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Abstract

Selected problems in the field of multivariate statistical analysis are treated. Thereby, one focus is on
the paired sample case. Among other things, statistical testing problems of marginal homogeneity are
under consideration. In detail, properties of Hotelling’s T 2 test in a special parametric situation are
obtained. Moreover, the nonparametric problem of marginal homogeneity is discussed on the basis of
possibly incomplete data. In the bivariate data case, properties of the Hoeffding-Blum-Kiefer-Rosenblatt
independence test statistic on the basis of partly not identically distributed data are investigated. Similar
testing problems are treated within the scope of the application of a result for the empirical process of
the concomitants for partly categorial data. Furthermore, testing changes in the modeled solvency
capital requirement of an insurance company by means of a paired sample from an internal risk model
is discussed. Beyond the paired sample case, a new asymptotic relative efficiency concept based on the
expected volumes of multidimensional confidence regions is introduced. Besides, a new approach for the
treatment of the multi-sample goodness-of-fit problem is presented. Finally, a consistent test for the
treatment of the goodness-of-fit problem is developed for the background of huge or infinite dimensional
data.



Zusammenfassung

Es werden ausgewählte Probleme aus dem Bereich der multivariaten statistischen Analyse behandelt.
Ein Schwerpunkt stellt dabei die statistische Analyse von gepaarten Stichproben dar. Unter anderem
werden hierbei statistische Testprobleme der marginalen Homogenität betrachtet. Konkret werden in
einer speziellen parametrischen Situation Eingenschaften des Hotellingschen T 2-Tests erhalten. Darüber
hinaus wird die Behandlung des nichtparametrischen Problems der marginalen Homogenität auf der
Basis von möglicherweise unvollständigen Daten diskutiert. Im Fall von bivariaten Daten werden Eigen-
schaften der Hoeffding-Blum-Kiefer-Rosenblatt Teststatistik für das Testproblem der Unabhängigkeit
auf Basis von teilweise nicht identisch verteilten Daten untersucht. Ähnliche Testprobleme werden im
Rahmen der Anwendung eines Resultats für den empirischen Prozess der Konkomitanten von teilweise
kategoriellen Daten behandelt. Weiter wird das Testen von Veränderungen in der modellierten Sol-
venzkapitalanforderung eines Versicherungsunternehmens anhand einer gepaarten Stichprobe aus einem
internen Risikomodell diskutiert. Über den gepaarten Stichprobenfall hinaus wird ein neues Konzept
für eine asymptotische relative Effizienz basierend auf den erwarteten Volumina von mehrdimensionalen
Konfidenzbereichen vorgestellt. Außerdem wird ein neuer Ansatz zur Behandlung des Anpassungsprob-
lems bei multiplen Stichproben präsentiert. Schließlich wird vor dem Hintergrund von hoch- bzw. un-
endlichdimensionalen Daten ein konsistenter Test zur Behandlung des Anpassungsproblems entwickelt.
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Introduction

In multivariate statistical analysis the paired sample case is of particular interest. Classical examples
for a paired sample are values for the systolic and diastolic blood pressure of patients, see Kossmann
(1946), or the values of the head length and head breadth of the sons in different families, see Frets
(1921). Other examples from more modern research are concentrations of potent broadly neutralizing
antibodies, which can prevent a HIV infection at genital surfaces in males, from both inner and outer
foreskin from male persons, see Fong et al. (2018), or bivariate data obtained by antidepressant clinical
trials for the degree of depression, measured in terms of the Hamilton 17–item rating scale, before and
after an intake of a drug or a placebo, see Detke et al. (2004) and Goldstein et al. (2004).

On Hotelling’s T 2 test in a special paired sample case

In Baringhaus and Gaigall (2017a), we consider the paired sample case that X1, . . . , Xn and Y1, . . . , Yn
are random d P N column vectors with the property that the random 2d column vectors�

Xj

Yj

�
, j � 1, . . . , n,

are independent and identically distributed, where n P N is a given sample size. One statistical problem
of interest is the testing problem of marginal homogeneity, i.e., verifying whether or not the first and
second marginal distributions coincide. We focus on the 2d dimensional multivariate normal model with
complete block symmetric covariance matrix, see Perlman (1987), i.e., the underlying distribution is the
multivariate normal distribution

N2d

��
a
b

�
,

�
Σ ∆
∆ Σ

�

,

where the mean vectors a P Rd and b P Rd of Xj and Yj , the common covariance matrix Σ of Xj and Yj
as well as the cross covariance matrix ∆ of Xj and Yj are unknown, ∆ is symmetric, and the covariance
matrix

Ξ �
�
Σ ∆
∆ Σ

�
is positive definite. Here, the testing problem of marginal homogeneity reduces to the testing problem

H : a � b, K : a � b,

where H stands for the null hypothesis that the marginal distributions coincide and K represents the
alternative that this is not the case. As a problem of a multivariate normal model with special symmetric
covariance structure it belongs to the family of statistical problems called “amenable problems of classical
multivariate analysis” (Perlman (1987)), i.e., problems marked in the way that explicit expressions
for maximum likelihood estimators and likelihood ratio statistics, for example, are available. In fact,
Arnold (1973) and also Olkin (1974) especially deals with the family of normal distributions with so-
called complete block symmetric covariance matrix. The problem of testing that the mean vector is
also complete block symmetric can be transformed to the product of a trivial problem and a certain
multivariate analysis of variance testing problem. The likelihood ratio test of the latter is identified to
be the likelihood ratio test for the hypothesis that the mean vector is complete block symmetric. For
a specific dimension under consideration, the 2d dimensional multivariate normal model with complete
block symmetric covariance matrix and the testing problem of marginal homogeneity obtain. Then, the
likelihood ratio test is Hotelling’s T 2 test based on the differences Wj � Xj � Yj , j � 1, . . . , n, that is
the test at significance level α P p0, 1q witch rejects the null hypothesis if and only if

T 2
n ¡ dpn� 1q

n� d
Fd,n�d;1�α,

where Fd,n�d;1�α denotes the 1� α quantile of the Fd,n�d distribution, and

T 2
n � pn� 1qW 1

S�1
WWW, SWW � 1

n

ņ

j�1

pWj �W qpWj �W q1.

