance assays, the N-28/29 lines showed

improved survival (Figure 3g), confirming the results obtained

with our A-28/29 transgenic Arabidopsis lines (Figure 2).

As an additional abiotic stress, we also determined biomass

accumulation under salt stress. The N-28/29 lines displayed

enhanced germination and increased growth under these

conditions (Figure S4), suggesting that the beneficial effect of

the co-expression of CPK28 and CPK29 may extend also to

other abiotic stresses that have an osmotic component,

although some of those stresses (e.g. cold) have not yet been

investigated.

To ultimately confirm that the combined expression of CPK28

and CPK29 is necessary and sufficient to enhance stress

resistance, N-28 and N-29 lines (both of which showed no

elevated stress tolerance; Figure 3) were crossed. To obtain a

segregating progeny, hemizygous transgenic lines were used for

the crosses, resulting in a 1:4 segregation for the presence of

both genes in individuals of the next generation. This approach

allowed us to test if individuals containing both genes are

enriched among the F1 plants that survive severe drought

stress. To this end, the progeny of four crosses between N-28

and N-29 lines (using three different mother and two different

father plants) was exposed to drought stress. No difference was

observed between the parental plants and the progeny of the

crosses in the initial phase of stress application (Figure 3h). PCR

genotyping of the N-28 x 29 progeny that survived the

extended drought stress revealed that both transgenes were

jointly present in 33-46% of the plants, as opposed to the 25%

expected by chance (Table S2). Control assays for inheritance of

the kanamycin resistance confirmed that transgene inheritance

was Mendelian and no unexpected segregation distortion

occurred.

CPK28/29 improves plant growth under water-limited
conditions

Having shown that, in both Arabidopsis and tobacco, combined

expression of CPK28 and CPK29 promotes growth under mild

osmotic stress conditions and enhances survival upon severe

drought, we next asked if expression of the CPK28/29 module

translates into increased plant productivity upon long-term

growth under water-limited conditions. Tolerance to moderate

water deficit is an important agronomic trait and often represents

the limiting factor that determines crop yield under field

conditions (Skirycz et al., 2011).

To investigate performance under moderate water-limiting

conditions, tobacco plants were raised in normal (well-watered)

conditions for 25 days and then split into a control group and

a low-water input group (in which water supply was reduced

to 25%). Confirming our previous analyses (Figures 2 and 3),

no difference in plant growth was detectable in well-watered

control conditions (Figure 4a). As expected, the low-water

input group showed overall reduced growth of all lines.

However, the N-28/29 lines exhibited superior growth com-

pared to the wild-type control and the N-28 and N-29 single-

gene transformants (Figure 4a). To quantify the growth advan-

tage of the N-28/29 plants, a number of parameters related to

biomass production and WUE were measured. N-28/29 plants

produced significantly more biomass (fresh weight) under

water-limited conditions (Figure 4b) and showed enhanced

WUE in that they accumulated substantially more biomass per

water supplied (Figure 4c). Moreover, N-28/29 plants were

taller than all control lines, confirming that joint expression of

CPK28 and CPK29 enables faster growth under water-limited

conditions (Figure 4a,d,e).

To examine whether improved growth under water limitation

is related to increased photosynthetic capacity, we determined

light response curves of gas exchange parameters such as

assimilation capacity, stomatal conductance, and CO2 concen-

tration in the intercellular air space (ci) in both water-limited and

control conditions. Interestingly, despite their growth advantage,

the N-28/29 plants are very similar to all control plants (wild

type, N-28 and N-29 lines) in all parameters measured

(Figure 4f–h; Figure S5). In line with the unaltered gas

exchange, stomatal response to the stress hormone abscisic

acid (ABA) and stomatal density were similar in all genotypes

(Figures S6 and S7). Likewise, key photosynthetic parameters

such as chlorophyll a:b ratio, chlorophyll content, leaf absorp-

tance, the maximum quantum efficiency of photosystem II in the

dark-adapted state, and the light-saturated electron transport

capacity of photosystem II (Figure S8) were unaltered in the

transgenic lines.
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In Arabidopsis, overexpression of the brassinosteroid receptor

