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Atomic interference experiments can probe the gravitational redshift via the internal energy splitting
of atoms and thus give direct access to test the universality of the coupling between matter-energy and
gravity at different spacetime points. By including possible violations of the equivalence principle in a fully
quantized treatment of all atomic degrees of freedom, we characterize how the sensitivity to gravitational
redshift violations arises in atomic clocks and atom interferometers, as well as their underlying limitations.
Specifically, we show that: (i) Contributions beyond linear order to trapping potentials lead to such a
sensitivity of trapped atomic clocks. (ii) Bragg-type interferometers, even with a superposition of internal
states, with state-independent, linear interaction potentials are at first insensitive to gravitational redshift
tests. However, modified configurations, for example by relaunching the atoms, can mimic such tests
under certain conditions and may constitute a competitive alternative. (iii) Guided atom interferometers
are comparable to atomic clocks. (iv) Internal transitions lead to state-dependent interaction potentials
through which light-pulse atom interferometers can become sensitive to gravitational redshift violations.
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I. INTRODUCTION

The phase of a matter wave is connected to proper time
[1]. Therefore, at first sight atom interferometers, which
compare phases accumulated along different branches,
seem to be a natural candidate to probe the universality of
the gravitational redshift (UGR) [2—4]. This foundational
principle of general relativity can be tested by comparing
relative phases of two independent (atomic) clocks at
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different heights, measuring the proper-time differences
between them. However, the analogy to conventional light-
pulse atom interferometers is misleading [5-8], as they
usually lack the internal energy difference that leads to
a physical clock [9-14]. Despite this objection, recent
proposals based on generating superpositions during the
interferometer [15] or relying on internal transitions [16]
are indeed able to test UGR. In this article, we identify
in analogy to atomic clocks the reason for a sensitivity of
atom interferometers to UGR violations. To this end, we
derive a generalized treatment for both atomic clocks and
atom interferometers including physics beyond the Stan-
dard Model by considering non-Einsteinian components
of gravity, establishing a common and rigid criterion for
being sensitive to UGR violations.

In its operational definition, proper time is the quantity
measured by an idealized clock on a given worldline and
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manifests itself—as a direct consequence of special and
general relativity—in time dilation between two observers
[17—19]. As such, time dilation can be used to test a basic
premise of general relativity, the Einstein equivalence prin-
ciple (EEP), which translates into three core assumptions
[20]: local Lorentz invariance, universality of free fall
(UFF), and universality of the gravitational redshift. In
principle, UGR is a special case of local position invari-
ance and tests the expected gravitational redshift measured
between two identical clocks propagating along different
worldlines [21]. Alternative tests of local position invari-
ance are verifications of the universality of the rates of two
different clocks on the same worldline [22]. Since we focus
in our article on the comparison with atom interferometers
and thus on different worldlines, we do not consider this
kind of test. If and only if EEP is valid, gravity can be
described as a metric theory. In such theories the metric
solely contains all information on the motion of mas-
sive test bodies in gravity without any additional field or
physical object [23—25]. Thus, EEP demands that gravity
couples in a universal manner, i.e., composition indepen-
dently, to all types of non-gravitational matter-energy [22].
However, even further assumptions are necessary to refine
the variety of metric theories to the theory of general
relativity [20].

Atom interferometers routinely examine in ambitious
UFF tests [26,27] whether the free fall of a test particle
depends on the composition of its rest mass. Hence, it
seems natural and worthwhile to study their suitability for
tests of UGR. A widely accepted operational definition of
violations of UGR is derived from atomic clocks. Employ-
ing this definition, we show in the present article that
every conventional Bragg-type atom interferometer [28]
in a uniform gravitational field with only a single inter-
nal state of the atom does not test UGR if it is closed,
which means that there is no separation in position and
momentum between both branches at the readout time.
A Bragg-type interferometer does not change the internal
state, so that the employed diffraction is described by lin-
ear interaction potentials that do not depend on the internal
state of the atom. However, for closed Bragg-type atom
interferometers operated with a superposition of internal
states of the atom, we analyze under which conditions
such schemes can mimic UGR tests akin to atomic clocks.
These results are surprising, given that conventional light-
pulse atom interferometers do not test UGR [29]. Hence,
we discuss the impact of such schemes on future exper-
iments using a specific geometry and show that they can
push the current limits of UGR tests with atom interfer-
ometry in free fall. Moreover, we demonstrate how other
types of atom interferometers can be sensitive to UGR vio-
lations. The latter include guided atom interferometers or
interferometers employing linear but state-dependent inter-
actions, for example through internal transitions during the
sequence.

A. Distinction between UGR and UFF

Under the condition of energy conservation, UGR can
be seen as a consequence of attributing weight to matter-
energy [30]. It assumes that the ticking rate of an idealized
clock is altered in the presence of a gravitational field, and
that the magnitude of this (universal) modification must
not depend on the composition of the clock. The phase
accumulated by a matter wave is proportional to the mass
of the particle including also contributions from the inter-
nal energy. Therefore, it was argued that the associated
Compton frequency represents the ticking rate of a clock
[2], even if the experiment is performed with only one
internal state of the atom. This claim was opposed (see,
for example, Ref. [5]), because UGR tests are convention-
ally parametrized by violation models coupling to different
internal states of an atom. As such, UGR tests compare
the local ticking rate determined by the internal degrees
of freedom of an atomic clock. Consequently, a consistent
parametrization of UGR violations has to involve at least
two internal states.

