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Abstract
We propose a straightforward implementation of the phenomenon of diffractive focusing with
uniform atomic Bose–Einstein condensates. Both, analytical as well as numerical methods not
only illustrate the influence of the atom–atom interaction on the focusing factor and the focus
time, but also allow us to derive the optimal conditions for observing focusing of this type in
the case of interacting matter waves.
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(Some figures may appear in colour only in the online journal)

1. Introduction

When focusing an electromagnetic wave, the position and the
strength of the focus are typically controlled by a lens which
imprints a position-dependent phase on the incoming wave.
However, focusing is possible even without a lens, namely by
employing the concept of diffractive focusing, where the focus
is a consequence of the non-trivial shape of the initial wave
function. In this article we extend this concept to non-linear
matter waves and show how it can be experimentally realized
with Bose–Einstein condensates (BECs).

Already in 1816 Fresnel realized [1, 2] that light passing
through a circular aperture creates a bright spot on the sym-
metry axis before it starts to spread. This type of focusing
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is nowadays known as diffractive focusing and was originally
described for light by the two-dimensional (2D) paraxial
Helmholtz equation [3]. The same effect occurs for mat-
ter waves in one or multiple dimensions. Indeed, since
the equations for electromagnetic fields within the paraxial
approximation have a form similar to the Schrödinger equation
of a free particle, diffractive focusing was studied [4, 5] and
successfully observed for water waves and plasmons [6], as
well as for atoms [7], electrons [8], neutrons [9], and molecules
[10]. In all these cases, the effect of diffractive focusing man-
ifests itself [11] provided the initial wave function is (i) a
real-valued one and (ii) has a non-Gaussian shape. Moreover,
this kind of focusing can be very useful for the collimation of
waves, such as water waves and x-rays, for which no ordinary
lenses exist.

In contrast to the studies mentioned above, in the present
article we explore this phenomenon for an atomic BEC
[12, 13] in a regime where the atom–atom interaction plays
a key role. Our paper has a twofold objective: (i) we gener-
alize the diffractive focusing effect to the case of interacting
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waves, and (ii) we demonstrate that, in this regime, a rather
straightforward implementation is possible.

For this purpose, we consider an atomic BEC with a rect-
angular initial wave function emulating the case of previous
studies that analyzed matter wave diffraction out of a rectan-
gular slit [4–6]. In the laboratory, such shapes can be real-
ized with BECs confined to so-called box potentials leading
to uniform ground-state-density distributions due to the repul-
sive atom–atom interactions. The required potentials can for
instance be generated by blue-detuned light sheets, in some
cases combined with higher-order Laguerre–Gaussian (LG)
laser beams [14–16].

When the trap is switched-off, the freely evolving rectan-
gular matter wave undergoes diffractive focusing in complete
analogy to a light wave being diffracted by a rectangular aper-
ture in the near-field or paraxial regime. The particularity of
the realization we are discussing in this study is that there is no
need for a dedicated aperture, but the box potential itself acts as
the aperture and forms the required non-Gaussian initial state.
Hence, the size of the aperture is given by the characteristic
length of the box potential or by the size of the BEC itself.

This straightforward implementation of diffractive focusing
occurs in all spatial dimensions where the initial wave function
is close to having a rectangular shape. For the sake of simplic-
ity, we study this effect in a quasi-1D BEC configuration that
can easily be generalized to 3D. Our analytical and numeri-
cal methods, based on the Gross–Pitaevskii equation (GPE)
[17, 18] as well as the dynamics of Wigner functions in phase
space [19], help to identify the optimal conditions for observ-
ing this type of focusing and for defining several benchmarks
such as the focusing factor or the focus time.

We emphasize that our results apply not only to the physics
of BECs [20], but also to other physical systems, whose
dynamics is governed by the so-called cubic Schrödinger
equation, for example, to nonlinear fiber optics [21] and deep
water surface water waves of moderate steepness [22]. In order
to study the effect of the interaction, that is the magnitude
of the nonlinear term in the cubic Schrödinger equation, we
propose here to observe diffractive focusing of interacting
waves with a uniform BEC. Indeed, for this system all required
experimental techniques already exist.

Our article is organized as follows. In section 2, we derive
the effective 1D GPE starting from the 3D GPE and introduce
an optical potential by using a laser in a higher-order LG mode.
We then focus in section 3 on finding the optimal parameters
for this potential to obtain a nearly rectangular ground state.
Moreover, we study in detail the effect of the atom–atom inter-
action on the main features of diffractive focusing. Further-
more, we compare the results of our quasi-1D model to a full
3D treatment to prove their validity. In section 4, we explain the
effect of diffractive focusing in the interacting case by studying
the dynamics of the Wigner function in phase space. We con-
clude in section 5 by summarizing our results and discussing
further interesting avenues.

Detailed calculations are presented in three appendices. In
appendix A we derive the effective 1D GPE for the longitudi-
nal wave function and the effective 1D interaction strength in
the two limits of almost non-interacting and weakly interacting

BECs. We then evaluate in appendix B the chemical potential
and the energy of a BEC in the relevant external potentials.
Furthermore, appendix C presents the Thomas–Fermi wave
function for the optical trapping potential.

2. Theoretical foundations

In order to demonstrate the effect of diffractive focusing with
a BEC we consider a quasi-1D setup that contains all relevant
aspects and allows for an elementary presentation of the core
features. To this end, we effectively freeze the dynamics in
two dimensions, and analyze the focusing of an appropriately
shaped wave function in the third dimension.

In this section we first introduce the effective 1D GPE that
governs the dynamics of the BEC. We then present a special
form of the box-shaped trapping potential based on a higher
order LG mode.

2.1. From a 3D to a quasi-1D Bose–Einstein condensate

To arrive at a quasi-1D BEC consisting of N atoms of mass m,
we start from the 3D GPE [20]

ih̄
∂

∂t
ψ (r, t) =

[
− h̄2

2m
∂2

∂r2
+ V (r, t) + gN|ψ (r, t)|2

]
ψ (r, t)

(1)
for the macroscopic wave function ψ = ψ (r, t) which is nor-
malized according to the condition∫

d3r|ψ (r, t)|2 = 1, (2)

where r ≡ (x, y, z) is the position vector with the Cartesian
coordinates x, y and z.