BRL3 (F�abregas et al., 2018) has been reported to confer

increased tolerance to drought stress. Since CPK28 has been

implicated in the turnover of the cytoplasmic receptor-like kinase

BIK1 (BOTRYTIS-INDUCED KINASE1; Monaghan et al., 2014), and

bik1 mutants display reduced sensitivity to brassinazole (BRZ), a

Figure 3 The CPK28/CPK29 module confers stress tolerance without causing a growth penalty in the high-biomass crop tobacco. (a) Schematic overview

of vectors used for transformation of tobacco. (b) Representative photographs of tobacco plants after five weeks (top view) and after seven weeks (side

view) of growth. Scale bars: 10 cm. (c) Biomass production under control conditions. Leaf biomass (FWP: fresh weight per plant) was measured after

7 weeks of growth. (d) Determination of the dry weight (DWP) of the same material. (e) Seed yield. (f) Biomass production (FW) under osmotic stress

conditions relative to the unstressed control. (g) Survival rate under drought stress. (h) Representative image of a wild-type plant, two N-28 9 29 lines, and

the two parental lines (N-28 and N-29) after one week without watering. Asterisks indicate statistically significant differences between transgenic lines and

the wild type as determined by one-way ANOVA followed by Dunnett’s multiple comparison (*P < 0.05, **P < 0.01). All data are presented as

means � SD from two (c–e) or three (f, g) independent experiments (c–e: n = 5-6 biological replicates, each with 10 plants per line; f: n = 9 biological

replicates, each with 10 plants per line; and g: n = 36 biological replicates, each with 3 plants per line).
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specific inhibitor of brassinosteroid biosynthesis (Lin et al., 2013),

it seemed reasonable to test whether co-expression of CPK28 and

CPK29 enhances brassinosteroid signalling, and whether this in

turn supports growth under water-limiting growth conditions.

We, therefore, performed hypocotyl growth experiments in the

presence of the brassinosteroid biosynthesis inhibitor BRZ.

Although CPK28 overexpression has been reported to reduce

BIK1 accumulation (Monaghan et al., 2014), no differences in

hypocotyl growth were observed in the N-28 lines compared to

the wild type. However, the combined expression of CPK28 and

CPK29 led to a substantially enhanced growth response (Fig-

ure 4i,j). This finding indicates that N-28/29 plants are less

sensitive to BRZ and suggests that co-expression of the two

calcium-dependent kinases stimulates brassinosteroid signalling

and, in this way, increases drought tolerance and growth under

water-limited conditions.

Finally, we wanted to confirm that the introduced CPK28 and

CPK29 transgenes in our transgenic Arabidopsis and tobacco lines

are indeed expressed and, therefore, can be causally responsible

for the observed stress tolerance phenotypes. qRT-PCR assays

revealed strong expression of all transgenes, as expected

(Figures S9 and S10).

Identification and validation of a new candidate gene
for improved salt tolerance

To demonstrate the general applicability of the combinatorial

approach towards disentangling complex signalling networks and

functionally dissecting large gene families, we screened the

combinatorial CPK population for salt tolerance as another abiotic

stress that is of great agronomic relevance. The screen was

conducted by germinating seeds in the presence of 200 mM NaCl,

a salt concentration that reduces germination (scored as appear-

ance of green cotyledons) of wild-type tobacco to nearly zero

(Figure 5a). Combinatorially transformed lines that displayed an

enhanced germination rate in the T1 generation (Figure 5a) were

considered candidate lines for exhibiting elevated salt tolerance.

12 lines robustly showed enhanced germination in repeated tests.

The 12 tolerant lines were then genotyped by PCR and assayed

for the presence of the 15 CPK transgenes (Figure 5b). For

unknown reasons, one of the lines (line N-L216) did not contain

an amplifiable CPK transgene (but was transgenic and harboured

the kanamycin resistance gene). Interestingly, both CPK28 and

CPK29 were found frequently in the salt-tolerant lines, confirming

the results from our assays for osmotic and salt stress tolerance

conducted with retransformed Arabidopsis and tobacco lines

(Figures 2f,g and 3F; Figures S2C-E and S4). However, the by far

most strongly represented transgene in the salt-tolerant lines was

CPK5 (Figure 5c). To test whether CPK5 represents a novel gene

that is involved in conferring salt stress tolerance, we re-

transformed tobacco plants with a CPK5 expression construct

(see Methods). The transgenic lines were then tested for their

tolerance to salt stress by measuring seed germination rates

(Figure 5d), biomass (Figure 5e) and growth (plant diameter;

Figure 5f) in the presence of NaCl. By all three parameters, the

CPK5-expressing transgenic lines performed significantly better

than the control plants, confirming that CPK5 is a useful target

for engineering tolerance to salt stress. To ultimately confirm

expression of the CPK5 transgene, qRT-PCR analyses were

conducted and revealed high levels of CPK5 mRNA accumulation,

as expected (Figure S11).

