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Gravitational Redshift Tests with Atomic Clocks and Atom Interferometers
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Atomic interference experiments can probe the gravitational redshift via the internal energy splitting
of atoms and thus give direct access to test the universality of the coupling between matter-energy and
gravity at different spacetime points. By including possible violations of the equivalence principle in a fully
quantized treatment of all atomic degrees of freedom, we characterize how the sensitivity to gravitational
redshift violations arises in atomic clocks and atom interferometers, as well as their underlying limitations.
Specifically, we show that: (i) Contributions beyond linear order to trapping potentials lead to such a
sensitivity of trapped atomic clocks. (ii) Bragg-type interferometers, even with a superposition of internal
states, with state-independent, linear interaction potentials are at first insensitive to gravitational redshift
tests. However, modified configurations, for example by relaunching the atoms, can mimic such tests
under certain conditions and may constitute a competitive alternative. (iii) Guided atom interferometers
are comparable to atomic clocks. (iv) Internal transitions lead to state-dependent interaction potentials
through which light-pulse atom interferometers can become sensitive to gravitational redshift violations.
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I. INTRODUCTION

The phase of a matter wave is connected to proper time
[1]. Therefore, at first sight atom interferometers, which
compare phases accumulated along different branches,
seem to be a natural candidate to probe the universality of
the gravitational redshift (UGR) [2–4]. This foundational
principle of general relativity can be tested by comparing
relative phases of two independent (atomic) clocks at
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different heights, measuring the proper-time differences
between them. However, the analogy to conventional light-
pulse atom interferometers is misleading [5–8], as they
usually lack the internal energy difference that leads to
a physical clock [9–14]. Despite this objection, recent
proposals based on generating superpositions during the
interferometer [15] or relying on internal transitions [16]
are indeed able to test UGR. In this article, we identify
in analogy to atomic clocks the reason for a sensitivity of
atom interferometers to UGR violations. To this end, we
derive a generalized treatment for both atomic clocks and
atom interferometers including physics beyond the Stan-
dard Model by considering non-Einsteinian components
of gravity, establishing a common and rigid criterion for
being sensitive to UGR violations.

In its operational definition, proper time is the quantity
measured by an idealized clock on a given worldline and
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manifests itself—as a direct consequence of special and
general relativity—in time dilation between two observers
[17–19]. As such, time dilation can be used to test a basic
premise of general relativity, the Einstein equivalence prin-
ciple (EEP), which translates into three core assumptions
[20]: local Lorentz invariance, universality of free fall
(UFF), and universality of the gravitational redshift. In
principle, UGR is a special case of local position invari-
ance and tests the expected gravitational redshift measured
between two identical clocks propagating along different
worldlines [21]. Alternative tests of local position invari-
ance are verifications of the universality of the rates of two
different clocks on the same worldline [22]. Since we focus
in our article on the comparison with atom interferometers
and thus on different worldlines, we do not consider this
kind of test. If and only if EEP is valid, gravity can be
described as a metric theory. In such theories the metric
solely contains all information on the motion of mas-
sive test bodies in gravity without any additional field or
physical object [23–25]. Thus, EEP demands that gravity
couples in a universal manner, i.e., composition indepen-
dently, to all types of non-gravitational matter-energy [22].
However, even further assumptions are necessary to refine
the variety of metric theories to the theory of general
relativity [20].

Atom interferometers routinely examine in ambitious
UFF tests [26,27] whether the free fall of a test particle
depends on the composition of its rest mass. Hence, it
seems natural and worthwhile to study their suitability for
tests of UGR. A widely accepted operational definition of
violations of UGR is derived from atomic clocks. Employ-
ing this definition, we show in the present article that
every conventional Bragg-type atom interferometer [28]
in a uniform gravitational field with only a single inter-
nal state of the atom does not test UGR if it is closed,
which means that there is no separation in position and
momentum between both branches at the readout time.
A Bragg-type interferometer does not change the internal
state, so that the employed diffraction is described by lin-
ear interaction potentials that do not depend on the internal
state of the atom. However, for closed Bragg-type atom
interferometers operated with a superposition of internal
states of the atom, we analyze under which conditions
such schemes can mimic UGR tests akin to atomic clocks.
These results are surprising, given that conventional light-
pulse atom interferometers do not test UGR [29]. Hence,
we discuss the impact of such schemes on future exper-
iments using a specific geometry and show that they can
push the current limits of UGR tests with atom interfer-
ometry in free fall. Moreover, we demonstrate how other
types of atom interferometers can be sensitive to UGR vio-
lations. The latter include guided atom interferometers or
interferometers employing linear but state-dependent inter-
actions, for example through internal transitions during the
sequence.

A. Distinction between UGR and UFF

Under the condition of energy conservation, UGR can
be seen as a consequence of attributing weight to matter-
energy [30]. It assumes that the ticking rate of an idealized
clock is altered in the presence of a gravitational field, and
that the magnitude of this (universal) modification must
not depend on the composition of the clock. The phase
accumulated by a matter wave is proportional to the mass
of the particle including also contributions from the inter-
nal energy. Therefore, it was argued that the associated
Compton frequency represents the ticking rate of a clock
[2], even if the experiment is performed with only one
internal state of the atom. This claim was opposed (see,
for example, Ref. [5]), because UGR tests are convention-
ally parametrized by violation models coupling to different
internal states of an atom. As such, UGR tests compare
the local ticking rate determined by the internal degrees
of freedom of an atomic clock. Consequently, a consistent
parametrization of UGR violations has to involve at least
two internal states.

In contrast, UFF tests are usually performed through
a comparison (null test) of the gravitational accelerations
of different and independent test masses. However, it is
also possible to compare the acceleration experienced by
an atom in different internal states [31]. Because the test
object is the same for both internal states, UFF violations
between different internal states are suppressed compared
to UFF violations with different species [32]. In these situ-
ations, however, the violation parameters of UFF and UGR
can be connected on the basis of fundamental assump-
tions such as energy conservation [33–35]. Assuming that
only such EEP violations from different internal states are
considered, there are two fundamental differences between
UFF and UGR tests, which allow for a consistent distinc-
tion between both principles: (i) Even though the UFF
and UGR violation parameters are not independent, they
couple differently in experimental situations. While UFF
violations are connected to the center-of-mass dynamics
of the total mass-energy of the test object, UGR violations
depend on the internal energy difference. Hence, depend-
ing on the specific situation, the ratio of these two energy
scales can either enhance or suppress the respective viola-
tion parameter. (ii) UFF tests are by definition null tests of
two gravitational accelerations. In contrast, tests of UGR
probe the universality (composition independence) of a
nonvanishing gravitational effect [22] between different
worldlines as a consequence of local position invariance.
A comparison of physical systems with different compo-
sitions on the same worldline constitutes a null test of
local position invariance [36,37]. However, since we focus
in our article on the application to atom interferometers
that intrinsically include different worldlines, we do not
consider this kind of test.

A priori UGR and UFF constitute two distinct
premises of metric theories of gravity [20,22]; and the
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interdependence of UFF and UGR in our framework does
not necessarily imply that they are as well connected in
a still unknown fundamental theory. On a methodological
level, conducting tests of both principles independently is
key to a complementary approach with minimal assump-
tions and conjectures [38]. However, already within viola-
tion models where both principles are related [33], such as
ours, it is important to distinguish between the sensitivity
to different types of tests. For example, the sensitivity to
EEP violations in UGR tests or in UFF tests depends cru-
cially on the coupling strengths of the violation models to
the involved forces and particles, and the exact composi-
tions of the test particles. Consequently, there are scenarios
where UGR tests are much more sensitive than UFF tests
and vice versa [9].

Our article focuses on UGR. This principle can be tested
through transitions of nuclear resonance experiments [39,
40] as well as through atomic clocks moving on different
worldlines [41] subject to kinetic and gravitational time
dilation. Such tests have been performed aboard airplanes
[42,43] and space crafts [44–50]. Today’s state-of-the-
art (optical) clocks [51–54] offer unprecedented accuracy
of time keeping and accurate UGR tests [55] on small
distances [56–58].

B. Phases of matter waves

All of these classical clock schemes rely on the com-
parison of two independent physical systems, for example
two locally trapped atoms forming atomic clocks. How-
ever, because the phase of a matter wave is intrinsically
connected to proper time, one could naively think that
a single atom in spatial superposition can also be used
for UGR tests. Indeed, in the low-velocity and weak-field
approximation the global phase of a first-quantized matter
wave

φ = S/� = −
∫

dt
m
�

[
c2 − ż2

2
+ U (z)+ V(z, t)

m

]
(1)

without any violation of EPP depends on the action S of a
classical point particle with mass m and velocity ż includ-
ing the Newtonian gravitational field U(z). It is obtained
from the expansion of a point particle’s proper time up to
c−2, parametrized through the lab time t. The additional
potential V(z, t) contains the interactions that prevent the
matter from following a geodesic. The interactions can, for
example, originate from a trap, a guiding potential, or light
pulses. The mass includes internal-energy contributions,
so that possible internal transitions during the experiment
imply a time-dependent mass. Because of the unidimen-
sional configurations considered in this article, only one
spatial direction suffices for our description.

Since the classical action S is encoded as a global
phase, it is impossible to obtain the value of this phase
from a quantum mechanical experiment. Instead, one must

interfere two systems (or one system in two configura-
tions). In fact, an atom interferometer brings an atom into
a superposition of two different worldlines and allows for
a measurement of the action difference between the inter-
ferometer branches through the relative interferometric
phase ϕ. Since this phase does in principle include rel-
ativistic effects [59,60], it seems plausible that such an
experiment is sufficient for tests of UGR. However, a con-
ventional Bragg-type atom interferometer is operated only
in one internal state without internal transitions. There-
fore, it lacks an energy reference necessary for a periodic
system that constitutes a clock, so that it is impossible
to detect UGR violations. To introduce such a quantum
clock [12,13,29,61], an atom interferometer can bring an
initial superposition of two internal states (similar to a
Ramsey sequence of atomic clocks) into a spatial superpo-
sition. This concept of quantum clock interferometry raises
the question whether tests of UGR are possible in such
configurations and of their underlying principles.

C. Outline and key results

As an example of a theory that contains violations of
UFF and UGR, we rely in this article on a dilaton model
[15,32,62–64], discussed in Sec. II and further detailed
in Appendix A. We introduce in Sec. III A a common
formalism for interferometric atomic clocks as well as
for atom interferometers and identify the crucial mecha-
nisms for UGR tests in both interferometric experiments.
In Sec. III B we observe that the sensitivity of atomic
clocks to tests of UGR is based on the nonlinear position
dependence of the trapping potentials that force both inter-
nal states to follow a common trajectory. Consequently,
the differential phase between two clocks is distinguish-
able from a situation in a freely falling frame, even if there
is no violation of the EEP.