Here we assume that the atoms are interacting via a con-
tact potential whose strength is determined by the s-wave
scattering length as, resulting in the interaction constant

g ≡ 4π h̄2as

m
. (3)

In addition, the external potential

V (r, t) ≡ V⊥ (x, y) + VBox (z, t) (4)

consists of the harmonic trap

V⊥ (x, y) ≡ 1
2

m
(
ω2

x x2 + ω2
y y2

)
(5)

in the transverse directions determined by the trap frequencies
ωx and ωy, as well as the box potential VBox = VBox(z, t) along
the z-axis enforcing a rectangular ground state.

Throughout this paper we consider the case where the
longitudinal characteristic length Lz of the external potential
is much larger than the transverse one L⊥ ≡

√
h̄/mω⊥ with

ω⊥ ≡ √
ωxωy. In appendices A and B we show that in this limit

there is no dynamics in the transverse direction, that is in the
x–y plane, as long as Nas � Lz.

Based on these assumption we derive in appendix A the
effective 1D GPE [23]
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ih̄
∂

∂t
ϕ (z, t) =

(
− h̄2

2m
∂2

∂z2
+ VBox(z) + g̃|ϕ|2

)
ϕ (z, t) (6)

for the wave function ϕ = ϕ(z, t) along the z-direction. Here
the effective interaction strength

g̃ ≡ gNc⊥ (7)

is determined by the interaction constant g, equation (3), the
number of particles N, and the coupling parameter c⊥, which
in general is not a constant and originates from the non-
linear coupling between the transverse (x–y plane) and the
longitudinal (z-axis) dynamics.

In appendix A we derive also analytical expressions for c⊥
in two limiting cases, namely for (i) almost non-interacting
and (ii) weakly interacting atoms. If 0 � Nas � L⊥ � Lz, the
atom–atom interaction is so small that there is no coupling
between the dynamics in the transverse and the longitudinal
degrees of freedom, resulting in the expression

c⊥ =
1

2πL2
⊥
. (8)

In the opposite limit, if L⊥ � Nas � Lz, we can apply the
Thomas–Fermi approximation [20] for the ground state of the
3D GPE, equation (1), and arrive at the formula

c⊥ =
1

2πL2
⊥

(
8
9

Lz

Nas

) 1
2

(9)

for the parameter c⊥.
We conclude by noting that in section 3.3 we perform full

3D numerical simulations based on equation (1), to test the
validity of the effective 1D description. We find that for the
parameters considered in this article the 1D GPE, equation (6),
with the coupling parameter c⊥ given by equation (9) describes
correctly the dynamics of the BEC.

2.2. Optical box potential

We realize the box potential VBox by an LG laser beam,
more precisely by the radially symmetric LGl

0 mode with the
intensity profile [15]

Il(ρ) =
2
πl!

P
w2

0

(
2ρ2

w2
0

)l

exp

(
−2ρ2

w2
0

)
, (10)

where l = 0, 1, 2, . . . is the order of the mode, w0 and P
are the waist and the power of the beam, respectively. Here
ρ ≡

√
y2 + z2 measures the distance from the beam axis, as

depicted in figure 1.
By choosing the waist w0 of the LG beam to be much larger

than the characteristic lengths of the harmonic trap along the
transverse directions, that is when w0

√
l � L⊥, as shown in

figure 1, we can neglect the cylindrical symmetry of the beam
profile and use the effective 1D intensity profile Il(ρ = z) along
the z-axis instead.

In addition, if the laser frequency is far blue-detuned from
the atomic resonance, the associated optical dipole potential

Figure 1. Trap arrangement for diffractive focusing of a uniform
BEC. The harmonic trap V⊥ ≡ V⊥(x, y), equation (5), (orange) and
the LG potential Vl = Vl(

√
y2 + z2), equation (12), (blue) cause a

confinement for the atoms in the transverse (x–y plane) and the
longitudinal (z-axis) directions, respectively, yielding a cigar-shaped
ground-state-density distribution (green) of the BEC.

reads [15, 24]

Vl(z) =
h̄Γ2

8Δ
Il(z)
Is

. (11)

Here Γ, Δ and Is denote the decay rate, the detuning, and the
saturation intensity, respectively.

With the help of the explicit expression, equation (10), of
the intensity, we find with Il(ρ = z) the formula

Vl(z) =
2l

4πl!
h̄Γ2

Δ

P
Isw2

0

(
z
w0

)2l

exp

(
−2z2

w2
0

)
(12)

for the trapping potential caused by the LG mode.
If the chemical potential of the ground state is much lower

than the maximum Vl(zl) of the trapping potential located at
zl ≡ w0

√
l/2, we can approximate equation (12) around the

potential minimum at z = 0 and obtain the power-law

Vl(z) ∼=
2l

4πl!
h̄Γ2

Δ

P
Isw2

0

(
z
w0

)2l

(13)

for the trapping potential Vl.
In the following we choose our parameters such that this

power-law approximation is valid and equation (13) can be
used to describe the box potential. Moreover, we note that sim-
ilar box-like trapping potentials can also be realized by com-
bining appropriate Hermite–Gauss beams with Gauss beam
endcaps [14], or by employing blue-detuned painted potentials
[16].

3. Diffractive focusing

In this section we first identify the parameters of the LG poten-
tial Vl, equation (13), which allow us to create a quasi-1D BEC

3
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Table 1. Parameters and their values used in our numerical simulations based on
87Rb atoms. Here a0 denotes to the Bohr radius.

Number of atoms N 104

Scattering length as 100a0

Trap frequencies ω⊥ = ωx = ωy 2π · 2.5 · 103 Hz
Transverse length L⊥ 2.16 · 10−7 m
Longitudinal length, beam waist Lz

∼= w0 15 · 10−6 m
Effective frequency ωz =

h̄
mL2

z
2π · 0.52 Hz

Detuning Δ 2π · 1.0 · 1013 Hz
Decay rate Γ 2π · 6.1 · 106 Hz
Saturation intensity Is 16 W · m−2

Laser power P 0.1 W

Figure 2. Creation of a rectangular wave function of an interacting BEC with the help of an optical box potential. The LG potential
Vl = Vl(z) (a) of mode order l is given by equation (13) and the normalized probability density Pl ≡ |ϕl(z, 0)|2 (b) of the corresponding
ground state is calculated numerically for the values of l = 2, 6, 10 and 12. For values l � 10 a sufficient rectangularity of the ground state
density distribution is reached, as show in figure 3.

ground state wave function with the desired rectangular shape.
By taking this state as the initial one, we then study in detail the
effect of the atom–atom interaction on the diffractive focusing.
Finally, we compare the results of our quasi-1D model to a full
3D treatment.

