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Abstract
Gravitational wave astronomy has now left its infancy and has become an
important tool for probing the most violent phenomena in our Universe. The
LIGO/Virgo-KAGRA collaboration operates ground based detectors which
cover the frequency band from 10 Hz to the kHz regime. Meanwhile, the pul-
sar timing array and the soon to launch LISA mission will cover frequencies
below 0.1 Hz, leaving a gap in detectable gravitational wave frequencies. Here
we show how a laser interferometer on the moon (LION) gravitational wave
detector would be sensitive to frequencies from sub Hz to kHz. We find that the
sensitivity curve is such that LION can measure compact binaries with masses
between 10 and 100M� at cosmological distances, with redshifts as high as
z = 100 and beyond, depending on the spin and the mass ratio of the binaries.
LION can detect binaries of compact objects with higher-masses, with very
large signal-to-noise ratios (SNRs), help us to understand how supermassive
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black holes got their colossal masses on the cosmological landscape, and it can
observe in detail intermediate-mass ratio inspirals at distances as large as at
least 100 Gpc. Compact binaries that never reach the LIGO/Virgo sensitivity
band can spend significant amounts of time in the LION band, while sources
present in the LISA band can be picked up by the detector and observed until
their final merger. Since LION covers the deci-Hertz regime with such large
SNRs, it truly achieves the dream of multi messenger astronomy.

Keywords: gravitational wave detector, lunar, detector concepts, deci-Hertz

(Some figures may appear in colour only in the online journal)

1. Introduction

The LIGO-Virgo-KAGRA (LVK) collaboration [1–3] now forms a network of gravitational
wave observatories covering the Earth. Third generation ground based detectors such as the
Einstein telescope (ET) [4] and cosmic explorer (CE) [5, 6] are currently in the planning stage
of development. These detectors are planned to push the lower frequency bound of Earth based
gravitational wave detectors to their fundamental limits.

Newtonian noise, or gravitational gradient noise, forms a lower frequency bound of Earth
based detection at about 1 Hz [7]. Meanwhile, with a proposed launch of 2034, the ESA’s LISA
mission [8] will cover the μHz to sub deci-Hz regime of the gravitational wave spectrum. The
upper sensitivity bound of space based detectors is set by the interferometer arm length [9, 10].

These barriers create a gap of measurable frequencies which requires a different style of
mission to fill. In this gap many interesting stellar phenomena go unrecorded and their immea-
surable impact on the field of gravitational wave astronomy is lost [11]. Therefore, there is great
interest in any gravitational wave detector capable of bridging this gap. An ambitious mission
proposed by the Japanese gravitational community called DECIGO is in the planning stage of
development [12]. DECIGO aims to cover the deci-Hertz band; however, it is a new style of
detector, which requires many technological innovations before it can launch [13, 14]. This
mission, and others [15], are still a long way from realisation, so in order to cover these fre-
quencies in the operational time of third generation detectors, other avenues of low frequency
detection must be explored. In this work we show that a lunar gravitational wave observatory
would be able to observe frequencies down to 0.7 Hz while simultaneously overlapping with
the sensitive frequency range of Earth based detectors.

During the 90s Wilson and La Fave published two papers on the idea of lunar interferom-
eters, but as the field was still in its infancy, a lot of benefits and challenges went overlooked
[16, 17]. A few other groups have suggested using seismometer arrays on both the Moon and
other extraterrestrial solar bodies [18, 19]. Coughlin and Harms managed to put limits on the
energy contained within the stochastic background across the frequency band 0.1–1 Hz using
seismometers on the Moon from the Apollo missions as a detector. A recent proposal has now
been submitted to launch many high sensitivity seismometers to the surface of the Moon to
push this detection method to its limits [20]. If launched, these seismometers would enable
a better understanding of the Moon’s seismic activity and so the true limits of seismic noise
as discussed later in this paper. Aside from that, a paper has been submitted to arxiv recently
discussing the concept of a lunar gravitational wave detector [21]. They focus largely on the
astrophysical sources in their sensitivity band. Although their optimistic estimate of perfor-
mance was excellent at low frequency, it relied upon the use of a freely floating test mass,
a technology that has only been proposed and has no further development so far [22]. The
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Table 1. Overview of the key parameters of LION. The masses and suspension length
are listed from test mass to top mass. The model is based on the gravitational wave inter-
ferometer noise calculator (gwinc) CE 2 from October 2020. The full model and adapted
gwinc software is provided as supplementary material. The full detector configuration
files can be found at https://github.com/Jonjocarts/LION-Public.