In contrast, UFF tests are usually performed through
a comparison (null test) of the gravitational accelerations
of different and independent test masses. However, it is
also possible to compare the acceleration experienced by
an atom in different internal states [31]. Because the test
object is the same for both internal states, UFF violations
between different internal states are suppressed compared
to UFF violations with different species [32]. In these situ-
ations, however, the violation parameters of UFF and UGR
can be connected on the basis of fundamental assump-
tions such as energy conservation [33—35]. Assuming that
only such EEP violations from different internal states are
considered, there are two fundamental differences between
UFF and UGR tests, which allow for a consistent distinc-
tion between both principles: (i) Even though the UFF
and UGR violation parameters are not independent, they
couple differently in experimental situations. While UFF
violations are connected to the center-of-mass dynamics
of the total mass-energy of the test object, UGR violations
depend on the internal energy difference. Hence, depend-
ing on the specific situation, the ratio of these two energy
scales can either enhance or suppress the respective viola-
tion parameter. (ii) UFF tests are by definition null tests of
two gravitational accelerations. In contrast, tests of UGR
probe the universality (composition independence) of a
nonvanishing gravitational effect [22] between different
worldlines as a consequence of local position invariance.
A comparison of physical systems with different compo-
sitions on the same worldline constitutes a null test of
local position invariance [36,37]. However, since we focus
in our article on the application to atom interferometers
that intrinsically include different worldlines, we do not
consider this kind of test.

A priori UGR and UFF constitute two distinct
premises of metric theories of gravity [20,22]; and the
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interdependence of UFF and UGR in our framework does
not necessarily imply that they are as well connected in
a still unknown fundamental theory. On a methodological
level, conducting tests of both principles independently is
key to a complementary approach with minimal assump-
tions and conjectures [38]. However, already within viola-
tion models where both principles are related [33], such as
ours, it is important to distinguish between the sensitivity
to different types of tests. For example, the sensitivity to
EEP violations in UGR tests or in UFF tests depends cru-
cially on the coupling strengths of the violation models to
the involved forces and particles, and the exact composi-
tions of the test particles. Consequently, there are scenarios
where UGR tests are much more sensitive than UFF tests
and vice versa [9].

Our article focuses on UGR. This principle can be tested
through transitions of nuclear resonance experiments [39,
40] as well as through atomic clocks moving on different
worldlines [41] subject to kinetic and gravitational time
dilation. Such tests have been performed aboard airplanes
[42,43] and space crafts [44—50]. Today’s state-of-the-
art (optical) clocks [51-54] offer unprecedented accuracy
of time keeping and accurate UGR tests [55] on small
distances [56-58].

B. Phases of matter waves

All of these classical clock schemes rely on the com-
parison of two independent physical systems, for example
two locally trapped atoms forming atomic clocks. How-
ever, because the phase of a matter wave is intrinsically
connected to proper time, one could naively think that
a single atom in spatial superposition can also be used
for UGR tests. Indeed, in the low-velocity and weak-field
approximation the global phase of a first-quantized matter
wave

)
¢:S/h:_/drﬂ[c2—z—+0(z)+ V(Z’t)] (1)
h 2 m

without any violation of EPP depends on the action S of a
classical point particle with mass m and velocity z includ-
ing the Newtonian gravitational field U(z). It is obtained
from the expansion of a point particle’s proper time up to
c~2, parametrized through the lab time ¢. The additional
potential V(z,t) contains the interactions that prevent the
matter from following a geodesic. The interactions can, for
example, originate from a trap, a guiding potential, or light
pulses. The mass includes internal-energy contributions,
so that possible internal transitions during the experiment
imply a time-dependent mass. Because of the unidimen-
sional configurations considered in this article, only one
spatial direction suffices for our description.

Since the classical action S is encoded as a global
phase, it is impossible to obtain the value of this phase
from a quantum mechanical experiment. Instead, one must

interfere two systems (or one system in two configura-
tions). In fact, an atom interferometer brings an atom into
a superposition of two different worldlines and allows for
a measurement of the action difference between the inter-
ferometer branches through the relative interferometric
phase ¢. Since this phase does in principle include rel-
ativistic effects [59,60], it seems plausible that such an
experiment is sufficient for tests of UGR. However, a con-
ventional Bragg-type atom interferometer is operated only
in one internal state without internal transitions. There-
fore, it lacks an energy reference necessary for a periodic
system that constitutes a clock, so that it is impossible
to detect UGR violations. To introduce such a quantum
clock [12,13,29,61], an atom interferometer can bring an
initial superposition of two internal states (similar to a
Ramsey sequence of atomic clocks) into a spatial superpo-
sition. This concept of quantum clock interferometry raises
the question whether tests of UGR are possible in such
configurations and of their underlying principles.

