
molecules

Review

Pharmacological Insights into Halophyte Bioactive Extract
Action on Anti-Inflammatory, Pain Relief and
Antibiotics-Type Mechanisms

Rocco Giordano 1,† , Zeinab Saii 1,†, Malthe Fredsgaard 2,†, Laura Sini Sofia Hulkko 2,†,
Thomas Bouet Guldbæk Poulsen 1 , Mikkel Eggert Thomsen 1, Nanna Henneberg 1 , Silvana Maria Zucolotto 3 ,
Lars Arendt-Nielsen 1 , Jutta Papenbrock 4 , Mette Hedegaard Thomsen 2 and Allan Stensballe 1,*

����������
�������

Citation: Giordano, R.; Saii, Z.;

Fredsgaard, M.; Hulkko, L.S.S.;

Poulsen, T.B.G.; Thomsen, M.E.;

Henneberg, N.; Zucolotto, S.M.;

Arendt-Nielsen, L.; Papenbrock, J.;

et al. Pharmacological Insights into

Halophyte Bioactive Extract Action

on Anti-Inflammatory, Pain Relief

and Antibiotics-Type Mechanisms.

Molecules 2021, 26, 3140. https://

doi.org/10.3390/molecules26113140

Academic Editor: Lakshmi Kotra

Received: 22 April 2021

Accepted: 21 May 2021

Published: 24 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
rg@hst.aau.dk (R.G.); zsaii14@student.aau.dk (Z.S.); tbgp@hst.aau.dk (T.B.G.P.); meth@hst.aau.dk (M.E.T.);
nhenne16@student.aau.dk (N.H.); LAN@hst.aau.dk (L.A.-N.)

2 Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark; mfred@et.aau.dk (M.F.);
lssh@et.aau.dk (L.S.S.H.); mht@hst.aau.dk (M.H.T.)

3 Center of Health Sciences, Department of Pharmaceutical Science, Federal University of Santa Catarina,
Campus Universitário, Trindade, 88040–970 Florianópolis, Brazil; szucolotto@hotmail.com

4 Institute of Botany, Leibniz University Hannover, D-30419 Hannover, Germany;
Jutta.Papenbrock@botanik.uni-hannover.de

* Correspondence: as@hst.aau.dk; Tel.: +45-61608786
† These authors contributed equally to this work.

Abstract: The pharmacological activities in bioactive plant extracts play an increasing role in sustain-
able resources for valorization and biomedical applications. Bioactive phytochemicals, including
natural compounds, secondary metabolites and their derivatives, have attracted significant attention
for use in both medicinal products and cosmetic products. Our review highlights the pharmaco-
logical mode-of-action and current biomedical applications of key bioactive compounds applied as
anti-inflammatory, bactericidal with antibiotics effects, and pain relief purposes in controlled clinical
studies or preclinical studies. In this systematic review, the availability of bioactive compounds from
several salt-tolerant plant species, mainly focusing on the three promising species Aster tripolium,
Crithmum maritimum and Salicornia europaea, are summarized and discussed. All three of them have
been widely used in natural folk medicines and are now in the focus for future nutraceutical and
pharmacological applications.

Keywords: secondary metabolites; halophytes; hydroxycinnamic acid; inflammation; nutraceuticals

1. Halophyte Species for Current and Future Biomedical Applications

Salt-tolerant plant species, also called halophytes, belong to many botanical families.
Halophytes are defined as plants that can grow and complete their life-cycle in a salt
concentration of at least 200 mM NaCl [1]. They do not form a systematical group and,
phylogenetically, they are not related to each other. Through evolution, they have adapted
to saline conditions in several ways: morphologically, physiologically, and biochemically.
Hence, halophyte species are found to produce high levels of bioactive compounds and
free radical-scavenging secondary metabolites, potentially due to their adaptation to harsh
environmental conditions. High salinity during growth and development also increases
the level of free radicals in plants [2,3]. Such potential beneficial dietary factors in small
doses and complex combinations (e.g., polyphenols, fibers, polyunsaturated fatty acids,
etc.) for lifestyle changes can lead to reduced inflammation and improved health; how-
ever, metabolic disturbances are key contributors to disease progression [4]. Screening
and testing of extracts from medicinal plants species, including halophytes, against a
variety of pharmacological targets and disease conditions in order to benefit from the
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immense natural chemical diversity is a research focus in many laboratories and companies
worldwide [5,6]. For halophytes, the relevant compound classes are a combination of
components typical of lignocellulosic biomass and components unique for a family or
species (Figure 1). The majority of the free radical-scavenging phenolic compounds are
biosynthesized through the shikimic acid, acetic acid, and phenylpropanoid pathways,
resulting in phenylpropanoids, simple phenols, and phenolics, respectively [7,8].
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Over time, nature has been a rich source for various natural bioactive substances that
have many applications in folk medicine and ethnopharmaceuticals [10–12]. For thousands
of years, plants were the only source of medicine due to the absence of other compounds
available, and they were used for a broad spectrum of medical purposes as therapies based
on their contents of secondary metabolites and their bioactive properties [13].

