
PHYSICAL REVIEW RESEARCH 3, 043141 (2021)

Quantum nanofriction in trapped ion chains with a topological defect
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Trapped ion systems constitute a well controllable scenario for the study and emulation of nanofriction, and in
particular of Frenkel-Kontorova-like models. This is in particular the case when a topological defect is created
in a zigzag ion Coulomb crystal, which results in an Aubry transition from free sliding to pinned phase as a
function of the trap aspect ratio. We explore the quantum effects of the Aubry transition by means of an effective
simplified model, in which the defect is treated like a single quantum particle that experiences an effective
Peierls-Nabarro potential and a position-dependent mass. We demonstrate the relevance of quantum tunneling
in a finite range of aspect ratios close the critical point, showing that the quantum effects may be observed in the
kink dynamics for sufficiently low temperatures. Finally, we discuss the requirements to reveal quantum effects
at the Aubry transition in future experiments on trapped ions.
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I. INTRODUCTION

Friction is a relevant phenomenon for a wide range of
macroscopic and microscopic systems [1–3]. While its de-
celeration effect when two macroscopic objects slide on top
of each other is phenomenologically described by the laws
of Amontons and Coulomb [4,5], the physics of nanofric-
tion on an atomic scale is much more intriguing [6]. One of
the simplest and best-known models on nanofriction is the
Frenkel-Kontorova (FK) model, in which a chain of particles,
which interact through a harmonic potential, is subjected to
a sinusoidal corrugation potential [7,8]. The model is hence
governed by the interplay between two length scales, the
equilibrium distance of the particles and the period of the
corrugation potential. This interplay leads to an intriguing
physics, relevant to disparate fields ranging from solid-state
physics [9–11] to biophysics [12,13] and nonlinear physics
[14,15].

Interestingly, if the ratio of the two lengths is incommen-
surate there exists a transition, the so-called Aubry transition,
from a free sliding phase for small potential amplitudes to a
pinning phase for strong potentials [16]. For weak corruga-
tion potentials the classical minimal energy configuration has
constant distances given by the interparticle interaction. For
incommensurate ratios this has the consequence that particles
with arbitrary positions relative to the potential can be found.
As a consequence the chain of particles may freely slide over
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the corrugation [17]. In contrast, when the potential amplitude
is increased above a critical value the atoms slide towards
the minima of the potential getting pinned by the substrate
[18,19]. The picture changes when the FK model is treated
quantum mechanically, since particles may travel into a neigh-
boring potential well via tunneling effects. The behavior of
the FK model in the quantum regime has been studied in nu-
merous works, employing Monte Carlo methods [20–22] and
density matrix renormalization group calculations [23,24].
Whereas the classical pinning phase is characterized by a
nonanalytic step-wise Hull function due to the presence of
Peierls-Nabarro barriers [25], quantum tunneling results in the
softening of the Hull function [26–28].

Following first proposals [29,30], recent experiments have
demonstrated the ability to study nanofriction in trapped-ion
setups. Subsequently, two main approaches to study Aubry
physics have been realized. The first one builds on a one-
dimensional chain of ions confined in a stiff Paul trap [31,32].
They are exposed to a nonlinear substrate potential via the
dipole forces of a standing wave laser. Nanofriction has then
been characterized by the forces necessary to dislocate the
particles, revealing the absence of a friction force in the slid-
ing regime. A different setup emulates Aubry physics in a
self-organized system, that is the two subchains of an ion crys-
tal under the presence of a topological defect, which provides
the necessary incommensurability between the length scales
of the subchains [33,34]. Experiments on this approach have
demonstrated the softening of a motional mode at the transi-
tion point by measuring its resonance frequency. Recent work
has explored the relevance of quantum effects in trapped ion
experiments on Aubry physics [35]. By means of path-integral
Monte Carlo simulations, it explicitly calculated the splitting
of ion wave functions at the Aubry transition when the crystal
is cooled close to the ground state and investigated the effect
of incommensurability in the system.
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In this paper we provide an alternative approach for the
study of quantum effects in the FK model. In our approach,
we derive close to the Aubry transition an effective collective
description that permits a considerably simplified analysis of
quantum effects.

