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injection moulding. However, for structural relevant parts, con-
tinuous fibre reinforced plastics provide a larger lightweight po-
tential. In the particular case of thermoplastic composites, the
process combination of thermoforming and injection moulding
illustrated in Fig. 1 allows a relatively high degree of freedom
for the design. In this way, shell-shaped structures made of
continuous fibre-reinforced thermoplastics (FRTP) can be re-
inforced with ribs and additional functional elements can be
added by overmoulding.

Fig. 1. Process chain for thermoplastic composites overmoulding: (I) Heating,
(II) Transfer, (III) Thermoforming, (IV) Overmoulding, (V) Demoulding ; ad-
pated from [1]

In the first step, the FRTP (e.g., organo sheet) is heated up
to achieve formability (I). After it is transferred into the mould
(II), the FRTP is thermoformed by the movable part of the in-
jection mould (III). The overmoulding process starts directly

1. Introduction

In order to meet environmental goals in future mobility con-
cepts, lightweight design is one of the main factors since it
yields a resource efficient use of materials by nature. In par-
ticular, weight reduction leads to less energy consumption dur-
ing the use phase or in case of electrical vehicles, to a range
extension, respectively. Regarding the complete life cycle, the
production phase already leads to initial environmental impacts
(carbon foot print). Therefore, especially for lightweight mate-
rials such as fibre reinforced plastics, sophisticated digital de-
sign methods for both, the final structure and its production are
necessary to meet the requirements regarding structural perfor-
mance, weight, costs, and environment. In the automotive in-
dustry, thermoplastics are already used in many applications
since their processing enables efficient manufacturing and short
cycle times. Until now, those materials are mainly processed by
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Abstract

The bond strength between a thermoformed fibre reinforced thermoplastic sheet and an injected polymer is the limiting factor for the structural
integrity of overmoulded thermoplastic composites. In this contribution, a simulation based digital twin of the thermoforming process is presented.
From numerical parametric studies a reduced order model based on Proper Orthogonal Decomposition (POD) is developed. The combination with
machine learning methods enables the real-time computation of arbitrary physical reliable temperature fields with sufficient accuracy to be used
for design purposes and as inline quality gates.
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afterwards (IV). The injected thermoplastic polymer is compat-
ible with the matrix material of the FRTP sheet and it can either
be unfilled or fibre reinforced. After the part has been solidified,
it is demoulded (V).

In this process chain, the resulting bond strength between
FRTP sheet and injected polymer is the limiting factor. It is
mainly influenced by the temperature history [2]. Therefore it is
mandatory to take into account the interface conditions during
manufacturing. In the literature, different models describe the
evolution of the interface bond strength in terms of a healing
model [3, 4]. Therein, computer simulations of the melt flow
have been used to identify the process conditions at the inter-
face. Besides other parameters such as pressure and viscosity,
the temperature at the interface is decisive.

As stated in Fig. 1, the process chain consists of two inte-
grated process steps (III and IV). Hence, the knowledge of the
interface temperature during manufacturing is important to en-
sure a proper bond strength. Thereby, the part and process de-
sign plays an important role since flow path and fill time during
the overmoulding influence the local interface properties. Due
to the existing cavities in the mould, the temperature distribu-
tion of the FRTP sheet is inhomogeneous. Furthermore, a rel-
ative movement between die and blank occurs, which leads to
different contact conditions and to an inhomogenous tempera-
ture distribution. Since the temperature at the internal interface
can hardly be measured during manufacturing, Hürkamp et al.
[5] propose a Cyber Physical Production System (CPPS) based
approach for a digital twin using simulation results and ma-
chine learning. The approach is adapted from [6] and uses a
numerical design of experiments for the data acquisition. Sub-
sequently, machine learning is used to derive a surrogate model
that computes the bond strength quality in dependence of the in-
terface temperature during the injection moulding process. This
allows a real-time prediction of the parts quality based on arbi-
trary process settings and the process chain (e.g., waiting times
due to failure). In this way, heating cycles, holding times or
process temperatures can be controlled during operation.

This paper presents a digital twin framework combining nu-
merical simulations, Proper Orthogonal Decomposition (POD)
and Machine Learning. The resulting digital twin of the ther-
moforming process enables a fast prediction of the temper-
ature field. It can be used during the product development
for manufacturing-dependent design optimisation, uncertainty
quantification or as input for subsequent injection moulding
simulations to optimise the overmoulding. Eventually, the real-
time feasibility of the digital twin allows to transfer the knowl-
edge about process and part properties from the design phase
into the operation phase (e.g., as inline virtual quality gates).