Parameter Value

Laser power 50 W
Wavelength 2000 nm
Arm length 40 km
Seismic Earth surface/1000
Test mass 1267/1267/698/707 kg
ITM radius of curvature 34 km
ETM radius of curvature 36 km
Suspension length 3.54/2.05/1.66/2.50 m
Temperature 70 K
Signal recycling cavity length 55 m
Squeezing
Initial squeezing level 15 dB
Filter cavity length 8.94 km
Filter cavity detuning −2.3 Hz
Mirror transmittance
End test mass 5 ppm
Input test mass 1.2%
Power recycling mirror 3%
Signal recycling mirror 2%
Filter cavity input mirror 0.17%
Filter cavity end mirror 5 ppm

conservative estimate they make is similar to the one we reach here, without focusing on the
technical details needed to reach that. We also show significant differences in detector design.
Still, it is very promising that two independent approaches can reach similar noise estimates.

In the following we discuss how a ground based long arm interferometer with Fabry–Pérot
cavities could be constructed for use as a gravitational wave detector on the surface of the
Moon. We will discuss the merits and potential design style of such a lunar observatory. We
address this by constructing a feasible noise budget for a laser observatory based upon current
gravitational wave detectors. We benefit from the lunar surface’s seismically quiet environ-
ment [23], and its lack of atmosphere. Thus the limit on low frequency detection set by the
Newtonian noise can be avoided. By means of this noise budget, we show that the sensitivity
gap between the high frequency ground based detectors and low frequency space based detec-
tors can be partially bridged. Furthermore, a detector built on the Moon with a sensitivity band
also overlapping that of the Earth based network increases the maximal distance between the
detectors by a factor of 30, improving the source localisation ability significantly.

Several stellar phenomena are expected in the frequency band exclusively covered by our
proposed lunar detector and we discuss the impact their observations will have. A low fre-
quency detector allows the tracking of merging binaries for much longer times [24], detecting
binaries at much greater redshift [25], detecting heavier binaries [26], allows for better sky
localisation [27], and detecting new types of astrophysical sources [28, 29]. Long standing
questions about the origins of many sources could uniquely be resolved with a LION detec-
tor [30]. Furthermore, sub-Hertz detection allows for the probing of gravity in the strong field
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Figure 1. Noise budget for a gravitational wave detector operated on the Moon with
an arm length of 40 km and optics with increased masses at a temperature of 70 K.
The parameters used to create this are listed in table 1. The detector is quantum noise
limited above 2 Hz and limited by thermal noise below this until it hits the seismic cliff
at 0.8 Hz. The bandwidth of the detector is therefore approximately from 0.7 Hz to the
kHz. Simulated with gwinc [38].

regime, testing general relativity to its limits [31–33]. Finding sources at very high redshifts
leads directly to a better understanding of the early Universe, where our current understanding
is limited by our detection capabilities.

With the renewed interest in lunar missions from several major global powers [34–37], now
is the ideal time for the gravitational wave community to begin considering what use the Moon
can be in aiding our understanding of the cosmos.

Section 2 starts with the discussion of technical details, including detector parameters, noise
contributions and the location and infrastructure. This is followed in section 3 by a summarised
noise budget. The science case in section 4 discusses the new possibilities that a lunar detector
offers, while section 5 gives an estimate about the mission cost and timeline.

2. Technical discussion

The model for our suggested laser interferometer on the moon (LION) is based on the CE 2
proposal. The key parameters are listed in table 1. Our changes arise from the special conditions
on the Moon and design choices made to optimise the frequency band of interest which we
discuss below. This leads to the noise curves shown in figure 1. The overall schematic is shown
in figure 2.
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Figure 2. A schematic representation of the LION detector, showing the three interfer-
ometers and end test stations. The arms are all 40 km in length. The end stations must be
protected from dust entering them and each contain isolation platforms and suspension
systems for the core and auxiliary optics.

2.1. Location

The choice of the location for LION is predominately determined by the temperature map of the
Moon. A crater near a lunar pole is considered by us to be a suitable position for several reasons;
thermal stability, geometry, and shelter from solar radiation and dust [39–41]. A promising
candidate site is the Shoemaker crater (88.1◦S 44.9◦E) at the Moon’s south pole. Hayne et al
[39] investigated the measurement data of the lunar reconnaissance orbiter (LRO) mission
launched in 2009 for three craters with about 50 km diameter. The shoemaker crater shows
an average temperature of about 50 K with a relatively small variation of minimal/maximal
temperature 20 − 95 K compared to other parts of the Moon. It has a diameter of 50 km,
introducing one of the limiting factors for the detectors: the arm length. The nearby Malapert
mountain is a nearly perfect site to build solar panels and a communication equipment for
data transfer [42]. Additionally, the surface appears to be nearly free of water frost, which
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could otherwise evaporate onto optics [39]. We assume the use of this crater for all future
calculations.

2.2. Infrastructure

The vacuum on the surface of the Moon is three orders of magnitude better than that in the
vacuum tubes in the aLIGO detectors [1, 43], and so no infrastructure will be built to house a
vacuum. Only the optic support stations are needed to isolate the test optics and allow for their
precise alignment controls.