The present review will focus on reviewing the current state of the art for biomedical
applications of bioactive molecules present in three halophytic plant species, Aster tripolium
(Jacq.) Dobrocz., Crithmum maritimum L., and Salicornia europaea agg. (illustrated in Figure 1),
due to their potential use in nutraceutical foods, cosmetics, and also as bioactive components for
medicinal applications because they contain health-promoting compounds such as minerals,
fibers, oils, phenolics and vitamins [14]. The biological qualities of these three halophytic
plants species can overall be divided into anti-inflammatory, antioxidant-rich and antibacterial
activities, and future use in medicinal practice. The bioactive compounds are listed in Table 1
and summarized in Section 2. The chemical structure and biological activities of secondary
metabolites isolated from Salicornia europaea L. have recently been reviewed [15].
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Table 1. Anti-inflammatory and antibacterial activities of several halophytes based on their bioactive compounds.

Anti-Inflammatory Antibacterial Antioxidative References

Aster tripolium
- Caffeoyl esters (isomer of

chlorogenic acid)
- Quercetin (flavonoid)

- Caffeic acid (from chlorogenic
acid) - Quercetin (flavonoid) [11,12,14,16–21]

Crithmum maritimum

- Chlorogenic acid (hydroxycin-
namic acids)

- p-Cymene
- β-Phellandrene, gamma-

terpinene, thymol methyl
ether and dillapiole (essential
oils)

- Essential oils
- Falcarindiol

- Chlorogenic acid (hydroxycin-
namic acids) [11,12,14,21–24]

Salicornia europaea

- Acacetin (flavone)
- Chlorogenic acid, rosmarinic

acid (esters)
- Cinnamic acid, p-coumaric

acid, caffeic acid, ferulic acid,
sinapic acid, (hydroxycin-
namic acids)

- Gallic acid, salicylic acid, pro-
tocatechuic acid, quinic acid
(phenolic acids)

- Irilin B (isoflavonoid)
- Hesperetin (flavanone)
- Galangin isorhamnetin,

kaempferol, myricetin,
quercetin, rhamnetin, (an-
thoxanthins flavonol)

- Phenols
- Fatty acids

- Tungtungmadic acid
- Quercetin
- Chlorogenic acid
- Caffeoylquinic acid

[3,15,25–28]
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2. Bioactive Components Including Primary Metabolites, Phenolics and Their
Antioxidant Properties

The most common bioactive components include primary metabolites such as amino
acids, proteins, bioactive polysaccharides, lipids, and lignin [29]. Dietary fibers and min-
erals (Mg, Ca, Fe, K) are also present in large amounts [3]. Immunomodulatory proteins,
peptides, and polysaccharides have been isolated and characterized from Salicornia spp.,
that may explain some of the therapeutic efficacies which have been used in folk medicine
to treat various diseases, including cancer [30]. The class of secondary metabolites or
phytochemicals include compounds of pharmacological and biological importance, includ-
ing alkaloids, fatty acids, and lipids, flavonoids, phenolics, quinines, tannins, terpenoids,
steroids and saponins, and coumarins. The content of the secondary metabolites may vary
depending on the particular habitat where the plant grows. The secondary metabolites from
plants are challenging to categorize and replicate in the industry because their metabolic
pathways of synthesis, features, and mechanisms of action often have similarities and
overlap as well as there being an incomplete understanding of synthesis. However, a pos-
sible classification is based on their biosynthetic pathways which include large molecule
categories: (a) phenolics including phenolic acids, their derivatives, and flavonoids; (b)
terpenes and steroids; and (c) alkaloids [10].

