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Abstract
This article presents an efficient nonlinear stochastic finite element method
to solve stochastic elastoplastic problems. Similar to deterministic elastoplas-
tic problems, we describe history-dependent stochastic elastoplastic behavior
utilizing a series of (pseudo) time steps and go further to solve the correspond-
ing stochastic solutions. For each time step, the original stochastic elastoplastic
problem is considered as a time-independent nonlinear stochastic problem with
initial values given by stochastic displacements, stochastic strains, and inter-
nal variables of the previous time step. To solve the stochastic solution at each
time step, the corresponding nonlinear stochastic problem is transformed into
a set of linearized stochastic finite element equations by means of finite ele-
ment discretization and a stochastic Newton linearization, while the stochastic
solution at each time step is approximated by a sum of the products of ran-
dom variables and deterministic vectors. Each couple of the random variable
and the deterministic vector is also used to approximate the stochastic solution
of the corresponding linearized stochastic finite element equation that can be
solved via a weakly intrusive method. In this method, the deterministic vector
is computed by solving deterministic linear finite element equations, and corre-
sponding random variables are solved by a non-intrusive method. Further, the
proposed method avoids the curse of dimensionality successfully since its com-
putational effort does not increase dramatically as the stochastic dimensionality
increases. Four numerical cases are used to demonstrate the good performance
of the proposed method.
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1 INTRODUCTION

Since the inherent uncertainty and the epistemic uncertainty of systems are unavoidable in many practical engineering
problems,1,2 predicting uncertainty propagation on the physical models has become an important part of the analy-
sis of systems. In this article, we focus on efficiently solving elastoplastic problems with uncertainties, in which the
uncertainties are described by random variables or fields in the context of a probabilistic frame.

Although mathematical theories and numerical methods for solving deterministic elastoplastic problems have been
well understood,3,4 only a few effort is took to their extensions to stochastic cases. Over the last two decades, several
methods can be used for this purpose. As a kind of powerful method for stochastic analysis, Monte Carlo simulation
(MCS) and its improvements1,5-7 can be used to accurately solve stochastic elastoplastic problems. This method is easy
to be implemented and only requires the use of existing deterministic solvers. Its convergence does not depend on the
stochastic dimensionality, thus MCS can be applied to solve high-dimensional stochastic problems without extra diffi-
culties. However, a large number of deterministic simulations are required to achieve high-accuracy stochastic solutions,
which is expensive for large-scale and nonlinear stochastic problems. Due to the simple and efficient implementation,
other non-intrusive methods are also developed to solve stochastic elastoplastic problems, for example, adaptive sampling
methods, surrogate model methods and so forth.8-10

As a kind of intrusive method, the spectral stochastic finite element method (SFEM) and its extensions1,11,12 have
been widely used to solve stochastic problems. In this method, the stochastic solution is expanded by polynomial chaos
(PC) bases and the stochastic Galerkin approach is then adopted to transform the original stochastic problem into an aug-
mented deterministic equation whose size dramatically increases as the numbers of the stochastic dimensionality, the
expansion order of PC bases and the degree of freedom of the physical system increase. Several improvements13,14 are
developed to reduce the computational effort of the augmented deterministic equation. A direct extension of this method
to stochastic elastoplastic problems can be found in Reference 15. Several modifications are studied since the classical PC
expansion cannot well capture nonsmooth stochastic solutions of stochastic elastoplastic problems. References 16 and 17
introduce two fictitious bounding bodies to approximate stochastic elastoplastic constitutive equations and then PC-based
expansions are adopted to solve the corresponding stochastic finite element equations. Stochastic elastoplastic problems
are solved by coupling the spectral SFEM to the Fokker Planck Kolmogorov (FPK) equation approach in References 18
and 19. The randomness of the elastoplastic constitutive model is propagated through FPK equations and the unknown
stochastic solution is solved via the spectral SFEM. In Reference 20, stochastic elastoplastic problems are considered as
inequality-constrained stochastic boundary value problems that are investigated via stochastic variational inequalities.
PC expansions and stochastic collocation methods are used to discretize the original stochastic problem and nonlinear
convex programming is adopted for the numerical implementation. Also, since the multi-element PC expansion21 can
be used to well capture sharp and discontinuous stochastic solutions, it has been applied to stochastic elastoplastic prob-
lems in Reference 22. There are also other effective methods for solving nonsmooth stochastic solutions of nonlinear
stochastic problems, for example, the stochastic perturbation method,23,24 the stochastic collocation methods,25,26 the
polynomial/spline dimensional decomposition methods.27-29