For the detection of gravitational waves, coincidence data from two independent simulta-
neous instruments is required. This is solved in the ET detector and LISA by using a triangular
shape with three interferometers in the arms [4, 44, 45]. Therefore, we propose to build LION
in a triangular shape with an arm length of 40 km, limited by the dimensions of the crater.
The three interferometers of LION will also allow for the detection of gravitational waves
regardless of polarisation, as shown in figure 2.

2.3. Background seismic

The seismic noise on the Moon arises from two main sources; meteorite impacts [46–49] and
from the shallow seismic activity of the Moon [50]. Many of the sources of seismic activity
on Earth do not exist on the Moon [51] such as moving cars and trains, winds, and the oceans
tides. In particular, the oceans tides cause a large microseismic peak at 0.1–0.2 Hz which
proves troublesome to all detectors seeking low frequency performance; a lunar site completely
negates this [52]. Meanwhile, wind and ground conditions on the Earth tilts the detectors,
polluting the measurements of inertial sensors with additional noise, which is directly injected
into platform controls [53, 54]. The absence, or at the very least substantial reduction, of tilt
would allow for a much more aggressive active platform control scheme to reduce motion in
the test masses [55]. The control noise is currently one of the reasons the aLIGO detectors do
not reach their design sensitivity at low frequencies.

The only direct seismic measurements on the Moon’s surface were performed during the
Apollo missions [23, 46]. They concluded that the background seismic level was significantly
below the sensitivity of their measurement devices (0.3 nm Hz−1/2 at 1 Hz), and thus lower
than anything on Earth’s surface. From this we can safely assume the seismic on the Moon to
be smaller by a factor of 1000 than Earth’s surface seismic motion. However, the Russian oper-
ated Luna 27 will be launched in 2024 [56] with a more sensitive seismometer [57], possibly
measuring an even lower boundary.

2.4. Newtonian noise

Newtonian noise is caused by the movement of mass around the detector causing a change in
the local gravitational field [51]. These largely come from two sources; the atmosphere and the
ground. The lack of atmosphere on the Moon negates the former entirely. Reliable modeling of
seismic Newtonian noise for the lunar surface is impossible without accurate measurements of
the seismic activity and surface composition. On Earth the noise forms a noise cliff at approxi-
mately 1 Hz. Since the Moon has lower activity [47] and has a lower density on its surface it is
assumed that this will occur at a lower frequency. Newtonian noise is therefore not plotted in
the noise budget. A full study of the gradient noise would still be essential as more knowledge
of the Moon’s activity is gained.

6



Class. Quantum Grav. 38 (2021) 125008 P Amaro-Seoane et al

2.5. Suspension systems

The limiting low frequency noise considerations are the residual of seismic activity and sus-
pension thermal noise. Like in Earth bound detectors, a multistage seismic isolation system
would be necessary. This will comprise of a preisolation stage and several suspended masses
each acting as a pendulum [58, 59]. In order to achieve the required seismic isolation, the res-
onance frequencies of the pendula must be tuned to lower frequency than CE. The gravity on
the Moon’s surface is 1.62 m s−2, approximately a sixth of the gravity on Earth. Although the
lower gravity of the Moon offers lower natural frequency by a factor of 0.4, longer suspensions
will still be needed. Furthermore, to help combat thermal noise, heavier test masses must still
be included. As the gravity is weaker, the masses can be a factor of 6 larger than CE without
additional weight on the suspensions. Making such large test masses and coating them may
prove difficult so we assume only a factor of 4 increase can be made. This leads to a test and
penultimate mass of 1270 kg and another 2 stages with about 700 kg mass. Making the lengths
of suspensions on average a factor of 3 longer allows for the whole system to fit in a 11 m struc-
ture while reducing the noise to a level suitable for sub Hz measurements. Suspension systems
are a limiting factor for the low frequency performance of all detectors with fundamental prob-
lems of how much weight can be suspended and resonance frequency. The lower gravity on
the Moon provides help on both of these fronts. How far this can be developed will form the
lower boundary of measurable frequencies, but ultimately it is a matter of engineering.

2.6. Thermal noise

Thermal noise is a considerable problem for the low frequency response of any detector. The
extremely low temperatures at the Moon’s south pole are a good start for achieving the neces-
sary thermal noise suppression. However, a low mechanical loss is also a necessity for a low
thermal noise [60]. The bulk material of the test masses at both LIGO and Virgo are fused silica
which, due to a mechanical loss peak, has relatively high thermal noise at cryogenic temper-
atures [61]. Research for alternative test mass materials is ongoing for use in the cryogenic
interferometer of ET and other detectors [62–64].

The CE proposal uses silicon ribbons to suspend their test masses and research is ongoing
to design the next generation of suspensions [65]. The properties of the ribbons quoted in the
CE design is assumed when calculating the suspension thermal noise.