Antioxidants can be found in high quantities in different foods, such as vegetables,
berries and fruits, because most plants contain phenolic compounds, which are secondary
metabolites with health beneficial properties, proven in in vivo and in vitro studies [31–36].
The common structural characteristics all phenolics share are aromatic rings, hydroxyl
groups and, commonly, electron double bonds. Phenolics have been extracted using
ethanol, methanol, water, ethyl acetate, and dichloromethane by the use of simple solvent
extraction under reflux, Soxhlet extraction, assisted ultrasound extraction, and assisted
microwave extraction [37–41]. Different extraction methods and solvents have been shown
to target the extraction of different phenolics [41,42]. Especially, phenolic monomers have
been shown to be thermolabile, and thereby prone to thermal degradation. Therefore,
prolonged extractions using high temperatures should be avoided, and the extraction
method should be chosen accordingly [38,43]. Rice-Evans et al. [43] investigated the impact
of a number of hydroxyl groups on antioxidant activity of each molecule compared to
vitamin E and proposed a correlation between the number of hydroxyl groups in HCAs,
phenolic acids, flavonoids, their respective derivatives, and their antioxidant capacity. Here,
the antioxidative capacity of the catechins epicatechin gallate (ECG) and epigallocatechin
gallate (EGCG) is due to the molecular presence of seven and eight hydroxyl groups,
respectively [44]. The latter compounds are well known antioxidants, relevant to cancer
and neurodegenerative diseases [45,46].

Not only do a high amount of hydroxyl groups have high antioxidant activity, but
Cano et al. [47] found the dimer of the hydroxycinnamic acid ferulic acid, 5–5′diferulic acid,
to have a high superoxide anion free radical scavenging capacity compared to its monomer,
ferulic acid. With a 35.7% inhibition of superoxide anion formation by 5–5′diferulic acid,
compared to ferulic acid showing no direct inhibition of superoxide anion formation,
Cano et al. [46] concluded that the type of linkage between ferulic acid monomers alters the
superoxide anion free radical scavenging capacity, independent of the number of hydroxyl
groups. The same trend of inhibition of superoxide anion formation after dimerization
was also shown to be true for dimers of the flavonols kaempferol and quercetin containing
multiple hydroxyl groups [47].

The beneficial properties of antioxidants are due to their ability to scavenge free radi-
cals. Free radicals are atoms, molecules, or ions with unpaired electrons, and in biological
systems are often derived from molecules containing oxygen, nitrogen, or sulfur, called re-
active oxygen/nitrogen/sulfur species, or ROS, RNS, and RSS, respectively [48]. Common
examples of ROS are the superoxide anion (O2

−), hydroxyl (OH), and hydroperoxyl (HO2).
Varieties of ROS are produced in living cells as products of oxygen utilization, with a
possibility for these to lead to cellular damage, metabolic disorders, or cause DNA damage.
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Usually, enzymatic pathways can neutralize these free radicals, e.g., superoxide dismutase,
catalase, or glutathione peroxidase [49]. However, these pathways might not be sufficient
in all cases, and a non-enzymatic nutritional supplement of antioxidants is necessary.

Diet management using plant-based formulations may improve the metabolic status
of patients, including those with diabetes mellitus, where an increased oxidative stress and
chronic low-grade inflammation is observed as a consequence of the complex syndrome
including long-term alterations of protein and lipid metabolisms [50]. Here, researchers
found that a plant-based antidiabetic formulation including antioxidants was able to
enhance total serum antioxidant defense and improve overall serum redox status and HDL
redox function. More than 5000 flavonoids have been identified and are distributed in a
wide range of plants; flavonoids possess documented anticancer activity, both in animal
and cellular model systems [51]. Here, luteolin is an important natural antioxidant which
has potent anticancer effects under both in vitro and in vivo conditions.

Flavonoids are a large family of polyphenolic compounds that consist of 12 major sub-
classes according to their chemical composition. Some of these are flavan-3-ols, flavonols,
flavanones, flavones, isoflavones, and glycosylated flavonols [52]. These compounds pro-
vide an essential source of antioxidants in the human diet. They essentially exist in all foods,
which have an origin from plants [20]. Although flavonoids and phenolics, in general, are
thought to be non-nutritive agents, they are believed to have a possible health-promoting
impact on multiple diseases such as cancer and atherosclerosis [20,53]. The nutraceutical
value of S. herbacea-derived glucopyranosides as potent anti-obesity agents have been
attributed to the alleviation of lipid accumulation [54]. Despite the broad range of key
bioactive components, more clinical research is needed to substantiate the composition and
quantity thereof in specific halophytes, as well as to determine the biomedical effects in
health and disease.