C. Outline and key results

As an example of a theory that contains violations of
UFF and UGR, we rely in this article on a dilaton model
[15,32,62—64], discussed in Sec. II and further detailed
in Appendix A. We introduce in Sec. IIl A a common
formalism for interferometric atomic clocks as well as
for atom interferometers and identify the crucial mecha-
nisms for UGR tests in both interferometric experiments.
In Sec. III B we observe that the sensitivity of atomic
clocks to tests of UGR is based on the nonlinear position
dependence of the trapping potentials that force both inter-
nal states to follow a common trajectory. Consequently,
the differential phase between two clocks is distinguish-
able from a situation in a freely falling frame, even if there
is no violation of the EEP.

In contrast, we demonstrate in Sec. III C that all closed
Bragg-type atom interferometers with only a single inter-
nal state of the atom are fundamentally insensitive to
violations of the gravitational redshift in a linear gravi-
tational field. Even if operated as a quantum clock, i.e.,
with an internal superposition, such interferometer exper-
iments are at first different from UGR tests performed
with atomic clocks. As such, a Mach-Zehnder configura-
tion is the prime example for UFF tests, even though there
is a fundamental connection between our parametriza-
tion of UFF violations and those associated with UGR.
However, we show that modifications of Bragg-type inter-
ferometers are possible, for example by applying relaunch
pulses, so that they mimic UGR tests akin to atomic clocks
under certain conditions. Besides, we identify a large
class of other UGR-sensitive atom interferometer schemes:
if the internal state is not changed by the light-matter
interaction, UGR tests can be achieved—in analogy to
clocks—through potentials that are nonlinear in the atom’s
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position, forcing both internal states on one common
trajectory (guiding schemes). Alternatively, Sec. IV shows
that changing the internal state of the atom during the light-
pulse sequence of an atom interferometer [15,16] generates
a state-dependent momentum transfer that may result in a
UGR sensitivity.

We put our results in Sec. V into perspective, dis-
cuss possible implementations, and give rough estimates
to assess the influence of the discussed schemes on future
experimental realizations.

II. VIOLATIONS CAUSED BY DILATON FIELDS

In the following we introduce mass defects caused by
different internal energies as well as an EEP-violation
model based on the coupling to a dilaton field. We are
then able to discuss EEP violations detected by idealized
clocks and use exactly such a setup to identify and define
violations of UGR.

A. Mass defects and dilaton coupling

The idea of internal superpositions as an input for atom
interferometers [12,13,65] triggered interest in the consis-
tent description of mass defects caused by the different
internal energies [61,66—70]. Similarly, we introduce rel-
ativistic corrections through the internal energy E; = m; c?
of two internal states j = a, b. Generalizing Eq. (1), this
relation implies a state-dependent mass m;,;, = m &= Am/2
and leads to a different action §; for each internal state. At
this point it is interesting to note that solely the assump-
tion that energy possesses weight directly implies the
gravitational redshift [30].

To introduce deviations from the established laws of
gravitation, one possibility is to consider a massless, scalar
dilaton field. The coupling of this field to gravity, the
elementary particles, and the gauge fields, in particular
the electromagnetic one, arises from an effective action
as a result, for example, of string theory [71]. After a
conformal transformation, modified Einstein field equa-
tions emerge, together with a dilaton coupling to all
elementary particles and all other forces of the Stan-
dard Model. By linearizing the interacting theory in the
dilaton field, we obtain an effective position-dependent
interaction between dilaton and all other fields. In the low-
energy expansion in orders of ¢~! this interaction alters
the atom’s mass (including internal energies) [15,32,63,64]
and by that introduces a nonuniversal coupling to grav-
ity (see Appendix A). After approximating the theory
with a first-quantized description, we expand the atom’s
dilaton-dependent mass (including the mass defect through
different internal energies) to linear order in the dilaton
field around its Standard-Model value. This way, we obtain
m;[1+ B;U(z)/ c?], including the Newtonian gravitational
field U(z). The dimensionless parameter f; that serves
as the EEP-violation parameter is the linear expansion

coefficient. In this order in ¢ 2, the interaction of the atom
with a light field is not influenced by the dilaton field.
In Appendix A we present a more detailed model from a
field-theoretical perspective to motivate this relation.

However, both UGR and UFF violations are connected
in the dilaton model and can be exactly parametrized in
this specific violation framework. This connection relies
on energy conservation.

B. UGR violations in idealized clocks

An idealized clock in general relativity is operationally
defined as a physical system that measures proper time
along a worldline. This clock hypothesis [19] determines
the mathematical expression for proper time. Since in the
presence of a dilaton field the coupling of gravity to a phys-
ical system that constitutes a clock depends on the nonuni-
versal parameter f;, issues arise in such an operational
definition. However, one can still introduce an idealized
clock, consisting of a superposition of two internal states
of an atom. This clock measures general-relativistic proper
time together with an additional nonuniversal contribution
caused by the dilaton field.