3.1. Preparation of the initial state of rectangular shape

We start with the discussion of the ground state of a quasi-1D
BEC in the LG potential given by equation (13). To be specific,
throughout our article we consider 87Rb atoms [25, 26] and
emphasize that the values of all relevant parameters, listed in
table 1, are accessible in a state-of-the art experiment.

According to table 1 we find for the ratio

Nas

L⊥
∼= 245, (14)

which implies that the atoms are indeed weakly interacting.
Since in this case the parameter c⊥ is given by equation (9),

we obtain from table 1 the value

c⊥ ∼= 1.7 × 1012 m−2. (15)

With the help of the imaginary-time propagation method
[27] we have solved equation (6) numerically, and have

obtained the wave function ϕl = ϕl(z, t) for the ground state
of a BEC in the LG box potential Vl given by equation (13)
for different values of l, namely l = 2, 6, 10, 12, as shown in
figure 2.

For increasing values of l the potential Vl becomes more
rectangular, that is flatter at z = 0 and steeper at the edges as
displayed in figure 2(a). Since for the ground state we consider
the natural scattering length of 87Rb we fulfill the condition of
the Thomas–Fermi approximation [20] and the ground-state
wave function has the form of the inverse potential, as shown
in appendix C. Thus, when the potential gets more rectan-
gular, the ground state is more rectangular, too, as apparent
from figure 2(b), because the interaction between the atoms
enforces a more homogeneous density distribution within the
box potential.

Indeed, the fidelity

F =

∫ ∞

−∞
dzϕl(z)ϕ(R)

l (z) (16)

between the ground state wave function ϕl and the normalized
wave function

ϕ(R)
l (z) =

√
hl Θ

(
1

2hl
− |z|

)
(17)
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Figure 3. Determination of the optimal order l of the LG mode with the help of the fidelity F , equation (16). Here we obtain the overlap
between the rectangular wave function ϕ(R)

l (z), equation (17), and ϕl given by either the Thomas–Fermi wave function ϕTF, equation (C.3),
(red triangles) or the ground state wave function (blue dots) obtained by solving numerically the GPE, equation (6), in its dependence on the
values of l of the potential Vl, equation (13). The gray dashed line marks the level of 99% for F .

of a rectangular shape with the same amplitude hl ≡ max(ϕl),
serves as our measure of the rectangularity of the ground state.

As displayed in figure 3 for the fidelity F as a function of l,
for l � 10 the fidelity reaches 99% and we therefore consider
the case l = 10 in the remainder of our article.

3.2. Influence of atom–atom interaction

Now we are in the position to analyze the effect of the
atom–atom interaction on diffractive focusing. We start with
the ground state of the BEC in the trapping potential V⊥ + V10

and then switch off only the LG potential V10 while simulta-
neously changing the scattering length as from its initial value,
as = 100a0, to its final one a(f)

s via a Feshbach resonance [28],
where a0 corresponds to the Bohr radius.

The resulting time evolution in the z-direction, calculated
from equation (6) with a split-step algorithm [29], is shown in
figure 4 for two different values of the final scattering length,
namely for a(f)

s = 0 (a), (c) and a(f)
s = 0.58 a0 (b), (d). The

maximum of the distribution appears at z = 0 in both cases.
Since the initial wave functionϕ(z, 0) has a nearly rectangu-

lar shape, we characterize the focusing effect by the focusing
factor

f ≡
max

t
|ϕ(0, t)|2

max
z
|ϕ(z, 0)|2

, (18)

which describes the increase of the amplitude of the probabil-
ity density during the dynamics in comparison with its initial
value.

From figure 4, we note the factors f = 1.78 and f = 1.25
for a(f)

s = 0 and a(f)
s = 0.58 a0, respectively. Moreover, the

repulsive atom–atom interaction (a(f)
s > 0) results in (i) a

decrease of the focal time t f , and (ii) a faster spreading of the
wave function directly after the focus.

Figure 5 displays the dependence f = f
(
a(f)

s

)
and t f =

t f

(
a(f)

s

)
for four different values of l, with the initial

state being the ground state of the complete potential
V = V⊥(x, y) + Vl(z) (solid lines), or the corresponding rect-
angular state (dashed lines), defined by equation (17), respec-
tively. For a growing interaction strength the focusing factor

and the focal time decrease rapidly. Hence, diffractive focus-
ing is only visible if the atom-atom interaction is very weak
during the dynamics.

Figure 5(b) shows that for a given l the focal time of the
system depends strictly on the size of the initial profile, and the
results for the ground-state wave function resemble the ones
for the corresponding rectangular state.

One the other hand, figure 5(a) shows that an appropriate
fidelity, as defined by equation (16), is necessary to reduce the
deviations in the predictions of the focus factors corresponding
to ϕl and ϕ(R)

l . This difference can be explained by the fact that
the edges cover a larger area of the wave function, compared
to the flat surface, for small values of l than for large values
of l. For our studies we have used the ground-states ϕl(z, 0)
of l = 10 (red curve), which provides a fidelity of more than
99%, as shown in figure 3.

Furthermore, figure 6 presents a contour plot of the focusing
factor f for different values of the initial and final effective
interaction strength, equation (7), g̃(i) and g̃(f) with l = 10. For
small values of g̃(i) → 0 (as → 0) the focusing effect reduces
drastically, as the ground state wave function approaches the
one of a particle in the box potential, that is the non-Gaussian
shape vanishes.

On the other hand, we recognise that values of
g̃(i) = 3000 h̄ωz already result in similar behavior as our
reference case of g̃(i) = 17129.71 h̄ωz, which corresponds to
as = 100a0. Here the interaction g̃ is used since we undergo a
transition of the two limiting cases (i) almost non-interacting
(small g̃) and (ii) weakly interacting atoms (large g̃), and in
general the relation between g̃ and as is unknown. Moreover,
for any values g̃(i) > 0, the focusing factor f decreases for
growing values of g̃(f), as displayed in figures 5 and 6.

To summarize, in order to observe the phenomenon of
diffractive focusing for a quasi-1D BEC, we require (i) a large
initial interaction g̃(i) for preparing a nearly rectangular state,
and (ii) a small final interaction g̃(f) to have a measurable effect
during the dynamics. Hence, experimentally the use of Fes-
hbach resonances [28] is mandatory to tune the atom–atom
interaction in the desired way. As mentioned at the beginning

5
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Figure 4. Influence of the atom–atom interaction on the phenomenon of diffractive focusing of a uniform BEC apparent in the time
evolution of the normalized 1D density distribution |ϕ(z, t)|2/|ϕ(0, 0)|2. The initial state ϕ(z, 0) is the ground state of the trapping potential
V = V⊥ + V10 and the dynamics (a), (b) takes place after switching off only the longitudinal potential V10 and changing the scattering
length as from its initial value as = 100a0 to its final one a(f)

s = 0 (a), or a(f)
s = 0.58 a0 (b). The bottom row (c), (d) presents the

corresponding density distributions at t = 0 (blue line) and at the focal time t = t f (orange dashed line). For both choices of the scattering
length the focusing appears at z = 0 for the focal times t f = 0.22/ωz and t f = 0.09/ωz with the focusing factors f = 1.78 and f = 1.25.

