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Abstract
Ammonium-induced stimulatory, inhibitory, and/or neutral effects on soil methane oxidation have been attributable to the 
ammonium concentration and mineral forms, confounded by other edaphic properties (e.g., pH, salinity), as well as the 
site-specific composition of the methanotrophic community. We hypothesize that this inconsistency may stem from the 
discrepancy in the cation adsorption capacity of the soil. We postulate that the effects of ammonium on the methanotrophic 
activity in soil are more accurately portrayed by relating methane uptake rates to the soluble ammonium (bioavailable), 
rather than the exchangeable (total) ammonium. To reduce adsorption (exchangeable) sites for ammonium in a paddy soil, 
two successive pre-incubation steps were introduced resulting in a 1000-fold soil dilution (soil enrichment), to be compared 
to a soil slurry (tenfold dilution) incubation. Ammonium was supplemented as NH4Cl at 0.5–4.75gL−1 after pre-incubation. 
While NH4Cl significantly stimulated the methanotrophic activity at all concentrations in the soil slurry incubation, methane 
uptake showed a dose-dependent effect in the soil enrichment. The trend in methane uptake could be explained by the soluble 
ammonium concentration, which was proportionate to the supplemented ammonium in the soil enrichment. In the soil slurry 
incubation, a fraction (36–63%) of the supplemented ammonium was determined to be adsorbed to the soil. Accordingly, 
Methylosarcina was found to predominate the methanotrophic community after the incubation, suggesting the relevance 
of this methanotroph at elevated ammonium levels (< 3.25gL−1 NH4Cl). Collectively, our results showed that the soluble, 
rather than the exchangeable ammonium concentration, is relevant when determining the effects of ammonium on methane 
oxidation, but this does not exclude other (a)biotic factors concurrently influencing methanotrophic activity.
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Introduction

The effects of ammonium on methane oxidation and the 
aerobic methanotrophs remain contentious, having been 
documented to stimulate and inhibit methanotrophic activ-
ity in the soil environment, as well as having no apparent 
effect whereby the ammonium-induced stimulation of meth-
ane oxidation is thought to be offset by the adverse effects 
(e.g., Alam and Jia 2012; Bodelier and Laanbroek 2004; 
Ji et al. 2020; Krause et al. 2012; Mohanty et al. 2006). 
Ammonia competitively inhibits methane oxidation, and 
accumulated products of ammonium oxidation (e.g., nitrite, 
hydroxylamine) can be toxic to the methanotrophs (Camp-
bell et al. 2011; Nyerges et al. 2010; Nyerges and Stein 
2009; Versantvoort et al. 2020). Earlier work showed that 
ammonium addition impaired methane uptake in soils (King 
and Schnell 1998; Schnell and King 1994). Paradoxically, 
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ammonium-based fertilization may also stimulate methane 
oxidation particularly in agricultural, wetland soils where 
soil microorganisms compete with crops for limited N 
sources (e.g., Bodelier et al. 2000; Kaupper et al. 2020a).