2. Simulation-Based Digital Twin

The development of the digital twin is based on reduced or-
der modelling (ROM). ROM techniques enable online feasible
real-time simulations or fast parametric studies for optimisa-
tion tasks especially for nonlinear and high-dimensional prob-
lems based on physical principles. Thereby, ROM does not sim-

plify the model and the underlying physics [7]. In the context of
CPPS, ROM can extend the collected data with physical mean-
ingful structural information computed from surrogate models.

In this contribution, we combine POD [8] with machine
learning. During an offline phase a parametric solution of the
thermoforming process is computed. In practical applications
of product development, those simulations are carried out with
specific parameters to optimise process, mould and structural
design. By systematically solving the problem within a pre-
defined parameter set, a solid database is obtained to develop
online feasible surrogates. Another practical advantage of POD
is its quite simple implementation and independence of soft-
ware packages. The governing physical equations describing
the system behaviour are solved by means of numerical meth-
ods such as Finite Element Method (FEM). This provides a
model-based knowledge and process understanding in contrary
to purely data driven (black-box) approaches. Furthermore,
ROM by POD preserves the boundary conditions of the under-
lying physical problem [9]. The method presented here is gener-
ally applicable for all types of mechanical models and solvers.

2.1. Proper Orthogonal Decomposition

For developing the reduced order model, POD is used in
this contribution. For the problem statement, we follow mainly
the notation given in [9]. A similar approach has been used
for a POD-based ROM of manufacturing processes for multi-
material lightweight parts [10].

Let u(x, p) be the solution of the given physical problem.
It represents the spatial distribution of the solution u (e.g., tem-
perature) for a given set of input parameters p at the coordinates
x. In the context of POD, u is referred to as snapshot. In order
to provide a sufficient database ns snapshots are computed. The
matrix of snapshots U(x, p) =

[
u1(x, p) . . . uns (x, u)

]
contains

ns solution vectors of full-scale simulation. The size of U(α) is
nx × ns, where nx denotes the number of results contained in u.
According to [11], computing the eigenvalues from the correla-
tion matrix R = 1

ns
UTU yields ns eigenvalues λi and the corre-

sponding eigenvectors φ̄i. Normalising φi = Uφ̄i/‖Uφ̄i‖ leads to
the reduced representation

Uα(x, p) ≈
k∑

i=1

φi(x) · ai(p), (1)

where ai = φ
T
i u denote the POD coefficients [9] and is referred

to as weighting coefficient in the following. The vector φi(x) is
denoted as spatial mode and depends only on x. In contrary, the
coefficients ai(p) depend only on the input p. In general, there is
no restriction on p. In the present use case it represents the ther-
moforming process parameters. A reduced representation of the
solution is obtained when k < ns modes are used in the series
expansion (1). For k = ns, the exact solution is represented with
respect to computer accuracy.
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ible with the matrix material of the FRTP sheet and it can either
be unfilled or fibre reinforced. After the part has been solidified,
it is demoulded (V).

In this process chain, the resulting bond strength between
FRTP sheet and injected polymer is the limiting factor. It is
mainly influenced by the temperature history [2]. Therefore it is
mandatory to take into account the interface conditions during
manufacturing. In the literature, different models describe the
evolution of the interface bond strength in terms of a healing
model [3, 4]. Therein, computer simulations of the melt flow
have been used to identify the process conditions at the inter-
face. Besides other parameters such as pressure and viscosity,
the temperature at the interface is decisive.

As stated in Fig. 1, the process chain consists of two inte-
grated process steps (III and IV). Hence, the knowledge of the
interface temperature during manufacturing is important to en-
sure a proper bond strength. Thereby, the part and process de-
sign plays an important role since flow path and fill time during
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ative movement between die and blank occurs, which leads to
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that computes the bond strength quality in dependence of the in-
terface temperature during the injection moulding process. This
allows a real-time prediction of the parts quality based on arbi-
trary process settings and the process chain (e.g., waiting times
due to failure). In this way, heating cycles, holding times or
process temperatures can be controlled during operation.
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merical simulations, Proper Orthogonal Decomposition (POD)
and Machine Learning. The resulting digital twin of the ther-
moforming process enables a fast prediction of the temper-
ature field. It can be used during the product development
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simulations to optimise the overmoulding. Eventually, the real-
time feasibility of the digital twin allows to transfer the knowl-
edge about process and part properties from the design phase
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real-time simulations or fast parametric studies for optimisa-
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plify the model and the underlying physics [7]. In the context of
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ingful structural information computed from surrogate models.
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learning. During an offline phase a parametric solution of the
thermoforming process is computed. In practical applications
of product development, those simulations are carried out with
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design. By systematically solving the problem within a pre-
defined parameter set, a solid database is obtained to develop
online feasible surrogates. Another practical advantage of POD
is its quite simple implementation and independence of soft-
ware packages. The governing physical equations describing
the system behaviour are solved by means of numerical meth-
ods such as Finite Element Method (FEM). This provides a
model-based knowledge and process understanding in contrary
to purely data driven (black-box) approaches. Furthermore,
ROM by POD preserves the boundary conditions of the under-
lying physical problem [9]. The method presented here is gener-
ally applicable for all types of mechanical models and solvers.