Figure 5. Dependence of the focusing factor f (a) and the focal time t f (b) of a uniform BEC on the final scattering length a(f)
s for different

orders l of the LG mode, with the initial state characterized by the ground state wave function ϕl of the potential V⊥ + Vl (solid lines) or the
rectangular wave function ϕ(R)

l (dashed lines) with the same height, as defined by equation (17). For a growing final scattering length a(f)
s the

focusing factor f and the focal time t f both decrease rapidly.

of this discussion we use 87Rb, but this effect takes place for
any BEC with a wide Feshbach resonance, as for instance
39K [30].

3.3. Justification of the quasi-1D approximation

We conclude this discussion of the phenomenon of diffrac-
tive focusing in a BEC by briefly examining to what degree
the effective 1D GPE given by equation (6) describes the free
propagation of the quasi-1D BEC. For this purpose, we again

start from the ground state of the BEC in the trapping poten-
tial V = V⊥(x, y) + V10(z) and then switch off the LG potential
V10, while simultaneously changing the scattering length to its
final value a(f)

s .
First, we solve equation (6) for the wave function

ϕ = ϕ(z, t) numerically and obtain the time dependence of
the normalized 1D density |ϕ(0, t)|2/max

z
|ϕ(z, 0)|2 at z = 0.

Here we consider the two cases of almost non-interacting and
weakly interacting atoms depicted in figure 7 by the orange

6
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Figure 6. Contour plot of the focusing factor f as a function of the initial and final effective interaction strength g̃(i) and g̃(f). The focusing
factor f depends only weakly on the initial interaction g̃(i). However, a vertical cut (red line) through the contour plot at a fixed value of
g̃(i) = 17129.71 h̄ωz corresponding to as = 100a0 (red line) reveals that f depends strongly on the final interaction length g̃(f), in complete
agreement with the dependence shown in figure 5(a). The reference case from figures 4(b) and (d) is marked by a red cross. The
corresponding scattering length giving rise to the interaction strength g̃ can be calculated by inverting equation (7) and choosing an
appropriate value of c⊥.

Figure 7. Time evolution of the normalized 1D density at z = 0, with the transverse wave function Φ0 given by equation (A.14), (orange
curve), or equation (A.21), (blue curve). For comparison, the green curve displays the time evolution of the normalized integrated density
P3D(z, t) given by equation (19), where ψ = ψ(x, y, z, t) is based on the numerical solution of the 3D GPE defined by equation (1). For all
cases, the initial state is given by the ground state of the trapping potential V⊥ + V10 and the dynamics occurs after switching off only the
longitudinal potential V10 and instantaneously changing the scattering length as from its initial value as = 100a0 to its final one a(f)

s = 0 (a),
or a(f)

s = 0.58 a0 (b).

and blue curve, respectively. For these limits the parameter c⊥,
equation (A.12), is determined by the transverse wave function
Φ0 = Φ0(x, y), equation (A.7), and given by equations (8) and
(9), respectively.

Then, we perform the full 3D numerical simulation of
the GPE given by equation (1) for the wave function ψ =

ψ(r, t). The time evolution of the normalized integrated density

P3D(0, t)/max
z

(P3D(z, 0)) at z = 0, with

P3D(z, t) ≡
∫

dx dy|ψ(r, t)|2, (19)

is displayed by the green curve in figure 7.
As a result, for our trap configuration, with the relevant

parameters listed in table 1, the quasi-1D approximation is
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very reliable and in excellent agreement with the results of the
full 3D simulation.

A comparison between the curves corresponding to
(i) almost non-interacting atoms (orange line) and (ii) weakly
interacting atoms (blue line) with the full 3D curve reveals that
the ground state obtained within the Thomas–Fermi approxi-
mation and leading to the interaction parameter c⊥ given by
equation (9), is more accurate in describing the dynamics of
the system. This statement holds true even for small values of
a(f)

s , as long as the ground state was created for large values
of the initial scattering length as.

We note that due to the change of the scattering length at
t = 0 the transverse wave function does not describe the
ground state anymore and the system undergoes collective
excitations. In our 3D simulations we observed such breath-
ing oscillations in the transverse direction. However, as a con-
sequence of the large anisotropy of the trapping potential,
the time scale of the transverse dynamics is much shorter
compared to the longitudinal motion and, thus, the influence
of these fast oscillations on the slower longitudinal dynam-
ics mostly averages out for the parameters considered in this
article.

4. Diffractive focusing and Wigner phase space

This section illuminates the phenomenon of diffractive focus-
ing of a BEC from quantum phase space. For this purpose we
first recall the essential ingredients of the Wigner formulation
[19] of quantum mechanics and then study classical trajecto-
ries in the absence and the presence of an atom–atom inter-
action. This elementary approach provides us with a deeper
insight into the dynamics of the Wigner function for an inter-
acting matter wave.

4.1. Wigner function essentials

The Wigner function [19] corresponding to the wave function
ϕ = ϕ(z, t) is defined as

W(z, p; t) ≡ 1
2π h̄

∫ ∞

−∞
dy exp

(
i
h̄

py

)
ϕ∗

(
z +

y
2

, t
)
ϕ
(

z − y
2

, t
)

,

(20)
where p is the momentum.

Integration of W over p, or over z yields the relations∫ ∞

−∞
dpW(z, p; t) = |ϕ(z, t)|2, (21)

or ∫ ∞

−∞
dz W(z, p; t) = |ϕ̃(p, t)|2, (22)

connecting the marginals of W to the probability density dis-
tributions |ϕ(z, t)|2 and |ϕ̃(p, t)|2 in position and momentum
space, respectively [19]. Here

ϕ̃(p, t) ≡ 1√
2π h̄

∫ ∞

−∞
dz exp

(
− i

h̄
pz

)
ϕ(z, t) (23)

is the momentum representation of the wave function
ϕ = ϕ(z, t).