As discussed above, developing efficient and accurate methods for solving stochastic elastoplastic problems remains
an attractive topic. In this article, we propose a novel nonlinear SFEM to solve stochastic elastoplastic problems. Specif-
ically, stochastic elastoplastic problems are considered as (pseudo) time-dependent stochastic nonlinear problems. A
time discretization scheme is given to evolve the stochastic elastoplasticity and discretize the original time-dependent
stochastic nonlinear problems into the time-independent stochastic nonlinear problem at each time step, and the finite
element method is adopted for the spatial discretization. For each time step, the initial values of the discretized stochastic
nonlinear problem are inherited from the stochastic quantities of the previous time step, for example, stochastic strains
and stochastic internal variables. A stochastic Newton method is given to linearize the discretized stochastic nonlinear
problem as a series of linear stochastic finite element equations. The stochastic solution at each time step thus consists
of a set of stochastic increments that are also the stochastic solution of the corresponding linear stochastic finite ele-
ment equation. Each stochastic increment is then decoupled into stochastic and deterministic spaces and approximated
by the product of a random variable and a deterministic vector, which are calculated by solving the corresponding linear
stochastic finite element equation using a weakly intrusive SFEM.30,31 In this method, the deterministic vector is com-
puted by solving deterministic linear finite element equations that are obtained by the stochastic Galerkin method,11,12

and the corresponding random variable is solved by one-dimensional stochastic algebraic equations using a non-intrusive
method. Furthermore, since all random sources are embedded into one-dimensional stochastic algebraic equations, the
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ZHENG and NACKENHORST 3413

proposed method has low computational complexity and its computational cost is weakly dependent on the stochastic
dimensionality. The curse of dimensionality arising in high-dimensional stochastic elastoplastic problems is thus circum-
vented successfully.

The article is organized as follows: Section 2 gives the basic setting of stochastic elastoplastic problems and the time
discretization scheme. Section 3 introduces a stochastic Newton-based nonlinear stochastic finite element method to solve
stochastic elastoplastic problems. Computational aspects and algorithm implementations of the proposed method are
elaborated in Section 4. Following that, four numerical cases are given to demonstrate the performance of the proposed
method in Section 5, and conclusions and discussions are presented in Section 6.

2 STOCHASTIC ELASTOPLASTIC PROBLEMS

2.1 Elastoplastic equation with uncertainties

Let (Θ,Ξ,) be a suitable probability space, where Θ denotes the space of elementary events, Ξ is a 𝜎-algebra defined on
Θ and  is a probability measure. In this article, we consider the following stochastic elastoplastic problem defined on a
deterministic domain Ω ⊂ Rd with the boundary 𝜕Ω,

⎧
⎪
⎨
⎪
⎩

−div (𝝈 (x, 𝜃)) = f (x, 𝜃) in Ω
𝝈 (x, 𝜃) ⋅ n = g (x, 𝜃) on ΓN

u (x, 𝜃) = u (x, 𝜃) on ΓD,

(1)

where the physical dimension may be d = 1, 2, 3, div (⋅) represents the divergence operator, 𝝈 (x, 𝜃) is the stochastic stress
tensor, f (x, 𝜃) is the stochastic external force, u (x, 𝜃) is the unknown stochastic displacement, ΓN and ΓD are boundary
segments associated with the Neumann boundary condition g (x, 𝜃) and the Dirichlet boundary condition u (x, 𝜃). Without
loss of generality, we let the Dirichlet boundary condition u (x, 𝜃) = 0 in this article. The following linear stochastic strain
tensor is adopted to describe the stochastic displacement-strain relationship

𝜺 (u (x, 𝜃)) = 1
2
(
∇u (x, 𝜃) + (∇u (x, 𝜃))T

)
. (2)

Further, we consider the relationship between the stochastic stress tensor and the stochastic strain tensor given by

𝝈 (u (x, 𝜃) , 𝜃) =  (𝜺 (u (x, 𝜃)) , 𝜃) , (3)

where  ∶ Rd×d → Rd×d is a stochastic nonlinear operator between the stochastic strain and the stochastic stress ten-
sors. It may be associated with stochastic yield stresses and stochastic constitutive relations, such as the Von Mises and
Drucker-Prager yield criteria4 involving the stochastic thermodynamical force 𝜷 (𝜃) and the stochastic internal variable
𝝆 (𝜃). The stochastic operator  in this section is a general form and it can be applied to all kinds of elastoplastic models.
We will provide detailed representations of it for some cases in the subsequent section.