In contrast, we demonstrate in Sec. III C that all closed
Bragg-type atom interferometers with only a single inter-
nal state of the atom are fundamentally insensitive to
violations of the gravitational redshift in a linear gravi-
tational field. Even if operated as a quantum clock, i.e.,
with an internal superposition, such interferometer exper-
iments are at first different from UGR tests performed
with atomic clocks. As such, a Mach-Zehnder configura-
tion is the prime example for UFF tests, even though there
is a fundamental connection between our parametriza-
tion of UFF violations and those associated with UGR.
However, we show that modifications of Bragg-type inter-
ferometers are possible, for example by applying relaunch
pulses, so that they mimic UGR tests akin to atomic clocks
under certain conditions. Besides, we identify a large
class of other UGR-sensitive atom interferometer schemes:
if the internal state is not changed by the light-matter
interaction, UGR tests can be achieved—in analogy to
clocks—through potentials that are nonlinear in the atom’s
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position, forcing both internal states on one common
trajectory (guiding schemes). Alternatively, Sec. IV shows
that changing the internal state of the atom during the light-
pulse sequence of an atom interferometer [15,16] generates
a state-dependent momentum transfer that may result in a
UGR sensitivity.

We put our results in Sec. V into perspective, dis-
cuss possible implementations, and give rough estimates
to assess the influence of the discussed schemes on future
experimental realizations.

II. VIOLATIONS CAUSED BY DILATON FIELDS

In the following we introduce mass defects caused by
different internal energies as well as an EEP-violation
model based on the coupling to a dilaton field. We are
then able to discuss EEP violations detected by idealized
clocks and use exactly such a setup to identify and define
violations of UGR.

A. Mass defects and dilaton coupling

The idea of internal superpositions as an input for atom
interferometers [12,13,65] triggered interest in the consis-
tent description of mass defects caused by the different
internal energies [61,66–70]. Similarly, we introduce rel-
ativistic corrections through the internal energy Ej ≡ mj c2

of two internal states j = a, b. Generalizing Eq. (1), this
relation implies a state-dependent mass mb/a = m ±�m/2
and leads to a different action Sj for each internal state. At
this point it is interesting to note that solely the assump-
tion that energy possesses weight directly implies the
gravitational redshift [30].

To introduce deviations from the established laws of
gravitation, one possibility is to consider a massless, scalar
dilaton field. The coupling of this field to gravity, the
elementary particles, and the gauge fields, in particular
the electromagnetic one, arises from an effective action
as a result, for example, of string theory [71]. After a
conformal transformation, modified Einstein field equa-
tions emerge, together with a dilaton coupling to all
elementary particles and all other forces of the Stan-
dard Model. By linearizing the interacting theory in the
dilaton field, we obtain an effective position-dependent
interaction between dilaton and all other fields. In the low-
energy expansion in orders of c−1 this interaction alters
the atom’s mass (including internal energies) [15,32,63,64]
and by that introduces a nonuniversal coupling to grav-
ity (see Appendix A). After approximating the theory
with a first-quantized description, we expand the atom’s
dilaton-dependent mass (including the mass defect through
different internal energies) to linear order in the dilaton
field around its Standard-Model value. This way, we obtain
mj [1 + βj U(z)/c2], including the Newtonian gravitational
field U(z). The dimensionless parameter βj that serves
as the EEP-violation parameter is the linear expansion

coefficient. In this order in c−2, the interaction of the atom
with a light field is not influenced by the dilaton field.
In Appendix A we present a more detailed model from a
field-theoretical perspective to motivate this relation.

However, both UGR and UFF violations are connected
in the dilaton model and can be exactly parametrized in
this specific violation framework. This connection relies
on energy conservation.

B. UGR violations in idealized clocks

An idealized clock in general relativity is operationally
defined as a physical system that measures proper time
along a worldline. This clock hypothesis [19] determines
the mathematical expression for proper time. Since in the
presence of a dilaton field the coupling of gravity to a phys-
ical system that constitutes a clock depends on the nonuni-
versal parameter βj , issues arise in such an operational
definition. However, one can still introduce an idealized
clock, consisting of a superposition of two internal states
of an atom. This clock measures general-relativistic proper
time together with an additional nonuniversal contribution
caused by the dilaton field.

In accordance with this definition, we introduce an
internal structure to the system and assume that such an
idealized clock consists of a superposition of two colocal-
ized internal states (masses) moving along one common
trajectory. However, atomic clocks are based on inter-
nal transitions generated by the absorption or emission of
photons. As a result, the associated photon recoil has pro-
found consequences on the limitations of measurements
of spacetime distances [72]. To circumvent such issues,
we assume recoilless internal transitions or work in a
regime where recoil effects are negligible. We study the
effect of transferred momentum through the interaction
with light gratings in the context of atom interferometers,
where this effect is the main mechanism to generate spatial
superpositions.

For atomic clocks, the dilaton field causes the two inter-
nal states to drop at different rates and by that to follow
different trajectories during the operation of the clock.
To mitigate this effect, we assume an idealized state-
independent trapping potential V that is sufficiently steep to
guide both masses on a common trajectory ζ(t). We extend
the model in Sec. III B to clocks with quantized center-of-
mass (c.m.) motion and nonidealized trapping potentials.
The action from Eq. (1) for time-independent masses,
including the mass defect mb/a = m ±�m/2, is modified
by the dilaton field, leading to Sj (ζ )− mjβj

∫
dt U(ζ ).

Here, we used the fact that the EEP violation βj effec-
tively leads to a state-dependent gravitational potential
(1 + βj )U. With this modified action, we find the phase

ϕ = 1
�

{
(Sb − Sa)|ζ − m �β

∫
dt U(ζ )

}
(2)
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between both masses measured by a single idealized clock
on one trajectory ζ(t). Here, we introduced the parame-
ter �β = (βb − βa) and neglected �mβj [73]. Moreover,
we assume the contribution to the action from the ide-
alized potential V to be state independent. It thus can-
cels in the phase and we can focus on the contribution
Sj (ζ ) = −mj

∫
dt [c2 − ζ̇ 2/2 + U(ζ )] from the Newtonian

part of the action [74]. In the Newtonian case (�β = 0),
this idealized clock therefore measures the relative phase
(Sb − Sa)/� = −�τ between the two internal states with
frequency � = �mc2/� and proper time τ ∼= ∫

dt [1 −
ζ̇ 2/(2c2)+ U(ζ )/c2] along the trajectory ζ(t) of the trap.
Including the dilaton field, the phase from Eq. (2) takes the
form

ϕ = −�
[
τ + α

∫
dt U(ζ )/c2

]
, (3)

where we have introduced the parameter α = m�β/�m,
which parametrizes UGR violations. Conversely, we show
that UFF violations of internal states are parametrized
through �β in this framework. Thus, α highlights the fun-
damental connection between both principles. This relation
can be proven by general energy conservation arguments
[34,35] even for a wider range of nonmetric theories
beyond the dilaton model.

To identify UGR violations, it is necessary to deter-
mine the differential phase between two clocks moving
along different trajectories (in our violation model) and
then compare it to the classical expression for the proper
time of ideal clocks moving along trajectories with the
same initial conditions ticking at rate �. When we intro-
duce two such branches, the phase ϕ(σ) becomes branch
dependent, so that it has to be denoted by a superscript
σ = u, l for an upper and lower branch. To simplify the
discussion, we consider from here on only linear Newto-
nian potentials U(z) = gz with gravitational acceleration
g. We then find with Eq. (3) for two stationary traps sep-
arated by a fixed distance δζ0 = ζ (u) − ζ (l) the differential
phase

�C = ϕ(u) − ϕ(l) = −�(1 + α)δζ0gT/c2 (4)

between the two clocks, where u and l denote the upper
and lower branches. The proper-time difference between
the two trajectories is caused by gravitational time dilation
and given by δτ = δζ0gT/c2, where T is the time between
simultaneous initialization and readout in the laboratory
frame. Here, we neglected finite speed-of-light effects for
the moment. Finally, Eq. (4) defines a classical UGR test
measuring violations α that modify unity as a prefactor and
depends on the internal composition of the atoms. Note
that, even though α = m�β/�m is connected to viola-
tions of UFF parametrized by �β, idealized clocks test
a modification of the gravitational redshift by the factor
(1 + α).

III. CLOCKS WITH QUANTIZED MOTION AND
QUANTUM CLOCK INTERFERENCE

In this section we first present a perturbative formalism
for the calculation of interferometric phases suitable for
describing both atomic clocks and atom interferometers.
We then apply the method to two atomic clocks and show
that different schemes comparing their phases lead to clas-
sical UGR tests. In the final part of this section, we transfer
the concept to atom interferometers. While they are in
the first place insensitive to UGR violations in analogy to
atomic clocks, we show that they can be used under certain
conditions to mimic UGR tests akin to those performed
with atomic clocks.

A. Interferometric phases from perturbations

Atomic clocks in a Ramsey sequence are based on the
interference of two internal states, whereas, in atom inter-
ferometers, the two branches interfere c.m. wave packets.
Hence, both types of experiments rely on the interference
of two components |ψ1〉 and |ψ2〉. The form of these two
components depends on the observable, i.e., a projector,
that defines the exit port of the interference experiment.
After the projection associated with the observable, we find
that the component |ψ1,2〉 = Û1,2 |ψin〉 /2 arises from the
action of an effective evolution operator Û1,2 on the ini-
tial state |ψin〉; see Appendix B. For atomic clocks, the
population of one of the two internal states is the observ-
able of interest, for example measured by fluorescence. In
contrast, the exit port of atom interferometers is defined
through specific values of the atom’s final momentum that
can be measured by absorption imaging in the far field.
Both operators Û1 and Û2 incorporate the projection onto
the exit port and can be associated with different effective
time evolutions and corresponding effective Hamiltonians
that describe the generation of the individual components
dynamically. In this case, the interference pattern is deter-
mined by the expectation value of the overlap 〈Û †

1 Û2〉 =
C exp(iϕ) with respect to the initial state. Here, C denotes
the contrast of the interferometer and ϕ the measured inter-
ferometric phase. Since we are interested in the effects of
the c.m. motion of clocks, we incorporate the generation
of internal superpositions in the initial state and the read-
out through a projection on the superposition of internal
states. Hence, for clocks, the operators Û1 and Û2 describe
the c.m. motion of different internal states. In contrast, for a
description of atom interferometers, these operators prop-
agate an atom in a superposition of two spatially separated
branches generated by diffraction from light fields. In both
cases, the expectation value 〈Û †

1 Û2〉 is taken with respect
to the initial state of the c.m. motion.