This approach is generally applicable to FK systems. As
an example we focus in this paper on a trapped ion realiza-
tions with a topological defect. We show that quantum effects
are important at the Aubry transition, and discuss how the
quantum regime may be enlarged in experiments. We discuss
as well the case of finite temperature, discussing the require-
ments for the observation of quantum effects.

This paper is structured as follows. In Sec. II we briefly
review the Aubry transition in two dimensional ion crystals.
In Sec. III we derive the effective single-particle model for the
motion of a topological defect in the atomic chain. In Sec. IV
we quantize the kink motion, and analyze the characteristics
of the eigenstates of the defect. Section V is devoted to sig-
natures of quantum effects across the Aubry transition and
the requirements for their observation. In Sec. VI we discuss
the experimental strategies to reveal the quantum effects of the
defect. Finally, in Sec. VII we summarize our results.

II. AUBRY TRANSITION

In this section, we briefly introduce the Aubry transition in
a trapped ion crystal with a topological defect. We consider N
ions in a harmonic trap. The overall potential experienced by
the ions is composed by the trap potential and the Coulomb
interaction

V ({�ri = (xi, zi )}) =
N∑
i

(
z2

i + α2x2
i

) +
∑
j �=i

1

|�ri − �r j | , (1)

where (xi, zi ) is the position of the ith ion. Hamiltonian (1)
is written in a dimensionless form, employing as energy unit
u = mωzl2 and length unit l = (C/mω2

z )1/3, where m is the
mass of the ions and C = e2/4πε0 is the Coulomb potential
strength with the elementary charge e and the vacuum permit-
tivity ε0. The trap is characterized by the secular frequency of
the trap in the axial (z) direction, ωz and by the aspect ratio
between transversal and axial frequencies α = ωx/ωz > 1. In
the following we fix ωz = 2π · 150 kHz and consider 172Yb+

ions.
For a vanishing temperature the ions crystallize in their

equilibrium positions �r0
i , which in turn depend on N and α.

For a strong transverse confinement the ions are placed in a
single chain, i.e., x0

i = 0, with a nonuniform spacing along z
due to the harmonic confinement. For a decreasing α the crys-
tal undergoes a structural linear-to-zigzag phase transition at a
critical value αZZ [36,37]. Due to the inhomogeneous spacing,
the transition occurs first at the trap center in the region of
maximal charge density. This configuration is twofold degen-
erate (zigzag/zagzig) due to the mirror symmetry x ↔ −x of
the potential.

When α is tuned below a value αK the zigzag chain can
host a kink defect, i.e., a domain wall between a zigzag and
a zagzig region, connecting them in a continuous way (see
Fig. 1). In experiments, when crossing the transition from a
linear chain to the two-dimensional phase (below αK) at a

FIG. 1. (a) Center section of an ion crystal with a topological
defect (blue) and in a defect-free zigzag alignment (grey) for α −
αA = −0.014. The points are connected to guide the eye. (b) φ2 =
(δ − δzz )2 (see text) for the same choice of parameters.

nonadiabatic rate a finite probability exists that a defect is
introduced [38–41]. Alternatively, the creation of defects via
fast cooling into a crystalline order has been demonstrated
[42]. In our calculations we do not rely on the statistical
creation of the kink but create the defect by finding the equi-
librium positions of a regular zigzag alignment and vertically
flip the positions of the ions in one half of the crystal and
let the system equilibrate under damping. Crucially, due to
the presence of the defect, the axial distance in the upper
and lower subchains differ. As a result, the kink emulates
an incommensurate interface of two particle chains, whose
influence on one another is determined by the Coulomb re-
pulsion [34]. For low values of α the defect is captured in the
trap center due to its repulsion from the crystal boundaries
[43]. When α is increased the soliton undergoes a Aubry-type
transition at αA, because upper particles are pinned by the
periodic Coulomb potential of the lower ones and vice versa.
The Aubry transition results in spontaneous breaking of the
mirror symmetry as the kink equilibrium position shifts away
from the trap center [44]. Typical values of the introduced
critical points of α are listed in Table I.