The weak form of (1) is written as

𝒲 (u (x, 𝜃) , v (x) , 𝜃) = ℱ (v (x) , 𝜃) , ∀v (x) ∈  , (4)

the left and right sides of which are given by

𝒲 (u (x, 𝜃) , v (x) , 𝜃) =
∫

Ω

𝝈 (u (x, 𝜃) , 𝜃) ∶ 𝜺 (v (x)) dx, (5)

=
∫

Ω

 (𝜺 (u (x, 𝜃)) , 𝜃) ∶ 𝜺 (v (x)) dx, (6)

ℱ (v (x) , 𝜃) =
∫

Ω

f (x, 𝜃) ⋅ v (x) dx +
∫

ΓN

g (x, 𝜃) ⋅ v (x) ds, (7)

 10970207, 2023, 16, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7253 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [18/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3414 ZHENG and NACKENHORST

where v (x) is the test function and  is the Hilbert space with smooth displacement vectors vanishing on the
boundary ΓD.

2.2 Elastoplastic constitutive model

In this section, we consider applying an elastoplastic constitutive model to (1). To this end, we divide the stochastic strain
tensor 𝜺 (u (x, 𝜃)) into an elastic part and a plastic part, which corresponds to

𝜺 (u (x, 𝜃)) = 𝜺e (u (x, 𝜃)) + 𝜺p (u (x, 𝜃)) , (8)

where 𝜺e (u (x, 𝜃)) and 𝜺p (u (x, 𝜃)) denote the stochastic elastic strain tensor and the stochastic plastic strain tensor,
respectively. The stochastic stress tensor 𝝈 (u, 𝜃) is represented by the stochastic elastic strain tensor 𝜺e (u (x, 𝜃))

𝝈 (u (x, 𝜃) , 𝜃) = C (𝜃) 𝜺e (u (x, 𝜃)) = C (𝜃)
(
𝜺 (u (x, 𝜃)) − 𝜺p (u (x, 𝜃))

)
, (9)

where C (𝜃) is a fourth order elastic tensor and the following form is adopted in this article

C (𝜃) = 𝜅 (𝜃) I ⊗ I + 2𝜇 (𝜃) Idev, (10)

where the parameters 𝜅 (𝜃) and 𝜇 (𝜃) are random variables/fields that may be related to stochastic material properties,
also known as stochastic bulk modulus and stochastic shear modulus, the second order unit tensors I ∈ Rd×d, the fourth
order tensor Idev = I4 − 1

3
I ⊗ I, where the fourth order tensor I4 = 𝛿ik𝛿jlei ⊗ ej ⊗ ek ⊗ el, 𝛿ik is the Kronecker delta.

Further, we only consider the Von Mises yield criterion and the linear kinematic hardening in this article, but other
cases can also be considered in a similar way, for example, the Drucker-Prager yield criterion, the isotropic hardening and
so forth.4 The stochastic thermodynamical force 𝜷 (𝜃) associated with the internal variable 𝝆 (𝜃) is given by

𝜷 (𝜃) = ℏ (𝝆, 𝜃) = 𝜛 (𝜃)𝝆 (𝜃) , (11)

where the coefficient 𝜛 (𝜃) is a positive parameter and can be a random variable/field in practice. Furthermore, the
stochastic yield function is given by

Ψ (𝝈, 𝜷, 𝜃) = |Idev𝝈 (𝜃) − 𝜷 (𝜃)| − 𝜎Y (𝜃) , (12)

where 𝜎Y (𝜃) is the stochastic yield stress that can be modeled by a random variable/field, Idev𝝈 (𝜃) is considered as the
stress deviator of the stochastic stress tensor 𝝈 (u (x, 𝜃) , 𝜃).