The mass defect as well as the dilaton field cause slightly
different trajectories and actions compared to the original,
unperturbed expressions z(t) and S from Eq. (1). However,
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the leading-order corrections to the phase are obtained by
integrating the perturbation along the unperturbed trajec-
tories (see Appendix C). A more rigorous justification of
this intuition for operator-valued expressions and general-
ization to higher orders in the perturbation can be found in
Refs. [75,76]. Therefore, contributions from corrections to
the trajectories would be additionally suppressed. Hence,
we find that the phase

ϕ = ϕ0 − 1
�

∫
dtHdiff + ϕWP (5)

calculated in a laboratory frame with laboratory time t can
be expressed as a sum of three contributions: (i) the phase
ϕ0 measured by the closed, unperturbed interferometer that
is connected to the nonrelativistic action difference [1]; (ii)
a term Hdiff originating from the difference between two
branches or two internal states of a perturbing Hamiltonian
Ĥ evaluated at the unperturbed phase-space trajectories;
and (iii) a contribution ϕWP caused by wave-packet effects.
These effects arise if the two components of the wave
function have obtained different shapes during the evo-
lution and are described in more detail in Appendix D.
The sum of the first two contributions corresponds to the
action difference [59,75,77], including the lowest order of
the perturbation Ĥ(σ )

j .
For the description of the c.m. motion of atomic clocks

and atom interferometers without internal transitions dur-
ing the sequence, we rely on an effective branch-dependent
model

Ĥ (σ )
j = mc2 + p̂2

2m
+ mgẑ + V̂ (σ ) + Ĥ(σ )

j , (6)

which arises after postselection and leads to the phase
presented in Eq. (5). This Hamiltonian contains the expan-
sions of proper time analogous to Eq. (1) up to order
c−2, the mass defect to order �m, and the gravitational
potential including the dilaton modification to linear order
(1 + βj )g. Consequently, it consists of an unperturbed part
mc2 + p̂2/(2m)+ mgẑ involving a linear Newtonian field
together with an interaction potential

V̂ (σ ) = −F (σ )ẑ + m�2

2
(ẑ − ζ (σ))2 + V (σ )

ph (7)

with branch-dependent forces F (σ )(t). This interaction
includes time-dependent instantaneous momentum trans-
fer and a harmonic trapping potential of frequency � that
is centered around the classical position ζ (σ)(t) and is inde-
pendent of g. Because the harmonic trap is in general
sensitive to the internal energy and thus each internal state
| j 〉 experiences a slightly different trapping frequency �j ,
we have introduced the harmonic mean of the trapping
potentials through �2 = (�2

a + �2
b)/2 and treat deviations

as perturbations. Diffracting laser pulses and their phases
are divided into two parts: one contribution, depending
on position is included in the forces F (σ ). The position-
independent part, which in principle depends on time and
the branch, is contained in V (σ )

ph (t). Because it does not con-
tribute to the c.m. motion, we can include the phase arising
from the action of V (σ )

ph (t) in the phase ϕ0 [8,29].
Branch- and state-dependent c.m. perturbations are

described by Ĥ(σ )
j . This contribution takes the form

Ĥ(σ )
j = λj

�m
2

[
c2 − p̂2

2m2 + gẑ
]

+ mβj gẑ

+ λj
m��2

4
(ẑ − ζ (σ))2, (8)

where λb = +1 corresponds to the exited state and λa =
−1 to the ground state. It contains the mass splitting �m
that modifies the evolution in a linear gravitational field
[68–70,78], the coupling through βj to the dilaton field
[62–64], and a splitting in the state-dependent frequency
of the harmonic trap with ��2 = �2

b − �2
a as perturbation

parameters. Including the mass m in Eqs. (7) and (8) as
a prefactor to the harmonic potential only simplifies the
notation, but does not imply that the optical trap itself is
mass dependent. In this description we do not take into
account additional relativistic c.m. corrections in Eq. (6),
for example p̂4/c2 or gp̂ẑp̂/c2. While such contributions
are of order c−2, they are independent of the mass defect
�m. Consequently, they cancel in the differential phase
between two internal states with ma and mb. Similarly, we
neglect effects from a modification of the wave vector due
to the propagation of the light in gravity. Such effects are
to lowest order in the perturbation also independent of�m.
In analogy to Eq. (2), we consider�mβj as a higher-order
term that has to be neglected in our treatment.

Moreover, the term �mc2 is much larger than the other
terms in Ĥ (σ )

j and constitutes the dominant contribution
to proper time τ along a given trajectory, as it mea-
sures the laboratory time t. Although being dominant, this
contribution does not modify the trajectories and is there-
fore exactly accounted for in the action. In addition, it is
common to both branches and cancels in the proper-time
difference between them. Because of the finite speed of
light, each branch is addressed by the interacting light field
at slightly different times. Thus, one branch accumulates
an additional phase (m ±�m/2)c2δt/� in a specific time
interval δt. However, between separation and detection
both interferometer branches experience the same amount
of laboratory time and therefore this phase cancels. A sim-
ilar argument applies not only to atom interferometers but
also to the clock geometries considered in the follow-
ing where the two clocks do not meet at the final pulse.
Next-order effects from the finite speed of light emerge
from the remaining part of the unperturbed Hamiltonian
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from Eq. (6). For example, for atom interferometers, these
terms result in phases of the form mδzgT/�, where δz
is the spatial separation of the branches. Therefore, finite
speed-of-light effects appear as mδzg(T + δT )/�. Since
such effects are common to both internal states, they can-
cel in the differential phase between ma and mb. Thus, the
remaining contributions arise from the perturbation Hamil-
tonian described by Eq. (8) and are proportional to �m.
Moreover, the time difference δT can be estimated as δz/c.
Consequently, these effects are at least of order �m/c in
the differential phase and lie beyond our treatment [16,29].

B. Classical UGR tests by clocks with quantized
motion

A single atomic clock, for example operated as a π/2 −
π/2 Ramsey sequence, relies on the overlap of the c.m.
wave packets associated with two different internal states
|a〉 and |b〉 on one branch σ and measures the phase ϕ(σ). In
the following, we omit the superscript σ when we discuss
only a single atomic clock. To describe a clock, we model
the first π/2 pulse by assuming an initial internal superpo-
sition (|a〉 + |b〉)/2. Each of these two internal states | j 〉
evolves according to its respective Hamiltonian given in
Eq. (6) and gives rise to the effective operators Û1 and
Û2. Hence, in the case of atomic clocks, these two oper-
ators describe the c.m. motion of the atom in the ground
state and in the excited state, respectively. Furthermore, we
neglect recoil effects and choose a vanishing force F = 0.
We model the final π/2 pulse mixing the two internal sates
and the readout through a projection onto the superposition
(|a〉 + |b〉)/2 (see Appendix B).

Hence, we rely on the difference Hdiff = Hb − Ha, eval-
uated along the unperturbed trajectory z(t). Consequently,
we find the phase

ϕ = −1
�

∫
dt

{
�m

[
c2 − ż2

2
+ gz

]
+ m�βgz

+ m��2

2
(z − ζ )2

}
+ ϕWP (9)

measured by one clock. Here we omit the phase ϕ0,
because the unperturbed clock (with respect to the mean
mass m) closes trivially and ϕ0 contains only laser phases.
These phases vanish in differential measurements if the
same laser is used for both clocks or if the lasers for each
clock are phase locked. Because the c.m. wave packets
associated with the two internal states may have obtained a
different shape upon propagation, wave-packet effects ϕWP
have to be taken into account as well.

Since classical UGR tests are based on the comparison
of two clocks, we introduce the differential phase

�C = ϕ(u) − ϕ(l) (10)

between two clocks on different branches as a generaliza-
tion of Eq. (4). We perform a partial integration of Eq. (9),
which corresponds to the application of the virial theorem,
and utilize the classical, unperturbed equation of motion
(see Appendix C). Introducing the mean position z̄ =
(z(u) + z(l))/2 and the difference δz = z(u) − z(l), which are
defined analogously for ζ , we find the differential phase

�C = −1
�

[
−�m˙̄zδz

∣∣∣∣ +
∫

dt�m{�2(ζ̄ − z̄)+ αg}δz

+
∫

dt m��2(ζ̄ − z̄)(δζ − δz)
]

. (11)

As shown in Appendix D, the wave-packet contribution
ϕWP is branch independent and cancels in the differential
phase. With this result, we discuss the different situations
shown in Fig. 1, including a quantized c.m. motion of the
clocks.

The configuration in Fig. 1(a) consists of two initially
stationary atoms at different heights trapped until their ini-
tialization at time t = 0. After their release, i.e., � = 0, the
atoms fall freely in a dilaton gravitational field. Therefore,
we find for the unperturbed trajectory that ˙̄z(T )− ˙̄z(0) =
−gT and we observe that δz = δζ0 is constant. Conse-
quently, only the first term and the integral over �mαgδz
in Eq. (11) contribute to the differential phase and lead
to a UGR test. Indeed, two atomic clocks in free fall are
suitable to measure UGR violations. The key step is that
the clocks are initialized in traps at different heights, an
assumption that we drop in the context of atom interferom-
eters. As a direct consequence, conventional Bragg-type
atom interferometers will turn out to be insensitive to UGR
violations.

If the atoms are trapped, i.e., � �= 0 for the whole inter-
ference experiment, we find the difference between the
mean trajectory and mean trap position from a general
perturbative treatment in Appendix C. Through this pro-
cedure, we obtain z̄ − ζ̄ = −g/�2 + O(�−3), which cor-
responds to order �−2 to the gravitational sag. The result is
valid as long as ¨̄ζ = 0, i.e., if the two traps are accelerated
in an antisymmetric fashion. A residual mean acceleration
¨̄ζ would lead to an accelerational redshift instead of a grav-
itational one [79]. Similarly, the height difference between
the atomic branches is δz = δζ + O(�−2). Hence, apart
from corrections of order �−2, it corresponds to the height
difference between the positions of the trap centers. Thus,
we obtain for the differential phase

�C = −1
�

[
−�m ˙̄ζ δζ

∣∣∣∣ +
∫

dt {�m(1 + α)δζg}

+ O(�−1)

]
, (12)
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(a) (b) (c)

FIG. 1. Comparison of two clocks moving along different configurations in spacetime: two freely falling atoms (a); two clocks
trapped at different heights (b); as well as two clocks starting at the same position, guided by two trapping potentials to different heights,
and back to the initial height (c). The center of each trap is bordered by red potential barriers, while the unperturbed trajectories z(t)
of the atoms are represented by black lines. The initialization and readout of the clocks is marked by purple pulses. To show that the
detectors project on the internal state of the atom, each detector is colored in blue and green, representing both internal states. The
two trajectories caused by a perturbation through the dilaton field with an effective acceleration (1 + βj )g are also drawn with these
colors. The differential phases �C listed for each geometry in the table all show a sensitivity to UGR tests for a height difference of
δζ0 between the positions of the trap centers.

where the first term arising from the boundary conditions is
independent of g. For the derivation, we assumed that dif-
ferent trap frequencies can be treated perturbatively, which
is valid for �� � √

�/T, as shown in Appendix D. Addi-
tional corrections from different trap frequencies are of
order ��2/�4.

Figure 1(b) shows a situation where the atoms evolve for
time T in two traps at different but constant heights sepa-
rated by δζ0. Hence, the time derivative of ζ̄ and by that
the first term in Eq. (12) vanishes. Thus, the expression in
the integral leads to the UGR sensitivity.