1



In fact, Hotelling’s T 2 test based on the differences is also the uniformly most powerful invariant test
(Arnold (1973), p.690). We give an elementary straightforward proof of this result, which is of special
interest in practice. Without using distributional results on matrix transformed random normal vectors
and Wishart matrices, and avoiding the general technical apparatus developed and described by Arnold,
the proof essentially takes advantage of the fact that explicit expressions of the inverse and the positive
definite square root of 2d� 2d covariance matrices with complete block symmetry are available; indeed,
the inverse and the positive definite square root are seen to be of complete block symmetry as well.
The testing problem is of interest even if the assumption of complete block symmetry of the covariance
matrix cannot be accepted. Then, the likelihood ratio test for the testing problem is not Hotelling’s
T 2 test based on the differences Xj � Yj , an explicit expression of the likelihood ratio statistic does
not exist, optimality results are not available. Thus, the gain ensued from the assumption of complete
block symmetry of the covariance matrix is obvious. Needless to say that a check of this assumption is
indispensable. The likelihood ratio test for testing the hypothesis of complete block symmetry is easily
derived. As asserted by Perlman (1987), the likelihood ratio statistic is the ratio of the determinants of
the maximum likelihood estimators of the covariance matrix in the hypothesis case and the general case.

Testing marginal homogeneity of a continuous bivariate distribution with possibly
incomplete paired data

Inference on the basis of a paired sample is a classical statistical problem. For an overview over problems
arising with bivariate data and well-known or rather new testing procedures, we refer to Gaigall (2020a).
In Gaigall (2020a), we consider the full nonparametric testing problem of homogeneity of the marginal
distributions on the basis of a possibly incomplete paired sample from a continuous bivariate distribution.
To the best of the author’s knowledge, this testing problem had not yet been studied rigorously in this
general form, not even for a complete paired sample. We discuss a plausible testing criterion which
reaches the significance level and is consistent as the sample size tends to infinity. A sample of size n P N
of independent and identically distributed bivariate random vectors�

X1,1

X2,1

�
, . . . ,

�
X1,n

X2,n

�
is considered. Denoting by F1 and F2 the first and second marginal distribution of the (unknown)
underlying bivariate distribution FFF , the testing problem

H : F1 � F2, K : F1 � F2

is treated. Clearly, tests for detecting a difference in the means of the first and second components of
the bivariate random vectors are not suitable. Moreover, tests for verifying symmetry about zero of the
differences of the first and the second components are not applicable in this general situation, and the
same result applies to tests for verifying exchangeability of the first and the second components. For a
simple example which illustrates this fact we refer to Gaigall (2020a). We consider the complicating case
that some components in the paired sample are missing, where n1 P t1, . . . , nu and n2 P t1, . . . , nu are
the numbers of data remaining in the first and second components. It is assumed that FFF is absolutely
continuous with density fff , where RRR � tpx, yq P R2;fffpx, yq ¡ 0u is open as well as convex and fff is
continuous and bounded on RRR. Furthermore, it is supposed that the data are missing completely at
random such that

lim
nÑ8

n1
n
� ρ1 P p0, 1s, lim

nÑ8

n2
n
� ρ2 P p0, 1s.

Denoting by F1,n1
and F2,n2

the empirical distribution functions of the data remaining in the first and
second components, the application of the two-sample Cramér-von-Mises distance, see Anderson (1962),
yields the test statistic

Tn1,n2 �
n1n2
n1 � n2

» �
F1,n1pxq � F2,n2pxq

�2
dFn1,n2pxq,

where
Fn1,n2

pxq � n1
n1 � n2

F1,n1
pxq � n2

n1 � n2
F2,n2

pxq, x P R.

Because of the dependencies in the data, Tn1,n2 is not distribution free under H but the distribution
depends on FFF . Application of empirical processes theory, in particular under usage of results in Dudley
(1984), Gänßler & Ziegler (1994), van der Vaart & Wellner (1996), and Ziegler (1997), yields the following
result for the limit distribution of the test statistic under the null hypothesis.
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Theorem 1. Under H, it holds

Tn1,n2

dÑ T as nÑ8,
where

T �
8̧

i�1

λiZ
2
i ,

Z1, Z2, . . . is a sequence of independent standard normal distributed random variables, λ1, λ2, . . . are the
non-negative eigenvalues of a certain integral operator, and λi ¡ 0 for at least one i P N. In particular,
the distribution function of T is continuous on R and strictly increasing on r0,8q.

For a proof we refer to Gaigall (2020a). To obtain critical values, we suggest a resampling procedure.
By rearranging the incomplete observations we obtain three independent samples�

X1,k1,1

X2,k1,1

�
, . . . ,

�
X1,k1,m1

X2,k1,m1

�
, X1,k2,1

, . . . , X1,k2,m2
, X2,k3,1

, . . . , X2,k3,m3

of sizesm1,m2,m3 P t0, . . . , nu of independent and identically distributed random variables, respectively,
where pk1,1, . . . , k1,m1

, k2,1, . . . , k2,m2
, k3,1, . . . , k3,m3

q is a suitable permutation of p1, . . . , nq. Given that
α P p0, 1q is the significance level, sampling with replacement from the three samples and the application

of a specific statistic yields a critical value pCm1,m2,m3,1�α. For details we refer to Gaigall (2020a). Finally,
we obtain the following properties of the test.

Theorem 2.

a) Under H : F1 � F2, the test asymptotically reaches the significance level

lim
nÑ8

P pTn1,n2 ¡ pCm1,m2,m3,1�αq � α.

b) Under K : F1 � F2, the test is consistent

lim
nÑ8

P pTn1,n2
¡ pCm1,m2,m3,1�αq � 1.

c) Under suitable local alternatives Kn, the test is asymptotically unbiased

lim
nÑ8

P pTn1,n2
¡ pCm1,m2,m3,1�αq � β ¥ α.

For details and proofs we refer to Gaigall (2020a).

Hoeffding-Blum-Kiefer-Rosenblatt independence test statistic on partly not identically
distributed data

Another problem of interest in the bivariate data case is the question of independence. The paper
Gaigall (2020b) deals with the Hoeffding-Blum-Kiefer-Rosenblatt independence test statistic, that is an
established test statistic for the treatment of the nonparametric testing problem of independence. If
the data are independent and identically distributed, standard regularity assumptions ensure that the
Hoeffding-Blum-Kiefer-Rosenblatt independence test statistic is distribution-free under the null hypoth-
esis of independence and converges in distribution to a real-valued random variable as the sample size
tends to infinity, see Hoeffding (1948) and Blum, Kiefer, and Rosenblatt (1961). Recent studies for
the classical Rothman-Woodroofe symmetry test demonstrate that the application of classical statistical
procedures to not identically distributed data is possible in specific cases, see Gaigall (2020c). In fact,
a bulk of works treat statistical problems on the basis of independent but not identically distributed
data; for a list of literature with a focus on statistical tests, we refer to Gaigall (2020c). We apply the
Hoeffding-Blum-Kiefer-Rosenblatt independence test statistic to partly not identically distributed data.
Given that k P N and n1, . . . , nk P N let

pXi,j , Yi,jq, j � 1, . . . , ni, i � 1, . . . , k,
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be n � n1 � � � � � nk independent bivariate random vectors with values in R� R. Using F as a generic
notation for the distribution (function), we assume

FpXi,j ,Yi,jq � FpX,Yiq, j � 1, . . . , ni, i � 1, . . . , k,

where in general
FYi

� FYj
, i, j � 1, . . . , k, i � j.