Discussion

In the face of climate change and scarce water resources in many

regions of the world, increasing abiotic stress tolerance and the

WUE of crops is becoming one of the most pressing challenges to

address through breeding and genetic engineering. In this work,

we have used drought tolerance and plant growth under water-

limited conditions as model traits to combinatorially engineer a

complex signal transduction network whose organization is only

poorly understood. While, in previous research, some information

has been obtained about the functions of individual members of

the CPK protein family in Arabidopsis (e.g. Boudsocq et al., 2010;

Brandt et al., 2015; Cheng et al., 2002; Dubiella et al., 2013; Liu

et al., 2017; Matschi et al., 2015; Mori et al., 2006; Schulz et al.,

2013), little is known about their functional interconnection and

possible synergistic action in signalling processes. We used the

CPK family of calcium-dependent kinases to test the idea that

modules of two or more CPK genes confer novel phenotypes that

cannot be uncovered by expressing individual family members.

The gene combination identified here as enhancing drought

tolerance while maintaining normal growth under unstressed condi-

tions could neither have been predicted nor identified based on

functional analysis or overexpression of single genes. Mechanistically,

one could envision that both enzymes target the same protein at

different phosphorylation sites, or act consecutively in that one CPK

directly phosphorylates the other (and, in this way, activates it), or the

twoCPKs target different proteinswhich then synergistically results in

enhanced stress tolerance. These possible mechanisms illustrate the

power of our synthetic combinatorial approach in that it requires no

prior information about network function.

Instead, the combinatorial gene space is explored by generat-

ing a population of transgenic lines that harbour random

combinations of genes for network members, while maintaining

normal growth and development. This population is then

screened for the trait of interest, and individuals with the desired

properties are genotyped to identify transgene combinations that

are enriched and frequently co-occur. These gene combinations

are finally verified by targeted transformation experiments to

confirm that they are necessary and sufficient to confer the

desired trait. In this work, we have used two independent

verification methods: (i) plant transformation with a vector

harbouring both CPK28 and CPK29 expression cassettes, and (ii)

plant transformation with individual cassettes followed by com-

bination of the two cassettes in the same plant through crosses.

Both approaches gave very similar results (and were confirmed in

two different species), suggesting that it will be sufficient to use

one of them in future applications of the technology.

Our data obtained from the extensive phenotypic characteri-

zation of retransformed plant lines (obtained by either co-

introduction of both transgenes by transformation or their

combination by genetic crosses) demonstrated that CPK28 and

CPK29 are jointly required to promote plant growth under water-

limited conditions and enhance plant survival under severe

drought stress (Figures 2–4; Figures S2–S4). Consistent with the

conservation of the CPK network across seed plants (Hrabak

et al., 2003), the beneficial effect was seen in both the model

plant Arabidopsis and the high-biomass crop tobacco, suggesting

that it is likely transferable also to other crops. Importantly, the

enhanced biomass production under stress conditions did not

entail a growth penalty under unstressed conditions (Figures 2–4;
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Figures S5–S8), representing a rare outcome of genetic engi-

neering for stress tolerance in plants.

We observed reduced sensitivity of CPK28/29 lines to BRZ,

possibly suggesting enhanced BR signalling. BR signalling is often

seen as antagonist to ABA-mediated responses. However, the

interplay of BR signalling with abiotic stress is highly complex

(Nolan et al., 2020). While some gain-of-function mutants in the

pathway reduce stress tolerance, cell type-specific activity of

other BR signalling components (such as BRL3 in vascular tissue)

promotes drought tolerance (F�abregas et al., 2018). While it

seems possible that differential phosphorylation of a common

target of CPK28/29 leads to a split of stress-related and growth-

regulatory functions (similar to the case of BES1; Kang et al.,

2015; Nolan et al., 2017), this and other possible connections

between calcium signalling, BR signalling and stress tolerance

remain to be investigated.