If both clocks meet at the beginning and the end of the
sequence, the first term in Eq. (12) also vanishes. Hence,
the differential phase �C = −�(1 + α)g

∫
dt δζ/c2 +

O(�−1) is solely characterized by the time-dependent dif-
ference of the trap centers. One example for this class
of geometries is the configuration from Fig. 1(c), which
resembles a guided atom interferometer. In this geome-
try, one trap moves an atom up for some time T with
velocity v, while another trap moves a different atom
down with −v. Afterwards, both traps are held at constant
heights for an interval T ′, before the velocities are inverted
and the atoms are combined at t = 2T + T ′, which yields∫

dt δζ = 2vT(T + T ′). Hence, 2vT = δζ0 represents the
height difference during the central time segment. For this
example, we did not accelerate the traps gradually but
with instantaneous velocity kicks ±v. Still, similar rela-
tions z̄ − ζ̄ = −g/�2 as well as δz = δζ + O(�−1) are
valid for these instantaneous kicks due the antisymmetry of
the velocity transfer. In the limit � → ∞ all contributions
in �C distinguishing z̄ and ζ̄ as well as δz and δζ vanish.

Since an infinitely steep trap enforces the colocalization of
the actual position z(t)with the trap center ζ(t), we recover
idealized clocks in this limit. For the scheme of two clocks
in free fall, no trap enforces the colocalization after the
atom’s release at t = 0, but the wave-packet effects cancel
in �C since they are branch independent.

The table of Fig. 1 summarizes our results and gives the
differential phase as well as the definition of the height dif-
ference. All three situations test UGR exactly like idealized
clocks, that is, with the internal frequency� and the factor
(1 + α). Any experiment giving rise to a phase of the form
±�(1 + α)δζ0gT/c2 could have also been performed with
two (static) atomic clocks with frequency� and separation
δζ0, operating for a time interval T. Hence, such a phase
defines the gold standard for tests of UGR. This UGR sen-
sitivity relies on the application of a quadratic potential.
The resulting term �m�2z̄δz under the integral in Eq. (11)
persists also after a transformation into a freely falling sys-
tem. For freely falling clocks, this role is played by the
boundary term −�m˙̄zδz| in Eq. (11). It is only nonvanish-
ing because of the application of a quadratic potential at
t = 0 to bring the atoms at different heights.

The expressions for the differential phases in Fig. 1
have been derived under the assumption that both inter-
nal states are initially at rest and colocalized in the
unperturbed potential minimum. Dropping this assump-
tion, one is limited by additional requirements on the
maximum amplitude of the classical oscillation as outlined
in Ref. [80]. However, our treatment goes beyond these
classical considerations by including quantum-mechanical
wave-packet effects for atomic clocks, which are described
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in more detail in Appendix D. In this article, we con-
sider only atomic clock geometries without internal state
transfer during the interrogation time. However, modeling
the internal state transfer by a time-dependent mass, the
treatment can be easily generalized. As we will discuss in
Sec. IV, such transitions are a possible key to obtain a sen-
sitivity to UGR violations for atom interferometers with
linear interaction potentials.

C. UGR tests with quantum clock interferometry

Next we study atom interferometers where the two
branches are not associated with two independent quantum
systems but with a single one in spatial superposition. Our
aim is to examine which atom-interferometric configura-
tions exhibit the same UGR sensitivity as atomic clocks.
Therefore, we first consider Bragg-type atom interferome-
ters operated with a single internal state during the whole
sequence, without any internal transitions. The exit port
of Bragg-type atom interferometers is defined by a spe-
cific momentum and its readout is performed, for example,
through absorption imaging in the far field. The interfer-
ence pattern is determined by the overlap of the two c.m.
wave packets that propagated along two different branches
σ = u, l, measuring the phase ϕj . Thus, the operators Û1

and Û2 are associated with the effective evolution of the
c.m. wave packet along the branches. In the following,
we omit the index j when we discuss an atom interferom-
eter operated with only one internal state. Because only
one internal state is populated during the whole sequence,
Bragg-type atom interferometers cannot test UGR like
atomic clocks that necessarily involve two internal states.
As a generalization, we introduce quantum clock inter-
ferometry where an interferometer sequence is performed
simultaneously for a superposition of internal states. We
furthermore investigate if such schemes are UGR sensi-
tive. Finally, we briefly discuss the connection of guided
atom interferometers to atomic clocks guided in traps.

1. Bragg-type atom interferometers

In contrast to atomic clocks, atoms in Bragg-type atom
interferometers are in free fall or manipulated by a linear,
state-independent interaction potential, e.g., light pulses,
instead of a harmonic trap. Thus, we set � = 0. The
light pulses introducing momentum kicks or other con-
stant forces are encoded in a branch-dependent force F (σ ).
Hence, we find the difference Hdiff = H(u) − H(l) between
the perturbation evaluated along the upper and lower
unperturbed trajectories. Thus, we obtain from Eq. (5) the
phase

ϕ = ϕ0 − 1
�

∫
dt

{
λj
�m

2
[−˙̄zδż + gδz] + mβj gδz

}

+ ϕWP (13)

for a single internal state | j 〉, expressed through the mean
position z̄ and the difference δz between the branches.
An imperfect overlap between the two c.m. wave pack-
ets leads to the phase ϕWP. However, since we consider
unperturbed atom interferometers that are closed in phase
space, no wave-packet effects arise and ϕWP cancels (see
Appendix D).

We cast Eq. (13) into a more compact form by par-
tial integration and by using the classical, unperturbed
equation of motion (see Appendix C), which corresponds
to the application of the virial theorem. Consequently,
closed schemes measure the phase

ϕ = −1
�

∫
dt

{
λj
�m
2m

F̄ + mβj g
}
δz + ϕ0, (14)

which differs significantly from the UGR test through
atomic clocks from Eq. (4). It implies that (closed) Bragg-
type atom interferometers cannot provide such tests. The
integrand shows a term proportional to F̄ that will be dis-
cussed later, and a term proportional to βj . In particular,
we find for a Mach-Zehnder configuration the phase ϕ =
−k(1 + βj )gT 2 between the two branches, where T is the
time between the pulses and k the transferred momentum.
In contrast to the UGR violation with clocks, this phase
depends on βj instead of α and does not include a refer-
ence energy of a second internal state. As we discussed
in Sec. I, this result is already known from discussions
of Mach-Zehnder interferometers [9], but Eq. (14) gener-
alizes it to all (closed) Bragg-type atom interferometers.
Moreover, the appearance of βj already highlights that
such an interferometer can be used for tests of UFF, as the
gravitational acceleration can in principle be compared to
any other (even macroscopic) object.

So far,�m appeared only as a technical quantity because
there is no second internal state, but it is crucial for the
concept of quantum clock interferometry: instead of a sin-
gle internal state | j 〉, one can use a superposition (|a〉 +
|b〉)/√2 of internal states as input to a Bragg-type atom
interferometer [12]. As a result, the interference signal is
a superposition of two patterns, each associated with an
internal state and the phase ϕj . A possible mass depen-
dence of this phase introduces a beating of the interferom-
eter signal [13,29], which effectively leads to a differential
measurement of both phases. Instead of measuring the
differential phase through a beating, the phases of each
internal state can be read out independently and subtracted.
From a fundamental perspective, superpositions of inter-
nal states are not necessary and the differential phase of
two independent interferometers performed with different
internal states leads to the same result. However, superpo-
sitions can be beneficial to suppress common-mode effects.
In all these cases we infer the differential phase

�AI = ϕb − ϕa (15)
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between two phases ϕj of the individual states | j 〉, where
the unperturbed phase ϕ0 cancels in such schemes. Analo-
gously to clocks, we find as a general result with the help
of Eq. (14) the differential phase

�AI = −1
�

∫
dt

{
�m
m

F̄ + m�βg
}
δz. (16)

Here, F̄ = (F (u) + F (l))/2 is the time-dependent mean
force of the linear interaction potential. It is indepen-
dent of g in contrast to the analogous term for clocks in
Eq. (12) and does not change in the absence of gravity.
Since, for a linear gravitational potential, one can trans-
form the unperturbed trajectories of both branches into
the same freely falling frame, their difference δz is solely
determined by the momenta transferred by the interaction
with the lasers and thus independent of gravity [29]. Rely-
ing on the relation α = m�β/�m, one finds an integrand
�(F̄/m + αg)δz/c2, instead of �(1 + α)gδz/c2, which
shows that such schemes measure in general the accelera-
tional redshift [79] caused by an acceleration F̄/m instead
of g. However, it is possible to mimic the gravitational
redshift by fixing F̄/m = g or

∫
dt F̄δz/m = g

∫
dt δz, so

that these schemes measure the same differential phase as
two atomic clocks, even though the acceleration does not
necessarily have to be of gravitational origin. Note that
choosing the mean force F̄ implies that both internal states
will have slightly different velocities because the mass mj
and the dilaton violation parameter βj depend on the inter-
nal state. These different velocities lead to a divergence
of their true, perturbed trajectories. Yet, for appropriate
time scales of the experiment, these deviations are included
by our perturbative formalism and are treated consistently.
Equally, schemes that rely on Bragg-type specular mirrors
to manipulate the atoms [81,82] also belong to this cat-
egory of geometries for properly fixed mirror positions.
Below, we give an example for a modified Bragg-type
geometry that resembles a UGR test.

Alternatively, if
∫

dt F̄δz/m is different from g
∫

dt δz,
Bragg-type atom interferometers can be interpreted as UFF
tests. The prime example is the Mach-Zehnder scheme
shown in Fig. 2(a). Atom-interferometric UFF tests for this
type of interferometer are often performed with different
species [26], so that there is no need for relativistic mass
corrections in the description. In such cases, the considered
violation models couple directly to the rest mass and pre-
dict different gravitational accelerations for different rest
masses. However, recent works show that UFF tests are
also possible for different internal states [31] through �β
in Eq. (16). For the Mach-Zehnder geometry shown in
Fig. 2(a), we find that

∫
dt F̄δz = 0 and �AI = −�βkgT 2.

An analogous expression describes UFF tests of different
atomic species or isotopes. If performed with two different
internal states, the differential phase can be connected by

�β = α�m/m to the parametrization α used for UGR vio-
lations [83]. However, this measurement still represents a
null test, so that this result is different to violations detected
by atomic clocks, which measure modifications to proper
time by a factor (1 + α), as discussed in Eq. (4).

In order to modify this Mach-Zehnder scheme so that it
becomes comparable to the clock geometry of Fig. 1(c), we
study configurations where the atoms fall in parallel dur-
ing the central time segment. In contrast to conventional
Ramsey-Bordé configurations, both arms are relaunched
[84,85] in parallel through light pulses. We explicitly
model the light pulses by a branch-dependent but state-
independent (magic Bragg [86]) effective potential [29].
Thus, we find the mean force F̄ = �

∑
� k̄�δ(t − t�) with

k̄� = (k(u) + k(l))/2, where k(σ )� denotes the effective wave
vector. Furthermore, t� is the time of the �th laser pulse act-
ing on branch σ . Additionally, we also include N relaunch
pulses transferring the momentum �κ� after equidistant
time intervals T to both branches. We express this trans-
fer κ� = maT/� through an effective acceleration a and
find the grayed-out configuration in Fig. 2(b). This accel-
eration a can be tuned by adjusting the time interval T.
The first two pulses as well as the last two pulses are also
separated by the interval T. They are associated with con-
ventional branch-dependent momentum kicks that lead to
the separation δz0 = �kT/m and the closing of the interfer-
ometer. After this separation, we apply N relaunch pulses
to these closed Ramsey-Bordé-like configurations that add
to the mean force F̄ . In general, the resulting differen-
tial phase takes the form �AI = −�(a/g + α)δz0gNT/c2,
which measures the accelerational redshift caused by a.
For a = 0 and N = 1, this geometry recovers the Mach-
Zehnder scheme shown in Fig. 2(a).