III. EFFECTIVE POTENTIAL

In the following, we derive an effective model to describe
the kink dynamics. The presence of the kink results in the
deviation of the axial ion distances from the defect-free case
(see Fig. 1). We therefore define the position variable of the
kink K as

K ({�ri}) = 1

X0

N−1∑
j

z̄ j
(
δ j − δzz

j

)2
. (2)

Here δ j = z j+1 − z j is the z distance between neighboring
ions (δ j > 0, ∀ j, as we assume the ions are labeled in z

TABLE I. Introduced critical points of α for different number of
ions.

16 18 20 30 40 50 70

αA 3.998 4.268 4.686 6.409 8.026 9.580 12.555
αK 4.296 4.897 6.440 9.118 11.967 14.708 20.062
αZZ 6.918 7.666 8.405 11.993 15.460 18.845 25.441

043141-2



QUANTUM NANOFRICTION IN TRAPPED ION CHAINS … PHYSICAL REVIEW RESEARCH 3, 043141 (2021)

FIG. 2. (a) Central part of an ion crystal with a kink, composed of
the upper (light blue) and lower (dark blue) subchain, and an equipo-
tential line of the corrugation potential of the lower sub-chain felt
by the upper ions. (b) Effective PN potential of the kink, calculated
as derived in Sec. III, for α − αA = 0.191. The overall confining
potential exhibits periodic modulations due to the influence of the
two sub-chains on each other [see (a)]. Close to the critical point
only the central two local minima are of relevance.

ordering), δzz
j is the respective distance with no kink present,

z̄ j = (z j+1 + z j )/2, and X0 = ∑
j (δ j − δzz

j )2 is a normaliza-
tion factor. The kink position is hence the average axial ion
position weighted with the deviation from the regular zigzag
configuration. An example for these deviations is depicted in
Fig. 1(b).

The dynamics of the kink position is determined by the
Peierls-Nabarro (PN) potential [45,46]. To map out the poten-
tial landscape we minimize the potential energy of the system
under the constraint K ({�ri}) = X , for different positions X .
The minimization yields ion positions �ri,C (X ) that determine
a path in phase space [43]. The PN potential of the solitonic
defect is then defined as the potential energy along that path

UPN(X ) = V ({�ri,C (X )}) (3)

The PN potential is shaped by two major effects. On one
hand, in the considered parameter regime the defect is repelled
by crystal boundaries, where the transversal distance of the
ions decreases. As a result, the potential is globally confining
such that the kink remains trapped in the central region of
the system. On the other hand, the repulsion of the two ion
subchains is responsible for a sinusoidal modulation of the
potential due to the periodic array of the ions in the crystal,
see Fig. 2. For α < αA the transverse ion distances are large
such that the repulsion of the subchains is dominated by the
repulsion of the boundaries. Hence, the PN potential of the
soliton is practically harmonic with a global minimum at
X0 = 0, which is the classical equilibrium of the kink, see
Fig. 3(a). At αA, however, the subchains are forced so close
together such that the increased Coulomb repulsion causes the
PN potential to develop a periodic modulation, which leads
to several local minima [see Fig. 2(b)]. In particular, in the
system center the potential resembles a double well, as a local
maximum emerges at X = 0 while two local minima form at
±X0. Classically, the symmetry of the crystal is spontaneously
broken as an infinitesimal perturbation leads to a new equilib-
rium position X0 �= 0 of the soliton. As we will see in Sec. IV,
this is not the case for the quantized kink defect. Increasing
α further away from αA leads to an increase of X0 as well as

FIG. 3. PN potential (black) as described in section III and wave
functions of the ground state (red) and the first excited state (blue),
calculated from the model (5), for α − αA = −0.014 (a), 0.011 (b),
and 0.031 (c). The graphs of the wave functions have a vertical offset
for better visibility. The dashed lines indicate the energy of the shown
states, in (b) and (c) the states are quasidegenerate.

a quadratic increase of the potential barrier between the two
degenerate local minima X0 and −X0, see Fig. 3(c).