Likewise, significant progress is needed to reduce both mechanical and optical losses of the
test mass coatings to reach CE’s design sensitivity [6]. The progress of these development will
be at the forefront of the efforts of next generation of gravitational wave detectors and their
results will heavily influence the limits of a lunar interferometer. The LION design does not
need to exceed the performance of CE in this regard so it is assumed that if CE can meet the
design sensitivity, the design can be copied for LION. Promising results in this regards are
already being achieved by two means of coating; one with alternate material layer deposition
[66] and the other by the structuring of resonant waveguides to create a highly reflective surface
[67, 68].

2.7. Quantum noise

Quantum noise is the predominant noise source at high frequencies for Earth bound inter-
ferometric gravitational wave detectors. While frequency independent squeezing is injected in
current detectors [69–71] to reduce the shot noise, there are plans for a broadband noise reduc-
tion by using filter cavities [72] or EPR entanglement [73]. The proposed LION design uses
50 W laser power, 15 dB initial squeezing and filter cavities. Compared to the CE design the
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power was reduced by a factor of 5 to increase the sensitivity at low frequencies. The detector
will be quantum noise limited above 2 Hz.

2.8. Seismic shocks and asteroid impacts

Another cause of concern is asteroid impacts on the Moon. A large impact near the equipment
could potentially lead both to saturated isolation equipment leading to damage to the controls as
well as large mirror motion and loss of science mode. Reacquiring science mode is a difficult
and time consuming process [74, 75], however, a similar problem is encountered on Earth
with earthquakes. This problem is tackled at aLIGO with a combination of a specialised early
warning system for incoming high activity seismic waves and alternative control schemes for
high activity times [76]. A similar strategy could be copied for any lunar setup. Therefore, only
a direct hit on the experiment would present a problem.

Based on the data of the still ongoing LRO, approximately 47 000 new impact sites had been
detected in the area studied (6% of the lunar surface) in a 1241 day period [77]. This leads to
an estimate of approximately 5 impacts within the detector area (a triangle with 40 km long
sides) in a year. It is foreseen that this will prove to be a regular nuisance, but should still enable
long stretches of observation. It is also unlikely that the optics will be hit directly as they will
take up a small fractional area of the detector, leading to an estimate of direct hits once in a
thousand years. Smaller impacts will be significantly under-counted by their very nature, and
so it is likely a asteroid shielding solution of the optics will be needed.

2.9. Dust accumulation

The Apollo missions showed that the Moon’s surface is covered in dust, which is kicked up
by both activity, such as asteroid impacts and moonquakes, and solar winds [78, 79] and then
coats everything on the lunar surface. This dust presents a very real challenge to the LION
mission as all current gravitational wave detectors operate in the highest level of clean room
environment. Dust stuck to the mirrors would act as a loss channel leading to an increase in
quantum noise [80]. The increase in noise corresponding to different optical losses is shown in
figure 3. To be a useful contribution to a gravitational wave network, optical losses at the mirror
or along the path must be maintained below 0.1%. In addition, each dust particle will act as a
point absorber on the mirror. The LIGO detectors have discovered that these point absorbers
exist in their mirrors, which absorb more of the light until they are heated enough to damage
the mirrors [81]. It is, therefore, imperative that the mirrors remain as immaculate as possible.
Due again to the need to suppress thermal noise, the material suspending the optics must also
remain protected from dust. Any dust which does accumulate will degrade the quality factor
of the suspensions and so lead to worse performance.

Dust does present a problem for many experiments on the Moon and other bodies in the Solar
System; hence, much research is ongoing to combat this [82–91]. For LION, two dust reduction
methods are promising, yet. Firstly, we mitigate the dust to stuck on our instruments by building
everything in a closed housing, only accessible for the beam by a hole in direction of the beam
path. The diameter of the hole must be at least three times the diameter of the beam to avoid a
reduction of power circulating in the cavity. For a beam diameter of 360 mm this would give
a hole diameter of about a meter. To prevent the dust from entering the housing via this hole,
we consider adding a tunnel of a few meters length in front of the hole. This solution would be
the simplest mechanically and cost wise. It may be the case that, after testing, is it found that
further measures are required. To this end the second proposed mitigation technique for LION
is an electrostatic dust shield at the instrument housings, which is currently considered to be the
state of the art for cleaning optical elements [92]. Here, electrodes printed on a glass substrate
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Figure 3. The effect of additional optical losses from dust on the mirror on the noise
of the detector. The losses refer to optical power loss, per one travel of the cavity.
Above a loss of 0.1% the detector makes few contributions to any proposed network
and so a means of cleaning to this amount must be found. Losses highly influence, the
frequency response of the interferometer and thus the filter cavity design. Therefore,
we have assumed an optimised squeezing angel for this calculations, which artificially
improves the low-frequency behavior of the 0% and 0.1% curves.