It is important to note that, in combinatorial transformation, all

transgenes usually integrate into the same genomic locus (i.e. into

the same transient DNA double-strand break), resulting in co-

segregation in subsequent generations (Naqvi, Farr�e et al.,2009;

Naqvi, Zhu et al.,2019). This feature allowed us to raise a T1

generation from seeds and efficiently screen it for drought

tolerance. Since tobacco produces large amounts of seeds that

can be stored for many decades, the same population can be

screened for other agronomic traits that may benefit from

engineered calcium signalling.

Combinatorial transformation has previously been used as a tool

to introduce new metabolic pathways into plants (Fuentes et al.,

2016; Naqvi, Farr�e et al.,2009; Naqvi, Zhu et al.,2019; Zhu et al.,

2008). Our data reported here suggest that it also provides a

powerful approach to dissect complex signal transduction net-

works and engineer them to improve plant performance under

adverse environmental conditions. The approach should be appli-

cable to any signalling pathway with its known and suspected

players. Importantly, the technology does not require any a priori

knowledge about network structure and function. Instead, it can

uncover hidden synergistic interactions between genes in complex

genetic networks. The method can be applied to any other signal

transduction network and/or response pathway involved in plant

tolerance to abiotic or biotic stresses, and thus offers great

potential to contribute to crop protection and the increase in

agricultural productivity that is so urgently needed.

Experimental procedures

Plant material and transformation methods

Arabidopsis thaliana ecotype Col-0 (A–WT) and Nicotiana

tabacum cv. Petit Havana (N–WT) served as wild types in all

experiments. An Arabidopsis cpk28 mutant (cpk28-1, GK-

523B08) was characterized previously (Matschi et al., 2015). A

cpk29 mutant was ordered from NASC (Salk-114657C).

For combinatorial transformation, young leaves of Nicotiana

tabacum plants grown under aseptic conditions were bombarded

with gold particles that had been coated with a near equimolar

plasmid mix containing the 15 individual CPK vectors (Figure 1)

and an additional plasmid harbouring an nptII cassette as

selectable marker (Fuentes et al., 2016). Biolistic transformation

experiments were carried out with the DuPont PDS1000He gun

and kanamycin-resistant shoots were selected on an MS-based

plant regeneration medium (Murashige and Skoog, 1962) con-

taining 50 mg/L kanamycin. Resistant shoots were rooted on

phytohormone-free medium supplemented with 50 mg/L kana-

mycin, then transferred to soil and grown to maturity under

standard greenhouse conditions. Combinatorially transformed

lines are designated N-L followed by a consecutive number.

For re-transformation of selected genes and gene combinations,

standard Agrobacterium-mediated transformation protocols were

used. Transformation experiments in tobacco were conducted

with A. tumefaciens strain GV2260. Kanamycin-resistant shoots

were selected from infected leaf disks on plant regeneration

medium supplemented with 50 mg/L kanamycin. Transformation

experiments in Arabidopsis thaliana ecotype Col-0 were performed

by floral dipping (Clough and Bent, 1998) using A. tumefaciens

strain GV3101. Primary transgenic plants were identified by BASTA

spraying (10 mg/L), and survivors were grown to maturity under

standard greenhouse conditions for seed production. The trans-

genic lines are designated ‘N–’ for Nicotiana tabacum and ‘A–’ for
Arabidopsis thaliana, respectively, followed by the number of the

CPK transgene(s) they harbour and a consecutive number indicat-

ing the transgenic line (e.g. A-28-4: transgenic Arabidopsis line

expressing CPK28, line number 4).

Gene expression analyses

For gene expression analysis, RNA was extracted with the RNeasy

Plant Mini Kit (Qiagen) or the NucleoSpin RNA Plant Mini Kit

(Macherey & Nagel) according to the manufacturers’ instructions

and including an on-column treatment with RNase-free DNase

(Qiagen). Samples of 1 lg RNA were reverse transcribed with

SuperscriptIII SuperMix (Invitrogen) according to the manufac-

turer’s instructions. Real-time quantitative PCR (qRT-PCR) analysis

was performed in a final volume of 10 lL using the Power SYBR

Green PCR Master Mix (Applied Biosystems) and following the

protocol of the supplier. Reactions were run in a CFX96 system

(Bio-Rad) or a LightCycler 480 instrument (Roche). Expression

data for Arabidopsis genes were extracted from the eFP Browser

(Winter et al., 2007).