Here, pX,Yiq, i � 1, . . . , k, are bivariate random vectors with values in R�R. We assume that the distri-
bution functions FpX,Yiq, i � 1, . . . , k, are uniformly continuous. The Hoeffding-Blum-Kiefer-Rosenblatt
independence test statistic on the partly not identically distributed data is

HBKRn � n

» � pFpX,Y q,npx, yq � pFX,npxq pFY,npyq
	2

d pFpX,Y q,npx, yq,

with the empirical distribution functions

pFpX,Y q,npx, yq �
1

n

ķ

i�1

ni̧

j�1

IpXi,j ¤ x, Yi,j ¤ y
�
, px, yq P R2,

and pFX,npxq � 1

n

ķ

i�1

ni̧

j�1

IpXi,j ¤ xq, x P R,

as well as pFY,npyq � 1

n

ķ

i�1

ni̧

j�1

IpYi,j ¤ yq, y P R,

where I is the indicator function. Consider the null hypothesis of independence

H : FpX,Yiq � FX b FYi , i � 1, . . . , k.

We investigate asymptotic properties of the Hoeffding-Blum-Kiefer-Rosenblatt independence test statis-
tic. In this regard, we point out that n tends to infinity if some of the n1, . . . , nk tend to infinity or
(possibly simultaneously) k tends to infinity. Throughout the paper, we suppose that nÑ 8 such that
ni{nÑ ρi for all i, where ρi P r0, 1s and

°
i ρi � 1. Although the mentioned result for the distribution-

freeness of the classical Hoeffding-Blum-Kiefer-Rosenblatt independence test statistic in the finite sample
case does not apply in this situation, we obtain that the statistic converges to the same distribution-free
random variable as the classical criterion if the null hypothesis of independence is true. Defining the

stochastic process Un � pUnpx, yq, px, yq P R2q by
Unpx, yq �

?
n
� pFpX,Y q,npx, yq � pFX,npxq pFY,npyq

�
, px, yq P R2

,

the Hoeffding-Blum-Kiefer-Rosenblatt independence test statistic can be rewritten as

HBKRn �
»
Unpx, yq2d pFpX,Y q,npx, yq.

We will deduce the limiting null distribution of the test statistic from the convergence in distribution
of the stochastic process Un under the null hypothesis of independence and from the convergence of
the distribution function FpX,Y q,n. The latter one is separately treated in Gaigall (2020b). We speak
about convergence in distribution of stochastic processes in the sense of van der Vaart & Wellner (1996).
Firstly, let us go to the stochastic process Un. We obtain the following convergence in distribution.

Proposition 1. Let the null hypothesis of independence H be true. Then, we have the convergence in
distribution

UnùU,

where U � pUpx, yq, px, yq P R2q is a centered Gaussian process with a.s. uniformly d2-continuous sample
paths and covariance function

upx, y, r, sq � �
FXpx^ rq � FXpxqFXprq

��
FY py ^ sq � FY pyqFY psq

�
, px, yq, pr, sq P R2

,

and Y denotes a real-valued random variable with distribution function

FY pyq �
¸
i

ρiFYipyq, y P R.
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For a proof we refer to Gaigall (2020b). We note the surprising observation that the stochastic process
U has the structure of the well-known Brownian pillow, also called Wiener pillow, completely tucked
Brownian sheet, or tied-down Kiefer process, see p. 137 in Piterbarg (1996), p. 368 in van der Vaart
& Wellner (1996), p. 320 in Csörgő and Horváth (1997), or Koning and Protasov (2003), arising with
the classical independence empirical process based on independent and identically distributed bivariate
random vectors. Finally, we obtain the limiting distribution of the Hoeffding-Blum-Kiefer-Rosenblatt
independence test statistic under the null hypothesis of independence.

Theorem 3. Let the null hypothesis of independence H be true. Then we have the convergence in
distribution

HBKRnùHBKR,

where the real-valued random variable HBKR is given by

HBKR �
» »

Upx, rq2dFXpxqdFY pyq.

In particular, HBKR is distribution-free, has a continuous and strictly increasing distribution function,
and the characteristic function

φHBKRptq �
8¹

j,ℓ�1

�
1� 2it

π4j2ℓ2

	� 1
2

, t P R.

For a proof we refer to Gaigall (2020b). We make the interesting observation, that the characteristic
function φHBKR is the well-known characteristic function of the limiting null distribution of the classical
Hoeffding-Blum-Kiefer-Rosenblatt independence criterion if the approach based on independent and
identically distributed bivariate random vectors with continuous marginal distributions, see Hoeffding
(1948) and Blum, Kiefer, and Rosenblatt (1961). As an application, we consider a nonparametric random
effects meta-regression model, which is very popular in meta-analysis. Here, the statistical problem of
interest is testing goodness-of-fit for the regression function. The Hoeffding-Blum-Kiefer-Rosenblatt
independence test statistic is applied to pairs of inputs and residual, which are partly not identically
distributed. We use a quantile of the limit distribution of the classical criterion and obtain a test which
reaches the significance level exactly as the number of data tends to infinity and is also consistent.

Empirical process of concomitants for partly categorial data and applications in statistics

Similar testing problems are treated within the scope of the application of a result for the empirical
process of the concomitants for partly categorial data in Gaigall, Gerstenberg, and Trinh (2021). Given
that n P N is the sample size, let pX1, Y1q, . . . , pXn, Ynq be independent and identically distributed.
We suppose that the random variable X1 is categorial with values in a set Σ of cardinality m P N,
Σ � t1, . . . ,mu, say, and that the probability that X1 takes the value 1, . . . ,m is different from zero,
respectively. In addition, we assume that the random variable Y takes values in R with continuous
distribution function. It is supposed that the joint distribution of pX1, Y1q and the marginal distributions
of X1 and Y1 are unknown. Concomitants (also called induced order statistic) appear when we sort the
values of X-attributes according to real-valued Y -attributes. There is a large number of works dealing
with concomitants. For a list of literature we refer to Gaigall, Gerstenberg, and Trinh (2021). Let us
assume that Y1, . . . , Yn are pair-wise distinct without loss of generality. Let R1:n, . . . , Rn:n be the ranks
of Y1, . . . , Yn,

Rj:n �
ņ

k�1

1pYk ¤ Yjq, j � 1, . . . , n,

and denote by R�1
1:n, . . . , R

�1
n:n the inverse ranks of Y1, . . . , Yn such that

YR�1
1:n

  � � �   YR�1
n:n
.