For arbitrary accelerations a, we observe from the
grayed-out configuration in Fig. 2(b) that the atoms still
experience an effective acceleration in the central segment.
So in order to resemble the clock geometry from Fig. 1(c)
as closely as possible, one has to ensure that the atoms
are ideally levitated. In this context, ideal levitation means
that effectively no acceleration is imparted to the atoms
during the relaunch sequence, i.e., between the second
beam splitter and the last relaunch pulse. Consequently,
we have to fix a = g by tuning the time T appropriately,
which corresponds to straight lines for the time-averaged,
unperturbed trajectories of the atoms. This situation sim-
ulates two atoms in stationary harmonic traps between
t = T and t = NT, so that the differential phase of two
atomic clocks is reconstructed. In this case, the differen-
tial phase �AI = −�(1 + α)δz0gNT/c2 from the colored
scheme in Fig. 2(b) mimics UGR tests with atomic clocks.
Although both internal states possess a different mass mj
and a different gravitational acceleration (1 + βj )g, we can
still choose the light pulses to transfer the same momen-
tum to both internal states, as long as the requirements
for our perturbative treatment from Eq. (9) are fulfilled.
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(a) (b) (c)

FIG. 2. Spacetime diagrams of different quantum-clock atom interferometers: a conventional Mach-Zehnder interferometer (a); a
scheme relying on pulsed optical relaunching (b); and an interferometer guided by two trapping potentials to different heights, and back
to the initial height (c). The center of each trap is bordered by red potential barriers, while the unperturbed trajectories z(t) of the atoms
are represented by dashed black lines, highlighting the superposition between the arms of the interferometer. The diffracting Bragg
pulses that act differently on each branch are denoted by red pulses. The yellow pulses are used for pulsed optical relaunching that is
independent of the state and branch. One can measure the exit-port population for each internal state independently. To indicate this
measurement scheme, we introduced two separate detectors colored in blue and green. Accordingly, the trajectories of each internal
state caused by a perturbation through the dilaton field with an effective acceleration (1 + βj )g are also drawn with these colors.
The guided atom interferometer in panel (c) takes the same form as for two guided clocks with recoilless initialization and readout
pulses, with the only difference that the atom is in a superposition of the branches (indicated by the dashed unperturbed trajectory).
The differential phases �AI are listed for each geometry in the table below. While the Mach-Zehnder interferometer in panel (a) is
insensitive to the gravitational redshift, the pulsed optical relaunching in panel (b) mimics a UGR test for the special choice a = g,
which corresponds to a vanishing effective acceleration and perfect levitation in the central segment. For other choices of a, the
resulting effective acceleration leads on average to curved trajectories of the atoms, indicated by the grayed-out configuration. In this
case one observes an accelerational redshift. The table also includes the respective height differences δz0 or δζ0.

In particular, these requirements include a time scale for
the interrogation time of the interferometer, and are amply
fulfilled in state-of-the-art experiments.

In contrast, if the requirements for our perturbative treat-
ment are not fulfilled, for example by a very long interro-
gation time, using state-independent light pulses and forces
will lead to significantly diverging trajectories of both
internal states. This result is due to the different masses
mj and different gravitational accelerations (1 + βj )g. To
resemble situations where the atoms are trapped in a har-
monic potential in such extreme situations, a has to be
chosen state dependently via mj and βj . Since βj is not
known prior to the experiment, this situation reveals the
difference between Bragg-type atom interferometers and
atomic clocks because, for the latter, adjusting the trap-
ping potential according to βj is not necessary. While this
discussion highlights the fundamental difference between
atomic clocks and atom interferometers in the context of
UGR tests, such limitations of the perturbative description
are of no practical concern.

Recently established experimental techniques [87] in
cavity-based compact devices allow levitating atoms in a
spatial superposition for unprecedented times. Although
the Bloch oscillations used in this particular experiment

differ from our pulsed scheme, these results pave the
way towards mimicked UGR tests at hitherto inaccessi-
ble ranges of parameters. As such, they emphasize the
potential and importance of levitated schemes. Together
with an internal superposition such setups measure dif-
ferential phases similar to the one discussed in Fig. 2(b).
Thus, the concepts established in this article can play a
major role in future UGR tests with atom interferome-
try, pushing the sensitivity towards current limits set by
atomic clocks. We underline this statement by a rough
estimate in the discussion of Sec. V. Conventional light-
pulse atom interferometers without relaunch pulses are
insensitive to UGR violations [29], as discussed before.
Conversely, our results show that, in contrast to conven-
tional setups, levitating pulses can indeed mimic UGR
tests. They therefore highlight the importance of the exact
pulse arrangement and momentum transfer to test UGR
with atom interferometers.

2. UGR sensitivity through state-dependent, linear
potentials

If the diffraction mechanism for the matter wave were
to allow for a velocity instead of a momentum transfer
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[88], or more generally a state-dependent, linear potential
[89], one could indeed test UGR. In this situation a term
−λj�mF (σ )ẑ/(2m) adds to the perturbation Hamiltonian
described by Eq. (8), with a modified branch-dependent,
linear force F (σ ). Consequently, for closed schemes and
state-independent, unperturbed trajectories, Eq. (16) takes
the form �AI = − ∫

dt {−�mz̄δF/m + m�βgδz}/�, with
δF = F (u) − F (l). Since the first term within the brackets
depends on gravity through z̄, one finds a UGR sensi-
tivity akin to atomic clocks if − ∫

dt z̄δF/m = g
∫

dt δz.
We conclude that the crucial difference between Bragg-
type atom interferometers and this mechanism is the state
dependency of the linear potential. The resulting momen-
tum change in these diffraction processes depends on the
internal state and leads already in the Newtonian case to
a term including g times �m. This coupling also arises
in a freely falling reference frame. However, all estab-
lished diffraction mechanisms for light pulses so far rely
on momentum rather than velocity transfers. Still, state-
dependent linear potentials can indeed be realized by
magnetic fields [89], which may allow for UGR-sensitive
configurations.

3. Guided atom interferometers

Instead of Bragg-type geometries with linear and state-
independent potentials, atom interferometers can also be
realized in fully guided schemes [90–93]. In such guiding
schemes, the laser does not induce momentum kicks by
diffracting the atom from a light grating but merely traps
the atom, for example, in a harmonic potential. To model
such guiding mechanisms that also act on superpositions
of internal states, we apply a trapping potential similar
to clocks. Because of the harmonic potential, the Newto-
nian part of the differential phase �AI ceases to be purely
kinematic, in contrast to Bragg-type atom interferome-
ters discussed before. Moreover, both internal states are
forced on one common trajectory ζ(t) like two independent
atomic clocks. Consequently, we find for closed schemes,
i.e., for deep traps, that all wave-packet effects cancel in
the differential phase. As shown in Fig. 2(c), the phase
measured by such a guided quantum-clock interferometer
coincides with that obtained for clocks, and we find that
�AI = −�(1 + α)g

∫
dt δζ/c2. This result demonstrates

that guided quantum-clock interferometers are sensitive to
UGR violations. Indeed, it is not necessary to adjust the
trapping potential to βj in this case.

Time-dependent double well potentials [91,94], deep
counterpropagating twin lattices [95,96], or spin-dependent
optical lattices [97] constitute promising candidates for
beam splitting mechanisms in such a scheme. Moreover,
semiguided geometries have been explored [87,98], where
the separation is realized by momentum kicks, before the
atom is trapped by a lattice.

IV. UGR TESTS CAUSED BY INTERNAL
TRANSITIONS

So far, we have discussed the UGR sensitivity for atom
interferometers in linear and in harmonic potentials. How-
ever, we have not yet considered the possibility of driv-
ing internal transitions during the sequence. As shown in
Refs. [15,16,99], this additional ingredient can lead to a
UGR sensitivity in light-pulse atom interferometers. Thus,
we investigate this situation in more detail in the following.
For that, we consider single interferometric phases as well
as differential phases together with mass changes caused
by such transitions.

A. Interferometric phase with internal transitions

Transitions that change the internal state directly imply
that the mass varies during the interferometer sequence and
becomes time dependent. Similarly, the violation param-
eter of the dilaton field is linked to the internal state,
resulting in a time dependent β(t) alternating between βa
and βb. As a consequence, the perturbation Hamiltonian
from Eq. (8) for �� = 0 takes the form

Ĥ(σ ) = λ(σ)(t)
�m

2

[
c2 − p̂2

2m2 + gẑ
]

+ mβ(σ)(t)gẑ,

(17)

where λ(σ)(t) encodes the current internal state and corre-
sponds to either 1 or −1. Additionally, branch-dependent
light pulses directly imply in general a branch-dependent
mass. Thus, λ → λ(σ) and β → β(σ) depend on the
branch. This generalized Hamiltonian allows not only
state- and momentum-changing Raman-type pulses, but
also includes the effect of arbitrary changes of the mass
through recoilless transitions. We now assume that the
internal state and consequently the dilaton violation param-
eter are common to both branches during a specific time
interval. By partial integration and utilizing the classical,
unperturbed equation of motion (see Appendix C), the
generalized phase reads

ϕ = ϕ0 − 1
�

∫
dt

{
�m

2

[
λ(t)
m

F̄ + λ̇(t)˙̄z
]

+ mβ(t)g
}
δz

+ λ(t)
�m
2�

˙̄zδz
∣∣∣∣ + ϕWP. (18)

Again, terms originating from the boundary conditions and
the wave-packet effects vanish for closed geometries (see
Appendix D). The difference δz is independent of gravi-
tational contributions. However, the mean velocity ˙̄z con-
tains the gravitational acceleration g and the derivative λ̇
describing internal transitions is only nonvanishing during
the instantaneous pulses. It is exactly this term that allows
for tests of UGR through light-pulse schemes employing
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internal transitions with the help of the interferometric
phase alone. Similar to state-dependent linear potentials
discussed before, it introduces momentum changes that
depend on the internal state before the pulse. But in con-
trast to the former, this state-dependent momentum now
arises for a single internal state, as it can be changed during
the sequence.

B. UGR-sensitive light-pulse schemes

The configuration shown in Fig. 3(a) is based on a
symmetric Ramsey-Bordé scheme. The additional recoil-
free π/2 pulse at time t1 generates simultaneously (in
the laboratory frame) a superposition of internal states on
each branch [15]. This way, the state independency of the
momentum transfer is bypassed through this intermediate
clock initialization.