2.1. Proper Orthogonal Decomposition

For developing the reduced order model, POD is used in
this contribution. For the problem statement, we follow mainly
the notation given in [9]. A similar approach has been used
for a POD-based ROM of manufacturing processes for multi-
material lightweight parts [10].

Let u(x, p) be the solution of the given physical problem.
It represents the spatial distribution of the solution u (e.g., tem-
perature) for a given set of input parameters p at the coordinates
x. In the context of POD, u is referred to as snapshot. In order
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contains
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to as weighting coefficient in the following. The vector φi(x) is
denoted as spatial mode and depends only on x. In contrary, the
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2

2.2. Machine learning

In the reduced solution, the coefficients a depend on the set
of process parameters p given as input. Due to the strong corre-
lation between the input parameters, no interpolation between
the functions is possible. Hence, having only the information
contained in Eq. (1), combinations of p that are not contained
in the snapshots cannot be predicted. In order to find this map
between the coefficients, the approach for a physics-inspired
parametrisation using Machine Learning by Swischuk et al. [9]
is used. The inputs of each snapshot yield the matrix P ∈ Rns×np ,
where np denotes the number of inputs. Accordingly, the coef-
ficients are collected in matrix A ∈ Rns×k. As machine learning
method, a decision tree with bootstrap aggregating (bagging) is
used. It has been shown, that decision trees are fast in prediction
time compared other machine learning method as e.g., artificial
neural networks (cf. [5, 9]). This feature promises a suitabil-
ity for real-time applications as digital twins. For the decision
tree the input domain is split into multiple regions so that local
average estimates of the output can be made. Consequently, a
piecewise constant regression model is built in which a constant
function is fitted for each region according to the local average
to find a map between P and A.

3. Numerical Model and Parametrisation

As an example, the structure shown in Fig. 2 is investigated
numerically. It consists of a organo sheet as FRTP sheet and
overmoulded reinforcing ribs.

Fig. 2. Model of the investigated thermoplastic composite structure

First, the thermoforming of organo sheet is simulated by
means of an injection moulding tool using the software LS-
DYNA [12]. Based on the numerical results, a reduced order
process model is obtained. The special characteristic of ther-
moforming in this study is that the process is carried out on an
injection moulding tool. Accordingly, the tool has a maximum
temperature of 80 ◦C. In addition, the punch contains cavities
for the subsequent injection moulding process. This leads to
an inhomogeneous temperature distribution in the organo sheet
during forming. Since the local interface temperature is a sig-
nificant factor for the developing bond strength of the over-
moulded ribs, it has been analysed depending on the initial tem-
perature of the organo sheet To, the mould temperature Tm as
well as the forming speed v.

3.1. Material and model

In the scope of the study, an organo sheet consisting of a
polypropylene (PP) matrix (Tepex dynalite 104RG600(4)/47%)
with a melting temperature of 163 ◦C has been modelled. The
thermoforming simulation consists of a coupled structural-
thermal analysis using an explicit solver. The finite element
model and corresponding boundary conditions are shown in
Fig. 3.

Fig. 3. Simulation model of the thermoforming process

The punch and die are modelled as rigid bodies
without heat conduction and a homogeneous process
temperature. For the organo sheet the material model
*MAT 249 REINFORCED THERMOPLASTIC has been
applied. It is a special material model for fibre reinforced
thermoplastics, where the fibres are described as anisotropic-
hyperelastic and the matrix material as elastic-plastic. In
addition, the mechanical properties can be modelled as a
function of temperature [13].
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Accordingly, the stress-strain-curves of the organic sheet in
the two main fibre directions 0◦/90◦ and the specification of the
shear stress as a function of the shear angle in ± 45◦ depicted in
Fig. 4 are required as input.