Then, the random variables
Xrj:ns � XR�1

j:n
, j � 1, . . . , n,
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are called the concomitants, also called induced order statistic. Suppose we have only the concomitants
Xr1:ns, . . . , Xrn:ns as our observations. We define the empirical distribution function of Y1, . . . , Yn by

F̂nptq � 1

n

ņ

j�1

1pYj ¤ tq, t P R,

and set

N̂npi, lq �
ļ

j�1

1pXrj:ns � iq, i P Σ, l � 1, . . . , n.

The unknown joint distribution of X1 and F pY1q is determined by

ρpi, tq � P pX1 � i, F pY1q ¤ tq, pi, tq P Σ� r0, 1s.

The latter term can be consistently estimated only on the basis of the concomitants Xr1:ns, . . . , Xrn:ns by

1

n
N̂npi, tntuq � 1

n

tntu̧

j�1

1
�
Xrj:ns � i

	
� 1

n

ņ

j�1

1
�
Xrj:ns � i,

j

n
¤ t

	
� 1

n

ņ

j�1

1
�
XR�1

j:n
� i,

j

n
¤ t

	
� 1

n

ņ

j�1

1
�
Xj � i,

Rj:n

n
¤ t

	
� 1

n

ņ

j�1

1pXj � i, F̂npYjq ¤ tq, pi, tq P Σ� r0, 1s.

This estimator is strong uniformly consistent in i P Σ, t P r0, 1s meaning that

sup
iPΣ,tPr0,1s

���N̂npi, tntuq
n

� ρpi, tq
��� ÝÑ 0 almost surely as nÑ8.

We define

Gnpi, tq �
?
n
�N̂npi, tntuq

n
� ρpi, tq

	
, pi, tq P Σ� r0, 1s,

and introduce the empirical process of the concomitants Gn � pGnpi, tqqpi,tqPΣ�r0,1s as the subject of
our investigation. A functional Central Limit Theorem for the concomitants is under consideration in
Theorem 24.3.1 in Davydov and Egorov (2001) in a very general setting. In particular, the concrete
structure of the related limit processes are not transparent there. We obtain a functional central limit
theorem for the empirical process of the concomitants Gn, where the argumentation in our proof is rather
straightforward and use classical empirical process theory such as in Ziegler (1997) and knowledge about
the well-known Bahadur-Kiefer process, see Bahadur (1966). We obtain the concrete structure of the
limit process and we deal with a fairly general setting of triangular arrays of random variables and by
that extend the result of Davydov and Egorov (2001). For the detailed formulation of the theorem and
the related proof, we refer to Gaigall, Gerstenberg, and Trinh (2021). We consider the testing problem
of independence

H : @ pi, tq P Σ� R : P pX1 � i, Y1 ¤ tq � P pX1 � iqP pY1 ¤ tq,
K : D pi, tq P Σ� R : P pX1 � i, Y1 ¤ tq � P pX1 � iqP pY1 ¤ tq,

as an example for the application of our main result, noticing that another application in the context
of a two-sample homogeneity problem is given in Gaigall, Gerstenberg, and Trinh (2021). For literature
about tests of independence for partly continuous and partly categorial data, see Gaigall, Gerstenberg,
and Trinh (2021) for details. Defining

pi � P pX1 � iq, i P Σ,

it is clear that the testing problem is equivalent to

H : @ pi, tq P Σ� r0, 1s : ρpi, tq � tpi, K : D pi, tq P Σ� r0, 1s : ρpi, tq � tpi.
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Similar as above, we can estimate p1, . . . , pm consistently on the basis of the concomitantsXr1:ns, . . . , Xrn:ns

by

1

n
N̂npi, nq � 1

n

ņ

j�1

1pXrj:ns � iq, i P Σ.

It is easily seen that

sup
iPΣ,tPr0,1s

���N̂npi, tntuq � tN̂npi, nq
N̂npi, nq

��� ÝÑ 0 almost surely as nÑ8

holds under the null hypothesis H as well. These deliberations motivate to use the test statistic

Tn �
1»
0

m̧

i�1

N̂npi, nq
�
N̂npi, tntuq � tN̂npi, nq

N̂npi, nq


2

dt.

Large values of Tn should be significant. In fact, by splitting the integration in parts of length 1{n we
obtain the following simple expression of the test statistic

Tn � 1

6n
� 1

2
� n

3
�

m̧

i�1

ņ

j�1

N̂npi, jq2
nN̂npi, nq

,

useful for calculation purposes in practice. A simple consequence of our results is that under the null
hypothesis of independence H it holds the following convergence in distribution

Tn
dÝÑ T �

8̧

k�1

Wk

k2π2
,

where Wk, k P N, is a sequence of independent χ2-distributed random variables with m � 1 degrees of
freedom. In particular, T is distribution free. For that reason, the related asymptotic test at significance
level α P p0, 1q, that is the test which rejects the null hypothesis H if and only if Tn ¡ c, where c is the
p1 � αq-quantile of T , is suitable for the treatment of the testing problem of independence. Under the
null hypothesis H, the test reaches the significance level exactly in the limit. Under any fixed alternative
K, the test is consistent, i.e.,

P pTn ¡ cq Ñ 1.

Based on the full observations pX1, Y1q, . . . , pXn, Ynq it is possible to translate our testing problem of
independence to the multi-sample testing problem of homogeneity in Kiefer (1959) by grouping the
Y -observations with respect to the X-observations. Among others, Kiefer (1959) treat a Cramér-von-
Mises type test statistic. It is not obvious at first sight that the Cramér-von-Mises type test statistic
introduced by Kiefer (1959) is measurable with respect to the concomitants. Local alternatives are
of interest, e.g., for efficiency deliberations, in particular for the Pitman-efficiency, see Puri and Sen
(1971), or the Volume-efficiency, see Baringhaus and Gaigall (2019). Under suitable local alternatives,
see Gaigall, Gerstenberg, and Trinh (2021) for details and proofs, we obtain

Tn
dÝÑ T �

8̧

k�1

m̧

i�2

�Zk,i

kπ
� ck,i

�2
,

where Zk,i, k P N, i � 2, . . . ,m, are independent standard normal distributed random variables and
ck,i P R, k P N, i � 2, . . . ,m, are constants (depending on the local alternative), where the explicit
expression is given in Gaigall, Gerstenberg, and Trinh (2021), and the test is asymptotically unbiased,

P pTn ¡ cq Ñ β P rα, 1s.