The population of each of the atom’s internal states,
within a specific range of the final momentum of the
atom, can be detected independently of the other internal
state in an exit port. This measurement scheme leads to
the phase ϕa→a(t1) = ϕa(0, t1)+ ϕa(t1, tf ). Here ϕj (t, t ′)
is the interferometric phase accumulated in state | j 〉 from

t to t ′, when the atom is initially in the ground state |a〉
and detected in the same state. In contrast, ϕa→b(t1) =
ϕa(0, t1)+ ϕb(t1, tf ) is the phase when the atom is initially
in the ground state |a〉, and changes into state |b〉 at time t1.
This transition at t1 is associated with the time derivative
λ̇(t). The atom is finally detected at time tf in the excited
state |b〉. The transition introduces a term involving g
times�m. Hence, the differential phase�AI(t1) = ϕa→b −
ϕa→a = ϕb(t1, tf )− ϕa(t1, tf ) is independent of the phase
accumulated during the time interval from zero to t1. We
now calculate the phase for an instantaneous internal tran-
sition at t1, so that the time derivative λ̇ = 2δ(t − t1). For
a closed interferometer, the differential phase based on
Eq. (18) takes the form

�AI(t1) = −1
�

[
�m˙̄z(t1)δz(t1)

+
∫ tf

t1
dt

{
�m
m

F̄ + m�βg
}
δz

]
, (19)

where the first term is essential for a UGR test. In the
following we consider a double-differential scheme where

(a) (b)

FIG. 3. Spacetime diagrams of two UGR-sensitive atom interferometer geometries with internal transitions: a Ramsey-Bordé-like
geometry used in a doubly differential scheme (a) and a scheme relying on successive symmetrical transitions of the internal state (b).
The unperturbed trajectories z(t) of the atoms are represented by dashed black lines, highlighting their superposition. To indicate that
the exit-port population for such interferometers can be measured independently for each internal state, we introduce two separate
detectors that are colored blue and green. Accordingly, the trajectories of each internal state caused by a perturbation through the
dilaton field with an effective acceleration (1 + βj )g are also drawn in these colors. The redshift sensitivity of the Ramsey-Bordé-
like geometry in panel (a) relies on a doubly differential scheme where the first two Bragg pulses denoted by red lines open the
interferometer. While the atom drops in superposition of a height difference δz0, it is brought into an internal superposition shown by a
purple pulse at a time t1 initializing the clock. The differential phase�AI(t1) between the interference patterns for each individual state
depends on the initialization time. By subtracting the differential phase of another initialization time t2, one measures the gravitational
redshift between the two realizations, marked by the purple shaded area. In contrast, the configuration of panel (b) relies on symmetrical
internal transitions that are combined with momentum transfers, symbolized by pictograms next to the pulse. Similar to panel (a), the
atom travels during a central time segment in a superposition of parallel dropping trajectories. The phase ϕb/a differs for two different
input states (only one situation is depicted) and is already sensitive to UGR violations, even though additional terms arise so that the
interferometer has to be performed with a differential measurement. The table below the figures lists the respective phases as well as
the height differences δz0.
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we compare the phase from two different initialization
times t1 and t2 > t1. By that we are able to separate the
time segment in which both branches fall in parallel and
remove the term proportional to F̄ under the integral.
Indeed, the difference of both differential phases�AI(t1)−
�AI(t2) = ϕb(t1, t2)− ϕa(t1, t2) results in a phase solely
determined by the time segment t2 − t1 where the two
branches move in parallel like the clocks in Fig. 1(a). This
scheme leads to

�AI(t1)−�AI(t2) = −1
�

[
�m˙̄z

∣∣∣∣
t1

t2

δz0 +
∫ t2

t1
dt m�βgδz0

]
,

(20)

which resembles two clocks falling equidistantly with
˙̄z(t1)− ˙̄z(t2) = g(t2 − t1) and with a separation δz(t1) =
δz(t2) = δz0 = �kT/m. Since the remaining integration
can be performed trivially, we obtain the differential phase
�AI(t1)−�AI(t2) = −�(1 + α)δz0g(t2 − t1)/c2.

The presented scheme [15] resembles two atomic
clocks, but even internal transitions without such superpo-
sitions can be used for UGR tests. In fact, the configuration
shown in Fig. 3(b) relies on simultaneously changing on
both branches the momentum and internal state, as well
as on a symmetric diffraction into two opposite directions
[16]. In such a case, there is no superposition of internal
states and the geometry closes. Because of its symmetry,
the first term under the integral of Eq. (18) proportional
to F̄ , which is independent of gravity, vanishes. Moreover,
the atom can be initially either in the excited state |b〉 or in
the ground state |a〉 (interchanging the sequence of internal
states in the figure). Accordingly, with the two instanta-
neous transitions at t1 = T and t2 = T ′ + T we find the
phase

ϕb/a = ϕ0 − 1
�

[
±�m˙̄z

∣∣∣∣
t1

t2

δz0 +
∫

dt mβ(t)gδz
]

(21)

for the atom detected in the excited state |b〉 or in
the ground state |a〉, with δz0 = 2�kT/m. The UGR
sensitivity enters the phase solely through ˙̄zλ̇ from
Eq. (18) and arises for each detection individually. Here,
the term from the boundary conditions has the same
form as the analogous one in Eq. (20). However, it
emerges already in the interferometric phase through the
internal transitions, rather than in a doubly differential
scheme. The violation parameter β(t) is the same in
the first and final time segment and differs in the cen-
tral one. Moreover, it can be shown that δz = δz0t/T
in the first segment, δz = δz0(1 − t/T ) in the final one,
and δz = δz0 in central segment, so that the remain-
ing integral yields δz0(βa/bT + βb/aT ′). Consequently, the
phase

ϕb/a = ∓�(1 + α)δz0gT ′/c2 − 2kgT(T + T ′)(1 + βa/b)

(22)

can be divided into a UGR (first term) and a UFF (sec-
ond term) sensitive contribution. The latter arises from the
unperturbed phase ϕ0 = −2 kgT(T + T ′) together with the
UFF violation βa/b. The second term of Eq. (22) does not
depend on �β but solely on βa/b. Therefore, comparing it
to the gravitational acceleration of any other (even macro-
scopic) object determined in an independent experiment
leads in principle to UFF tests.

By inverting the role of the internal states, the differ-
ential phase ϕb − ϕa = −2�(1 + α)δz0gT ′/c2 + 2k�βgT
(T + T ′) depends on the factor (1 + α) that arises in UGR
tests with atomic clocks, as well as on the parameter
�β that occurs in tests of UFF for two different inter-
nal states. We stress again that both violation parameters
are connected by �mα = m�β in our model. However,
in analogy to Fig. 2(a), the second contribution still rep-
resents a null test, so that there is again a difference com-
pared to violations detected by atomic clocks. These clock
schemes measure modifications to proper time by a factor
(1 + α), as discussed in Eq. (4). Additionally, this differen-
tial scheme suppresses additional effects, for example from
the relativistic c.m. corrections p̂4/c2 or gp̂ẑp̂/c2 that oth-
erwise arise in Eq. (22). Because a light pulse does not
induce a transition simultaneously on both branches but
with a time delay δt that depends on the distance between
them, yet another differential phase �δt arises. However,
because at resonance the frequency of the light corresponds
to � and is imprinted during the interaction onto each
branch, an additional phase −�δt cancels this contribu-
tion. Therefore, due to the state-inverted scheme with the
same momentum transfer �k, further finite speed-of-light
effects are suppressed with 1/c compared to the phase of
interest [16]. Further terms from the propagation of the
light field in gravitation would contribute without a dif-
ferential measurement. However, these state-independent
terms are already suppressed by ten orders of magni-
tude compared to the phase of interest and can thus be
neglected. The contributions proportional to (1 + α) and
�β can be distinguished in this setup through a variation
of the central time interval T ′. Possible diffraction mecha-
nisms [100] that fulfill the requirements set by this scheme
are discussed in Refs. [101–103]. Transferring the con-
cept of subsequent internal transitions without an internal
superposition [16] to the doubly differential scheme [15]
leads to a configuration [99] where internal transitions are
performed independently of the diffracting pulse. Hence,
no magic Bragg diffraction is necessary for the imple-
mentation. Thus, this combination of both ideas offers a
possibility to circumvent some of the issues caused by
diffraction and vibration noise. However, this modification
can be readily treated as another special case of our general
result from Eq. (18) and implies that the UGR sensitivity
originates from the same mechanism discussed in Eq. (18).
The scheme therefore relies on the same fundamental
working principles, but introduces notable experimental
advantages.

040333-14



GRAVITATIONAL REDSHIFT TESTS. . . PRX QUANTUM 2, 040333 (2021)

V. DISCUSSION

In this section we provide an overview of our main
results, highlighting the rigid definition of UGR tests estab-
lished in this article, which can serve as a blueprint for
future tests with atom-interferometric setups. Moreover,
we roughly estimate the sensitivity to UGR violations of
atom interferometer schemes, exemplified by the levitated
geometry introduced in Fig. 2(b) and of particular inter-
est to state-of-the-art experimental implementations. We
compare it to other UGR-sensitive proposals, showing that
this class of schemes may push the field towards more
ambitious limits.

A. Central results

Idealized atomic clocks can be generated by steep
quadratic potentials that force both internal states of an
atom onto one common trajectory and colocalize them.
The differential phase of two independent atomic clocks
measures their proper-time difference, so that UGR vio-
lations may be detected. In contrast, in Bragg-type atom
interferometers, even when used for quantum clock inter-
ference, the interaction potential is usually linear and state
independent. As a consequence, in the Newtonian limit
the phase only contains kinematic contributions, but the
potential can be designed in such a way that these schemes
mimic a UGR test.

Whereas most studies have so far focused on UGR tests
solely generated by linear potentials introducing a momen-
tum transfer [16,29], we showed that quadratic or other
nonlinear potentials can be used for atom-interferometric
tests of UGR. Therefore, guided interferometers operated
with an internal superposition in principle give the same
result as two independent atomic clocks. Hence, they not
only measure proper-time differences but also facilitate
atom-interferometric tests of UGR.

However, a proper-time difference between the two
branches of an interferometer is not necessary for tests of
UGR, as highlighted in this work by the final two examples
for atom interferometers with a variable mass. It is evident
that only proper-time differences between certain time seg-
ments of the interferometer are sufficient. Consequently,
the quest for interferometer geometries that display an
intrinsic proper-time difference is not helpful [5,29,81,82].
A convenient choice of internal transitions seems more
promising [15].

Even internal superpositions as used for classical UGR
tests with clocks are not essential [16]. Instead our results
demonstrate that, for light-pulse schemes, internal transi-
tions already enable the interferometric phase to include a
UGR sensitivity, even without involving an internal super-
position at any point. As a consequence, a UGR sensitivity
may also arise for Mach-Zehnder-type Raman geome-
tries, including a Raman-based specular mirror interfer-
ometer [81]. Taking the mass defect into account, one

finds configurations that do not close in phase space. Such
open geometries would introduce additional effects on the
detected signal. To this end, our treatment can be general-
ized by including open geometries and branch-dependent
masses.