3. Nutraceutical and Pharmacological Mode-of-Action of Key Secondary Metabolites
in Halophytes

Wild edible plants (WEPs) are considered as promising sources of essential com-
pounds, needed not only in the human diet including carbohydrates, proteins, and lipids,
but also of other minor compounds such as phenols, vitamins, or carotenoids [55]. The pres-
ence of phenolic compounds in these vegetal matrices is supposed to provide a prophylactic
effect against further pathogenesis and disorders related to aging or oxidative stresses.
The utilization and valorization of phytochemicals have focused on nutraceutical use.
Hence, the modes-of-action, pharmacological attributes, and medicinal properties target
multiple common therapeutic areas, such as neuroprotective, antioxidant, analgesic, im-
munomodulatory, antimicrobial, antidiabetic and cardioprotective activities (Figure 2) [56].
Neuroprotection is attributed to high levels of antioxidants, including tungmadic acid,
quercetin, and chlorogenic acid, enabling the scavenging of reactive oxygen species (ROS),
e.g., H2O2, efficiently. These electrophilic compounds exert antioxidant activity as well as
induce antioxidant enzymes through the Nrf2 signaling pathway, thereby exerting protec-
tive effects against ROS-induced neuronal cell damage [57]. Nrf2 regulation contributes to
anti-inflammatory processes by orchestrating the recruitment of inflammatory cells, thus
regulating gene expression through the antioxidant response element (ARE) [58]. NRF2 ac-
tivation provides cytoprotection against numerous pathologies including chronic diseases
of the lung and liver, autoimmune, neurodegenerative and metabolic disorders, and cancer
initiation [59]. However, unidentified compounds may be co-responsible for the neuropro-
tective effect [60]. Linked to neuroprotection and ROS scavenging then HCAs and their
derivatives also display antioxidant, anti-collagenase, anti-inflammatory, antimicrobial
and anti-tyrosinase activities, as well as ultraviolet (UV) protective effects. This suggests
that HCAs can be exploited as anti-aging and anti-inflammatory agents, preservatives and
hyperpigmentation-correcting ingredients [61]. Recent findings suggest that the reversal
of UVB-induced damages to skin may be prevented by the protecting effects of aqueous
extracts of S. europaea affecting basal keratinocytes [62].
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The involvement of A. tripolium, C. maritimum, and S. europaea bioactive extracts in
pain and itch mechanisms remains scarce, although several studies have been conducted,
in vitro and in vivo, in order to demonstrate the effects of secondary metabolites present
in the three species in relation to nociception and analgesia [63–68]. In a previous study,
the authors looked at the analgesic action of chlorogenic acid (5-caffeoylquinic acid, CGA)
in animal neuropathic pain models. CGA is a polyphenol formed by the esterification of
caffeic and quinic acid, which can be found in plants, vegetables, and fruits [69], showing
antioxidant, anti-inflammatory, antigenotoxic, anticancer, and cytostatic activities [63,70].
Dos Santos and colleagues [57] investigated the effect of pure CGA in the formalin-induced
pain test, where CGA was reported to possess antinociceptive activity in neuropathic pain
models, drastically reducing the pain behavior of mice after the injection of formalin [63].
Neuropathic pain could arise from tissue damage, inflammation, or injury to the ner-
vous system, and is characterized by three sensory abnormalities which include increased
sensitivity to painful stimuli (hyperalgesia), perception of innocuous stimuli as painful
(allodynia), and spontaneous pain [64]. In this direction, another study showed the antinoci-
ceptive action of CGA in the neuropathic pain rat model [65]. The authors showed that the
administration of CGA produces significant dose- and time-dependent anti-hyperalgesic
effects in chronic constrictive nerve injury (CCI) rat models, and that a chronic treatment
for 14 days reduces mechanical hyperalgesia in rats, suggesting action of the CGA on the
inhibition of reactive oxygen species (ROS) [65]. Moreover, another study demonstrated
that the administration of CGA systemically or intrathecally improves mechanical and
cold hyperalgesia in rat neuropathic pain models [68]. In 2014, Qu et al. [61] suggested
that the usage of CGA may exert analgesic action by modulating acid-sensing ion channels
(ASICS) in rat dorsal root ganglion neurons [67]. The effect of plant extracts and secondary
metabolites on itch or skin diseases is a topic that needs to be further evaluated, although
a recent study looking into the effect of the prolonged application of S. europaea-based
cream on sunburned skin of women showed that eight weeks of treatment can improve
skin structure and texture, helping the recovery from topical induced sunburn [62].
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4. Anti-Inflammatory and Antimicrobial Activities of the Three Halophytes
4.1. Characteristics and Medicinal Properties of Aster Tripolium
4.1.1. Anti-Inflammatory Compounds of Aster Tripolium