Figure 4. Schematic three dimensional view (left) and top view (right) of the dust pro-
tection method at the end stations, where an optic at the stations functions as an elec-
trostatic dust shield. Since the optic has to be suspended, the station cannot be enclosed
completely. Therefore, the wall is constructed around the window with tubes for the sus-
pension, as shown in the left picture. The top view on the right side shows the resulting,
very small space, that remains between the housing and the optic. The optical system
including the test masses are placed behind this window and are not shown in this sketch.

move the electrostatic field toward the outer part of the optic. When utilised, the electrostatic
wave removes both the uncharged particles as well as dust particles charged by the irradiation
of solar winds and cosmic rays. Kawamoto et al have shown that electrostatic cleaning can
limit the transparency loss to below 9% in experiments [87, 88]. This will likely be improved
by the orientation of the optics in LION which are placed orthogonal to the lunar surface.
Hence no gravitational forces will hold the dust particles at their surface. Further research on
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Figure 5. Comparison of the design sensitive of current and future gravitational wave
detectors. Our proposed detector, LION, could extend the range of ground based detec-
tors reducing the gap of measurable frequencies between Earth based and space-borne
missions. LION has the highest sensitivity in the detection band from below 30 Hz and
is the only detector able to with sufficient sensitivity for detection between 0.7 Hz and
2 Hz.

this topic will show if this technique can be refined to a sufficient level. If an electrostatic dust
shield were to be implemented, it would have to be suspended to isolate it from environmental
conditions. A schematic view of this is shown in figure 4.

2.10. Additional challenges

A mission of this style will require several large payloads to be transported to the Moon
and positioned carefully, requiring assembly either by hand or robot. The feasibility of these
strongly depends directly on the lunar missions in the coming decade. However, technology is
reaching the stage where commercial missions to the Moon are becoming viable, a promising
sign of things to come [93].

The total mass of the suspended optics is 4000 kg, and the weight of a preisolation stage
used at LIGO is 2000 kg [52]. This would leave over 10 000 kg as remaining load for both the
structure and auxiliary optics, if it was to be carried by the highest capacity rocket today. This
would require at least 3 launches for total transport.

Gravitational wave detectors produce a high amount of data due to the number of sensors
monitoring the numerous degrees of freedom. Furthermore, many systems will have to be oper-
ated from ground stations. A high bandwidth connection will be required to the site. Currently
a record of 622 Megabits/s data transfer rate has been achieved by the lunar laser communica-
tion demonstration in orbit of the Moon [94]. With an encoding of 64 bits per data point, we
would be able to read out about 100 channels at a 100 kHz sample rate. This 100 kHz rate is an
upper estimate of the data rate needed. While this may not encompass all of the data producing
instruments, it should be sufficient for instrument readout of the main channel and diagnostics
of auxiliary channels of interest to above the upper limits of LION’s sensitive band.

With no need for a vacuum pump, and only small amounts of power needed for alignment
controls and isolation, the main power consumption concerns are the telemetry, the high laser
power, beam preparation and readout electronics, and the auxiliary sensors. In space missions
the power supply is usually covered by a combination of advanced solar panels that reach an
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Figure 6. Evolution in frequency of the first harmonics (displayed in different colors)
of two compact binaries in the approximation of Keplerian ellipses of [99]. We depict
the characteristic, dimensionless amplitude as a function of the frequency in Hz. The
initial dynamical parameters corresponding to the each source is summarised at the top,
left corner of each panel (masses, initial semi-major axis and eccentricity and distance
to the source D). From the left (lower frequencies) to the right (higher frequencies), we
show the sensitivity curve of LISA [8], then LION, starting at about 1 Hz, the ET [100],
and then LIGO. The upper, red harmonic corresponds to n = 2 in equation (2), which
means that the source has circularised. We also show different moments in the evolu-
tion of the harmonics, and add the information relative to the source at that moment; in
particular the remaining time until merger, the eccentricity and the periapsis distance Rp
in Schwarzschild radii RS. The left panel shows a binary of masses M1 = M2 = 30M�
at a distance of 180 Gpc, which corresponds to a redshift of z = 15.76. This is orders
of magnitude distance further away than what LISA can hope to observe. The right
panel shows the inspiral of a compact object of mass 1.4M� (e.g. a neutron star) onto a
stellar-mass black hole of mass 10M� at a distance of 130 Gpc (z = 11.80). Even at this
cosmological distance, the source spends one second in the LION domain. We note that
no other detector is in the position of resolving these sources.

efficiency of 30% and Li-Ion batteries. While at the equatorial and mid-latitude regions of the
Moon the long lunar nights set limitations for solar power supply, we take advantage of locating
the interferometer in polar regions. As shown by [42] we receive up to 93% of full or partial
sunlight when placing the solar panels on mountains, for example the Malapert mountain, close
to the chosen site. For 1.4 kW m−2 of power provided by the Sun and a pessimistic factor of 0.5
for the partial sunlight, we gain 0.2 kW m−2 of solar power, making the power of the system
very manageable with a solar panel array of a few tens of square meters.