Figure 4 Improved growth and WUE of N-28/29 lines under water-limited conditions. (a) Representative pictures of eight-week-old tobacco plants grown

under restricted watering (top panel) or well-watered conditions (lower panel). Scale bars: 10 cm. (b) Biomass (fresh weight) of plants after 7 weeks of

growth. (c) WUE of biomass production (total leaf biomass in gram per litre water supplied after the shift to restricted watering). (d) Plant height after

6.5 weeks of growth. (e) WUE of plant height reached (total height in cm per litre water supplied after the shift to restricted watering). (f) Measurement of

photosynthetic assimilation capacity under water-limited conditions. (g) Measurement of stomatal conductance. (h) Measurement of the internal CO2

concentration in leaves. N-WT: wild-type tobacco plants. No statistically significant differences can be detected between lines (determined by one-way

ANOVA). For a plot of the intrinsic water-use efficiency (iWUE), see Figure S5. (i, j) N-28/29 plants display reduced sensitive to BRZ treatment. Seedlings

were grown seven days in the dark without (i) or with (j) 1 µM BRZ, and hypocotyl length was measured. Scale bars: 1 cm. Asterisks indicate statistically

significant differences between transgenic lines and the wild type as determined by one-way ANOVA followed by Dunnett’s multiple comparison

(*P < 0.05, **P < 0.01). All data presented are means � SD with n = 6–7 biological replicates in (b–e) and n = 8 biological replicates in (e–h). Data shown

in (i,j) are from one experiment, which was repeated 4 times with similar results (with n = 52–55 seedlings per condition).
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Construction of vectors for plant transformation

To generate vectors for combinatorial transformation, a HindIII/

EcoRI fragment containing a new multiple cloning site (MCSnew)

followed by a TAG stop codon and the nos terminator (Tnos) was

introduced into pUC18 (€Uberlacker and Werr, 1996), yielding

plasmid pUC18_MCS_NosT. Subsequently, one of the following

promoters was inserted as HindIII/SpeI fragment: PSUPERR, PACT2 or

PUBQ10. In the plasmid harbouring PUBQ10, the nos terminator was

replaced by the HSP18.2 terminator cloned as NdeI/EcoRI
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restriction fragment. The coding sequences of the 15 CPK genes

were cloned as SpeI/XmaI restriction fragments (except for CPK29

which was cloned as SpeI/SalI fragment) into these three basic

vectors as illustrated in Figure 2a. To enable optimal translation,

the sequence AAA was introduced between the 50 restriction site

and the ATG start codon (Joshi et al., 1997). The coding regions

of the CPK genes were amplified from Arabidopsis cDNA with

primers PS_057 to PS_086 (Table S3).

Vectors for re-transformation of CPK28 and CPK29 were

generated by cloning two annealed oligonucleotides (P3687

and P3688; containing XhoI, ClaI, Acc65I and MluI restriction

sites) into vector pXCS-YFP (Feys et al., 2005) removing the YFP

gene. The UBIQUITIN10 (UBQ10) promoter was amplified with

primers P3689/P3690 and inserted into the PmeI/NotI sites of

the vector. Additional restriction sites (AgeI, EcoRI, XmaI, NdeI,

AatII) were introduced at the proximal end of the promoter by

adding the appropriate recognition sequences to the 5’ end of

oligonucleotide P3690 (Table S3). The terminator for the

second expression cassette (HSP18.2; AT5g59720) was ampli-

fied from Arabidopsis genomic DNA with primer pair P3691/

P3692, and the resulting fragment was cloned into the AatII

and PmeI sites. The CaMV 35S promoter was replaced with the

UBIQUITIN4-2 promoter amplified from plasmid pPZP221 (Haj-

dukiewicz et al., 1994) with primer pair P3742/P3743 and

cloned into the XhoI/AscI restriction sites. To obtain a vector

with the 35S promoter in front of both transgene cassettes,

the 35S promoter from vector pBI121 was amplified with

primer pair P3974/P3975 and introduced as NotI/EcoRI frag-

ment. The CPK28 coding region was amplified with primers

P4762/P4763 from a previously cloned cDNA (Matschi et al.,

2015). The CPK29 coding region was amplified with primers

P4758/P4759 from Arabidopsis cDNA. The coding regions were

cloned as EcoRI/XmaI restriction fragments into the above

described pXCS derivatives, generating transformation vectors

pA-28 and pA-29, respectively (Figure 2a). To create vector pA-

28/29, the CPK29 coding region was amplified with primer pair

P4760/4761 and inserted into the KpnI site. An analogous

strategy was used to create the expression cassettes in vectors

pN-29 and pN-28/29 (Figure 3a). To obtain vectors with the

nptII resistance marker for tobacco transformation, the expres-

sion cassettes were amplified with primer pairs P5149/P5152,

P5151/P5150 and P5150/P5149 and transferred into the pORE-

E4 plasmid backbone (Coutu et al., 2007) as BamHI/XmaI

fragments, generating the final transformation vectors pN-28,

pN-29 and pN-28/29. All primers are listed in Table S3.