Aster tripolium (syn. Tripolium pannonicum) is a halophyte that belongs to the Aster-
aceae family, which is one of the most consumed wild-gathered food in several European
countries [71]. It is often found in coastal areas and sometimes in salty bogs [72]. It consists
of multiple bioactive compounds, which gives A. tripolium considerable potential as a
functional food ingredient. Apart from A. tripolium being highly useful for fodder and food,
such as a salad or vegetable, it has high levels of nutrients in its leaves [73]. Additionally,
these functional food ingredients may have a positive outcome on numerous diseases such
as diabetes [74]. Some of the bioactive compounds are three types of caffeoyl esters which
are isomers of CGA. Besides acting as anti-inflammatory and antihypertensive agents, as
stated previously, evidence suggests that CGA from coffee possesses insulin sensitivity
effects with the same mechanism of action as metformin [75]. Metformin is an antibiotic but
has been approved as a first-line treatment for type 2 diabetes [76,77]. Glucose tolerance
has been investigated in obese men, which revealed that treatment with CGA improved
insulin responses. Both in vitro and in humans, researchers have demonstrated that CGA
increases cell insulin secretion and thus glucose uptake [78,79]. These qualities make CGA
valuable in the treatment of diabetes and obesity. Another bioactive compound found in
A. tripolium at unreported levels is quercetin, which belongs to the flavonol subclass of
flavonoids [53]. Quercetin is a very strong antioxidant, also found in foods such as apples,
onions, and tea [16,20]. Accordingly, quercetin can chelate metals, scavenge oxygen-free
radicals, and prevent the oxidation of low-density lipoprotein (LDL) in vitro [17]. There-
fore, quercetin could thus contribute significantly to the antioxidant defenses present in
blood plasma; it is reportedly able to inhibit the oxidation of LDL in atherosclerotic lesions
and thereby be a natural anti-atherosclerotic diet component or be used in T2DM to achieve
adequate glycemic control [80–82].

4.1.2. Antimicrobial Compounds of Aster Tripolium

To the best of our knowledge, there is currently no evidence that suggests or clarifies
whether A. tripolium possesses antimicrobial properties. Antibiotic resistance mechanisms
are an increasing global health concern; therefore, research in this field with A. tripolium
in mind is crucial. In general, antibiotics possess the ability to exert selective toxic or
growth-limiting effects on bacteria. This selective toxic effect of the antibiotics is nontoxic
for human cells but can simultaneously inhibit the functions and target the structures in the
bacteria cell [83]. Antibiotics are commonly classified into bactericidal and bacteriostatic
agents based on their antimicrobial action. The above-mentioned classification discrimi-
nates antibiotics that kill bacteria, referred to as bactericidal, and antibiotics that inhibit
bacterial growth or reproduction, called bacteriostatic [84]. One way that bactericidal
antibiotics kill bacteria is by inhibiting cell wall synthesis. Another mechanism of action
includes the inhibition of key bacterial enzymes or protein translation. On the other hand,
bacteriostatic antibiotics limit the growth of bacteria by interfering with bacterial protein
production, DNA replication, or other aspects of bacterial cellular metabolism [85]. A.
tripolium also contains CGAs, similarly to other halophytic species. CGA is a family of
esters constructed between certain trans-cinnamic acids and trans-quinic acid [22]. Inter-
estingly, however, if CGA isomers are hydrolyzed to quinic and caffeic acids, the latter
have shown antimicrobial effectiveness against certain Gram-bacteria. Elegir et al. [18]
demonstrated that caffeic acid revealed antibacterial effects against Staphylococcus aureus,
and when increasing the concentration, the acid was also capable of exerting bactericidal
activity against Escherichia coli [18,19]. According to multiple studies, caffeic acid has the
strongest antibacterial effects observed when compared to other phenolic acids such as
p-coumaric acid. It has been postulated that this might be due to one or more hydroxyl
groups substituted at the caffeic acid phenol ring. Additionally, because caffeic acid is
less polar, it is capable of exerting lipophilicity and thus impacts the permeability of the
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cell membrane of the bacteria and interferes with the aerobic metabolism. The cell mem-
brane is crucial for the integrity of the bacterium, which explains why caffeic acid acts
bactericidal [18,19].