Therefore, the corresponding parameters were determined
by means of a tensile test according to DIN EN ISO 527-
1/4 and a picture frame test according to DIN EN ISO
20337. Detailed information on the evaluation and mod-
elling of the thermo-mechanical material properties can be
found in [14]. In addition, the thermal material model
*MAT T01 THERMAL ISOTROPIC is used to capture the
thermal properties. All remaining thermal and mechanical prop-
erties of the organo sheet are summarised in Table 1.

Table 1. Thermal and mechanical properties of organo sheet
Parameter Symbol Value
Density ρ 1.69 g cm−3

Young’s Modulus Ematrix 3.0 MPa
Poisson’s ratio ν 0.4
Locking angle γ 1.25 rad
Thermal conductivity λ 0.22 W m−1 K−1

Heat capacity cp 1.7 J g−1 K−1

Heat transfer coefficient h 510 W m−2 K−1

3.2. Numerical Design of Experiments

In terms of the parametric study, the sensitivity of the lo-
cal temperature distribution of the organo sheet is numerically
investigated as a function of three different input parameters,
which can be varied on the process side. A Latin Hypercube
sampling (LHS) is applied for the numerical design of experi-
ments. LHS is a statistical method for generating a near-random
sample of parameter values from a multidimensional distribu-
tion.

Accordingly, the initial temperature of the organo sheet
varies between 160 ◦C ≤ To ≤ 220 ◦C, the tool temperature
between 30 ◦C ≤ Tm ≤ 80 ◦C and the forming speed between
60 mm min−1 ≤ v ≤ 600 mm min−1. A total of 90 simulations
with different parameter combinations are carried out in a batch
process. For the reduced order model the temperature distribu-
tion in the final step of the forming process is evaluated. The
resulting temperature field is referred to as snapshot.

4. Numerical Results

In this section, the convergence and accuracy of the reduced
solution is investigated. The thermoforming model depicted in
Fig. 3 yields 90 snapshots of the final temperature distribution.
Exemplary, the resulting temperature distribution of the ther-
moformed organo sheet for specific parameter sets is shown in
Fig. 5. Since each snapshot yields a slightly different forming
result, the final temperature profile is projected onto the ini-
tial blank geometry. This provides a better comparability and
overview of the results.
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Fig. 5. Exemplary results of the temperature profile T after thermoforming for
a reference with the highest process parameters (a), for the lowest mould tem-
perature Tm (b), slowest forming speed v (c) and lowest initial temperature of
the organo sheet To (d)

Fig. 5(a) shows the result with the highest process parame-
ters, which is considered to be the reference sample. To analyse
the influence of the individual parameters, each process param-
eter was reduced to its minimum value in the LHS and com-
pared to the reference solution. For each of the parameter sets,
the temperature profiles in Fig. 5 show the pattern of the injec-
tion moulding cavities of the die and punch. In the areas where
contact between tool and organo sheet occurs, the organo sheet
interface is cooling down considerably. In the reference sample
Fig. 5(a) as well as in Fig. 5(b), a temperature above 200◦C is
observed in the areas along the cavities that represent the inter-
face. The interface area does not cool down below melting tem-
perature, since there is no contact with the colder mould in this
area. However, the temperature gradient increases as the mould
temperature decreases. In Fig. 5(c) and Fig. 5(d), the interface
area is below or in the range of the melting temperature, thus it
can be assumed that the polymer has completely or partially so-
lidified. In Fig. 5(c), a significantly large temperature gradient
occurs. In summary, both the forming speed and the initial tem-
perature of the organo sheet are the main factors influencing the
interface temperature and will subsequently influence the part
quality.

4.1. Proper Orthogonal Decomposition

The solution of the eigenvalue problem is displayed in Fig. 6.
The resulting normalised eigenvalues are plotted in descending
order.
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can be assumed that the polymer has completely or partially so-
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perature of the organo sheet are the main factors influencing the
interface temperature and will subsequently influence the part
quality.

4.1. Proper Orthogonal Decomposition

The solution of the eigenvalue problem is displayed in Fig. 6.
The resulting normalised eigenvalues are plotted in descending
order.

0 20 40 60 80
10−12

10−6

100

Index

N
or

m
al

iz
ed

ei
ge

nv
al

ue
λ
/m

ax
(λ

)

Fig. 6. Normalised eigenvalues λ in descending order

4

1) 2) 3) 4)

Fig. 7. Illustration of the spatial POD modes no. 1-4

Here, it can be observed that the relative value decreases very
fast. The eigenvalues λ2(0.0017) and λ3(0.0004) are already of
magnitudes smaller than λ1. This implies a fast convergence of
the POD. In Fig. 7, the first four spatial modes of the reduced
solution (1) are shown.