The seemingly contradictory effects of ammonium on 
methane oxidation have been attributable to the dose and 
mineral forms of ammonium (e.g., ammonium chloride, 
ammonium sulfate) (Hu and Lu 2015; Krause et al. 2012; 
Mohanty et al. 2006; Walkiewicz et al. 2018; Xu and Inu-
bushi 2004), as well as the methane concentration (King 
and Schnell 1998). Besides edaphic properties controlling 
methane oxidation (Ho et al. 2013a; Kaupper et al. 2020b), 
the methanotrophs, as well as the non-methanotrophic 
members of the community, are relevant biotic determi-
nants potentially affecting the response of methane oxida-
tion to external stressors, e.g., high ammonium input (Ho 
et al. 2020; Kaupper et al. 2020c; 2021; Mohanty et al. 
2006). With prior or continuous exposure to ammonium, 
an ammonium-tolerant methanotrophic community may 
emerge over time (Ho et al. 2020; Qiu et al. 2008). Typi-
cally, the gammaproteobacterial methanotrophs (subgroup 
type Ia; Methylobacter, Methylomicrobium, Methylosarcina) 
are more responsive and show higher N assimilation, ben-
efiting from short-term ammonium availability more than 
the alphaproteobacterial methanotrophs (subgroup type II; 
Methylocystis, Methylosinus) (Nold et al. 1999; Noll et al. 
2008; Yang et al. 2020). Many type II methanotrophs (e.g., 
Methylocystis, Methylosinus, Methylocella), along with spe-
cific members of type I (Methylomonas), harbor the nifH 
gene (encoding for the nitrogenase), having the potential to 
fix molecular N and, hence, are competitively superior when 
N is limited (Graham et al. 1993; Ho and Bodelier 2015). 
Although canonical aerobic methanotrophs can be broadly 
grouped into Gammaproteobacteria, Alphaproteobacteria, 
and Verrucomicrobia based on their biochemistry, physi-
ology, and associated life strategies, methanotrophs show 
species- and even strain-specific versatility in N metabolism 
(Ho et al. 2013a; Hoefman et al. 2014; Nyerges and Stein 
2009). Therefore, a complex interaction of biotic and abi-
otic determinants underlies ammonium-induced effects on 
methane oxidation, which may be site-specific.

Previous studies documented the response of methane 
oxidation to the total or soluble ammonium after amend-
ment (Table S1). Accordingly, ammonium depletion in 
soil amendment incubations is often attributed to biologi-
cal ammonium consumption, which may be a cause for the 
seemingly contradictory findings given that ammonium 
(cation) is readily adsorbed to the negatively charged organic 
matter and soil particles (Ho et al. 2018; King and Sch-
nell 1998). The adsorbed ammonium (non-soluble fraction) 
may not be fully accessible to soil microorganisms. There-
fore, ammonium-induced effects could be misinterpreted 
in soil incubations, considering the total or exchangeable 

ammonium concentrations alone. Here, we hypothesized that 
the apparent inconsistency in ammonium-induced effects 
on methane oxidation may in part stem from differences in 
the adsorption capacity of the soil (as determined via the 
exchangeable and soluble ammonium fractions).

To address our hypothesis, we performed a systematic 
study using two series of incubations whereby the response 
in methanotrophic activity, community composition, and 
abundance in a paddy soil slurry (tenfold dilution) were 
compared to a soil enrichment (1000-fold dilution) incuba-
tion. We anticipate lower adsorption sites for ammonium 
in the soil enrichment than in the soil slurry incubations. 
As such, the effects of ammonium will be more accurately 
reflected in the soil enrichment incubation.

Materials and methods

The paddy soil was sampled in May 2015 from the CRA 
Agricultural Research Council, Rice Research Unit in Ver-
celli, Italy (coordinates, 45o 20′ N, 8° 25′ E). Rice agricul-
ture practice in the sampling site has been described before 
(Kaupper et al. 2021). After sampling, the soil was air-
dried at room temperature and sieved (2 mm) before being 
stored in a covered plastic container till experimental set 
up. The soil has a clay texture with a pH of 5.4 and a cation 
exchange capacity of 6.7 cmol(+) kg−1 (Cucu et al. 2014). 
The soil contained a total C and N of 13.9 µg C mg dw soil−1 
and 1.3 µg N mg dw soil−1, respectively (Ho et al. 2015). 
Selected nutrient contents include NOx (sum of NO2

− and 
NO3

−), total NH4
+, and PO4

3− of 34.4 µg dw soil−1, 18.0 µg 
dw soil−1, and 0.6 µg dw soil−1, respectively (Ho et al. 2015).