In accordance with this definition, we introduce an
internal structure to the system and assume that such an
idealized clock consists of a superposition of two colocal-
ized internal states (masses) moving along one common
trajectory. However, atomic clocks are based on inter-
nal transitions generated by the absorption or emission of
photons. As a result, the associated photon recoil has pro-
found consequences on the limitations of measurements
of spacetime distances [72]. To circumvent such issues,
we assume recoilless internal transitions or work in a
regime where recoil effects are negligible. We study the
effect of transferred momentum through the interaction
with light gratings in the context of atom interferometers,
where this effect is the main mechanism to generate spatial
superpositions.

For atomic clocks, the dilaton field causes the two inter-
nal states to drop at different rates and by that to follow
different trajectories during the operation of the clock.
To mitigate this effect, we assume an idealized state-
independent trapping potential ¥ that is sufficiently steep to
guide both masses on a common trajectory ¢ (). We extend
the model in Sec. III B to clocks with quantized center-of-
mass (c.m.) motion and nonidealized trapping potentials.
The action from Eq. (1) for time-independent masses,
including the mass defect my;, = m £ Am/2, is modified
by the dilaton field, leading to S;(¢) —m; B [ dt U(Z).
Here, we used the fact that the EEP violation g, effec-
tively leads to a state-dependent gravitational potential
(1 + B;)U. With this modified action, we find the phase

1
<ﬂ=ﬁ{(Sb—Sa)I;—mAﬁ/dtU(O} 2

040333-4



GRAVITATIONAL REDSHIFT TESTS...

PRX QUANTUM 2, 040333 (2021)

between both masses measured by a single idealized clock
on one trajectory ¢ (7). Here, we introduced the parame-
ter AB = (Bp — B,) and neglected Am pB; [73]. Moreover,
we assume the contribution to the action from the ide-
alized potential V' to be state independent. It thus can-
cels in the phase and we can focus on the contribution
S;(¢) = —m; [dt[c® — ¢?/2 + U(¢)] from the Newtonian
part of the action [74]. In the Newtonian case (AS = 0),
this idealized clock therefore measures the relative phase
(Sp — S,)/h = —Q1 between the two internal states with
frequency Q = Amc?/h and proper time T = [df[1 —
2%/ (2c?) + U(¢)/c?] along the trajectory Z(f) of the trap.
Including the dilaton field, the phase from Eq. (2) takes the
form

@ = —Q|:r +a/dt U(g)/&], (3)

where we have introduced the parameter « = mAB/Am,
which parametrizes UGR violations. Conversely, we show
that UFF violations of internal states are parametrized
through Ap in this framework. Thus, o highlights the fun-
damental connection between both principles. This relation
can be proven by general energy conservation arguments
[34,35] even for a wider range of nonmetric theories
beyond the dilaton model.

To identify UGR violations, it is necessary to deter-
mine the differential phase between two clocks moving
along different trajectories (in our violation model) and
then compare it to the classical expression for the proper
time of ideal clocks moving along trajectories with the
same initial conditions ticking at rate 2. When we intro-
duce two such branches, the phase ¢©) becomes branch
dependent, so that it has to be denoted by a superscript
o = u,l for an upper and lower branch. To simplify the
discussion, we consider from here on only linear Newto-
nian potentials U(z) = gz with gravitational acceleration
g. We then find with Eq. (3) for two stationary traps sep-
arated by a fixed distance §¢p = ¢ ™ — ¢ the differential
phase

Oc = ¢ — 9" = —Q( + )d5egT/* ()
between the two clocks, where u and / denote the upper
and lower branches. The proper-time difference between
the two trajectories is caused by gravitational time dilation
and given by 8t = §¢0gT/c?, where T is the time between
simultaneous initialization and readout in the laboratory
frame. Here, we neglected finite speed-of-light effects for
the moment. Finally, Eq. (4) defines a classical UGR test
measuring violations « that modify unity as a prefactor and
depends on the internal composition of the atoms. Note
that, even though o = mAB/Am is connected to viola-
tions of UFF parametrized by Ap, idealized clocks test
a modification of the gravitational redshift by the factor
(14 a).

III. CLOCKS WITH QUANTIZED MOTION AND
QUANTUM CLOCK INTERFERENCE

In this section we first present a perturbative formalism
for the calculation of interferometric phases suitable for
describing both atomic clocks and atom interferometers.
We then apply the method to two atomic clocks and show
that different schemes comparing their phases lead to clas-
sical UGR tests. In the final part of this section, we transfer
the concept to atom interferometers. While they are in
the first place insensitive to UGR violations in analogy to
atomic clocks, we show that they can be used under certain
conditions to mimic UGR tests akin to those performed
with atomic clocks.