Finally, we derived a generalized treatment for
both atomic clocks and atom interferometers, including
physics beyond the Standard Model by considering non-
Einsteinian components of gravity, thus closing the gap
between these two subfields. To this end, we demonstrated
that the crucial mechanism for UGR tests, common to
both clocks and atom interferometers, is a term involv-
ing g times �m in the (differential) phase. Furthermore,
this term must also occur without the dilaton field and
can be achieved, for example, through harmonic poten-
tials. Another possible mechanism includes a momentum
change through an interaction that depends on the incom-
ing internal state. Such interactions can be realized by
state-dependent linear potentials or by a variable mass.
In addition, by introducing an additional acceleration that
mimics the gravitational acceleration, Bragg-type atom
interferometers can simulate the behavior of atomic clocks.
While the UGR sensitivity of such schemes was not dis-
cussed in previous works [15,16,29], they highlight the
impact of atom-interferometric UGR tests on fundamental
tests of physics.

B. Sensitivity estimation

In order to obtain an estimate for the sensitivity of
UGR tests, we recall that the discussed measurements of
the gravitational redshift have the form � = −�tred(1 +
α)δz0g/c2, where the time tred is determined by the spe-
cific experiment and geometry. In the following we assume
shot-noise-limited measurements with nat atoms per shot
and Tav/tcyc repetitions, where Tav denotes the averaging
time and tcyc the cycle time. Hence, we find from Gaussian
error propagation the uncertainty

�α =
⎡
⎣√

nat�

√
t2redTav

tcyc

gδz0

c2

⎤
⎦

−1

(23)

for the violation parameter α.
If we further assume that tcyc ∼ tred, for fixed Tav, we

obtain the uncertainty �α ∼ 1/
(
δz0

√
tred

)
. Hence, UGR

tests benefit from an increasing spatial separation and, to
a lesser degree, from increasing tred. This feature explains
one of the big advantages of atomic clocks, where supreme
distances δz0 of several hundred meters or more [46,47,
49,50,55] are possible. Indeed, analogous estimates for
atomic clocks lead to uncertainties of �α ∼ 2.5 × 10−5

[48,49] for space-based experiments and of �α ∼ 9 ×
10−5 [55] for earth-based setups. However, the limitations
of state-of-the-art atomic clocks are not solely given by this
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shot-noise-based estimate, but by other errors and noise
sources.

Because the spatial separation in atom interferome-
ters has to be generated within one experimental setup
instead of performing two (independent) experiments at
two locations, there is an intrinsic limitation on δz0. This
limitation is even more relevant for UGR-sensitive atom
interferometers in free fall based on internal transitions, as
discussed in Sec. IV. In this case, the dimensions of the
apparatus limit both δz0 and tred and are dictated by the
duration of free fall in the experiment chamber. Assum-
ing a 10-m fountain, reasonable values for the schemes
introduced in Ref. [15,99] are δz0 ∼ 1 cm and tred ∼ 1 s.
For the scheme discussed in Ref. [16], the uncertainty of
the violation parameter was estimated to reach�α ∼ 10−2

for strontium-88, about three orders of magnitude less
sensitive than current atomic clock tests.

In contrast, compact devices with optical levitation suf-
fer less severely from the limitations set by the spatial
dimensions of the apparatus. Consequently, larger separa-
tions δz0 and longer times tred are possible. For example,
semiguided schemes [87] can in principle achieve tred ∼
20 s, even though experiments demonstrating such a dura-
tion had a small spatial separation of δz0 ∼ 10−4 m. How-
ever, they prove that realistic improvements of the uncer-
tainty of α are within reach when resorting to mimicked
UGR tests via levitating pulses akin to Fig. 2(b). Indeed,
we can estimate the order of magnitude of the signal of
interest for such a scheme, assuming strontium-88 with
� = 2π × 429 THz and the effective two-photon Bragg
wave vector keff = 4π/(813 nm) [86]. If we further assume
large-momentum-transfer (LMT) beam splitters [96] with
400 momentum transfers for the initial and final beam
splitting, as well as fourth-order (magic) Bragg relaunch-
ing pulses, we find the spatial separation δz0 ∼ 2 cm.
These parameters lead to a duration tred = NT ∼ 9 s for a
total of N = 2000 relaunch pulses. Together with an aver-
aging time of Tav ∼ 104 s and the atom number nat ∼ 105

we arrive at �α ∼ 10−3. This result shows that levitated
or guided schemes may improve the uncertainty about one
order of magnitude compared to other UGR-sensitive pro-
posals, reducing the gap to atomic clocks but still two
orders of magnitude behind clock-based tests. Of course,
choosing different times for the initial separation (together
with the associated duration of closing) and between the
relaunch pulses in the setup of Fig. 2(b) will increase
δz0 without sophisticated LMT techniques, improving �α
further. However, the measured phase then includes addi-
tional terms that are also sensitive to UFF violations. For
a discussion of such additional terms, their experimental
subtleties, as well as some error estimates, see Ref. [16].

Even though still limited to intermediate spatial sepa-
rations, pulsed levitation or guided schemes in compact
devices are a promising and important step to close the
gap from atom interferometers to atomic clocks. Besides,

their intrinsically differential nature offers the possibility
to mitigate some of the noise inherent to two independent
setups. Last but not least, there is a fundamental differ-
ence between such tests, since a single quantum object
in both a spatial and internal superposition probes the
basic principles of relativity, instead of two independent
ones, as is the case for clocks. Therefore, levitated and
guided schemes may represent an important contribution
to quantum metrology and tests of fundamental physics.
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APPENDIX A: DILATON VIOLATION MODEL

The extension of the Standard Model by coupling to a
scalar dilaton field � is motivated by string theory [71] as
well as other approaches to quantum gravity. In these theo-
ries, the global coupling constant to gravity, the fermionic
fields, and the gauge fields in the Lagrangian are a func-
tion of the dilaton field. To separate this Lagrangian into a
free part and an interacting part, it is convenient to perform
a conformal transformation into the Einstein frame [71].
In this frame the Lagrangian describing gravity appears as
the conventional Einstein-Hilbert part together with addi-
tive modifications from the dilaton. This way, an effective
field theory can be derived. The coupling is given in this
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frame by the Lagrangian density L = Lfree + Lint follow-
ing Refs. [32,63]. The first term of the free part of the
theory

Lfree = c4

16πG
[R − 2(∇�)2] − 1

4μ0
FμνFμν

− 1
4

Gα
μνG

μν
α +

∑
i=e,u,d

ψ̄i[i�c /D − mic2]ψi (A1)

includes the Ricci scalar R and the kinetic term of the dila-
ton field (∇�)2, leading to the dilaton-modified Einstein
field equations. Here, we introduced the (bare) Newto-
nian gravitational constant G. Furthermore, the Lagrangian
contains the electromagnetic field with vacuum permeabil-
ity μ0 and other gauge fields like the gluons with their
respective field strength tensors Fμν and Gμν . The last term
describes the fermionic fields ψi corresponding to the elec-
tron, positron, up-quark, and down-quark that make up
ordinary matter. This simplified model does not include
coupling to other quarks or the Higgs field and weak inter-
action. All derivatives and tensors in Eq. (A1) have to be
understood as covariant constructs.

The interaction with the dilaton field is taken into
account to first order in the dilaton. The Standard Model is
therefore modified [63] through the interaction Lagrangian

Lint = �

[
de

4μ0
FμνFμν − dgβ3

2g3
Gα
μνG

μν
α

]

− �
∑

i=e,u,d

ψ̄i(dmi + γmidg)mic2ψi, (A2)

which parametrizes the dilaton coupling via the coeffi-
cients ds, with s = e, mi, g. Like the coefficient γmi( g3),
the β function β3( g3) depends on the quantum-
chromodynamics (QCD) coupling g3, and are both defined
as usual [63]. In this effective model, we excluded the
square root of the determinant of the general-relativistic
metric tensor from the Lagrangian. Consequently, it
appears in the spacetime volume element when integrating
over this Lagrangian to obtain the action.

Combining Eqs. (A1) and (A2), all coupling constants
of the Standard Model become dilaton-dependent quan-
tities. In the case of fermions one defines mi(�) = (1 +
dmi�)mi, where mi is the (running) fermion mass calcu-
lated from renormalized QCD and the coupling dmi is
the renormalization-group-invariant modification caused
by the dilaton. As outlined in Ref. [63], all dependence
on the couplings dg ,β3, as well as g3—and thus to the
QCD energy scale—has been absorbed into the (run-
ning) fermion masses mi as a consequence of the effective
coarse graining due to renormalization. On the other hand,
the coupling to the electromagnetic field is modified via
μ0(�) ∼= (1 + de�)μ0. Here, de again encodes the dilaton

coupling of the electromagnetic field, which is equivalent
to a dilaton-dependent fine-structure constant.

At this point one can treat bound systems like atoms
within this field theory and arrive at dilaton-dependent
energy levels Ej (�). The explicit dependence of the ener-
gies Ej on the dilaton field may be a highly nontrivial com-
bination of all dilaton-coupling coefficients ds with s =
e, mi, g [104]. Hence, the mass mj (�) = Ej (�)/c2 asso-
ciated with the energy of different internal states of an
atom also depends on the dilaton field. The nonrelativis-
tic limit is obtained by integrating out the relativistic
degrees of freedom of the field theory in the spirit of
Ref. [105]. In this approximation, the energy levels Ej are
subject to further corrections, like, e.g., the Lamb-Shift or
radiative corrections. As a consequence of these dilaton-
dependent coupling constants, we observe that a specific
violation parameter measured either in UFF or in UGR
tests depends on the exact composition of the nucleus as
well as the electronic configuration of the atomic shell.
Hence, a comparison either of different rest masses or of
different internal states leads to a different sensitivity to the
fundamental dilaton couplings. Moreover, it is possible to
treat the interaction of the resulting theory with an exter-
nal electromagnetic field via a nonrelativistic effective field
theory along the lines sketched in Ref. [106].

Specifically, such a nonrelativistic field theory [107] can
be matched to first-quantized models in the low-velocity
and weak-field region where both are valid. In this case
the mj simply become the mass-energies of a first quan-
tized description as introduced in Refs. [68–70]. In the case
of a linear gravitational field this procedure leads to the
Hamiltonian

Ĥ (σ )
j = mj (�)c2 + p̂2

2mj (�)
+ mj (�)gẑ + V̂ (σ )

j (�), (A3)

which depends on the dilaton through two contributions:
the masses of the individual states and the effective poten-
tial V̂j modeling the electromagnetic interaction. After
expanding the mass around its Standard-Model value via
mj (�) ∼= (1 + β̄j �)mj (0), we find that

Ĥ (σ )
j = (1 + β̄j �)mj (0)c2 + p̂2

2mj (0)
+ mj (0)gẑ + V̂ (σ )

j (0).

(A4)

Here, the dependence on the dilaton is now only taken
into account through the dominant term proportional to c2.
Specifically, the interaction potential is independent of the
dilaton field to this order.