4.2. Characteristics and Medicinal Properties of Crithmum maritimum
4.2.1. Anti-Inflammatory Compounds of Crithmum maritimum

Crithmum maritimum is known as sea fennel or rochepatok samphire and is a member
of the Apiaceae family. It grows on maritime cliffs and, more rarely, in the sand. Normally,
the leaves are used as a condiment or are eaten as salad [14]. Already used in folk medicine,
sea fennel seems to be a very promising candidate for both the pharmaceutical and food
industry in order to produce new functional products due to its content of vitamin C,
iodine, carotenoids, and great amounts of phenolics compared to other species [23,86].
Additionally, C. maritimum has gained increasing attention because it is strongly believed to
possess antioxidant and antimicrobial activities [11,12,14,87]. The essential oil (EO) of sea
fennel contains several volatile compounds such as limonene, α-pinene, sabinene, p-cimene,
β-terpinene, β-myrcene, thymol, γ-terpinene, carvacrol, p-cymol, β-ionone, dillapiole,
anisaldehyde, β-caryophyllene, carvone, and myristicin [86,88]. Bioactive compounds
identified in C. maritimum are HCAs and CGA. It is postulated that CGA is produced
as a self-defense mechanism during environmental stresses, such as boron and nitrogen
deficit or against ROS. CGA is known for several qualities, including antimicrobial, anti-
inflammatory, and immune properties [11,12,14,87]. In terms of medical use, the effect of
CGA on hypertension has been proven by multiple studies [89–92]. Several mechanisms
have been postulated on how CGA decreases blood pressure. Some of the postulations
are the stimulation of nitric oxide (NO) production through the endothelial-dependent
pathway, reduction in free radicals by blocking NAD(P)H oxidase expression and activity
and, importantly, by the inhibition of angiotensin-converting enzyme [70,93]. Chauhan et al.
(2012) demonstrated the anti-inflammatory and immune properties of CGA. Their study
revealed the suppression of Th1 cell cytokines such as IL-2 and IL-12 which play a major
role and an essential role, respectively, in tolerance in the thymus and the regulation of
IFNy and TNFa [94]. Simultaneously, their study revealed an elevation of Th2 cell cytokines
such as IL-10 and IL-4, of which principal functions include the negative regulation of Th1
cells, cytokines, and anti-inflammatory response. Thus, CGA seems to exhibit effects that
may prove useful in treating/battling/improving different autoimmune or inflammatory
diseases such as rheumatoid arthritis and diabetes mellitus that exerts hypoglycemic
and hypolipidemic effects [21]. In the latter, CGA seems to mitigate the damaging effects
induced by hyperglycemic conditions in both pre-and post-treatment of human hepatocytes
cells [95].

Crithmum maritimum is also rich in EOs which are proposed to be produced as a
self-defense mechanism due to stressful events, and their amount reaches about 0.8%
in fruits and from 0.15 to 0.3% in leaves [96]. The EOs mainly comprise monoterpene
hydrocarbons and oxygenated monoterpenes. The major oil components are p-cymene,
β-phellandrene, β-terpinene, thymol methyl ether, and dillapiole [23]. The monoterpenes,
especially the thymol, are believed to play an important role in the odors and taste of the
plant [16]. Additionally, a study by Jallali et al. [13] showed that the EOs have antioxidant
effects. However, it was low compared to the acetone extract [23]. The oils revealed benefi-
cial protective abilities, indicating that they can protect a lipid matrix from an oxidative
event by the formation of hydroperoxydienes (primary oxidation) and by reducing the
degradation of these (secondary oxidation) [23,24,36]. Altogether, C. maritimum contains
several bioactive compounds exhibiting anti-inflammatory and antioxidant properties.
Thus, the non-volatile EOs extract rich in hydroxycinnamic acids and flavonoid glyco-
sides, obtained after the hydrodistillation process, have important biological activities,
thus endorsing the industrial exploitation of this plant [97].
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4.2.2. Antimicrobial Compounds of Crithmum maritimum

As mentioned, EOs have antioxidant effects. However, the important role of EO is
antimicrobial activity, despite it being less potent than that of synthetic antibiotics. Nevertheless,
due to numerous divergent mechanisms of action, they may have the potential to withstand
resistant strains of microorganisms [23,24]. Meot-Duros et al. [8,9] have demonstrated that
the C. maritimum has excellent antimicrobial activity against bacteria such as Pseudomonas
aeruginosa, Candida albicans, and Escherichia coli [11,12]. From the C. maritimum leaf, they
purified and identified falcarindiol, a polyacetylene with several biological activities such as
antibacterial, anti-inflammatory, and scavenging activity [11,12,14]. Additionally, they revealed
that falcarindiol has antimycobacterial properties against Mycobacterium tuberculosis [11,12].
Several studies have also demonstrated cytotoxic properties of falcarindiol against cell lines
such as lymphocytic leukemia and human myeloma [12,98–100]. These findings have potential
for future research in the field of overcoming antibiotic resistance, where C. maritimum is an
obvious and possible candidate.