The effective mass of the kink along the minimization path
in phase space is given by

Meff(X ) = m
∑

i

(
d�ri,C (X )

dX

)2

(4)

and in general is position dependent. Note that the descrip-
tion of the kink dynamics by means of the PN potential and
the effective mass only considers configurations, which lie
on the path in phase space given by �ri,C (X ), and therefore
assumes a good isolation from other degrees of freedom of
the system. A full description of the dynamics of the defect
in the environment of the crystal would demand the inclusion
of excitations orthogonal to the phase space path, which can
be done in the frame of a kink dressing approach [47,48].
However, molecular dynamics simulations have shown that
for low enough temperatures the kink motion couples close
to the Aubry transition only weakly to the additional modes
of the crystal due to the low frequency of the kink motion
[43,49]. Hence, we assume in the following that the kink
dynamics is fully described by the PN potential.
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FIG. 4. Binder cumulant of the ground-state wave function. We
show the graph for different particle numbers N . The critical point
differs for different choices of the particle number: αA(N = 30) =
6.409, αA(N = 50) = 9.577, and αA(N = 70) = 12.555. We only
show the graph of the Binder cumulant up to the quasiclasssical
regime (see text), marked by the vertical grey bars.

IV. QUANTUM KINK SOLITON

In this section we compute the classical PN potential
UPN(X ) and its associated Meff(X ) in the way described in
Sec. III and subsequently quantize the kink defect in the PN
potential. We write down the Hamiltonian of the kink as

Ĥs = P̂
1

2Meff(X̂ )
P̂ + U (X̂ ). (5)

Note that M = Meff(X̂ ) does not commute with the momen-
tum operator P̂. We determine the eigenstate wave functions
ϕi(X ) and the eigenenergies of the defect by exactly diago-
nalizing the Hamiltonian (5). We are particularly interested in
possible tunneling effects close to the Aubry transition and the
energy scale, which is necessary to resolve these effects.

Due to the double-well shape of the PN potential, above the
critical value of α the ground-state wave function develops a
double-peak structure in the pinned phase, as seen in Fig. 3(b).
In order to quantify the appearance of a double-peaked wave
function, and hence of significant quantum tunneling through
the PN barrier, we determine the Binder cumulant

B = 1 − 〈(X̂ − 〈X̂ 〉)4〉
3 〈(X̂ − 〈X̂ 〉)2〉2 , (6)

which as recently shown for the case of an 1D ion chain,
can adequately characterize the change of the ground-state
wave function from a single- to a double-peak form [35]. A
Gaussian wave function is characterized by B = 0 whereas a
double-peak structure leads to a nonzero value of B (with the
chosen normalization, 0 � B � 2/3).

In Fig. 4 we present the Binder cumulant of the ground-
state wave function as a function of the trap aspect ratio α

across the Aubry transition for different N . For α < αA the
defect ground state is of Gaussian shape, resulting in B = 0,
as also seen in Fig. 3(a). At α = αA the Binder cumulant starts
to increase and reaches its maximal slope when the height

of the potential barrier reaches the finite energy level of the
ground state, splitting the corresponding wave function. It
then smoothly saturates at a value of B = 2/3, indicating non-
negligible tunneling effects close to the critical point. This
shift of the critical point due to quantum fluctuations is similar
to what is observed in systems of trapped ions with thermal
or quantum fluctuations close to the linear-zigzag transition
[37,50–52].

The low-energy states consist of a double peak structure
in a symmetric (ϕ+) or antisymmetric (ϕ−) configuration [see
Fig. 3(b)]. However, as α is increased the distance of the two
local minima of the PN potential as well as the energy barrier
between them grows. As a result, for a sufficiently large α

tunneling becomes negligible and the states localized in the
left (ϕL) and the right (ϕR) potential well decouple from each
other, the ground state enters a quasiclassical regime. In that
regime the Binder cumulant becomes inadequate for reasons
discussed in Sec. V.

For a given N the importance of tunneling effects can be
characterized by the size of an effective Planck’s constant:

˜̄h = h̄ωz

mω2
z l2

= h̄

(
ωz

mC2

)1/3

(7)

comparing the quantum energy scale h̄ωz with the classical
counterpart mω2

z l2. Hence, the size of the α window with con-
siderable tunneling effects can be tuned by different choices
of ωz and the ion species, and also by the particle number
N (see Fig. 4). Deeper trap potentials or higher number of
ions result in shorter ion distances, which increase quantum
effects, whereas a smaller ion mass leads to a larger spread of
the kink wave function, enhancing quantum tunneling.