Although the Wigner function W is normalized, that is∫ ∞

−∞
dz
∫ ∞

−∞
dp W(z, p; t) = 1, (24)

these properties do not imply that W is always positive. Indeed,
the Wigner function is a quasi-probability distribution [19] and
its negative parts reflect the quantum features of the system
under consideration.

4.2. Classical trajectories

Instead of deriving and solving the dynamical equation for the
Wigner function corresponding to the 1D GPE, equation (6),
we obtain the time-dependent Wigner function directly from
the definition, equation (20), of W in terms of the time-
dependent wave function ϕ = ϕ(z, t) determined by solving
equation (6) numerically.

In order to visualize the dynamics in phase space, we take a
point {z, p} in phase space and find the ‘classical trajectories’
{Z(t), P(t)} governed by the Hamilton equations

d
dt

Z(t) =
∂

∂P
H(Z, P; t), (25)

d
dt

P(t) = − ∂

∂Z
H(Z, P; t) (26)

subjected to the initial conditions Z(0) ≡ z and P(0) ≡ p. Here
the classical Hamiltonian

H(Z, P; t) ≡ P2

2m
+ g̃|ϕ(Z, t)|2 (27)

corresponds to the 1D GPE, equation (6), without the trapping
potential.

We emphasize that the use of equations (25)–(27) implies
the knowledge of the wave function ϕ = ϕ(z, t) at all times
obtained by numerically solving equation (6).

4.3. Time evolution without atom–atom interaction

Before we consider the case of interacting particles, we first
recall [5, 31] the interaction-free dynamics (a(f)

s = 0) of the
Wigner function W, where the initial state is the ground state
of the complete trapping potential V = V⊥ + V10, as discussed
in section 3.1. In figures 8(a)–(d) we display the Wigner func-
tions for four different times, where the red and blue colors
correspond to positive and negative values of W = W(z, p; t),
respectively. According to equations (21) and (22), the inte-
gration over the momentum or the position variable provides
us with the position distribution |ϕ(z, t)|2 (lower sub-figure),
or the momentum distribution |ϕ̃(p, t)|2 (left sub-figure).

Figure 8 brings out most clearly the origin of the phe-
nomenon of diffractive focusing. Indeed, at t = 0, the Wigner
function W = W(z, p; 0) exhibits both positive and negative
values. During the free expansion, t > 0, the parts of the
Wigner function corresponding to p > 0 (p < 0) move to the
right (left) along the straight lines {z + pt, p}, displayed in
figure 8(d) by different colors for four different initial points in
phase space. These lines are parallel to the z-axis and describe
the free classical motion, resulting from equations (25)–(27)
with g̃ = 0.

8
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Figure 8. Diffractive focusing of a uniform BEC viewed from Wigner phase space. We illustrate the time evolution of the Wigner function
corresponding to the ground state of the trapping potential V⊥ + V10 after switching off only the longitudinal potential V10, and changing
the scattering length as from its initial value as = 100a0 to its final one a(f)

s = 0 (left column), or a(f)
s = 0.58 a0 (right column). Here the red

colors indicate large positive values of W = W(z, p; t) and the blue ones mark domains of quantum phase space where W assumes negative
values as suggested by the color-code to the right of (h). The corresponding position and momentum distributions |ϕ(z, t)|2 and |ϕ̃(p, t)|2 are
shown in the lower and left sub-figures, respectively. The classical trajectories {Z(t), P(t)} governed by equations (25)–(27) are displayed by
different colors for different initial points in phase space. The focal time t f is a function of a(f)

s as shown in figure 5.

At the time of focusing, t = t f , the position distribution
|ϕ(z, t f )|2 features a narrow maximum at z = 0. Indeed, inte-
gration over p in equation (21) for fixed position z, yields a
maximum only at the values of z, which correspond to the
maximal values of W = W(z, p, t f ), displayed by dark red
color. According to figures 8(a)–(d), this is the line z = 0 in
phase space. In other words, focusing takes place at z = 0,

because at t = t f all negative parts of the initial Wigner func-
tion W(z, p; 0) have moved away from the p-axis [4, 5]. How-
ever, they now subtract from the positive parts of the wings and
make the distribution in space even narrower.

For t > t f , the negative parts of W(z, p, 0) have moved fur-
ther away from the line z = 0. Since the positive parts of
the original Wigner function are at lower momenta than the

9
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negative ones, they move slower and are therefore left at the
center of the phase space. They are the origin of the spreading
of the position distribution |ϕ(z, t)|2.

4.4. Time evolution with atom–atom interaction

Next, we discuss the nonlinear time evolution of the Wigner
function in the case of a non-vanishing atom–atom inter-
action, namely for the final value of the scattering length
a(f)

s = 0.58 a0. Figure 8(e) presents the same initial Wigner
function W(z, p; 0) as figure 8(a).

In contrast to the case of no atom-atom interaction,
figures 8(f)–(h) indicate that the parts of the Wigner function
corresponding to p > 0 (p < 0) do not only move to the right
(left) but also move up (down). This effect can be explained as
follows.

For short times, t � t f , we can neglect in equation (6) the
kinetic energy term (−h̄2/2m)∂2/∂z2 compared to the inter-
action term g̃|ϕ(z, t)|2 and arrive at the nonlinear equation

ih̄
∂

∂t
ϕ(z, t) ∼= g̃|ϕ(z, t)|2ϕ(z, t), (28)

which is not easy to solve.
However, we note that equation (28) conserves the quantity

|ϕ(z, t)|2, that is ∂|ϕ(z, t)|2/∂t = 0, resulting in the simplified
equation

ih̄
∂

∂t
ϕ(z, t) = g̃|ϕ(z, 0)|2ϕ(z, t) (29)

with the solution

ϕ(z, t) = ϕ(z, 0) exp

(
− i

h̄
g̃ t|ϕ(z, 0)|2

)
. (30)

Thus, for t � t f , the wave function ϕ = ϕ(z, t) picks up
only a position-dependent phase determined by the initial dis-
tribution |ϕ(z, 0)|2 and the effective interaction strength g̃. The
gradient −g̃t∂|ϕ(z, 0)|2/∂z of this phase defines the increase
in momentum, which is a function of z.

This result also follows from equations (25) and (27) and
is displayed in figure 8(h) by the classical trajectories corre-
sponding to different initial points in phase space. Hence, due
to this increase in momentum, the negative parts of the Wigner
function get deformed and move faster away from the center
compared to the case g̃ = 0, resulting in the focus appearing at
earlier times. This behavior is also confirmed by figure 4(b).