4.3. Characteristics and Medicinal Properties of Salicornia Species
4.3.1. Anti-Inflammatory Compounds of Salicornia europaea and other Salicornia species

Salicornia europaea is one of the most salt-tolerant species worldwide and belongs to
the Amaranthaceae family. Halophytes belonging to the Amaranthaceae family occur in
salt marshes and are exposed to excessive environmental salt concentrations as well as
physiological drought. Although not restricted to wetlands, these species dominate saline
wetlands, such as inland and coastal salt marshes. They grow in coastal regions across
mainly the Mediterranean and East Asia, as well as northern European countries including
Denmark and Germany. The species is also known as glasswort or marsh samphire in
English. The leaves of the plant are used as a salt substitute, to season vegetable, and as a
nutritious fermented food, mostly in Korea but also in some European countries. The nutri-
tional profile, the antioxidant capacity, and microbial quality of the produced plants have
been evaluated, including minerals and vitamins [101]. This is due to its nutritional and
therapeutic importance for treating constipation, obesity, and diabetes [25,54]. It grows in
extreme saltwater areas, such as seashores, marsh lands, and salted deserts; therefore, it pro-
duces a rich variety of secondary metabolite compounds such as flavonoids, saponins, and
alkaloids. These compounds are believed to play a major role in the biological properties of
the plant, such as antioxidative, antitumor, antidiabetic, and neuroprotective potential [25].
Botanical extracts from S. europaea have also been reported to include saponin compounds,
oleanolic acid glucoside, and chikusetsusaponin methyl ester, which have been shown
to work in diabetes prevention and as anti-obesity agents [2]. The number of bioactive
compounds are relatively higher in matured plants, in comparison to young plants, and
the amounts of phenylpropanoic acids and flavonols in S. herbacea ethanol extract have
shown to increase by 32.6% and 42.4%, respectively, as the shrubs mature [102]. Salicornia
europaea have been reported to include β-cyanines and isoflavones, which are known for
their strong anti-inflammatory and free radical scavenging properties [2]. Flavonoids can
be grouped into bioflavonoids, isoflavonoids, and neoflavonoids, and are derived from the
same structures, such as flavone, flavonol, and 4-phenylcoumarin, and have been previ-
ously investigated for their anti-neuroinflammatory effects [25,103]. In their study, Kim and
colleagues [22] show that the isoflavonoid irilin B extracted from S. europaea revealed anti-
ROS and anti-inflammatory activities in BV-2 microglial cells (in vitro). Thus, their study
suggests that irilin B successfully improves the damaging effect of microglia-mediated
neuroinflammation and stimulates antioxidative effects. Neuronal death and oxidative
stress are some of the hallmarks of neurodegenerative diseases such Parkinson’s. Therefore,
the irilin B extract from S. europaea may possess anti-Parkinson’s disease-like (anti-PD)
potential [25]. Besides S. europaea, S. herbacea and other Salicornia species have also shown
to be rich in numerous bioactive compounds, and ethanol extract from the aerial parts
of S. ramosissima have been reported to include antioxidant alkyl ferulates and coumarin,
LDL cholesterol-lowering stigmastanol (syn. sitostanol), and ethyl(E)-2-hydroxycinnamate,
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which is mostly known for its anti-cancer potential [104]. Sterols and HCAs, such as ferulic
acid, have also been detected from the n-hexane extract of S. ramosissima [105]. Another suc-
culent halophyte species in the Salicornioideae subfamily is Arthrocnemum macrostachyum.
Despite their similarities, their total phenolic content seems different, suggesting variability
in their chemical composition. AM appears to have a sixfold more active extract than the
other species, and thus can exert the highest scavenging activity of reactive species [106].
Flavonoid glycosides including quercetin-3-glucoside and isorhamnetin-3-glucoside can
be structurally transformed into minor aglycone molecules, which play a significant role
in exerting physiological responses in vivo. Ahn et al. demonstrated that such micro-
bials catalyzed the transformation into quercetin, and isorhamnetin promoted improved
anti-inflammatory activity vs. the original source molecules against lipopolysaccharide-
induced macrophages [107]. This verifies the anti-inflammatory and antioxidant effects
of the Salicornia species. Due to these properties, the plants exhibit therapeutic and pre-
ventive/protective effects on skin conditions by reducing inflammation of the skin, with
the possibility to treat wounds effectively. In some cases, this could be applied in a patch
and/or in/on a bandage or simply applied by the hand [106]. In vitro cell assays demon-
strated that Arthrocnemum macrostachyum possesses a significant concentration-dependent
inhibitory performance on matrix metalloproteinase-1 (MMP-1) release by aged fibrob-
lasts. MMP-1 is a collagenase involved in the breakdown of the extracellular matrix [108].
The inhibition of this process reduces, delays, and prevents the breakdown of collagen
in the skin and maintains natural collagen levels. Thus, the inhibition of MMP-1 by the
halophytic Arthrocnemum macrostachyum suggests that the plant can protect the extracel-
lular matrix against damaging outcomes and supply anti-aging effects when applied to
the skin. This means that the plant is valuable as a cosmetic for the use of anti-wrinkle
cream/extract/agent by reducing or delaying the aging of the skin. The effect could be
achieved by applying the invention by several administration routes such as by injection,
spray, sponge, and/or directly by the hand [106]. Apart from that, it has been demon-
strated that S. europaea consists of several other compounds, such as the flavone acacetin [3].
Acacetin, which is an O-methylated flavone, has anti-inflammatory and antioxidant effects
that may have a positive effect on sepsis, for example. The explanation for this could be
that acacetin strongly inhibits the expression of several proinflammatory cytokines, such
as inducible nitric oxide synthase, cyclooxygenase-2, superoxide dismutases, and heme
oxygenase-1 [26,60]. Nevertheless, S. herbacea also consists of hesperetin, a flavanone found
in citrus fruits which showed to have inhibitory effects on microglia-mediated neuroin-
flammation [3,27]. It was proposed that hesperetin was capable of suppressing MAPK
pathways and inflammatory cytokines such as interleukin-1b and IL-6 which are released
by activated microglial cells in neurodegenerative diseases, for example [27].