A. Interferometric phases from perturbations

Atomic clocks in a Ramsey sequence are based on the
interference of two internal states, whereas, in atom inter-
ferometers, the two branches interfere c.m. wave packets.
Hence, both types of experiments rely on the interference
of two components |v) and [¢,). The form of these two
components depends on the observable, i.e., a projector,
that defines the exit port of the interference experiment.
After the projection associated with the observable, we find
that the component |y ,) = 01,2 |Yin) /2 arises from the
action of an effective evolution operator 01,2 on the ini-
tial state |y,); see Appendix B. For atomic clocks, the
population of one of the two internal states is the observ-
able of interest, for example measured by fluorescence. In
contrast, the exit port of atom interferometers is defined
through specific values of the atom’s final momentum that
can be measured by absorption imaging in the far field.
Both operators U; and U, incorporate the projection onto
the exit port and can be associated with different effective
time evolutions and corresponding effective Hamiltonians
that describe the generation of the individual components
dynamically. In this case, the interference pattern is deter-
mined by the expectation value of the overlap (U lT U,) =
Cexp(ip) with respect to the initial state. Here, C denotes
the contrast of the interferometer and ¢ the measured inter-
ferometric phase. Since we are interested in the effects of
the c.m. motion of clocks, we incorporate the generation
of internal superpositions in the initial state and the read-
out through a projection on the superposition of internal
states. Hence, for clocks, the operators Ul and 02 describe
the c.m. motion of different internal states. In contrast, for a
description of atom interferometers, these operators prop-
agate an atom in a superposition of two spatially separated
branches generated by diffraction from light fields. In both
cases, the expectation value (U 17“ Us) is taken with respect
to the initial state of the c.m. motion.

The mass defect as well as the dilaton field cause slightly
different trajectories and actions compared to the original,
unperturbed expressions z(¢) and S from Eq. (1). However,
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the leading-order corrections to the phase are obtained by
integrating the perturbation along the unperturbed trajec-
tories (see Appendix C). A more rigorous justification of
this intuition for operator-valued expressions and general-
ization to higher orders in the perturbation can be found in
Refs. [75,76]. Therefore, contributions from corrections to
the trajectories would be additionally suppressed. Hence,
we find that the phase

1
Q=@ — 7 / dt Hair + owp Q)

calculated in a laboratory frame with laboratory time # can
be expressed as a sum of three contributions: (i) the phase
¢ measured by the closed, unperturbed interferometer that
is connected to the nonrelativistic action difference [1]; (ii)
a term Hgi originating from the difference between two
branches or two internal states of a perturbing Hamiltonian
H evaluated at the unperturbed phase-space trajectories;
and (iii) a contribution ¢wp caused by wave-packet effects.
These effects arise if the two components of the wave
function have obtained different shapes during the evo-
lution and are described in more detail in Appendix D.
The sum of the first two contributions corresponds to the
action difference [59,75,77], including the lowest order of
the perturbation 7:(;“).

For the description of the c.m. motion of atomic clocks
and atom interferometers without internal transitions dur-
ing the sequence, we rely on an effective branch-dependent
model

N2
B =me + L pmgz + VO + R, (6)
2m

which arises after postselection and leads to the phase
presented in Eq. (5). This Hamiltonian contains the expan-
sions of proper time analogous to Eq. (1) up to order
c2, the mass defect to order Am, and the gravitational
potential including the dilaton modification to linear order
(1 + B;)g. Consequently, it consists of an unperturbed part
mc? + p%/(2m) + mg? involving a linear Newtonian field
together with an interaction potential

(o) ©)3 ml? (0)y2 (©)
V :—F Z+T(Z—£ ) +Vph (7)

with branch-dependent forces F)(f). This interaction
includes time-dependent instantaneous momentum trans-
fer and a harmonic trapping potential of frequency I" that
is centered around the classical position ¢ ) (f) and is inde-
pendent of g. Because the harmonic trap is in general
sensitive to the internal energy and thus each internal state
|j) experiences a slightly different trapping frequency I';,
we have introduced the harmonic mean of the trapping
potentials through I'> = (I"2 + I'7)/2 and treat deviations

as perturbations. Diffracting laser pulses and their phases
are divided into two parts: one contribution, depending
on position is included in the forces F©). The position-
independent part, which in principle depends on time and
the branch, is contained in V;}‘f ) (1). Because it does not con-
tribute to the c.m. motion, we can include the phase arising
from the action of Vp(ﬁ )(#) in the phase ¢ [8,29].

Branch- and state-dependent c.m. perturbations are
described by 7%]@. This contribution takes the form

N Am ﬁ2
(o) 2 A A
Hj = XjT[c o2 +gz] +mp;gz

mAT?

th— E— ¢, ®)

where A, = +1 corresponds to the exited state and A, =
—1 to the ground state. It contains the mass splitting Am
that modifies the evolution in a linear gravitational field
[68-70,78], the coupling through f; to the dilaton field
[62—64], and a splitting in the state-dependent frequency
of the harmonic trap with AT'> = I'; — I'2 as perturbation
parameters. Including the mass m in Egs. (7) and (8) as
a prefactor to the harmonic potential only simplifies the
notation, but does not imply that the optical trap itself is
mass dependent. In this description we do not take into
account additional relativistic c.m. corrections in Eq. (6),
for example p*/c* or gpzp /c>. While such contributions
are of order ¢~2, they are independent of the mass defect
Am. Consequently, they cancel in the differential phase
between two internal states with m, and mj. Similarly, we
neglect effects from a modification of the wave vector due
to the propagation of the light in gravity. Such effects are
to lowest order in the perturbation also independent of Am.
In analogy to Eq. (2), we consider Am f; as a higher-order
term that has to be neglected in our treatment.