Test for changes in the modeled solvency capital requirement in an internal risk model

Paired samples also occur in the context of the validation of an internal risk model of an insurance
company in Gaigall (2021). Requests on the internal risk model are the modeling of a forecast distribution
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of the own funds of the insurance company and a related modeled solvency capital requirement based on
the Value-at-Risk at level 99.5% of the modeled forecast distribution of the own funds, where the time
horizon is one year. We consider two different model runs. The source of the internal risk model in model

run k � 1, 2 is an input pXpkq
1 , . . . , X

pkq
d q, where Xpkq

1 , . . . , X
pkq
d are d P N risk factors, given by real-valued

random variables. The joint distributions of these risk factors model the framework conditions for the
insurance company with a forecast horizon of one year and are assumed to be known. The modeled
forecast of the own funds of the insurance company in model run k � 1, 2 is obtained by the application
of a company specific deterministic and measurable function rpkq : Rd Ñ R, which models the current
asset and liability portfolio of the corporate. For the reasons explained in Gaigall (2021), we deal with
this function as unknown. The forecast of the own funds in model run k � 1, 2 is modeled by the
real-valued random variable

Y pkq � rpkqpXpkq
1 , . . . , X

pkq
d q.

Reminding that the Value-at-Risk at level p1� γq P p0, 1q of a real-valued random variable Y is defined
as

VaR1�γpY q � inftx P R;P pY ¤ xq ¥ 1� γu,

we suppose that the distributions F pkq of Y pkq, k � 1, 2, are absolutely continuous, where the related
densities f pkq satisfy f pkqpVaRγpY pkqqq ¡ 0. We define the modeled solvency capital requirement at level
γ in model run k � 1, 2 as the Value-at-Risk at level 1� γ of the difference of the (known) current own
funds of the corporate ypkq P R and the modeled forecast of the own funds Y pkq in one year, that is

SCRpkq � VaR1�γpypkq � Y pkqq � ypkq �VaRγpY pkqq.

For γ � 0.5% we obtain the modeled solvency capital requirement of the insurance company. We suppose
that the modeled solvency capital requirement at level γ in model run k � 1, 2 does not vanish, and that
the modeled solvency capital requirements at level γ for model runs 1 and 2 do not coincide. We are
interested in the relative change of the modeled solvency capital requirement from model run 1 to model
run 2, defined by

∆ �
����SCRp2q � SCRp1q

SCRp1q

����.
We aim to check whether there is a significant change in the modeled solvency capital requirement in the
sense that the relative change of the modeled solvency capital requirement from model run 1 to model
run 2 exceeds a given level δ P p0,8q, that is the testing problem

H0 : ∆ ¥ δ versus H1 : ∆   δ.

In practice, a Monte-Carlo procedure is customary to generate a model output. For validation purposes,
an appropriate implementation of the Monte-Carlo simulation is suggested to obtain corresponding results
for the empirical own funds for different model runs. As a result, we obtain the empirical own funds in
model run k � 1, 2 by

Y
pkq
j � rpkqpXpkq

1,j , . . . , X
pkq
d,j q,

j � 1, . . . , n, and we have that

pY p1q
1 , Y

p2q
1 q, . . . , pY p1q

n , Y p2q
n q

is a paired sample of independent bivariate random vectors, each with the same bivariate distribution
function F , which will be used as data for the treatment of the testing problem. Because rpkq is unknown,
k � 1, 2, the underlying bivariate distribution F is unknown as well. To circumvent technical problems,
we suppose that F is uniformly continuous. We obtain the empirical solvency capital requirement at
level γ of the own funds in model run k � 1, 2 by

SCRpkq
n � ypkq � Y

pkq
rγns:n,
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where Y
pkq
rγns:n is the sample quantile at level γ of the Y

pkq
1 , . . . , Y

pkq
n . The relative change of the empirical

solvency capital requirement from model run 1 to model run 2 is defined by

∆n �
����SCRp2q

n � SCRp1q
n

SCRp1q
n

����.
We suggest the test statistic

Tn �
?
np∆n � δq

for the implementation of the test. In mathematical terms, we treat the testing problem whether or not
the absolute value of the relative deviation between two quantiles exceeds a given level on the basis of
a paired sample as data. There is a lot of literature about inference for two quantiles, where usually
the two samples case is considered and two independent samples from the underlying distributions are
used as data. For a list of references, we refer to Gaigall (2021). Our inference based on a paired sample
as data. Because the paired sample case can be seen as a generalization of the two samples case if the
sample sizes for both samples coincide, our approach can be regarded as an extension in this sense. We
investigate asymptotic properties of the suggested test statistic, where we apply empirical process theory
in Dudley (1984), van der Vaart & Wellner (1996), and Ziegler (1997), combined with the concept of
Hadamard differentiability and the functional Delta method in van der Vaart (1998).

Theorem 4. a) In the interior of the null hypothesis ∆ ¡ δ, the divergence of the test statistic holds
almost surely

Tn ÝÑ �8 as nÑ8.

b) On the boundary of the null hypothesis ∆ � δ, the convergence in distribution of the test statistic holds

Tn
dÝÑ N as nÑ8,

where N is a real-valued random variable with a centered normal distribution and variance

σ2 �γp1� γq pSCR
p1qq2f p1qpVaRγpY p1qqq2 � pSCRp2qq2f p2qpVaRγpY p2qqq2
f p1qpVaRγpY p1qqq2f p2qpVaRγpY p2qqq2pSCRp1qq4

� 2pF pVaRγpY p1qq,VaRγpY p2qqq � γ2q SCRp1qSCRp2q

f p1qpVaRγpY p1qqqf p2qpVaRγpY p2qqqpSCRp1qq4 .

c) Under the alternative hypothesis ∆   δ, the divergence of the test statistic holds almost surely

Tn ÝÑ �8 as nÑ8.

For a proof we refer to Gaigall (2021). The results motivate a bootstrap procedure for the approximation
of the standard deviation of the test statistic and finally for the determination of critical values. Using
that the theory is available in a general setting of triangular arrays of random variables and a Glivenko-
Cantelli result in Gänßler & Ziegler (1994), we obtain that the bootstrap procedure is suitable.