3. Noise budget

We used the gwinc [38] software to estimate the noise budget of our proposed LION design
shown in figure 1. Cosmic Explorer (CE2 model, October 2020 [6]) was used as a base model,
but with the changes discussed in the previous section and listed in table 1 to match the design
presented in this paper. The model is currently limited at low frequencies by the properties
of the suspension system. Figure 5 shows the LION noise budget estimate and compares it
with the performance of other current and proposed ground based detectors and the space
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Figure 7. Same as in figure 6 but for a binary of two IMBH (left panel) and an IMRI
composed of an intermediate-mass black hole of mass MBH = 3000M� and a stellar-
mass one of m� = 10M� (right panel). In the latter we also include information about
the initial periapsis distance R0

p, as well as the initial time for merger Tpl.

based detector LISA. Although our estimate is based upon current technology and we possibly
overestimate the Moon’s seismic activity, LION performs better than ET and CE at frequen-
cies below 30 Hz with detection capabilities down to 0.7 Hz. LION also manages to maintain
performance comparable to CE into the kHz regime.

4. Science case

The LION sensitive band, from figure 5, ranges between 0.7 Hz and several kHz with peak
sensitivity at 10 Hz. Several investigations of sources in this frequency range have been con-
ducted [95], showing the great interest in this band, a region where the current ground based
network is blind to. In general, detecting in a lower frequency range opens the possibility for
observing more massive black holes and thus allows to study gravity in the strong field regime
[29]. This is a key element in the testing of general relativity in more extreme limits. Many
new potential sources are predicted to exist in this band, for example, type 1A supernovae,
which have a gravitational wave frequency signature around 1 Hz. As discussed in [28], their
observation may resolve the open question of their origins.

What makes LION unique, however, is its ability to cover a wide regime of frequencies and
characteristic strains of merging binaries which cannot be explored with any other observatory.
This forms the focus for this section.

4.1. An approximation

We first give a few examples approximating the evolution in phase-space of the harmonics of
the characteristic strain with the method of Peters and Mathews [96]. This has the advantage
of allowing us to explore the evolution of the eccentricity, which is rather limited in more
realistic waveforms based on computations of full general relativity. Once we have an idea of
the evolution in phase-space of these systems, we will investigate in more detail the evolution
of the full waveform and the computation of the signal-to-noise ratio (SNR) following the
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Figure 8. Evolution of four different signals with masses ranging between 107M� and
50M�, different mass ratios q (in the legend we show the mass of the largest black
hole) and the assumed redshift. We show three different observatories (LISA, LION
and LIGO). The yellow, dash-dotted waveform corresponds to a system of 107M� at
a redshift z = 10 with q = 1; the orange, solid waveform to a binary of q = 100M�,
z = 100 and q = 18; the blue, dotted one to a system of 104M�, z = 10−2, q = 18 and
the green, dashed curve represents a binary of mass 50M�, z = 0.1 and q = 1.

method of Kaiser and McWilliams [97], which we will describe in some detail. The scheme of
Peters and Mathews [96] is based on an approximation of Keplerian ellipses. If we assume that
the orbital parameters change slowly due to the emission of gravitational radiation, and that
the gravitational waves are emitted at the integer multiples of the orbital frequency, the strain
amplitude in the nth harmonic can be described as

hn = g(n, e)
G2 M1M2

D a c4
(1)

� 1.6 × 10−22g(n, e)

(
D

1 Gpc

)−1( a
10−2 pc

)−1 ( M1

4 × 104M�

)

×
(

M2

10M�

)
, (2)

where we have normalised to parameters corresponding to an intermediate-mass ratio inspiral
(IMRI, see e.g. [29, 31–33, 98]), g(n, e) is a function of the harmonic number n, D being the
distance between them, and the eccentricity of the source e. The full frequency evolution of
the strain amplitude is discussed in section 4.2. In figure 6 we give an example of an IMRI and
the inspiral of a binary of two stellar-mass black holes with masses 30M�.

Another interesting example is shown in figure 7. A system of two intermediate-mass black
holes (IMBH) and an IMRI which, again, are only observable by LION at these distances and
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Figure 9. Evolution of the plus polarization h+ for a binary of two IMBHs of masses
M1 = M2 = 103M� in the LION window (solid, black line). We consider two different
eccentricities, one zero and the other e = 0.2 at the beginning of the evolution. As the
systems evolve, the loss of angular momentum circularises the eccentric case, which
converges toward the circular one. The binaries are assumed to be at a distance of 1 Gpc.
For LION, the circular- and eccentric cases yield SNR ∼ 1855 and 1875, respectively,
while for (Advanced) LIGO the values are ∼3.7 for the circular case, and 3.8 for the
eccentric one.

parameters. As we can see in the left panel, LION combined with LISA would allow us to do
multi-bandwidth gravitational wave astronomy (see e.g. [26]). Since we can observe a source
with LISA in the inspiral phase years before the final merger, we can predict the time it is seen
in the lion band with an accuracy on the order of a few seconds. This early warning would
likely help to enhance the detection of the merger and ringdown with LION. Thanks to this,
we would be in the position of breaking various degeneracies in the parameter extraction of
the source. As before, we note that only LION is in this unique position.