Moreover, the term Amc? is much larger than the other
terms in ﬂj(g) and constitutes the dominant contribution
to proper time t along a given trajectory, as it mea-
sures the laboratory time ¢. Although being dominant, this
contribution does not modify the trajectories and is there-
fore exactly accounted for in the action. In addition, it is
common to both branches and cancels in the proper-time
difference between them. Because of the finite speed of
light, each branch is addressed by the interacting light field
at slightly different times. Thus, one branch accumulates
an additional phase (m &= Am/2)c?8t/h in a specific time
interval §¢. However, between separation and detection
both interferometer branches experience the same amount
of laboratory time and therefore this phase cancels. A sim-
ilar argument applies not only to atom interferometers but
also to the clock geometries considered in the follow-
ing where the two clocks do not meet at the final pulse.
Next-order effects from the finite speed of light emerge
from the remaining part of the unperturbed Hamiltonian
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from Eq. (6). For example, for atom interferometers, these
terms result in phases of the form mdézgT/h, where 4z
is the spatial separation of the branches. Therefore, finite
speed-of-light effects appear as mdzg(T + 87)/h. Since
such effects are common to both internal states, they can-
cel in the differential phase between m, and m;. Thus, the
remaining contributions arise from the perturbation Hamil-
tonian described by Eq. (8) and are proportional to Am.
Moreover, the time difference § 7' can be estimated as 6z /c.
Consequently, these effects are at least of order Am/c in
the differential phase and lie beyond our treatment [16,29].

B. Classical UGR tests by clocks with quantized
motion

A single atomic clock, for example operated as a 7/2 —
/2 Ramsey sequence, relies on the overlap of the c.m.
wave packets associated with two different internal states
|a) and |b) on one branch o and measures the phase ¢, In
the following, we omit the superscript o when we discuss
only a single atomic clock. To describe a clock, we model
the first 77 /2 pulse by assuming an initial internal superpo-
sition (|a) + |b))/2. Each of these two internal states | ;)
evolves according to its respective Hamiltonian given in
Eq. (6) and gives rise to the effective operators U, and
(72. Hence, in the case of atomic clocks, these two oper-
ators describe the c.m. motion of the atom in the ground
state and in the excited state, respectively. Furthermore, we
neglect recoil effects and choose a vanishing force F' = 0.
We model the final 77 /2 pulse mixing the two internal sates
and the readout through a projection onto the superposition
(la) + 1b))/2 (see Appendix B).

Hence, we rely on the difference Haix = Hp — H,, eval-
uated along the unperturbed trajectory z (). Consequently,
we find the phase

1 72
0= — fdt{Am[cz — % +gz] + mABgz

mAT?
2

L mar c)z} towr )

measured by one clock. Here we omit the phase ¢,
because the unperturbed clock (with respect to the mean
mass m) closes trivially and ¢, contains only laser phases.
These phases vanish in differential measurements if the
same laser is used for both clocks or if the lasers for each
clock are phase locked. Because the c.m. wave packets
associated with the two internal states may have obtained a
different shape upon propagation, wave-packet effects pwp
have to be taken into account as well.

Since classical UGR tests are based on the comparison
of two clocks, we introduce the differential phase

)

R (10)

between two clocks on different branches as a generaliza-
tion of Eq. (4). We perform a partial integration of Eq. (9),
which corresponds to the application of the virial theorem,
and utilize the classical, unperturbed equation of motion
(see Appendix C). Introducing the mean position z =
(z® 4 z®)/2 and the difference 6z = z* — 2z, which are
defined analogously for ¢, we find the differential phase

1 .
dc = _ﬁ[ — Amz8z

+/dmm{r2(5 —Z) +ag)éz

+/d¢mAr2(E —2)(8¢ — 82)i|. (11)

As shown in Appendix D, the wave-packet contribution
@wp 1s branch independent and cancels in the differential
phase. With this result, we discuss the different situations
shown in Fig. 1, including a quantized c.m. motion of the
clocks.

The configuration in Fig. 1(a) consists of two initially
stationary atoms at different heights trapped until their ini-
tialization at time ¢ = 0. After their release, i.e., ' = 0, the
atoms fall freely in a dilaton gravitational field. Therefore,
we find for the unperturbed trajectory that Z(T) —2(0) =
—gT and we observe that §z = 3¢y is constant. Conse-
quently, only the first term and the integral over Amagész
in Eq. (11) contribute to the differential phase and lead
to a UGR test. Indeed, two atomic clocks in free fall are
suitable to measure UGR violations. The key step is that
the clocks are initialized in traps at different heights, an
assumption that we drop in the context of atom interferom-
eters. As a direct consequence, conventional Bragg-type
atom interferometers will turn out to be insensitive to UGR
violations.