Dealing with given testing problems, statisticians usually try to pick up or develop statistical tests being
most efficient in a certain sense. Thereby, as in finite sample cases such tests often do not exist, the
main focus is on efficiency concepts, that enable the comparison of competing procedures by means of
its specific asymptotic properties. The most familiar concepts in this respect are the concepts of Pitman,
Bahadur and Hodges-Lehmann. For a systematic overview of these and other approaches we refer to
the books Serfling (1980) and Nikitin (1985). In typical cases, the (local) asymptotic efficiencies of tests
compared are seen to be ratios of (local) slopes of functions related to its power functions in different
specific ways. Taking into account the correspondence principle, comparison of statistical tests can be
also done via its associated confidence regions.
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On an asymptotic relative efficiency concept based on expected volumes of confidence
regions

Beyond the bivariate case, we introduce a new asymptotic relative efficiency concept based on the ex-
pected volumes of multidimensional confidence regions in Baringhaus and Gaigall (2019). The expected
volume EϑpVnq is a quality criterion for a confidence region Bn, see, e.g., Baringhaus and Gaigall (2017b)
and Baringhaus and Gaigall (2018). Here the symbol ϑ can be seen as a generic notation for the param-
eter of the underlying distribution; we refer to Baringhaus and Gaigall (2019) for details and a precise
formulation of the model under consideration. It is

Nγ,ϑ � inftn P N; EϑpVmq ¤ γ @m ¥ nu
the smallest sample size from that EϑpVnq does not exceed a given value γ P p0, 1q. We define the
asymptotic relative volume efficiency of B1 with respect to B as

arveϑpB1, Bq � lim
γÓ0

Nγ,ϑ

N 1
γ,ϑ

.

if the limit exists. The crucial condition to obtain the asymptotic relative volume efficiency in applications
is

lim
nÑ8

nrEϑpVnq � cϑ P p0,8q
for some r P p0,8q. If this condition is satisfied for B and B1 with the same r, we obtain the asymptotic
relative volume efficiency by

arveϑpB1, Bq �
�
cϑ
c1ϑ


1{r

.

For details, see Baringhaus and Gaigall (2019). Given a dimension d P N, let us consider the case of a
multivariate normal distribution Ndpµ,Σq, µ P Rd, Σ P Rd�d symmetric positive definite. On the basis
of a sample from this distribution, a confidence ellipsoid for µ is obtained by

Bn �
"
η P Rd;npXn � ηqJS�1

n pXn � ηq   nd

n� d
Fd,n�d;1�α

*
,

where Xn is the sample mean, Sn is the sample covariance matrix, and Fd,n�d;1�α denotes the quantile
of order p1� αq P p0, 1q of the F distribution with d and n� d degrees of freedom. In this situation, the
expected volume of Bn satisfies the condition

lim
nÑ8

nd{2EϑpVnq �
pχ2

d;1�αqd{2πd{2

Γpd{2� 1q detΣ1{2.

This follows from the more general results in Baringhaus and Gaigall (2019). As an example, we con-
sider the common distributional model for 2 � 2 contingency tables is the 4-dimensional multinomial
distribution family

tM4p1; p11, p12, p21, p22q; pij P p0, 1q, 1 ¤ i, j ¤ 2, p11 � p12 � p21 � p22 � 1u .

We are interested in confidence regions for the parameter vector
�

p11

p11�p21
, p22

p12�p22

	J
that is of special

interest in various studies in applied sciences; in fact, the fractions p11

p11�p21
and p22

p12�p22
are known there

as the positive predictive value and the negative predictive value. We use the different alternative
parameterisation

tM4p1; ξ1ξ3, p1� ξ2qp1� ξ3q, p1� ξ1qξ3, ξ2p1� ξ3qq; ξi P p0, 1q, i � 1, 2, 3u
of the distributional model obtained by putting

ξ � pξ1, ξ2, ξ3qJ �
�

p11
p11 � p21

,
p22

p12 � p22
, p11 � p21


J

P p0, 1q3.

Given ξ � pξ1, ξ2, ξ3qJ P p0, 1q3, let
Xj � pXj,11, Xj,12, Xj,21, Xj,22qJ �M4p1; ξ1ξ3, p1� ξ2qp1� ξ3q, p1� ξ1qξ3, ξ2p1� ξ3qq.
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The confidence regions to be derived for the subvector pξ1, ξ2qJ are based on the sufficient statis-
tic Nn � pNn,11, Nn,12, Nn,21, Nn,22qJ � °n

j�1Xj that for given ξ has the multinomial distribution
M4 pn; ξ1ξ3, p1� ξ2qp1� ξ3q, p1� ξ1qξ3, ξ2p1� ξ3qq . Setting

pξn,1 � Nn,11

Nn,11 �Nn,21
, pξn,2 � Nn,22

Nn,12 �Nn,22
, pξn,3 � 1

n
pNn,11 �Nn,21q ,

It is easily seen that observations of ppξn,1, pξn,2, pξn,3qJ in p0, 1q3 are maximum likelihood estimates of
ξ � pξ1, ξ2, ξ3qJ. For other observations, a redefinition of the estimators is appropriate, see Baringhaus
and Gaigall (2019) for details. Motivated by the correspondence principle for confidence regions and
statistical tests, we consider the confidence regions

BP
n �  

η P p0, 1q2;TP
η,n   χ2

2;1�α

(
,

BW
n �  

η P p0, 1q2;TW
η,n   χ2

2;1�α

(
,

BLR
n �  

η P p0, 1q2;TLR
η,n   χ2

2;1�α

(
,

where

TP
η,n � n

�
ppξn,1 � η1q2

pξn,3pξn,1p1� pξn,1q � ppξn,2 � η2q2 1� pξn,3pξn,2p1� pξn,2q
�
,

TW
η,n � n

�
ppξn,1 � η1q2

pξn,3
η1p1� η1q � ppξn,2 � η2q2 1� pξn,3

η2p1� η2q

�
,

TLR
η,n � 2

�
Nn,11 log

pξn,1
η1

�Nn,12 log
1� pξn,2
1� η2

�Nn,21 log
1� pξn,1
1� η1

�Nn,22 log
pξn,2
η2

�
,

that are a plug-in type test statistic, a Wald type test statistic, and a likelihood ratio test statistic for
testing the hypothesis pξ1, ξ2q � pη1, η2q. Applying the asymptotic relative volume efficiency concept
and the more general results in Baringhaus and Gaigall (2019), we obtain that the asymptotic relative
volume efficiency of each of these three statistics with respect to each one of its competitors is equal to
1, i.e.,

arveϑpBP
n , B

W
n q � arveϑpBP

n , B
LR
n q � arveϑpBW

n , BLR
n q � 1.