2.3 Time discretization scheme

In this section, we extend the incremental method for solving deterministic elastoplastic problems to stochastic cases.
The external force is applied incrementally in steps, which is considered as a set of pseudo time steps and described using
a pseudo time variable t. The (pseudo) time variable t is discretized as t ∈

[
t0, t1, … , tnt

]
. For the time step ti, i ≥ 1, the

stochastic solution u (ti, 𝜃) is calculated by solving a nonlinear stochastic problem that is dependent on the quantities{
u (ti−1, 𝜃) , 𝜺p (ti−1, 𝜃) , 𝜷 (ti−1, 𝜃)

}
obtained by the previous time step ti−1. For simplicity, we denote 𝝈 (ti, 𝜃), 𝜺p (ti, 𝜃) and

𝜷 (ti, 𝜃) as 𝝈i (𝜃), 𝜺p,i (𝜃) and 𝜷 i (𝜃) in the latter equations. According to the analytical results in Reference 32, an explicit
expression of the elastoplastic constitutive relation (3) can be obtained in the stochastic case,

𝝈i (𝜃) = 
(
𝜺i (𝜃) , 𝜃; 𝜺p,i−1 (𝜃) , 𝜷 i−1 (𝜃)

)
= 𝝈0,i (𝜃) −

2𝜇 (𝜃)
2𝜇 (𝜃) +𝜛 (𝜃)

⟨𝛾i (𝜃)⟩𝝈∗i (𝜃) , (13)

where 𝛾i (𝜃) = 1 − 𝜎Y(𝜃)
|𝝈∗i (𝜃)|

, the operator ⟨⋅⟩ = max(⋅, 0) represents the maximum value of ⋅ and 0, and the stochastic stresses
𝝈0,i (𝜃) and 𝝈∗i (𝜃) are given by
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ZHENG and NACKENHORST 3415

𝝈0,i (𝜃) = C (𝜃)
(
𝜺i (𝜃) − 𝜺p,i−1 (𝜃)

)
, (14)

𝝈
∗
i (𝜃) = Idev𝝈0,i (𝜃) − 𝜷 i−1 (𝜃) . (15)

The 𝜷 i (𝜃) and 𝜺p,i (𝜃) are then updated by using 𝝈∗i (𝜃) from current time step ti and 𝜷 i−1 (𝜃), 𝜺p,i−1 (𝜃) from the previous
time step ti−1,

𝜷 i (𝜃) = 𝜷 i−1 (𝜃) +
𝜛 (𝜃)

2𝜇 (𝜃) +𝜛 (𝜃)
⟨𝛾i (𝜃)⟩𝝈∗i (𝜃) , (16)

𝜺p,i (𝜃) = 𝜺p,i−1 (𝜃) +
1

2𝜇 (𝜃) +𝜛 (𝜃)
⟨𝛾i (𝜃)⟩𝝈∗i (𝜃) . (17)

It is seen that ⟨𝛾i (𝜃)⟩ = 𝛾i (𝜃) > 0 holds and the second terms of (13), (16), and (17) are nonzero when |
|
|
𝝈
∗
i (𝜃)

|
|
|
> 𝜎Y (𝜃)

(i.e., the true stress is greater than the yield stress), the corresponding nodes are thus in plastic states. Otherwise, these
second terms are all zero and we do not need to update (13), (16), and (17). Also, the stochastic tangent tensor T of  is
usually required to solve the linearized equation of the nonlinear problem at each time step. The analytical expression of
T is given by

T
(
𝜺i (𝜃) , 𝜃; 𝜺p,i−1 (𝜃) , 𝜷 i−1 (𝜃)

)
=

𝜕
(
𝜺i (𝜃) , 𝜃; 𝜺p,i−1 (𝜃) , 𝜷 i−1 (𝜃)

)

𝜕𝜺i (𝜃)
, (18)

= C (𝜃) −
4𝜇(𝜃)2

2𝜇 (𝜃) +𝜛 (𝜃)

⎡
⎢
⎢
⎢
⎣

Idev +
(

1
𝛾i (𝜃) + 𝛿 (𝛾i (𝜃) , 0)