If the atoms are trapped, i.e., I' # 0 for the whole inter-
ference experiment, we find the difference between the
mean trajectory and mean trap position from a general
perturbative treatment in Appendix C. Through this pro-
cedure, we obtain z — ¢ = —g/ I'> + O(I"3), which cor-
responds to order I"'~2 to the gravitational sag. The result is
valid as long as E = 0, i.e., if the two traps are accelerated
in an antisymmetric fashion. A residual mean acceleration
¢ would lead to an accelerational redshift instead of a grav-
itational one [79]. Similarly, the height difference between
the atomic branches is 6z = §¢ + O(I'2). Hence, apart
from corrections of order I' 2, it corresponds to the height
difference between the positions of the trap centers. Thus,
we obtain for the differential phase

Do = _%[ _ Amgag‘ +/dt{Am(1 +a)dcg}

N o<r—1>}, (12)
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Scheme (a) Freely falling clocks

(b) Clocks on different heights

(c) Guided clocks

N
8o = 8o s
o~ b p~
io = go 10 = §o
T T’ T

Oc —-Q(1 + @) 64ogT/c? -Q (1 +a)06sogT/c? —Q(1+@)64g(T +T")/c* +O(T™")
84 £90) - £(0) ¢ - g 2T
FIG. 1. Comparison of two clocks moving along different configurations in spacetime: two freely falling atoms (a); two clocks

trapped at different heights (b); as well as two clocks starting at the same position, guided by two trapping potentials to different heights,
and back to the initial height (c). The center of each trap is bordered by red potential barriers, while the unperturbed trajectories z(7)
of the atoms are represented by black lines. The initialization and readout of the clocks is marked by purple pulses. To show that the
detectors project on the internal state of the atom, each detector is colored in blue and green, representing both internal states. The
two trajectories caused by a perturbation through the dilaton field with an effective acceleration (1 + 8;)g are also drawn with these
colors. The differential phases @ listed for each geometry in the table all show a sensitivity to UGR tests for a height difference of

8¢ between the positions of the trap centers.

where the first term arising from the boundary conditions is
independent of g. For the derivation, we assumed that dif-
ferent trap frequencies can be treated perturbatively, which
is valid for AT « +/T"/T, as shown in Appendix D. Addi-
tional corrections from different trap frequencies are of
order AT'2/ T4,

Figure 1(b) shows a situation where the atoms evolve for
time 7 in two traps at different but constant heights sepa-
rated by 8. Hence, the time derivative of ¢ and by that
the first term in Eq. (12) vanishes. Thus, the expression in
the integral leads to the UGR sensitivity.

If both clocks meet at the beginning and the end of the
sequence, the first term in Eq. (12) also vanishes. Hence,
the differential phase ®c = —Q(1 +a)g [dis¢/c* +
O(T 1) is solely characterized by the time-dependent dif-
ference of the trap centers. One example for this class
of geometries is the configuration from Fig. 1(c), which
resembles a guided atom interferometer. In this geome-
try, one trap moves an atom up for some time 7 with
velocity v, while another trap moves a different atom
down with —v. Afterwards, both traps are held at constant
heights for an interval 7", before the velocities are inverted
and the atoms are combined at t = 27 + T’, which yields
fdt(S( =2vT(T+ T’). Hence, 2vT = 8y represents the
height difference during the central time segment. For this
example, we did not accelerate the traps gradually but
with instantaneous velocity kicks +wv. Still, similar rela-
tions Z — ¢ = —g/I'? as well as 8z =8¢ + O('™!) are
valid for these instantaneous kicks due the antisymmetry of
the velocity transfer. In the limit ' — oo all contributions
in ®c distinguishing z and ¢ as well as 6z and 8¢ vanish.

Since an infinitely steep trap enforces the colocalization of
the actual position z(¢) with the trap center ¢ (¢), we recover
idealized clocks in this limit. For the scheme of two clocks
in free fall, no trap enforces the colocalization after the
atom’s release at ¢ = 0, but the wave-packet effects cancel
in @ since they are branch independent.

The table of Fig. 1 summarizes our results and gives the
differential phase as well as the definition of the height dif-
ference. All three situations test UGR exactly like idealized
clocks, that is, with the internal frequency 2 and the factor
(1 + @). Any experiment giving rise to a phase of the form
+Q (1 + «)80gT/c* could have also been performed with
two (static) atomic clocks with frequency €2 and separation
8¢, operating for a time interval 7. Hence, such a phase
defines the gold standard for tests of UGR. This UGR sen-
sitivity relies on the application of a quadratic potential.
The resulting term AmI"?Z8z under the integral in Eq. (11)
persists also after a transformation into a freely falling sys-
tem. For freely falling clocks, this role is played by the
boundary term —Amz3z| in Eq. (11). It is only nonvanish-
ing because of the application of a quadratic potential at
¢t = 0 to bring the atoms at different heights.