As noted in [30], there is a need for a deci-Hertz gravitational wave observatory such as
LION to understand the formation of compact binaries. This is something that LISA and
LIGO/Virgo are not in the position of doing, as explained in [30].

4.2. Realistic waveforms and one comparison to LIGO

After our first exploration of the possible interesting systems for LION to observe, we now
address with more realistic waveforms some examples. In particular, we employ the method
of [101, 102], commonly referred to as IMRPhenomD, via the approach of [97]. The family
IMRPhenomD approaches coalescing binaries by compounding a post-Newtonian approxima-
tion for the inspiral with a fully numerical relativistic solution for the merger and ringdown.
This hybrid method allows us to quickly compute different waveforms. We also consider the
approximation of [103], ENIGMA, which is a time domain, inspiral-merger-ringdown wave-
form model which allows consideration of moderately eccentric orbits, via the implementation
of [104]. In particular, we display in figure 8 four sources, with one of them only in the LISA
regime as a reference point.

Probably the most remarkable system is a binary of two black holes of mass ratio q = 18
with the heaviest one having a mass of 100M� at a redshift of z = 100 (lowermost signal).
This binary is only detectable by LION and shows the relevance of the detector.
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Figure 10. Left panel: a binary of two IMBHs of masses 103M� at a redshift z = 1 for
different spin values (see legend on the right) at three different moments, namely 200
years before the coalescence, at the detector’s (typical) observation time Tobs and 1 year
before the coalescence. We display the sensitivity curve of LISA (blue, left one) and
LION (orange, right one). Right panel: evolution of the waveform for a binary of two
black holes with q = 18 and the mass of the heaviest one mbh = 18M�, at a redshift
z = 0.1. As in the left panel, we pinpoint the same moments in the evolution, different
spin configurations, the sensitivity curve of LION (orange, left one) and LIGO (red, right
one).

We show in figure 9 a binary of two IMBHs with equal massand different eccentricities, as
approximated with ENIGMA. The case with eccentricity yields a slightlyhigher signal-to-noise
ratio (SNR) than that calculated for chirping binaries.

Because IMRPhenomD features mass ratios up to 18 including spins, in figure 10 we show
the role of the spin s and q for two different systems, a binary of two IMBHs and a lighter
one, with the mass of the heaviest black hole 18M�, and q = 10. As expected, a mass ratio and
positive spin value increases the characteristic strain as we approach the end of the evolution,
which has an impact on the calculation of the SNR.

4.3. Signal-to-noise ratio contour maps

To estimate the SNR for different configurations and systems, we adopt the approach of [24]
and assume that the noise is stationary, Gaussian and uncorrelated with the signal. If we envis-
age the waveforms as vectors in a Hilbert space [105], we can define a noise-weighted inner
product as follows

〈h′|h〉 := 2
∫ ∞

0
d f

h̃′( f )h̃( f )∗ + h̃′( f )∗h̃( f )
Sn( f )

. (3)

In the last equation we have introduced h̃( f ) as the Fourier transform of the time-domain wave-
form. Moreover, Sn( f ) is the one-sided noise power spectral density of the detector, following
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Figure 11. Contours of SNR as a function of the total mass of the binary system Mbin
in solar masses and redshift (and cosmological time, in Gyrs). We remark how LION
covers a region of phase-space which is totally inaccessible to both LISA and LIGO, as
shown with particular examples in figure 8.

[106, 107], and see section 2.3 of [97] for a summary and implementation. If we adopt the
above-mentioned assumptions, the optimal SNR when filtering the data against h is given by

ρ =
√
〈h+|h+〉+ 〈h×|h×〉. (4)

In figure 11 we depict the SNR ρ as a function of the total mass of the binary Mbin and
redshift for LION, but also LIGO and LISA for a reference point. We note that LION is in
the position of extracting information about binaries with masses in the regime necessary to
understand the formation and cosmical evolution of supermassive black holes (see, for a review
[25]), with SNRs values at redshift exceeding 100.

Finally, in figure 12 we show how the SNR depends on the redshift, mass ratio and spin
values for LION and compare it with LIGO as a reference. We note that, contrary to figure 11,
the contour map covers SNRs including values from 1.