− 1
)
𝝈
∗
i (𝜃)⊗ 𝝈

∗
i (𝜃)

|
|
|
𝝈
∗
i (𝜃)

|
|
|

2

⎤
⎥
⎥
⎥
⎦

⟨𝛾i (𝜃)⟩ ,

(19)

where 𝛿 (𝛾i (𝜃) , 0) is the Kronecker delta meeting 𝛿 (𝛾i (𝜃) , 0) = 1 for 𝛾i (𝜃) = 0 and 0 for others. Similarly, T = C (𝜃) holds
and we do not need to update T when |

|
|
𝝈
∗
i (𝜃)

|
|
|
≤ 𝜎Y (𝜃). In the following section, we will show that the proposed method

can accurately perform the judgment |
|
|
𝝈
∗
i (𝜃)

|
|
|
> 𝜎Y (𝜃) (and |

|
|
𝝈
∗
i (𝜃)

|
|
|
≤ 𝜎Y (𝜃)) for each sample realization of 𝜃 for each

sample realization of 𝜃. Therefore, the way similar to deterministic elastoplastic analysis can still be adopted although
stochastic spaces are involved in stochastic elastoplastic problems.

3 STOCHASTIC NEWTON-BASED NONLINEAR STOCHASTIC FINITE
ELEMENT METHOD

By use of the above relations and the finite element method for spatial discretization, we can obtain a random
parameter-dependent nonlinear finite element equation, also known as the nonlinear stochastic finite element equation.
In this section, we give an efficient and accurate numerical algorithm to solve nonlinear stochastic finite element
equations.

3.1 Stochastic Newton linearization

For simplicity, we write the nonlinear stochastic finite element equation obtained by the elastoplastic problem (1) as an
abstract form,

𝒩 (u (t, 𝜃) , 𝜃) = F (t, 𝜃) (20)

with the nonlinear operator 𝒩 ∶ Rn → Rn, the stochastic solution u (t, 𝜃) ∈ Rn×nt , the stochastic force F (t, 𝜃) ∈ Rn×nt

and n is the number of degrees of freedom of the spatial discretization, nt is the number of total time steps. In practi-
cal numerical implementation, the matrix/vector implementations of 𝒩 (u (t, 𝜃) , 𝜃) and F (t, 𝜃) are calculated by using
(6) and (7), respectively. To solve the stochastic solution of (20), we extend the Newton (or called Newton–Raphson)
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3416 ZHENG and NACKENHORST

method for solving deterministic nonlinear equations to stochastic cases. A stochastic Newton method is used to linearize
(20) as

KT (uk−1 (ti, 𝜃) , 𝜃) Δuk (ti, 𝜃) = Fk (uk−1 (ti, 𝜃) , 𝜃) , ∀𝜃 ∈ Θ (21)

for i = 1, … ,nt, where the stochastic tangent stiffness matrix KT (uk−1 (ti, 𝜃) , 𝜃) ∈ Rn×n and the stochastic force vector
Fk (uk−1 (ti, 𝜃) , 𝜃) ∈ Rn are given by

KT (uk−1 (ti, 𝜃) , 𝜃) =
[
𝜕𝒩 (u) ∕𝜕u

]|
|
|u=uk−1(ti,𝜃)

, (22)

Fk (uk−1 (ti, 𝜃) , 𝜃) = F (ti, 𝜃) −𝒩 (uk−1 (ti, 𝜃) , 𝜃) , (23)

and the matrix assembly of KT (uk−1 (ti, 𝜃) , 𝜃) (or 𝜕𝒩 (u) ∕𝜕u) is implemented by using the tangent tensor T in (19). In
this way, the stochastic solution uk (ti, 𝜃) of the kth iteration at the time step ti in (21) is approximated as

uk (ti, 𝜃) = uk−1 (ti, 𝜃) + Δuk (ti, 𝜃) , (24)

where uk−1 (ti, 𝜃) ∈ Rn is the stochastic solution of the previous iteration that has been determined and Δuk (ti, 𝜃) ∈ Rn

is the kth stochastic increment that needs to be solved.