In both soil slurry and enrichment incubations, NH4Cl 
in ammonium mineral salts (AMS) was supplemented to 
a final concentration of 0.50 (referred to as treatment 1, 
T1), 1.25 (T2), 2.00 (T3), 2.50 (T4), 3.25 (T5), and 4.75 g 
L−1 (T6), corresponding to 9.35, 23.39, 37.42, 46.77, 
60.80, and 88.87 mM NH4

+, respectively (Fig. S1). In the 
reference incubation (T0), autoclaved dH2O, instead of 
NH4Cl-supplemented AMS, was added to the soil (Fig. S1). 
These concentrations were selected based on the effects of 
NH4Cl on the methane uptake rates in the same soil (i.e., 
dose-dependent inhibition of methane uptake was propor-
tional to NH4Cl concentrations) (Ho et al. 2020). All incu-
bations (n = 3, each treatment) were performed in 120 ml 
bottles under 2–3%v/v methane in air at 27 °C while shaking 
(120 rpm) in the dark.

After the incubation, the samples were collected and 
stored in a − 20 °C freezer till DNA extraction for molec-
ular analyses and ammonium and nitrate determination. 
The methanotrophic abundance and community composi-
tion were, respectively, determined by qPCR and Illumina 
MiSeq sequencing targeting the pmoA gene (encoding for 
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the particulate methane monooxygenase, pMMO). The 
pmoA gene sequences were deposited at the National Center 
for Biotechnology Information (NCBI) under the accession 
number PRJNA691142. The ammonium concentration 
was determined using standard colorimetric methods as 
described before (Ho et al. 2020). Exchangeable ammo-
nium, regarded as the total amount of ammonium present, 
was determined in 2 M KCl (1:2) after filtration (0.22 µm), 
whereas soluble ammonium was determined in the liquid 
phase of the soil slurry and enrichment, after centrifuga-
tion and filtration (0.22 µm). The soluble ammonium was 
regarded as the ammonium fraction largely accessible to the 
microorganisms (bioavailable). The detailed experimental 
setup and molecular analyses are given in the Supplementary 
Information.

Results and discussion

Dose‑dependent effect of soluble ammonium 
on methane uptake rates

Methane was rapidly consumed within 2–3 days after NH4Cl 
addition in all the soil slurry incubations (T1–T6) when 
compared to the reference incubation (T0), where headspace 
methane decreased by < 50%v/v even after 7 days, indicat-
ing that supplemented NH4Cl in AMS stimulated methane 
uptake rates (Fig. 1a, c). On the other hand, NH4Cl-induced 
stimulation of methane uptake was dose-dependent in the 
soil enrichment (Fig. 1b, d), where the stimulatory effect 
was significant at < 2.50 gL−1 NH4Cl (T4). Although meth-
ane uptake was still detected in the 3.25 and 4.75 gL−1 
NH4Cl-supplemented incubations (T5 and T6), the uptake 
rates were comparable to the reference (T0) incubation. 
Therefore, optimum methane uptake occurred at < 2.50 
gL−1 NH4Cl in the soil enrichment incubation, whereas the 
NH4Cl-induced stimulatory effect in the soil slurry incu-
bation seemingly occurred at all NH4Cl-supplemented 
concentrations.

Methane uptake could be related particularly to the 
soluble ammonium concentration in both soil slurry and 
enrichment incubations. Soluble ammonium was appreci-
ably lower than the total ammonium concentration in all 
soil slurry incubations after 5 days, indicating biological 
ammonium uptake and/or adsorption of a large fraction of 
the ammonium to the soil (Fig. 2). Considering the rela-
tively little change in the initial total ammonium concen-
tration after the incubation (i.e., total ammonium uptake; 
Fig. 2a), the appreciably lower soluble ammonium concen-
tration detected is more likely caused by a higher adsorp-
tion to the soil than microbially mediated ammonium 
consumption. To additionally assess the contribution of 

biological ammonium consumption, future studies could 
employ isotopically labeled ammonium to track ammo-
nium-derived nitrate (i.e., microbially mediated nitrifica-
tion) after saturating the soil (and hence, adsorption sites) 
with unlabeled ammonium. It appears that the supple-
mented ammonium levels did not reflect on the amounts 
accessible to the microorganisms, where approximately 
36–63% of supplemented ammonium (i.e., difference in 
the total and soluble ammonium fraction relative to the 
initial supplemented concentration) was adsorbed to the 
soil (Fig. 2).