Lastly, we stress that the dilaton field is not indepen-
dent of the metric but can be understood as an additional
source term in the Einstein field equations [71]. This mod-
ification also manifests itself in the weak-field limit and
leads to the relation � = β̄Sgz/c2. The coupling coefficient
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β̄S characterizes the source mass distribution responsi-
ble for the field. Using this coefficient, we define an
EEP-violating parameter βj = β̄j β̄S. In conclusion, this
mechanism allows us to parametrize EEP violations per-
turbatively in the low-velocity and weak-field limit by
making the replacement g → (1 + βj )g.

APPENDIX B: INTERFERENCE SIGNAL

The measured signal I of a quantum interference exper-
iment is the expectation value of a projection operator �̂.
This operator depends on the experiment and characterizes
the measured observable, i.e., the output port of the inter-
ferometer. Specifically, we find for an input state |�in〉 and
the unitary time-evolution operator Û the signal

I = 〈�in| Û †�̂Û |�in〉 = 〈�in| Û †
�Û� |�in〉 . (B1)

In the last step, we have defined an effective time evolu-
tion Û� that postselects on the respective exit port [108]
and consequently is not unitary. The unitary operator Û
contains the complete interferometer sequence, including
internal and c.m. degrees of freedom.

The typical experiments with atomic clocks and atom
interferometers discussed in our article can be described in
terms of the overlap of their c.m. wave-packet components.
Hence, given an initial state of the form |�in〉 = |ψint〉 ⊗
|ψc.m.〉, the interference signal can be written as

I = 1
4 〈ψc.m.| (Û †

1 + Û †
2 )(Û1 + Û2) |ψc.m.〉

= 1
2 (1 + C cosϕ), (B2)

where the effective operators Ûj solely act on the c.m.
degree of freedom. With the second equal sign we intro-
duced the contrast C and phase ϕ through the relation
〈ψc.m.| Û †

1 Û2 |ψc.m.〉 = C exp(iϕ). Equation (B2) can be
interpreted as the interference signal obtained from the
superposition (Û1 + Û2) |ψc.m.〉 /2 of two different compo-
nents: one generated from the action of Û1 and the other
from the action of Û2. In principle, one can associate with
each of those operators an effective time evolution and by
that an effective Hamiltonian. Calculating the interference
signal therefore reduces to taking the expectation value of
the overlap operator Û †

1 Û2 with respect to the initial state
of the c.m. motion. This calculation can be performed, e.g.,
by suitable perturbative methods [75,76].

When discussing atom interferometers, we convention-
ally measure the momentum of the atom at the end of the
experiment. This measurement can be represented by the
projection operator

�̂ = 1int ⊗
∫ p+

p−
dp |p〉 〈p| , (B3)

where p− is the lower bound and p+ the upper bound of
the momentum interval that defines the exit port. For the
treatment of a Ramsey sequence used for atomic clocks,
we project on the superposition of internal states

�̂ = |a〉 + |b〉√
2

〈a| + 〈b|√
2

⊗ 1ext (B4)

to model the final π/2 pulse and the readout of the
population in one internal state.

APPENDIX C: CLASSICAL EQUATIONS OF
MOTION

With the help of the classical, unperturbed counterpart
of the Hamiltonian from Eq. (6), we find the unperturbed
equation of motion

z̈(σ ) = −g + F (σ )

m
− �2(z − ζ (σ)) (C1)

for atomic clocks and atom interferometers. This equation
of motion and the relations ¨̄z = (z̈(u) + z̈(l))/2 and
[(ż(u))2 − (ż(l))2]/2 = ˙̄zδż have been utilized to find the
(differential) phases in the main part of the article. In this
appendix we solve this equation for atomic clocks and
light-pulse atom interferometers.

1. Atomic clocks

For atomic clocks, we choose F (σ ) = 0 and assume that
the atoms are initially at rest and colocalized in the unper-
turbed potential minimum, i.e., ż(σ )(0) = 0 and z(σ )(0) =
ζ (σ)(0)− g/�2. In the following, we omit the superscript
σ for clarity.

For this choice, the solution to Eq. (C1) reads

z(t) = ζ(t)− g
�2 −

∫ t

0
dt ′ cos(�[t − t ′])ζ̇ (t ′). (C2)

For an approximate solution in orders of �−1, we obtain,
by successive application of partial integration,

z(t) = ζ(t)− 1
�2 [g + ζ̈ (t)− ζ̈ (0) cos (�t)]

+
...
ζ (0)
�3 sin (�t)+ O(�−4). (C3)

Here, we additionally assumed that the trap is initially at
rest, that is, ζ̇ (0) = 0. Specifying further that ¨̄ζ = 0, i.e.,
that the acceleration is chosen antisymmetrically through-
out the whole sequence, we find that z̄ − ζ̄ = −g/�2 +
O(�−3) and δz = δζ + O(�−2). Dropping this assump-
tion would lead to an additional accelerational redshift
[79]. For the geometry in Fig. 1(b), the velocity ζ̇ = 0 and
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acceleration ζ̈ = 0 vanishes, and z̄ − ζ̄ = −g/�2 as well
as δz = δζ0 are exact to the order considered here.

On the contrary, the scheme in Fig. 1(c) consists of three
different time segments, corresponding to the piecewise
trajectories of the center of the trap

ζ(t) =

⎧⎪⎨
⎪⎩
ζ(0)+ vt, T > t ≥ 0,
ζ(0)+ vT, T + T ′ > t ≥ T,
ζ(0)− v(t − [2T + T ′]), 2T + T ′> t ≥ T + T ′.

(C4)

The lower branch is generated by replacing v through −v.
With the help of Eq. (C2), the trajectories of the atoms are
easily obtained as z(t) = ζ(t)− g/�2 − vS(t)/�, where
the function

S(t) =

⎧⎪⎨
⎪⎩

sin�t,
sin�t − sin (�[t − T ]),
sin�t − sin (�[t − T ])− sin {�[t − (T + T ′)]},

(C5)

is defined for the time segments in analogy to Eq. (C4). We
emphasize that the velocities are antisymmetric for both
branches, so the relations z̄ − ζ̄ = −g/�2 and δz = δζ +
O(�−1) hold.

For the freely falling clocks in Fig. 1(a), we assume the
same initial conditions but the trap is only turned on before
t = 0 with frequency �(0) = �0. After that it is turned off
and the trajectory

z(t) = ζ(0)− g/�2
0 − gt2/2 (C6)

describes a particle in free fall. Hence, we obtain
the results ˙̄z(T )− ˙̄z(0) = −gT, as well as δz = δζ0 =
ζ (u)(0)− ζ (l)(0), which are both exact.

2. Light-pulse atom interferometers

We model light-pulse atom interferometers with a linear
interaction potential, i.e., � = 0. The explicit force F (σ ) =
�

∑
� k(σ )� δ(t − t�) of the instantaneous light pulses leads to

a piecewise solution of the trajectory. Therefore, we find
for the trajectory that

z(t) = z(t�)+
[

ż(t�)+ �k�
m

]
(t − t�)− 1

2
g(t 2 − t 2

� )

(C7)

is valid in the segment t�+1 > t ≥ t�, where we have omit-
ted the superscripts that label the branch. Inserting a spe-
cific pulse sequence leads to the geometries discussed in
the main part. However, for guided atom interferometers,
we employ the same treatment used for atomic clocks,
where no light pulses but a guiding potential is used.

Other linear interaction potentials for atom interferom-
eters are also covered by Eq. (C1), but there the specific
trajectory has to be calculated different from light pulses. In
particular, if the unperturbed equation of motion involves
a state-dependent force [89], our treatment has to be
modified.

APPENDIX D: WAVE-PACKET EFFECTS

Through a perturbative method [75,76] we derive for
closed unperturbed geometries the phase

ϕWP = − 1
2�

∮
dt

{
∂2H
∂z2 〈ẑ2

0〉 + ∂2H
∂p2 〈 p̂2

0 〉
}

(D1)

arising from wave-packet effects. In this equation no mixed
derivatives appear since the perturbation Hamiltonian H
in Eq. (8) includes no cross term between momentum
and position observables. Moreover, the centered time-
dependent operators ẑ0(t) and p̂0(t) have a vanishing
expectation value 〈ẑ0〉 = 〈 p̂0〉 = 0 and are defined below.
The integration path of the contour integral is defined along
different masses for clocks or different branches for atom
interferometers and corresponds to the definition of Hdiff
in the main part.

1. Atomic clocks

For atomic clocks, we find from Eq. (8) the derivatives
∂2H/∂p2 = −λj�m/(2m2) and ∂2H/∂z2 = λj m��2/2,
if the trap is turned on for the whole sequence. In addition,
the centered observables can be calculated as ẑ0(t) = (ẑ −
〈ẑ〉) cos (�t)+ p̂ sin (�t)/(m�) and p̂0(t) = p̂ cos (�t)−
m�(ẑ − 〈ẑ〉) sin (�t), where we recall that we assumed a
vanishing initial momentum 〈 p̂〉 = 0 for atomic clocks.
With the help of these expressions we find for the phase
originating from the wave-packet effects that

ϕWP = m��z2(0)
�

ϕzz + �p2(0)
�m�

ϕpp , (D2)

where �z2(0) as well as �p2(0) are the branch-
independent variances of the initial wave packet. For these
quantities, we require the conditions m��z2(0)/� = O(1)
and �p2(0)/(�m�) = O(1), i.e., that they scale with the
variances of the ground state of the trap. This way, we
ensure that these terms cannot violate our perturbative
treatment. Additionally, we assumed that the expectation
value of the cross term 〈ẑp̂ + p̂ ẑ〉 = 0 vanishes, which
holds for vanishing initial momenta and symmetric wave
packets. Finally, we obtain the branch-independent phase
contributions

ϕzz = �m
m

[
�T
4

− sin (2�T )
8

]
− ��2

�2

[
�T
4

+ sin (2�T )
8

]

(D3a)
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and

ϕpp = �m
m

[
�T
4

+ sin (2�T )
8

]
− ��2

�2

[
�T
4

− sin (2�T )
8

]
,

(D3b)

where T is the time the clock operates. We observe that, for
the perturbative treatment to be valid, to leading order, the
condition �� � √

�/T has to be fulfilled.
If the trap is turned off for times t > 0 then we find the

branch-independent phase

ϕWP = �m
m
�p2(0)

2�m
T, (D4)

arising only from different masses. In all cases the wave-
packet effects yield branch-independent phase contribu-
tions and consequently do not influence the differential
phases.

2. Closed atom interferometers with linear interaction
potential

For atom interferometers with a linear interaction poten-
tial including variable but branch-independent masses, the
derivatives of Eq. (8) are ∂2H/∂p2 = −λ(t)�m/(2m2)

and ∂2H/∂z2 = 0. The unperturbed equations of motion
give rise to the centered observables ẑ0(t) = ẑ − 〈ẑ〉 +
( p̂ − 〈 p̂〉)t/m and p̂0 = p̂ − 〈 p̂〉. Since these expressions
yield a branch-independent integrand, the phase contri-
bution ϕWP from wave-packet effects vanishes for such
interferometers, as already pointed out, for example, in
Ref. [29].
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