For a rough impression on the finite sample performance we refer to the following Figure. There,
for given α � 0.05 are shown the observed associated confidence regions for the pair pξ1, ξ2q of the
positive predicted value ξ1 � p11

p11�p21
and the negative predicted value ξ2 � p22

p12�p22
based on the value

p35, 23, 12, 30q of the sufficient statistic Nn obtained by generating by Monte Carlo simulation a single
sample of the multinomial distribution M4pn; p11, p12, p21, p22q where n � 100 and p11 � 3{8, p12 �
1{4, p21 � 1{8, p22 � 1{4, equivalently, p11{pp11 � p21q � 3{4, p22{pp12 � p22q � 1{2, p11 � p21 � 1{2.
The observed region BP

n is an ellipse with half axes a � 0.1556841 and b � 0.1666392.
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A lot of well-known statistical problems are related to statistical inference for multiple samples. Some
popular and very basic data examples, originally intended for ANOVA, are online available and provided
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by the Cengage College (2018). The examples include data for the depths for significant archaeological
discoveries at different excavation sites at an archeological area in New Mexico. Another data set
represents the extension growth after four years for different types of root-stock used in an apple orchard
grafting experiment. Moreover, the result of a study is presented, where the researchers fed mice different
doses of red dye number 40 and recorded the time of death in weeks for female mice. A further data
set gives business startup costs for different types of businesses, namely pizza startups, baker or donut
startups, shoe stores, gift shops, and pet stores. Finally, data for the weight of professional football
players of the Dallas Cowboys, the Green Bay Packers, the Denver Broncos, the Miami Dolphins, and
the San Francisco Forty Niners are provided.

On a new approach to the multi-sample goodness-of-fit problem

A new approach for the treatment of the multi-sample goodness-of-fit problem is presented in Gaigall
(2019). Suppose we have k P N samples X1,1, . . . , X1,n1 , . . . , Xk,1, . . . , Xk,nk

with different sample sizes
n1, . . . , nk and unknown underlying distribution functions F1, . . . , Fk as observations plus k families of
distribution functions tG1p�, ϑq;ϑ P Θu, . . . , tGkp�, ϑq;ϑ P Θu, each indexed by elements ϑ from the same
parameter set Θ, we consider the new goodness-of-fit problem whether or not pF1, . . . , Fkq belongs to the
parametric family tpG1p�, ϑq, . . . , Gkp�, ϑqq;ϑ P Θu. We study this new multi-sample goodness-of-fit prob-
lem and new test statistics as a generalization and unification of the one-sample goodness-of-fit problem
in Stute, Gonzáles-Manteiga and Presedo-Quindimil (1993) and the multi-sample goodness-of-fit problem
in Kiefer (1959) (null hypothesis H2). The new test statistics are presented and a parametric bootstrap
procedure for the approximation of the unknown null distributions is discussed. Under regularity as-
sumptions, it is proved that the approximation works asymptotically, and the limiting distributions of
the test statistics in the null hypothesis case are determined. If the null hypothesis

H : pF1, . . . , Fkq P
 �
G1p�, ϑq, . . . , Gkp�, ϑq

�
;ϑ P Θ

(
is true, the statistician does not know the true underlying parameter ϑ P Θ. An estimation on the basis
of the pool of all N � n1 � � � � � nk observations is necessary. For this purpose, let

pϑn � vnpX1,1, . . . , X1,n1
, . . . , Xk,1, . . . , Xk,nk

q
be an estimator of ϑ. For i � 1, . . . , k, we define the empirical distribution function based on the sample
from the i-th population by pFi,ni

pxq � 1

ni

ni̧

j�1

IpXi,j ¤ xq, x P R,

where Ip�q denotes the indicator function. We suggest the test statistic

Tn �
ķ

i�1

ni
N

sup
xPR

| pFi,ni
pxq �Gipx, pϑnq|,

or the test statistic

Sn �
ķ

i�1

ni
N

» � pFi,ni
pxq �Gipx, pϑnq�2Gipdx, pϑnq,

for verifying the null hypothesis H. For details and necessary measurability assumptions we refer to
Gaigall (2019). In general, the distributions of the test statistics in the null hypothesis case depend on
the underlying parameter ϑ P Θ, likewise asymptotically. Because the true parameter is unknown in ap-
plications, we suggest a parametric bootstrap procedure for the approximation of the distributions of the
test statistics under the null hypothesis. Under regularity assumptions, it follows from the deliberations
in Gaigall (2019) that this approximation works asymptotically. Moreover, the limiting null distributions
of the test statistics are determined there. In particular, the special case G1 � � � � � Gk of the testing
problem is of interest. Here, the null hypothesis is given by

H : F1 � � � � � Fk P tG1p�, ϑq;ϑ P Θu.
This special case is in itself already a generalization of the one-sample goodness-of-fit problem in Stute,
Gonzáles-Manteiga and Presedo-Quindimil (1993) and of the multi-sample goodness-of-fit problem in
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Kiefer (1959) (null hypothesis H2q. As examples, we consider two parametric families of distributions for
the null hypothesis, namely the family of inverse Gaussian distributions, denoted by IGpµ, λq, µ P p0,8q,
λ P p0,8q, and the family of Rayleigh distributions, denoted by Rpσq, σ P p0,8q. Denoting by Φ
the distribution function of the standard normal distribution, the null hypothesis of inverse Gaussian
distribution is given by

Gi

�
x, pµ, λq1� � Φ

�c
λ

x

�x
µ
� 1

	

� exp

�2λ
µ

	
Φ

�
�
c
λ

x

�x
µ
� 1

	

, x ¡ 0, pµ, λq1 P Θ, i � 1, . . . , k,

where Θ � p0,8q2. Maximum-likelihood estimator ppµn, pλnq1 is given by

pµn � 1

N

ķ

i�1

ni̧

j�1

Xi,j , pλn � 1

1
N

°k
i�1

°ni

j�1

�
1

Xi,j
� 1

pµn

	 .
The null hypothesis of Rayleigh distribution is given by

Gipx, σ2q � 1� exp
�
� x2

2σ2

	
, x ¡ 0, σ2 P Θ, i � 1, . . . , k,

where Θ � p0,8q. Maximum-likelihood estimator pσ2
n is now

pσ2
n �

1

2N

ķ

i�1

ni̧

j�1

X2
i,j .

Huge dimensional data analysis and functional data analysis are two topics which are discussed frequently
in current statistic literature. Although both fields deal with the same problem of large dimensional data
they were developed mainly independently of each other. Both fields would benefit from more interaction.
One possibility to achieve this is working on a very general space including both fields, like a separable
Hilbert space. Applications are given, e.g., for stock market returns, see Ditzhaus and Gaigall (2021).