In contrast, soluble ammonium concentrations com-
mensurate with the NH4Cl-supplemented amount in the 
soil enrichment incubations (Fig. 2b). Here, at < 3.25 gL−1 
NH4Cl (T5), the mean soluble ammonium concentrations 
after the incubation were lower or comparable to the ini-
tial values and were proportionate to the supplemented 
concentrations (Fig. 2b). In the soil enrichment supple-
mented with 4.75 gL−1 NH4Cl (T6), however, ammonium 
concentration was higher after the incubation, possibly 
released by lysed cells of organisms adversely affected 
by the inhibitory ammonium levels. The inhibitory effect 
was corroborated by the significantly lower methane 
uptake and methanotrophic abundance when compared to 
incubations supplemented with lower NH4Cl concentra-
tions (Figs. 1 and 3). Therefore, methane uptake taken 
together with the methanotrophic abundance and ammo-
nium concentrations after the soil enrichment incubation 
indicates that supplemented NH4Cl was largely accessible 
to the methanotrophs and could explain the dose-depend-
ent effect on methanotrophic activity (i.e., stimulation 
at < 2.5 gL−1 NH4Cl and inhibition at 4.75 gL−1 NH4Cl). 
Since soluble ammonium concentration was appreciably 
lower (< 1.6 gL−1 NH4Cl) in all soil slurry incubations, 
methane uptake was seemingly stimulated, regardless of 
the supplemented NH4Cl concentrations (Figs. 1 and 2). 
Hence, ammonium-induced effects can be influenced by 
the ion exchange capacity (adsorption/desorption) of the 
mineral form of ammonium in different soils (King and 
Schnell 1998). In agreement with our hypothesis, the solu-
ble ammonium, rather than the total ammonium fraction, 
is relevant to determine ammonium-induced response in 
methane uptake.

The effects of NH4Cl addition on the methanotrophic 
activity may be confounded by other parameters (e.g., 
AMS-derived copper, salt stress, nitrate, and pH) (DiS-
pirito et al. 2016; Ho et al. 2013b; 2018; Figs. S2 and S3) 
during the incubation. Although we cannot completely 
exclude the effects of these confounding factors, the 
response in methane uptake appears to be largely induced 
by the supplemented NH4Cl in AMS, extended discussion 
given in the Supplementary Information.
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Response of the methanotrophic abundance 
and community composition to NH4Cl‑AMS 
amendments

The pmoA gene abundance, which determines the abundance 
of the methanotrophs, was significantly higher after incu-
bation in T4 to T6 in the soil slurry incubations relative 
to the reference and starting (after pre-incubation) values 
(Fig. 3). Although the mean pmoA gene abundance gradually 
increased in the soil slurry from T1 to T3, the values were 
not significantly different. On the other hand, the significant 
increase (p < 0.05) in the pmoA gene abundance (T1 to T4) 
in the soil enrichment is not consistent with the decreasing 
methane uptake rates (Figs. 1 and 3). Although statistically 

significant, the mean pmoA gene abundances in T1 to T4 
were within a relatively narrow range (3.5 × 106 to 2.0 × 107 
pmoA copy no. ml−1). Admittedly, the DNA-based qPCR 
analysis may not be as sufficiently sensitive as other bio-
logical indicators (e.g., transcript-based analyses) to cap-
ture relatively subtle differences, as detected in the activ-
ity measurements, likely being obscured by persistent relic 
DNA in the soil matrix (Carini et al. 2017; Schloter et al. 
2018). Nevertheless, the qPCR was effective at capturing 
more pronounced differences (Ho et al. 2015; Reumer et al. 
2018); the severe inhibition in methane uptake rate in T6 is 
clearly reflected in the appreciably lower mean pmoA gene 
abundance (1–2 orders of magnitude) when compared to 
the other treatments in the soil enrichment (Figs. 1d and 3).
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Fig. 1   Methane uptake in the soil slurry (a, c) and soil enrichment 
(b, d) incubations (mean ± s.d., n = 3). The methane uptake rates (c, 
d) were determined by linear regression from the depletion of head-
space methane during incubation (a, b). The soil slurry and enrich-
ment incubations were performed using the same paddy soil. Arrows 
indicate when NH4Cl-AMS was supplemented after pre-incubation. 