V. SIGNATURES OF QUANTUM EFFECTS

As we will discuss, the Binder cumulant alone does not
serve as a good measure to assess the presence of quantum
effects, therefore we present two alternative ways to reveal the
quantum nature of the kink. Firstly, we present the low-energy
spectrum of the quantum kink.

In the classical regime the transition is marked by a soft
mode having vanishing frequency at the critical point [33]. In
Fig. 5 we show the low-energy spectrum resulting from exact
diagonalization for N = 30 as a function of α.

Due to quantum fluctuations the energy gap between the
ground state and the first excited state remains finite at αA.
When α is increased, the eigenenergies of the lowest states be-
come smaller than the PN barrier 	 = U (0) − minX U (X ) ∝
(α − αA)2 (see Fig. 5) but maintain their finite gap, indicating
the tunneling regime.

At higher values of α the gap to the first excited state
becomes arbitrarily small, resulting in a quasidegenerate
ground-state. States with higher energies show the same be-
havior at subsequently larger values of α, forming pairwise
degenerate states. The loss of the energy gaps can be again
associated to the vanishing of tunneling effects, leading to
spatially separated states located at each potential minimum
(see Fig. 3). This is the regime where the spontaneous sym-
metry breaking of the Aubry transition occurs, i.e., any source
of decoherence in the system will lead to the spontaneous
selection of a linear combination of the degenerate wave
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FIG. 5. Low-energy spectrum of the effective kink Hamiltonian
across the classical transition point αA for N = 30. The black line
indicates the energy barrier of the PN potential 	.

functions that is localized either in the left or the right well.
However, even for such a classical state, the Binder cumulant
remains nonzero, hence it is not a sufficient condition for the
appearance of the quantum kink. Note that the quasiclassical
regime occurs when the eigenenergies of the pairs of states
becomes significantly lower than 	 (see Fig. 5). In contrast,
the quantum kink is characterized by the existence of a finite
tunneling gap, i.e., at sufficiently low temperature, sponta-
neous symmetry breaking can no longer occur due to the lack
of degeneracy. Importantly, the ground state in the quantum
kink regime retains the mirror symmetry of the Hamiltonian,
which means that is an ordered state (as shown by the finite
Binder cumulant) beyond the notion of spontaneous symmetry
breaking.

Another approach to demonstrate the presence of quantum
effects focuses on the different dynamical behavior resulting
from tunneling.

To demonstrate this we initially prepare the kink at one
of the potential wells. This is done as follows. We break
the mirror symmetry of the PN potential by adding a poten-
tial gradient Ĥg = −gX̂ , and assume that the system is in a
thermal state of the overall Hamiltonian Ĥ = Ĥs + Ĥg. We
choose g = kBT/2X0 where X0 is the position of the potential
minimum and kB is the Boltzmann constant, such that the
potential wells are separated by an energy of kBT . At t = 0 we
set g = 0, and monitor the interwell dynamics. Figure 6 shows
the probability P< to find the kink at X < 0. When quantum
tunneling is non-negligible P< oscillates coherently with a
frequency given by the energy splitting of the ground state and
the first excited state. When α is tuned into the quasiclassical
regime, the kink stays localized in one of the potential wells
due to the inability to tunnel through the PN barrier. However,
for sufficiently large temperatures, the contrast of the oscilla-
tions tends eventually to zero, since the kink may move from
one well to the other by thermally-activated jumps over the
PN barrier, reducing the oscillation amplitude and introducing
high frequency oscillations in the signal.

To demonstrate this behavior, the trap needs to be stabi-
lized in a configuration, which exhibits considerable quantum

FIG. 6. Probability to find the kink at X < 0 as a function of time
for N = 30 and α − αA = 0.011 for different kink temperatures.
The kink is prepared in a thermal state of the symmetry broken
potential U (X ) − h · X , where h/kBT = 0.864 μm−1. The opaque
points display a running mean of the dynamics depicted in trans-
parent points. The black line indicates the absence of tunneling for
α − αA = 0.031, even for very small temperatures of T = 0.1μK.
Inset: Ratio between the variance of the running mean and variance
of the dynamics within the averaging blocks as a function of the
temperature.

effects. This demands working with α/αA − 1 < 0.002 (see
Fig. 4) [53], although the window can be enlarged by in-
creasing the effective Planck’s constant ˜̄h. Secondly, the
temperature of the defect needs to be well below the energy of
the PN barrier in order to preclude thermally activated jumps
into the neighboring potential well. To quantify the necessary
temperature scale, we compute running mean values of P<

and comparing the variance of the averaged values with the
variance of the data within the averaging blocks (see inset of
Fig. 6).