For t > t f , the position distribution |ϕ(z, t)|2 spreads fur-
ther, as shown in figure 8(h), and reduces its amplitude. Thus,
the interaction term g̃|ϕ(z, t)|2 in equation (6) gets smaller
compared to the kinetic energy term, and the evolution of
the wave function ϕ = ϕ(z, t) can be described solely by the
Schrödinger equation. This effect is illustrated in figure 8(h)
by the classical trajectories, which in the long-time limit are
again parallel to the z-axis.

A closer look at the momentum distribution of figure 8(h)
reveals that two maxima are forming symmetrically around the
origin of phase space due to the non-vanishing interaction. The
momenta at which they occur directly depend on the final inter-
action strength g̃(f) of the system and increases for larger g̃(f).
For very long times the peaks smear out into a large momen-
tum distribution at the center, however, if the interaction is set

to zero beforehand, then the double-peak structure could be
preserved.

In summary, we emphasize that diffractive focusing orig-
inates from the negative parts of the Wigner function [4, 5].
According to the Hudson theorem [32], a pure state with an
initial Gaussian profile has a positive Wigner function at any
point of the phase space, and therefore the state does not show
diffractive focusing at all. A similar behavior occurs for any
classical state. Hence, diffractive focusing for a given BEC
gives us an opportunity to check whether this BEC is prepared
in a non-Gaussian or non-classical state.

5. Conclusions and outlook

In this article we have studied the phenomenon of diffractive
focusing of interacting matter waves employing analytical as
well as numerical methods. We have proposed a straightfor-
ward implementation of this effect with an atomic BEC con-
fined by a box-like trap as realized for instance in reference
[16]. The interaction of the atoms forming a BEC leads to the
non-linearity in the GPE and is an essential ingredient in the
preparation of a rectangular wave function, previously stud-
ied [4–6] in the context of Schrödinger waves, or the paraxial
approximation in optics, and obtained by a rectangular slit.

As benchmarks, we have identified the focusing factor and
the focus time which both are functions of the strength of the
atom–atom interaction. These measures allow us to derive the
optimal conditions for observing this type of self-focusing of
a BEC. Having identified the origin of diffractive focusing for
interacting matter waves, illuminated by the time evolution
of the Wigner function in phase space, we conclude that the
cleanest realization occurs when the atom–atom interaction
is switched off during the dynamics by a magnetic Feshbach
resonance.

For the sake of simplicity we have restricted our treatment
to a quasi-1D case. However, the effect of diffractive focusing
takes also place for higher dimensions [11] and could be real-
ized with a 3D box potential [16] generated by blue-detuned
laser light. Indeed, the focus factor achieves the value 4 for
a cylindrically symmetric rectangular shape in two dimen-
sions [1], whereas it is 1.8 for the rectangular initial profile in
one dimension [4, 5]. Moreover, diffractive focusing crucially
depends on the initial profile, that is a more non-Gaussian or
non-classical initial wavefunction results in stronger focusing.
Thus, it would be useful to find the optimal initial profile giv-
ing rise to the best focusing. The problem of finding such an
optimal state determined solely by the atom-atom interaction
is highly non-trivial due to the non-linearity of the dynamical
equation.

We conclude by emphasizing that the results presented here
can be immediately applied to other physical systems, whose
dynamics is governed by the Gross–Pitaevskii-type equation,
that is the cubic Schrödinger equation, for instance, to nonlin-
ear optics [21] and deep water surface water waves of moderate
steepness [22]. Moreover, the diffractive focusing can be used
to generate bright sources of matter waves for dedicated appli-
cations in precision measurements [33, 34]. A more detailed

10



J. Phys. B: At. Mol. Opt. Phys. 54 (2021) 185301 P Boegel et al

discussion of these points goes beyond the scope of this article
and has to be postponed to a future publication.

Acknowledgments

NG wishes to thank Eric Charron and Holger Ahlers for fruit-
ful discussions during the early phase of this work and Timon
Hilker for helpful feedback about the manuscript. This project
is supported by the German Space Agency (DLR) with funds
provided by the Federal Ministry for Economic Affairs and
Energy (BMWi) under Grant Nos. 50WP1705 (BECCAL),
50WM1862 (CAL) and 50WM2060 (CARIOQA), as well as
by the Deutsche Forschungsgemeinschaft (German Research
Foundation) through CRC 1227 (Dq-mat) within Project No.
A05. MAE is thankful to the Center for Integrated Quantum
Science and Technology (IQST) for its generous financial sup-
port. The research of the IQST is financially supported by the
Ministry of Science, Research and Arts, Baden-Württemberg.
WPS is grateful to the Hagler Institute for Advanced Study
at Texas A & M University for a Faculty Fellowship, and to
Texas A & M AgriLife Research for the support of this work.

Data availability statement

The data that support the findings of this study are available
upon reasonable request from the authors.

Appendix A. Dynamics of a BEC in a cigar-shaped
trap

We devote this appendix to the derivation of the effective
1D GPE describing the non-linear dynamics of a BEC along
the longitudinal direction of a highly anisotropic cigar-shaped
trapping potential. Here we approximate the complete wave
function by the product of the transverse time-independent
wave function of only the transverse coordinates x and y, the
time-dependent longitudinal wave function of the longitudinal
coordinate z, as well as a time-dependent phase factor. This
approach allows us to derive analytical formulas for the effec-
tive 1D interaction strength for (i) almost non-interacting and
(ii) weakly interacting atoms.

A.1. Decoupling of transverse and longitudinal dynamics

To derive an equation governing the dynamics of a quasi-1D
BEC which consists of N atoms of mass m, we start from the
3D GPE [20]

ih̄
∂

∂t
ψ (r, t) =

[
− h̄2

2m
∂2

∂r2
+ V (r, t) + gN|ψ (r, t)|2

]
ψ (r, t)

(A.1)
for the BEC wave function ψ = ψ (r, t) with the external
potential

V (r, t) ≡ V⊥ (x, y) + VBox (z, t) (A.2)

being the sum of a harmonic trap

V⊥ (x, y) ≡ m
2

(
ω2

x x2 + ω2
y y2

)
(A.3)

in the transverse directions determined by the trap frequen-
cies ωx and ωy, and a box potential VBox = VBox(z, t) yielding
trapping in the z-direction.

In this article we consider a highly anisotropic cigar-shaped
trapping geometry defined by the relation

L⊥ � Lz, (A.4)

where Lz is the longitudinal characteristic length of the exter-
nal potential and L⊥ ≡

√
LxLy is the transverse one with

Lx ≡
√

h̄/mωx and Ly ≡
√

h̄/mωy.
In this case, as shown in appendix B, the total energy per

particle of the BEC is approximately given by the relation

E
N

∼= h̄ω⊥

(
Nas

Lz

)1/2

(A.5)

with ω⊥ ≡ √
ωxωy.