4.4. Angular resolution

We note that the frequency range of LION allows us to improve the angular resolution of
source positioning in the sky, by adding a lunar detector to the LVK collaboration. The angular
resolution ΔΩ is proportional to the increase of the network area A, ΔΩ ∝ 1/A [27]. This
means that an average Earth–Moon distance of 380 000 km [108] increases the area A and
improves the angular resolution by a factor of 30 compared to a purely Earth based network
with maximum distance of 12 000 km.

This will not only help to enhance the sky mapping of these objects, but also opens a huge
possibility to multi messenger astronomy, as we have seen, in particular in figure 11. The
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Figure 12. Mosaique of SNR contour maps to show its dependency with the redshift
(bottom panels), as in figure 11), the mass ratio q ranging between the values that IMR-
PhenomD allows for (mid panels, see text) and the spin (top panels). We show LION on
the left column and LIGO on the right one.

first counterpart observation GW170817 [109], showed, how much knowledge is gained when
observing the emitted gravitational waves and electromagnetic radiation from an event. With
the combination of improved sky location and knowledge about the time of the merger before-
hand, the electromagnetic telescopes can be pointed to the sky location in time to ensure a
simultaneous observation. This will significantly increase the upcoming gravitational-wave
optical transit observer array’s useful observations [110].

5. Cost and timeline

The costs for LION can only be roughly estimated at this point. We want to stress that LION
should focus on using existing gravitational wave detector technologies as well as by then
existing space flight technologies. Still, we assume here a conservative budget, highly depen-
dent on technological investigations of the next years. Based upon a study from the Center
for Strategic and International Studies [111], an infrastructure on the Moon and its installa-
tion, including the launch and landers, can be approximated to cost 30 billion€, from which
we exclude the 14 B€ for the Luna base itself. The CE development costs are currently
assumed to be about 55 M€ [6]. Assuming, that upgrading vacuum compatibility to space
compatibility is a factor of 10 in costs, this leads to 0.55 B€ for the development. Mean-
while, the total costs of LIGO are assumed to be in the order of 500 M€ [112]. Bringing
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these numbers together gives us a conservative estimate for LION of (30 − 14 + 0.55 + 5)
B€ = 21.55 B€.

With an initial mission proposal by 2023 and a full design study based on new data about
the Moon by 2030, simultaneous development of technologies along side CE’s second phase
would enable us to begin space qualifying the necessary parts so that all technologies are
space qualified by 2048. This would give time to build the missions in time for three launches
in the middle of the decade. Assembling would be done robotically and it is hoped that
this will be completed within a couple of years. The mission lifetime is expected to be 10
years, with the possibility of 5 years expansion. It is expected that in this time components
will wear out and limit operation. However, if there proved to be sufficient interest, LION
can continuously be repaired and upgraded, making an advanced LION detector more likely
then the need of disposal. This, again, is meant to be a conservative estimate. An accelera-
tion of the progress, to overlap with the planned LISA mission launching in 2034 is highly
recommended.

6. Conclusion

We find that a detector built on the Moon with technology of the third generation detectors
features a detection bandwidth between 0.7 Hz and 10 kHz with detection noise hitting a floor
of 3 × 10−24 m Hz−1/2 at 10 Hz. This is a conservative estimate which is limited by the ther-
mal noise and residual seismic activity of the Moon. Since the actual seismic activity of the
Moon is still uncertain and we only use an upper estimate of activity, a thorough test cam-
paign is likely to improve the performance prediction. Nevertheless, LION would make an
excellent complement to the existing network, with significant overlap of required technology
development.

The unique detection band presents an opportunity to push the capabilities of gravita-
tional wave astronomy and our understanding of physics. The ability to measure binaries of
seed black holes to a redshifts of 100 and higher provides a unique glance at the cauldron
where stars and galaxies were formed and would shed light on the question on how mas-
sive black holes assemble their mass and grow over cosmic timescales (see e.g. [25], for
a review). We also find that many of the sources present in the LISA band can be picked
up in the LION band to observe final merger achieving the long held dream of multi mes-
senger astronomy. Doing so will break many of the degeneracies of the parameter space so
that we can better understand their formation channels [30]. In this regard, it can be envis-
aged as a true deci-Hertz bridge between space borne observatories and ground based ones.
Moreover, having a much wider detection array at low frequencies is imperative for the coor-
dination between electromagnetic and gravitational observations needed to glimpse the final
stages of an inspiraling system with an optical telescope. Thus, LION will reach its full poten-
tial when being operated together with the third generation detectors on the Earth and in
space.

The Moon is perhaps one of the best available environments to operate a gravitational wave
detector in our Solar System. While we show in this paper that current or currently designed
technology enables the low frequency detector, its installation on the lunar surface requires
significant technological development. However, these lie not too far beyond the horizon of
humanities progress. We believe that, once humanity starts exploiting the Moon for science
and resources, a gravitational wave observatory is an excellent candidate for the first large
scale infrastructure experiment on the lunar surface.
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