To construct a vector for re-transformation of CPK5 into

Nicotiana tabacum, the coding sequence of CPK5 (including a C-

terminal StrepII tag) was amplified with specific primers (Table S3)

from plasmid pXCSG::CPK5-StrepII (Dubiella et al., 2013) and

inserted as BamHI/SacI fragment into the binary vector

pGreen0179. The vector contains a hygromycin resistance gene

for selection of transgenic plants, and the MAS promoter to drive

expression of the transgene of interest.

Genotyping of plant lines

Genotyping of cpk28 and cpk29 T-DNA lines was done using the

primer pairs recommended by the SALK database (http://signal.sa

lk.edu/tdnaprimers.2.html). To verify transgene presence in com-

binatorially transformed and retransformed tobacco lines, the

same primer pairs were used as for the initial cloning of the

coding regions (Table S3). PCR amplification was carried out with

GoTaq DNA polymerase (Promega Corp.) and the reaction buffer

supplied by the manufacturer. Reaction conditions were chosen

according to the manufacturer’s instructions.

Growth conditions and stress tolerance assays

For all physiological measurements (gas exchange, photosynthetic

electron transfer, WUE under different watering regimes), wild

type and transgenic tobacco lines were grown in a controlled

environment chamber under standard conditions (light intensity:

350 µE/m2/s, day length: 16 h, day temperature: 22 °C, night
temperature: 18 °C, relative humidity: 75% during the day, 70%

during the night).

T1 seeds were used for all stress assays. For drought tolerance

assays, wild-type tobacco plants and transgenic plants were grown

under standard greenhouse conditions (diurnal cycle: 16 h light at

25 °C and 8 h darkness at 20 °C, average relative humidity:

~65%). In the initial screening,WTand transgenic lineswere grown

together in a tray, sharing the same soil. TheWT control plantswere

placed as a vertical or a diagonal line separating the transgenic

plants. Seeds were germinated onMSmediumwithout sugar after

stratification for 3 days at 4 °C. 15 day-old plants were then

transferred to soil and grown for two weeks under standard

greenhouse conditions. Pots with individual plants were arranged

in a randomized block design. Drought stress was applied by

withholding water for 22–28 days (depending on the outside

weather conditions), and survival was scored 7 days after rewa-

tering. To assess tobacco growth under water-limiting conditions,

water supply was reduced to 25% (i.e. 25 mL daily), and plants

were compared to awell-watered control group (100 mLdaily). For

exposure ofArabidopsis plants to severe drought stress, transgenic

plants and control plants were grown together in trays or,

alternatively, in individual pots using a randomized block design.

Plantswere germinated on peat pellets after 2–4 days stratification

at 4 °C, transferred to soil after 10 days and grown under long-day

conditions (16 h light at 22°C, 8 h darkness at 18°C, 60-65%
relative humidity) for 20 days. To induce drought stress, water was

withheld for 14 d, followed by re-watering and scoring of the

survivorship after two days. For salt stress experiments, plants were

watered with 200 mM NaCl until the soil was saturated and then

grown further for one additional week.

For in vitro assays,MSmediumwithout added sugarwas used for

tobacco, except for the BRZ treatments, in which the medium was

supplemented with 1 mM sucrose, while for Arabidopsis, ½ MS

mediumwith 1% glucose added was used. For stress experiments,

the medium was supplemented with either 200 mM NaCl (salt

stress) or 35 mM mannitol (osmotic stress; Claeys et al., 2014).

Seedswere stratified for 3 days at 4°C and then grown under long-

day conditions for 14 days (Arabidopsis) or 21 days (tobacco),

before fresh weight was measured. For treatments with the

brassinosteroid biosynthesis inhibitor BRZ (1 µM), a 3 h light pulse

was applied and the Petri dishes with the germinating seeds were

kept in the dark for 7 days before hypocotyl length was measured.