The expressions for the differential phases in Fig. 1
have been derived under the assumption that both inter-
nal states are initially at rest and colocalized in the
unperturbed potential minimum. Dropping this assump-
tion, one is limited by additional requirements on the
maximum amplitude of the classical oscillation as outlined
in Ref. [80]. However, our treatment goes beyond these
classical considerations by including quantum-mechanical
wave-packet effects for atomic clocks, which are described
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in more detail in Appendix D. In this article, we con-
sider only atomic clock geometries without internal state
transfer during the interrogation time. However, modeling
the internal state transfer by a time-dependent mass, the
treatment can be easily generalized. As we will discuss in
Sec. IV, such transitions are a possible key to obtain a sen-
sitivity to UGR violations for atom interferometers with
linear interaction potentials.

C. UGR tests with quantum clock interferometry

Next we study atom interferometers where the two
branches are not associated with two independent quantum
systems but with a single one in spatial superposition. Our
aim is to examine which atom-interferometric configura-
tions exhibit the same UGR sensitivity as atomic clocks.
Therefore, we first consider Bragg-type atom interferome-
ters operated with a single internal state during the whole
sequence, without any internal transitions. The exit port
of Bragg-type atom interferometers is defined by a spe-
cific momentum and its readout is performed, for example,
through absorption imaging in the far field. The interfer-
ence pattern is determined by the overlap of the two c.m.
wave packets that propagated along two different branches
o = u,l, measuring the phase ¢;. Thus, the operators U,

and Ug are associated with the effective evolution of the
c.m. wave packet along the branches. In the following,
we omit the index j when we discuss an atom interferom-
eter operated with only one internal state. Because only
one internal state is populated during the whole sequence,
Bragg-type atom interferometers cannot test UGR like
atomic clocks that necessarily involve two internal states.
As a generalization, we introduce quantum clock inter-
ferometry where an interferometer sequence is performed
simultaneously for a superposition of internal states. We
furthermore investigate if such schemes are UGR sensi-
tive. Finally, we briefly discuss the connection of guided
atom interferometers to atomic clocks guided in traps.

1. Bragg-type atom interferometers

In contrast to atomic clocks, atoms in Bragg-type atom
interferometers are in free fall or manipulated by a linear,
state-independent interaction potential, e.g., light pulses,
instead of a harmonic trap. Thus, we set I' = 0. The
light pulses introducing momentum kicks or other con-
stant forces are encoded in a branch-dependent force F(©).
Hence, we find the difference Hgix = H®™ — H between
the perturbation evaluated along the upper and lower
unperturbed trajectories. Thus, we obtain from Eq. (5) the
phase

1 Am_ . .
©=@y— 7 dt{ Aj T[—zﬁz +gdz] +mp,géz
+ owp (13)

for a single internal state |j ), expressed through the mean
position z and the difference §z between the branches.
An imperfect overlap between the two c.m. wave pack-
ets leads to the phase ¢wp. However, since we consider
unperturbed atom interferometers that are closed in phase
space, no wave-packet effects arise and ¢wp cancels (see
Appendix D).

We cast Eq. (13) into a more compact form by par-
tial integration and by using the classical, unperturbed
equation of motion (see Appendix C), which corresponds
to the application of the virial theorem. Consequently,
closed schemes measure the phase

1 Am -
0 =—= dt{)\j%F+mﬁjg}8z+<po, (14)
which differs significantly from the UGR test through
atomic clocks from Eq. (4). It implies that (closed) Bragg-
type atom interferometers cannot provide such tests. The
integrand shows a term proportional to £ that will be dis-
cussed later, and a term proportional to f;. In particular,
we find for a Mach-Zehnder configuration the phase ¢ =
—k(1 + Bj)gT 2 between the two branches, where T is the
time between the pulses and k the transferred momentum.
In contrast to the UGR violation with clocks, this phase
depends on f; instead of o and does not include a refer-
ence energy of a second internal state. As we discussed
in Sec. I, this result is already known from discussions
of Mach-Zehnder interferometers [9], but Eq. (14) gener-
alizes it to all (closed) Bragg-type atom interferometers.
Moreover, the appearance of f; already highlights that
such an interferometer can be used for tests of UFF, as the
gravitational acceleration can in principle be compared to
any other (even macroscopic) object.

So far, Am appeared only as a technical quantity because
there is no second internal state, but it is crucial for the
concept of quantum clock interferometry: instead of a sin-
gle internal state |j), one can use a superposition (|a) +
|b))/+/2 of internal states as input to a Bragg-type atom
interferometer [12]. As a result, the interference signal is
a superposition of two patterns, each associated with an
internal state and the phase ¢;. A possible mass depen-
dence of this phase introduces a beating of the interferom-
eter signal [13,29], which effectively leads to a differential
measurement of both phases. Instead of measuring the
differential phase through a beating, the phases of each
internal state can be read out independently and subtracted.
From a fundamental perspective, superpositions of inter-
nal states are not necessary and the differential phase of
two independent interferometers performed with different
internal states leads to the same result. However, superpo-
sitions can be beneficial to suppress common-mode effects.
In all these cases we infer the differential phase

DAl = @p — @4 (15)
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between two phases ¢; of the individual states |; ), where
the unperturbed phase ¢y cancels in such schemes. Analo-
gously t