4.3.2. Antimicrobial Compounds of S. europaea

As specified earlier, S. europaea has anti-inflammatory effects. Nonetheless, its antimi-
crobial effects have been demonstrated by Essaidi et al. [2], who showed the antimicrobial
effect of S. europaea against several pathogenic mechanisms, such as Staphylococcus aureus,
Escherichia coli, and Klebsiella pneumonia, among others [3]. The extract from S. europaea
mostly affected Gram-positive bacteria, because they showed the most sensitivity by hav-
ing a greater inhibition zone than the Gram-negative bacteria [3]. The antimicrobial activity
of S. europaea is suggested to be attributed to multiple compounds in the plant. These com-
pounds may have bacteriostatic effects because some bacteria are especially sensitive to
the extracts from halophytes. Compounds such as phenols are thought to have an impact
on this antimicrobial activity. However, this activity is also thought to be associated with
components other than phenols; for instance, fatty acids. In addition, Essaidi et al. [2] stated
that these extracted compounds from S. europaea are potential inhibitors of cytochrome
P450 enzymes, such as CYP2D6, CYP1A2, and CYP3A4. This is because S. europaea contains
flavonols such as quercetin, which have been shown to have inhibitory activity on several
cytochrome P450 enzymes. Therefore, it is thought that the inhibition of multiple cy-
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tochrome P450 enzymes is related to the presence of phenolic compounds such as phenolic
acids and flavonoids in S. europaea [3]. The application of mass spectrometry techniques in
preclinical investigations and to evaluate the potential biologically active compounds in
halophytic plants is encouraged for future studies [109].

5. Conclusions

In summary, we have reviewed the current literature and current state of the art for
biomedical applications of halophytes such as A. tripolium, C. maritimum, and S. europaea.
Conclusively, a number of halophyte species can be used in many applications such as
functional food, functional feed, cosmetic products, and finally, as bioactive pharmaceutical
compounds. Their properties emphasize their potential for use as medicinal agents such as
antibiotics or prebiotics. The massive use of antibiotic treatment has resulted in increased
antibiotic resistance, which is one of the most critical treatment problems worldwide.
Therefore, there is a growing request for new antimicrobial drugs. Due to the situation,
natural derivates and biologically active compounds isolated from plants can be beneficial
resources for such new drugs. Halophytic plants are an obvious resource because several
studies have proved their antimicrobial effectiveness. Due to the multiple positive effects
on health aspects such as antibiotic resistance, regulation of the inflammatory response, and
pain analgesia, it increases the need to further investigate the mechanisms and pathways
in which these plant species and their secondary metabolites are involved.
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19. Kȩpa, M.; Miklasińska-Majdanik, M.; Wojtyczka, R.D.; Idzik, D.; Korzeniowski, K.; Smoleń-Dzirba, J.; Wasik, T.J. Antimicrobial
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