A consistent goodness-of-fit test for huge dimensional and functional data

In Ditzhaus and Gaigall (2018), we consider a goodness of fit problem in a separable Hilbert space. We
develop a non-parametric goodness-of-fit test which can be applied in functional data analysis for infinite
dimensional spaces, for data of huge but finite dimension or even for the more common low dimensional
data case. For real-valued data our approach coincides with the well-known Cramér-von-Mises test,
which was discussed by Anderson (1962) and, in the multivariate case, by Rosenblatt (1952). Our test’s
basic idea is projecting the data from the Hilbert space to real numbers and then applying an appropriate
Cramér-von-Mises test. Using projections is not new at all, for example, Cuesta-Albertos et al. (2006)
and Cuesta-Albertos et al. (2007) used a finite number of random projections in order to obtain real-
valued data and applied a Kolmogorov-Smirnov goodness-of-fit test to these data. In contrast to these
papers, we will not work with random projections but with all projections from an appropriate set. The
advantage is that the result of the test only depends on the data and not on some additional randomness.
Let H be a separable Hilbert space with countable orthonormal basis tei; i P Iu, where I is an index set.
Given that pΩ,A, , P q is a probability space, we denote by Y : Ω ÝÑ H some pA,BpHqq-measurable
random variable with respect to the σ-algebra A and the Borel σ-field BpHq on H, where PY is assumed
to be known, and by X : Ω ÝÑ H some pA,BpHqq-measurable random variable,where PX is assumed
to be unknown. On the basis of X1, X2, . . . , given by independent and identically distributed copies of
X, we study the null hypothesis

H : PX � PY .

Let π : H Ñ R be a linear and continuous map, F pπ, �q be the distribution function of πpY q, and pFnpπ, �q
be the empirical distribution function of πpX1q, . . . , πpXnq. It is

Tnpπq � n

» � pFnpπ, tq � F pπ, tq�2F pπ,dtq
13



the classical one-sample Cramér-von-Mises type test statistic on the basis of the distribution function
F pπ, �q and the real-valued random variables πpX1q, . . . , πpXnq. We consider the test statistic

Tn �
»
TnpπqPpdπq � n

» » � pFnpπ, tq � F pπ, tq�2F pπ,dtqPpdπq
for a probability measure P on pH,BpHqq chosen by the statistician. We have

@x P H : x �
¸
iPI

xx, eiyei,

and the characteristic function φY : H Ñ C,

φY pxq � E
�
eixx,Y y

	
, x P H,

determines the distribution of Y uniquely. It holds that

@x P Hzt0u : φY pxq � φxY,x{||x||yp||x||q � φxY,�x{||x||yp�||x||q.
Focusing on

h �
! ķ

j�1

mjeij ; k P I, pi1, . . . , ikq P Ik , pm1, . . . ,mkq P Sk�1
�

)

with Sk�1
� �

!
pm1, . . . ,mkq P Rk;m1 ¥ 0,

ķ

j�1

m2
j � 1

)
and Ik  � tpi1, . . . , ikq P Ik; i1   i2   � � �   iku for k P I,

we have h P BpHq, and it is sufficient to consider P on BpHq with
Pphq � 1

to obtain a consistent testing procedure. In the case of H � R the property Pphq � 1 leads to

h � t1u and P � δ1

and so

Tn � n

» �
1

n

ņ

j�1

IpXj ¤ tq � P pY ¤ tq

2

P pY ¤ dtq,

i.e. our approach is a direct generalization of the classical one-sample Cramér-von-Mises test. Although
the results obtained in Ditzhaus and Gaigall (2018) covers more general cases we limit ourselves to the
consideration of specific P in what follows, determined by the following procedure for the generation of a
realization from P. At first, the statistician chooses two distributions ξ and η on pI,PpIqq with support
I. Then the following steps are conducted.

1. Generate a realization k of the distribution ξ.

2. Independently of Step 1, generate pi1, . . . , ikq P Ik  by k-times sampling from I according to law
η without replacement and by arranging the sample according to size.

3. Independently of Steps 1 and 2, generate a realization pm1, . . . ,mkq of the uniform distribution
uk on pSk�1

� ,BkpSk�1
� qq.

4. Set π � °k
j�1mjeij .

The convergence in distribution of the test statistic under the null hypothesis is proved and the test’s
consistency is concluded. A general approach enables the treatment of incomplete data. Properties
under local alternatives are also discussed. With the help of the theory of U -statistics, see Koroljuk &
Borovskich (1994), we obtain for local alternatives of the form

dPX

dPY
� 1� ψ?

n
,

where ψ is in L2pH,BpHq, PY q, the following result for the limit distribution of the test statistic under
local alternatives.
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Theorem 5. Suppose the distributions of xX, eiy and xY, eiy are continuous for all i P I. Then we have

Tn
DÝÑ

8̧

k�1

λkpτk � EpφkpY qψpY qqq2 as nÑ8,

where pτiqiPN is a sequence of independent standard normal distributed random variables and pλiqiPN is
a sequence on non-negative numbers with λi ¡ 0 for at least one i P N.

For a proof we refer to Ditzhaus and Gaigall (2018). Applications are given for data of huge but finite
dimension and for functional data in infinite dimensional spaces. Application to huge dimensional data
takes place for the Hilbert space H � Rd, where d P N. Here the random variables X and Y are random
vectors

X � pXp1q, . . . , Xpdqq and Y � pY p1q, . . . , Y pdqq.

With µ � 1d�1 and Σ � d
d�1 pId� 1

d�11d�dq, where 1d�s denotes the d�s matrix of ones and Id represents
the d� d identity matrix, we test the null hypothesis

PY � ℓdpµ,Σq

versus contamination alternatives of the form

PX � p1� aqℓdpµ,Σq � aNdp5µ,Σq or PX � p1� aqℓdpµ,Σq � atdpµ, 2Σq,

i.e., we consider the d-dimensional Laplace distribution ℓdpµ,Σq, the d-dimensional normal distribu-
tion Ndpµ,Σq and the d-dimensional t distribution tdpµ,Σq with one degree of freedom, where all
these distributions are parametrized by a location parameter µ P Rd and a symmetric positive def-
inite covariance matrix Σ P Rd�d. Application to functional data takes place for the Hilbert space
H � L2pr0, 1s,Br0,1s, λr0,1sq with orthonormal basis given by the normalized Legendre polynomials.
Here the random variables X and Y are stochastic processes

X � �
Xptq; t P r0, 1s� and Y � �

Y ptq; t P r0, 1s�.
We test the null hypothesis

Y ptq � Bptq, t P r0, 1s,

for a standard Brownian bridge B � pBptq; t P r0, 1sq versus alternatives of the form

Xptq � aBptq � btpt� 1q, t P r0, 1s.
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