The pre-incubation was performed to allow the methanotrophs to 
grow and, hence, having more comparable starting abundances in the 
soil slurry and enrichment while diluting the soil particles to reduce 
ammonium adsorption sites. The level of significance (p < 0.05) is 
indicated by the lower case letters. Note the different scales of the 
y-axes
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To account for the discrepancy in the initial pmoA gene 
abundances in the soil slurry and enrichment incubations 
(soil slurry, 5.0 × 106 pmoA copy no. g soil−1; soil enrich-
ment, 1.6 × 105 pmoA copy no. ml−1; Fig. 3), we determined 
the magnitude increase in the pmoA gene abundance for the 
NH4Cl-supplemented incubations that were significantly 

higher relative to the initial pmoA gene abundance (i.e., 
soil slurry, T4-T6; soil enrichment, T1-T5; Fig. 3). During 
the soil slurry incubation, the mean pmoA gene abundance 
increased by 6.7-fold, 10.7-fold, and 13.9-fold, respectively, 
in T4, T5, and T6, whereas a 22.5-fold, 41.0-fold, 47.0-fold, 
134.0-fold, and 48.3-fold increase were detected in the T1, 
T2, T3, T4, and T5 soil enrichment incubations, respectively. 
The difference in the pmoA gene abundance (initial and after 
incubation) indicates methanotrophic growth.

The response of the methanotrophic community com-
position to the added NH4Cl was visualized as a princi-
pal component analysis (PCA), based on the pmoA gene 
sequences (Figs. 3 and S4). Notably, introducing two suc-
cessive pre-incubation steps (Fig. S1) in the soil enrichment 
altered the composition of the methanotrophs; compared to 
the soil slurry incubation, methanotrophs belonging to the 
rice paddy cluster (RPC) decreased in relative abundance 
in the soil enrichment (Fig. S4). Nevertheless, the predomi-
nant methanotrophs in both the soil slurry and enrichment 
consistently comprised of Methylosarcina (type Ia) and 
other members of gammaproteobacterial methanotrophs 
(RPC and other uncultured type Ib methanotrophs), as well 
as alphaproteobacterial methanotrophs belonging to Methy-
locystis (type II) (Figs. 3 and S4). These taxa collectively 
represent > 90% of the total methanotrophic population in 
all incubations. A compositional shift in the methanotrophic 
community was detected in the soil slurry incubations, 
whereby Methylosarcina became dominant with increasing 
NH4Cl concentrations, diverging from the community in the 
reference incubation (Fig. 3). Methylosarcina also predomi-
nate the population at < 3.25 gL−1 NH4Cl (T5) in the soil 
enrichment, but community composition in T6 and reference 
incubations were more similar (Fig. 3).

Methylosarcina was favored in both the soil slurry and 
enrichment with increasing supplemented NH4Cl after incu-
bation, despite of the discrepancy in the composition of the 
methanotrophic community prior to NH4Cl addition (Figs. 3 
and S4). This indicates that NH4Cl strongly influenced the 
community composition during the incubation. However, the 
relative abundance of Methylosarcina decreased in the soil 
enrichment supplemented with 4.75 gL−1 NH4Cl (T6), cor-
responding to significantly lower methanotrophic activity, 
suggesting that this methanotroph contributed to methane 
oxidation under moderate NH4Cl levels (up to 3.25 gL−1, 
T5). This is not surprising given that gammaproteobacterial 
methanotrophs of subgroup type Ia are thought to be rapid 
responders to substrate availability (Ho et al. 2013a; 2017) 
and would benefit from the sudden availability of extrane-
ous nitrogen sources. Indeed, besides Methylosarcina, other 
type Ia methanotrophs (e.g., Methylobacter and Methylomi-
crobium) have been consistently enriched after ammonium 
amendments in short-term incubations and showed higher 
N assimilation (Hu and Lu 2015; Nold et al. 1999; Noll 
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et al. 2008; Yang et al. 2020). In line with previous studies 
(e.g., Alam and Jia 2012; Bodelier et al. 2000; Noll et al. 
2008; Qiu et al. 2008), the apparent stimulation of type Ia 
methanotrophs can be attributable to a relief of N limita-
tion, as indicated by the significant NH4Cl-induced stimula-
tion (exception, 4.75 gL−1 NH4Cl in the soil enrichment) of 
methanotrophic activity.