Mathematically, these modes represent the orthogonal basis
of the reduced solution space. Interpreting the physical mean-
ing of the values shows a strong correlation between the mode
and the resulting temperature profile depicted in Fig. 5. Con-
sequently, combining these modes in the series expansion will
always yield solutions that are consistent with the boundary
conditions of the underlying physical problem. Especially the
shape of the first mode is qualitatively similar to the tempera-
ture field, which underlines its major influence on the reduced
solution (cf. Fig. 6). Similarly, for the second and third mode,
the profile determined by the cavities is recognised. Together
with the computed weighting functions, a sufficient number of
spatial modes yield the reproduction of the full-scale solution.

In order to evaluate the prediction quality as a function of k,
the error η = ‖Ured − U‖/‖U‖ is computed. It yields the relative
error for each sample. In Fig. 8, the convergence behaviour of
the POD approximation is shown. The relative error is plotted
over the number of modes k used in the approximation.
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Fig. 8. Convergence behaviour of the POD

The range of the error is bounded by the error’s maximum
and minimum over all samples. The dotted line represents the
mean error. From this graph, the number of samples needed
to obtain a sufficient approximation of the results can be esti-
mated. In this example, a mean error below 0.001 is achieved
with approximately 40 modes. For ensuring in any case an error
less than 0.001 at least 60 modes are necessary. Note that in this
example the results reproduced by POD are all contained in the
snapshots. Hence, using all available modes will always lead to
an error in the range of the computer accuracy.

4.2. Machine Learning

In contrary to the concept described in [5], where machine
learning methods are deployed for developing surrogate models
directly from the FEA results, the intermediate step of a POD
reduces the amount of data for the machine learning.

For the sake of completeness, the training is obtained for all
90 snapshots and modes. In practical applications the number
of modes k considered in the reduced model, can be chosen
smaller according to the convergence of the POD (cf. Fig. 8),
which would further reduce the amount of data. Since the spa-
tial modes are not affected by the machine learning-based com-
putation of weighting coefficients, the physical boundary con-
ditions of the reduced model are preserved and only the map
between process parameters and the weighting function is mod-
elled as a black box. A decision tree is utilised for predicting
the matrix of weighting functions A by means of the individ-
ual process settings P. In Fig. 9, the relative error η is depicted
for samples with weighting coefficients determined by decision
tree.
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Fig. 9. Convergence behaviour of the POD using machine learning predicted
weighting coefficients

Here, only for the first three modes show a significant im-
provement of the approximation. The addition of more modes
yields only a small further improvement. The error remains al-
most constant for 10 modes and more. Even though a mini-
mum error of up to 0.003 is possible, the maximum error con-
vergences to a constant value of 0.124, which is too large for
the application as digital twin. The mean error however implies
with 0.023 that a suitable approximation is possible. In order to
illustrate the convergence behaviour, the weighting coefficients
and corresponding predictions for a1 and a20 are depicted in
Fig. 10.
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Fig. 10. Comparison of the weighting coefficients computed from POD and
predicted with machine learning

The prediction of a1 matches very well the originally com-
puted values from POD. Regarding the prediction for a20, it can
be seen that the decision tree yields a nearly constant function
around 0, whereas the original coefficient oscillates between
−40 and 40. However, the absolute value of a20 is magnitudes
smaller than a1. Hence, the absolute value of the weighting co-
efficients is smaller for the higher modes and therefore their
influence on the reduced solution is also smaller.

5. Concluding Remarks

The interface bond strength in overmoulded thermoplastic
composites is the most critical factor for the structural integrity.
A sufficient bond strength has to be ensured during the design
phase considering the influence of the manufacturing process.
In the presented approach, the interface temperature of a FRTP
sheet (organo sheet), as main influence parameter for the bond
strength, is predicted by means of a numerical design of exper-
iments, POD and decision trees. The numerical design of ex-
periments shows that the initial temperature of the organo sheet
and the forming speed have the largest influence on the temper-
ature distribution. The resulting digital twin yields a physics-
based online feasible surrogate model, that can be used to opti-
mise the part design, as input for the design of the subsequent
injection moulding or as virtual quality gate during operation.
The error analysis shows a mean approximation error of 0.023,
which is a suitable approximation. However, the analysis shows
further that deviations of more than 10% occur in the predicted
results. Especially the weighting coefficients of the higher POD
modes are not well approximated, which yields further research
questions concerning suitable machine learning methods and
parametrisation. However, with each new development cycle,
the amount of simulation data and consequently the process
knowledge increases. By considering also the injection mould-
ing process in the digital twin, the whole process chain can be

captured. This additionally requires a fast mapping procedure
between thermoforming and injection moulding mesh.
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