The results show that at the chosen α value the kink should
be cooled to T < 5μK in order to reveal quantum tunneling
of the kink. Here again, we want to note that the overall
energy scale of the system E3 = mC2ω2

z can be tuned by the
trap frequency ωz, the ion mass m and the particle number
N , which would influence the necessary temperature scale in
turn.

VI. EXPERIMENTAL ACCESSIBILITY

In this section we discuss possible strategies to observe
the implications of quantum effects in the Aubry transition
with trapped ions. Experimentally reaching the required tem-
perature regime close to the critical point could be achieved
by preparing the system deeper in the pinned phase, where
the mode frequency of the kink is high enough in order to
allow for sufficient cooling while being energetically well
isolated from the residual phonon spectrum [49]. In addi-
tion, studies have shown that heating of short wavelength
motional modes by dc electric field noise is strongly sup-
pressed [54–56], such that effective cooling of the localized
kink dynamics is possible. For instance, the kink in a crystal
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of 30 ions (αA = 6.409) could be prepared at α ≈ 6.5 where
the kink mode exhibits a frequency of about 2π × 65 kHz
at an axial trapping frequency of ωz = 2π × 150 kHz. At
this frequency, the required temperature of T < 5μK cor-
responds to a mean motional state occupation of n̄ < 1.15.
After Doppler cooling the entire crystal to the Doppler limit
of about 0.5 mK polarization gradient cooling can be ap-
plied for which previous experiments have shown that mean
occupation numbers of n̄ � 8 can be reached [57,58]. This
initial cooling of all ions is necessary to ensure that the
thermal occupation of other modes of excitation do not heat
the motion of the kink through nonlinear coupling terms of
the Coulomb interaction [52,59]. Further cooling of the kink
mode can be achieved by incorporating red sideband cooling
techniques. After the cooling stages, quenching α at a rate
of α̇ ≈ −0.1 kHz ensures adiabaticity during the approach of
αA while the total quench time on the order of milliseconds
is much smaller than the measured lifetime of the defect
[39]. Ultimately, the excitation spectrum of the quantum kink
presented in Fig. 5 can be mapped out in a spectroscopic
way.

In an alternative approach aiming to measure the quantum
dynamics shown in Fig. 6 the kink needs to be initialized
in one of the potential wells. This can be accomplished by
introducing controllable higher order contributions in the trap
potential that break the symmetry in the z direction [60]. After
the initialization and cooling stage the trap potential can be
tuned to be harmonic again in order to trigger the tunneling
motion of the kink through the potential barrier. This motion
translates into an oscillation of the central ions, which also
takes place on a timescale of tens of milliseconds (see Fig. 6).
The oscillation has an amplitude on the order of a few hundred
nanometers, and requires a nondestructive detection without
heating.

VII. CONCLUSIONS

In summary, we have discussed an effective model for the
dynamics of a topological defect in an ion Coulomb crystal.
Working with an effective potential and effective mass of
the kink yields a simplified single-particle description of the
relevant physics at the Aubry transition. Our results for the
quantum kink Hamiltonian demonstrate the presence of quan-
tum effects close to the critical Aubry point, which manifest
themselves, in the coherent oscillation of the kink between
the two minima of the PN potential. The observation of quan-
tum tunneling of the defect demands in typical experiments
T < 5μK. Sub-Doppler cooling the motion of the kink in ion
Coulomb crystals to reach these low temperatures will be a
challenge for future experiments on quantum Aubry physics
based on trapped ions. Finally, we would like to mention
that our effective single-particle model can be directly applied
to other systems that exhibit Aubry physics. In particular,
with an appropriate definition of the kink position variable
K (�ri ), it can be applied to an alternative approach to emulate
nanofriction in a trapped ion setup based on a linear ion string
in a superimposed periodic lattice, as recently investigated in
[31,35].
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