Hence, for
0 � Nas � Lz, (A.6)

the total energy per particle E/N is much smaller than the char-
acteristic energy scale h̄ω⊥ of the transverse direction, making
it impossible to drive collective excitations in that direction
as long as the energy of the system is conserved. Indeed, we
effectively freeze out the transverse dynamics [35–37].

Consequently, the total wave function

ψ (r, t) ≡ Φ0 (x, y)ϕ (z, t) exp

(
− i

h̄
ε0t

)
(A.7)

can be approximated by the product of the real-valued wave
function Φ0 = Φ0 (x, y) describing the ground state in the
transverse direction, the wave function ϕ = ϕ (z, t) along the
z-direction, and a time-dependent phase factor, where the con-
stant ε0 shall be determined later as to simplify the equations.

Moreover, the function Φ0 is chosen to be normalized, that
is ∫

dx dyΦ2
0 = 1. (A.8)

When we insert our ansatz, equation (A.7), into the 3D
GPE, equation (A.1), we obtain the identity

Φ0

(
ih̄
∂ϕ

∂t

)
+ ε0Φ0ϕ =

[
− h̄2

2m

(
∂2Φ0

∂x2
+

∂2Φ0

∂y2

)
+ V⊥Φ0

]
ϕ

+Φ0

(
− h̄2

2m
∂2ϕ

∂z2
+ VBoxϕ

)

+ gN|ϕ|2Φ2
0Φ0ϕ. (A.9)

Finally, we multiply both sides of equation (A.9) from the
left by Φ0, integrate over x and y, and arrive at the non-linear
equation

ih̄
∂

∂t
ϕ =

(
− h̄2

2m
∂2

∂z2
+ VBox(z) + g̃|ϕ|2

)
ϕ (A.10)

for the longitudinal wave function ϕ = ϕ(z, t), with the effec-
tive interaction strength

g̃ ≡ gNc⊥ (A.11)
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determined by the interaction constant g, equation (3), the
number of particles N, and the integral

c⊥ ≡
∫

dx dyΦ4
0. (A.12)

Here we have made use of equation (A.8) and have chosen the
constant

ε0 ≡
∫

dx dyΦ0

[
− h̄2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+ V⊥ (x, y)

]
Φ0

(A.13)
to simplify equation (A.10).

As a result, we have derived the 1D GPE (A.10) which
describes the longitudinal dynamics of a quasi-1D BEC char-
acterized by the two inequalities, equations (A.4) and (A.6).
In order to employ equation (A.10), we first have to find
the ground-state wave function Φ0 of the transverse direc-
tion and then evaluate the effective interaction strength g̃,
equation (A.11).

According to equations (A.4) and (A.6), there exist two
distinct cases where both Φ0 and g̃ can be calculated analyt-
ically, namely the limit of almost non-interacting atoms, 0 �
Nas � L⊥ � Lz, and the case of weakly-interacting atoms,
L⊥ � Nas � Lz. In the next sections we consider these two
situations.

A.2. Almost non-interacting atoms

For almost non-interacting atoms with 0 � Nas � L⊥ � Lz,
we neglect the interaction term gN|ψ|2 in the 3D GPE (A.1),
and the equation becomes approximately separable in the coor-
dinates x, y, and z. As a result, the transverse wave functionΦ0

in the ansatz, equation (A.7), for ψ coincides with the wave
function

Φ(ho)
0 (x, y) ≡ 1√

πLxLy
exp

(
− x2

2L2
x
− y2

2L2
y

)
(A.14)

of the ground state of a 2D harmonic oscillator.
By inserting equation (A.14) into the definitions for c⊥,

equation (A.12), and ε0, equation (A.13), and performing the
integration over x and y, we obtain the explicit expressions

c⊥ =
1

2πLxLy
≡ 1

2πL2
⊥

(A.15)

for the parameter c⊥ and

ε0 =
1
2

h̄(ωx + ωy) (A.16)

for the constant ε0.
This approach to quasi-1D BECs has already been dis-

cussed in similar ways by other groups [35–37]. Our results
exactly coincide with their findings for the same order of
approximation.

A.3. Weakly interacting atoms

In the case of weakly interacting atoms, that is for L⊥ �
Nas � Lz, the interaction term gN|ψ (r, t) |2 in the 3D GPE

(A.1) is the leading one and we can apply the Thomas–Fermi
approximation [20] by neglecting the kinetic term when deter-
mining the ground-state wave function. Starting from the
stationary solution

ψ (r, t) = φ(x, y, z) exp

(
− i

h̄
μt

)
, (A.17)

we thus obtain the ground-state wave function

φ(x, y, z) =

√
μ− V(x, y, z)

gN
Θ [μ− V(x, y, z)] . (A.18)

Here Θ denotes the Heaviside function and

μ =

(
mgNωxωy

2πLz

) 1
2

(A.19)

is the chemical potential derived in appendix B when the box
potential is approximated by infinitely high potential walls
separated by 2Lz.

As a result, within the Thomas–Fermi approximation, the
total wave function φ = φ(x, y, z) given by equation (A.18) is
again the product

φ(x, y, z) = Φ0(x, y)ϕ0(z) (A.20)

of the normalized transverse wave function

Φ0 (x, y) ≡
[

2Lz
μ− V⊥(x, y)

gN

] 1
2

Θ [μ− V⊥(x, y)] (A.21)

and the longitudinal wave function

ϕ0 (z) ≡ 1√
2Lz

Θ(Lz − |z|), (A.22)

with V⊥ = V⊥(x, y) and μ given by equation (A.3) and (A.19),
respectively.

By inserting equation (A.21) into equation (A.12), we
obtain the explicit expression

c⊥ ∼=
1

2πL2
⊥

(
8
9

Lz

Nas

) 1
2

(A.23)

for the parameter c⊥.
Moreover, inserting equation (A.21) into equation (A.13),

and neglecting the second-order derivatives over x and y, we
arrive at the formula

ε0
∼=

∫
dx dy V⊥ (x, y)Φ2

0 =
1
3
μ (A.24)

for the constant ε0, where μ is given by equation (A.19).
We emphasize that the expression, equation (A.23), for c⊥

is still obtained in the regime where the motion along the trans-
verse direction is effectively frozen out (Nas � Lz), but in con-
trast to the previous case the interaction between the particles
is taken into account when determining the shape of the trans-
verse ground-state wave functionΦ0. The comparison between
the solutions of the effective 1D GPE (A.10) with c⊥ given by
equation (A.23), and the 3D GPE (A.1), presented in figure 7,
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shows that, for the parameters considered in this article, our
expression, equation (A.23), for c⊥ describes the dynamics
more accurately than the standard formula, equation (A.15),
corresponding to weakly interacting atoms.