Contrastingly, an alphaproteobacterial methanotroph, 
Methylocystis, was enriched in incubations of the same 
soil where NH4Cl concentration was increased step-wise 
from 0.5 to 4.75 gL−1 at 0.25 gL−1 increments (Ho et al. 
2020). Because of the prolonged incubation over approxi-
mately 3 months with a constantly increasing selection 
pressure (elevated NH4Cl concentrations), the predominant 
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ized by a principal component analysis (PCA). All replicates were 
included for the ordination. Note that in b, pmoA gene sequencing 
was not successful for one replicate after pre-incubation. In the PCA, 
the vectors represent the predominant methanotrophs (see also Fig. 
S4). Abbreviations: RPC, rice paddy cluster; Unc, uncultured metha-
notrophs

878 Biology and Fertility of Soils (2021) 57:873–880



1 3

ammonium-tolerant methanotroph that emerged is presum-
ably able to detoxify products of ammonium oxidation (i.e., 
hydroxylamine, nitrite, nitrate (Ho et al. 2020; López et al. 
2019; Versantvoort et al. 2020). Although further oxida-
tion of hydroxylamine and nitrite is not confined to specific 
methanotroph subgroups (Hoefman et al. 2014; Nyerges and 
Stein 2009; Poret-Peterson et al. 2008), some Methylocys-
tis appear to be more effective at detoxifying products of 
ammonium oxidation and hence were relatively more tol-
erant to ammonium inhibition (Nyerges and Stein 2009). 
Recently, a hydroxylamine oxidoreductase (responsible for 
the oxidation of hydroxylamine to nitric oxide) was puri-
fied from Methylacidiphilum fumariolicum SolV, a thermo-
philic verrucomicrobial methanotroph, but is also likely to 
occur in other aerobic methanotrophs (Versantvoort et al. 
2020). Therefore, different mechanisms may underlie the 
selection of the gammaproteobacterial (including Methylo-
sarcina) and alphaproteobacterial (including Methylocystis) 
methanotrophs at high ammonium levels. While a relief of 
N limitation may favor members of gammaproteobacterial 
methanotrophs in the short-term as in this study, metabolic 
capacity to detoxify inhibitory compounds of ammonium 
oxidation may become relevant over time, determining the 
fitness and dominance of specific methanotrophs.

Conclusion

We provide a simple, yet plausible reason for the incon-
sistent documented response of the methanotrophic activity 
and community composition to ammonium amendment in 
the soil environment. Our findings do not preclude other 
(a)biotic determinants occurring concurrently, affecting the 
response of the methanotrophic activity to ammonium. Not 
all ammonium will be accessible to the microorganisms. A 
considerable fraction (36–63%) of the supplemented ammo-
nium can be adsorbed by the soil. Therefore, considering 
the total ammonium alone may not reflect on the actual 
ammonium-induced effects on the methanotrophic activity 
and community composition at the supplemented concen-
trations. Based on these results, we advocate determining 
the (i) ammonium fraction that is available to the micro-
organisms and/or (ii) total ammonium over time, enabling 
the determination of the baseline ammonium level (i.e., 
the fraction likely adsorbed to the soil), when document-
ing ammonium-induced effects on methane uptake. Given 
that the methanotrophs are differentially affected by the sup-
plemented ammonium, the diversity of the methanotrophs 
is thus relevant to sustain methanotrophic activity at high 
ammonium concentrations.
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