In vitro plants were raised under standard growth conditions in a

growth chamber at a light intensity of 100–120 µE/m2/s.

Physiological analyses

Gas exchange measurements were performed as described

previously (Sch€ottler et al., 2017). Briefly, a GFS-3000 open gas

exchange system equipped with the LED array unit 3055-FL as an

actinic light source (Heinz Walz GmbH, Effeltrich, Germany) was

used to record light-response curves of CO2 assimilation (at 22°C
cuvette temperature, 17 500 ppm humidity, and a CO2 concen-

tration of 450 ppm). After leaf respiration had been determined
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in darkness, the actinic light intensity was stepwise increased to

100, 200, 350, 500, 1000 and finally 1500 µE/m2/s. Gas

exchange was measured at each light intensity until the steady

state of transpiration and leaf assimilation was reached.

The intrinsic water-use efficiency (iWUE) was calculated as the

instantaneous ratio between the net CO2 assimilation rate (A) and

the stomatal conductance to water vapour (gH2O). For light

intensities close to or below the light compensation point, values

were not calculated, to avoid negative values for iWUE.

Chlorophyll-a fluorescence parameters were measured with a

Dual-PAM-100 instrument (Heinz Walz GmbH). The maximum

quantum efficiency of PSII was determined after 30 min of dark

adaptation. Then, the capacity of linear electron transport was

determined from light response curves of chlorophyll-a fluores-

cence and was subsequently corrected for leaf absorptance. Leaf

absorptance was calculated as 100% incident light minus light

transmitted through the leaf (%) minus light reflected on the leaf

surface (%). Transmittance and reflectance spectra between 400

and 700 nm wavelength were recorded by using an integrating

sphere attached to a photometer (V650, Jasco GmbH, Groß-

Umstadt, Germany). The spectral bandwidth was set to 1 nm, and

the scanning speed was 200 nm/min. Chlorophyll contents and

chlorophyll a:b ratios were measured with a Jasco V-630 pho-

tometer (Jasco GmbH) in 80 % (v/v) acetone (Porra et al., 1989).

Figure 5 Screening of the combinatorially transformed population for salt tolerance and validation by targeted retransformation. (a) Example of a

positively selected combinatorial line (N-L080) that segregates salt-tolerant plants in the T1 generation on synthetic medium containing 200 mM NaCl. (b)

Transgene contents of the twelve salt-tolerant lines, as determined by PCR assays. (c) Representation of each CPK transgene in the salt-tolerant

combinatorially transformed lines. The most frequently detected CPK (CPK5) is shown as black bar. (d) Seed germination rates in control conditions (C) and

under salt stress (S; 200 mM NaCl). Germination was scored after nine days for the wild type and two independently generated transgenic tobacco lines

transformed with a CPK5 overexpression construct (N-5-1 and N-5-2). (e) Biomass (fresh weight per plant) of wild-type plants, N-5-1 plants and N-5-2

plants grown in soil for one week after watering with 200 mM NaCl. (f) Plant diameter of the same plants measured directly before harvest. Asterisks

indicate statistically significant differences between transgenic and wild-type plants as determined by one-way ANOVA and Tukey’s (d) or Dunnett’s (e, f)

multiple comparison (*P < 0.05, **P < 0.01, ***P < 0.001). All data are presented as means � SD from three independent experiments (d: n = 6

biological replicates with 20 seeds per line in each replicate; e, f: n = 14–16 biological replicates).
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Stomatal opening was assessed by stomatal aperture mea-

surements. To this end, 2-week-old seedlings raised on synthetic

medium were transferred to soil and grown under standard

greenhouse conditions (19–21 °C, 16/8 h light/dark cycle, 60–
65% relative humidity). Leaves from 5- to 6-week-old plants were

sampled, and explants were incubated in stomatal opening buffer

(10 mM KCl, 50 µM CaCl2, 25 mM MES-Tris pH 6.5) for 2.5 h

under a light intensity of 150 µE/m2/s. The explants were then

exposed to 0.05% ethanol (control) or 10 µM ABA in 0.05%

ethanol for 2 h. Subsequently, epidermal peels were prepared

and fixed in lactic acid and images of stomata from the abaxial

side of the leaves were taken with the Olympus epifluorescence

microscope BX-51.
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