We conclude this discussion by noting that the case of
even stronger atom–atom interaction, when Lz � Nas, can be
treated in a similar way. Indeed, the dynamics along the trans-
verse direction is then much faster compared to the longitu-
dinal direction due to the relation L⊥ � Lz. Here one can per-
form the adiabatic approximation [36, 37] to factorize the total
wave function and to describe the longitudinal dynamics of the
quasi-1D BEC.

Appendix B. Thomas–Fermi approximation:
chemical potential and energy of a BEC

The decoupling of the longitudinal and transverse degrees
of freedom analyzed in appendix A rests on the estimate,
equation (A.5), of the total energy of the BEC per particle in
terms of the characteristic energy of the transverse motion. In
this appendix we use the Thomas–Fermi approximation and
derive this estimate by first obtaining the analytical expression
for the chemical potential of a BEC governed by the 3D GPE
(A.1). By elementary integration of the relation between the
chemical potential and the energy, we then arrive at the desired
estimate.

B.1. Chemical potential

The chemical potential μ of a BEC within the Thomas–Fermi
approximation follows from the normalization condition

I =
∫

dx dy dz|φ (x, y, z)|2 = 1 (B.1)

of the Thomas–Fermi wave function [20]

φ(x, y, z) =

√
μ− V(x, y, z)

gN
Θ [μ− V(x, y, z)] . (B.2)

Here Θ is the Heaviside function.
In order to derive an analytical expression for μ, we approx-

imate VBox by the potential of infinitely high walls

VBox(z) ∼=
{

0, |z| � Lz

∞, |z| > Lz

(B.3)

separated by 2Lz.
According to equation (B.2), only the points {x, y, z}

obeying the inequality V(x, y, z) � μ contribute to the inte-
gral in equation (B.1). Hence, the regions of integration in
equation (B.1) are given by

x2

b2
x
+

y2

b2
y
� 1 and − Lz � z � Lz, (B.4)

where b2
x ≡ 2μ/(mω2

x) and b2
y ≡ 2μ/(mω2

y ).

By introducing the polar coordinates x ≡ bxr cos θ and
y ≡ byr sin θ with 0 � r � 1 and 0 � θ < 2π, we arrive at

I =
bxby

gN

∫ Lz

−Lz

dz
∫ 1

0
r dr

∫ 2π

0
dθ

(
μ− μr2

)
, (B.5)

where we have used the identity V⊥(bxr cos θ, byr sin θ) =
μr2, which then leads us to

I = π
μbxbyLz

gN
. (B.6)

With the definitions of bx and by together with the normal-
ization condition, equation (B.1), we find the explicit expres-
sion

μ =

(
mgNωxωy

2πLz

) 1
2

(B.7)

for the chemical potential of a BEC being confined by an
infinitely high box potential along the z-axis and two harmonic
potentials along the x- and y-direction. We emphasize that
equation (B.7) is valid for arbitrary length scales L⊥ and Lz

of the external potentials.

B.2. Energy

A similar calculation can be performed to find the total energy
[20]

E = N
∫

dx dy dz
[
V(x, y, z)|φ (x, y, z)|2 + g

2
|φ (x, y, z)|4

]
(B.8)

of a BEC within the Thomas–Fermi approximation.
However, the more convenient approach consists of insert-

ing the result, equation (B.7), for the chemical potential into
the definition [20]

μ =
dE
dN

, (B.9)

which we can directly integrate to obtain

E =
2
3

Nμ. (B.10)

This relation coincides with the one for a purely harmoni-
cally trapped BEC in two dimensions [38].

By inserting equation (B.7) and (3) for the interaction
constant g into equation (B.10), we arrive at the expression

E
N

=
2
√

2
3

h̄ω⊥

(
Nas

Lz

)1/2

. (B.11)

With 2
√

2/3 ≈ 0.943, this yields the estimate

E
N

∼= h̄ω⊥

(
Nas

Lz

)1/2

(B.12)

for the total energy per particle within the Thomas–Fermi
approximation.
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Appendix C. Thomas–Fermi wave function for
optical trapping potential

In this appendix we derive the wave function for ground state
of the potential Vl, equation (13), within the Thomas–Fermi
approximation. Indeed, the Thomas–Fermi profile of the sta-
tionary solution

ϕ(z, t) = ϕTF(z) exp

(
− i

h̄
μTFt

)
(C.1)

of the 1D GPE

ih̄
∂

∂t
ϕ (z, t) =

(
− h̄2

2m
∂2

∂z2
+ VBox(z) + g̃|ϕ|2

)
ϕ (z, t) ,

(C.2)
reads [20]

ϕTF(z) =

[
μTF − Vl(z)

g̃

] 1
2

Θ [μTF − Vl(z)] . (C.3)

Here we have used the potential Vl = Vl(z), equation (13), for
VBox in equation (C.2).

The chemical potentialμTF is determined by the normaliza-
tion condition ∫ ∞

−∞
dz|ϕTF(z)|2 = 1. (C.4)

According to equation (13) the LG potential Vl can be
approximated by

Vl(z) ≈ vl

(
z
w0

)2l

, (C.5)

where we have introduced the abbreviation

vl ≡
2l

4πl!
h̄Γ2

Δ

P
Isw2

0

. (C.6)

The Thomas–Fermi distance zTF defined by the condi-
tion μTF = Vl(zTF) follows from the potential Vl given by
equation (C.5) as

zTF = w0

(
μTF

vl

) 1
2l

. (C.7)

Hence, the normalization condition, equation (C.4), of the
Thomas–Fermi wave function, equation (C.3), takes the form

1 =
μTF

g̃

∫ zTF

−zTF

dz

(
1 − z2l

z2l
TF

)
=

4l
2l + 1

μTF

g̃
zTF. (C.8)

When we combine equations (C.7) and (C.8), we obtain the
expression

μTF =

(
1 +

1
2l

) 2l
2l+1

(
vl

g̃2l

22lw2l
0

) 1
2l+1

(C.9)

for the chemical potential in terms of the order l and the param-
eters w0 and vl of the LG mode, which is now used to calculate
the Thomas–Fermi wave function ϕTF, equation (C.3).
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