3.2 Approximation of stochastic solutions

In practice, (24) is only of theoretical significance since Δuk (ti, 𝜃) is not as easy to be solved as deterministic cases. On
the basis of (24), we develop a more detailed approximation for the stochastic solution u (ti, 𝜃) of each time step ti, which
is given by

uk (ti, 𝜃) = ũ (ti−1, 𝜃) +
k∑

j=1
𝜆j (ti, 𝜃)dj (ti) , (25)

= ũ (ti−1, 𝜃) +D (ti)𝚲 (ti, 𝜃) , (26)

where ũ (ti−1, 𝜃) is the stochastic solution of the time step ti−1 and has been determined, 𝜆j (ti, 𝜃) ∈ R are random vari-
ables, 𝚲 (ti, 𝜃) = [𝜆1 (ti, 𝜃) , … , 𝜆k (ti, 𝜃)]T ∈ Rk is the corresponding random vector, dj (ti) ∈ Rn are deterministic vectors,
D (ti) = [d1 (ti) , … ,dk (ti)] ∈ Rn×k is the corresponding matrix, k is the number of approximate terms. Equation (25) is
a kind of intrusive approximation, but we approximate the random variables 𝜆j (ti, 𝜃) using random samples in prac-
tice, which is a non-intrusive way. Combining these two points, (25) is considered as a weakly intrusive approach and
we will explain this point in detail in the subsequent section. In fact, the solution uk (ti, 𝜃) can be considered as a ran-
dom field. Equation (25) is very similar to the classical series expansions of the random field uk (ti, 𝜃), for example, the
Karhunen–Loève expansion and the Polynomial Chaos expansion11 that decompose the random fields into stochastic
and deterministic spaces. Different from the known probability properties such as mean values and covariance functions
of the classical random fields, the constraints of uk (ti, 𝜃) are only from the stochastic governing Equation (20). In this
way, all quantities

{
𝜆j (ti, 𝜃) ,dj (ti)

}k
j=1 cannot be known a priori. The random variables

{
𝜆j (ti, 𝜃)

}k
j=1 may no longer be

uncorrelated as they are in the Karhunen–Loève expansion. We need to address this issue and develop dedicated numer-
ical methods for the purpose. The convergence and accuracy of (25) may benefit from these classical expansions, but
are not well understood currently. Further investigation is still required. Several explorations for solving linear static
stochastic problems, linear dynamic stochastic problems and the problems defined on random domains using (25)-like
expansions can be found in our previous work.30,31,33 We also remark that the second part-like expansion in (25) (i.e.,
∑k

j=1𝜆j (ti, 𝜃)dj (ti)) has been widely used in the context of proper generalized decomposition methods.34-36 However, these
classical expansions are not applicable to the stochastic elastoplastic problem. In this article, we develop an efficient and
accurate numerical algorithm to solve stochastic elastoplastic problems by using the weakly intrusive approximation (25)
and a dedicated iteration.
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ZHENG and NACKENHORST 3417

Combining (24) and (25) we rewrite (25) as an incremental format similar to (24). To this end, the previous
approximation uk−1 (ti, 𝜃) and the stochastic increment Δuk (ti, 𝜃) in (24) are given by

uk−1 (ti, 𝜃) = ũ (ti−1, 𝜃) +
k−1∑

j=1
𝜆j (ti, 𝜃)dj (ti) , (27)

Δuk (ti, 𝜃) = 𝜆k (ti, 𝜃)dk (ti) , (28)

where the first k − 1 couples
{
𝜆j (ti, 𝜃) ,dj (ti)

}k−1
j=1 are assumed to be known. In this way, we can still solve the unknown

stochastic increment by taking advantage of the stochastic Newton method mentioned in the previous section and the
stochastic increment is given by 𝜆k (ti, 𝜃)dk (ti). Substituting (27) and (28) into (21) we have

KT (uk−1 (ti, 𝜃) , 𝜃) 𝜆k (ti, 𝜃)dk (ti) = Fk (uk−1 (ti, 𝜃) , 𝜃) . (29)

An iterative algorithm for solving the couple {𝜆k (ti, 𝜃) ,dk (ti)} will be discussed in the next section.

3.3 Iterative algorithm for stochastic solutions

It is not easy to calculate 𝜆k (ti, 𝜃) and dk (ti) in (29) at once. We adopt an alternating iterative method to solve 𝜆k (ti, 𝜃) and
dk (ti) one by one. Specifically, we are to fix one of them and solve the other, and then the fixed one is updated according
to the solution of the other. In detail, if the random variable 𝜆k (ti, 𝜃) has been known (or given an initial value), the
stochastic Galerkin method11,12 is used to transform the original stochastic problem (29) into a deterministic finite element
equation

K∗
T,k (ti)dk (ti) = F∗k (ti) , (30)

where the deterministic matrix K∗
T,k (ti) ∈ Rn×n and the deterministic vector F∗k (ti) ∈ Rn are calculated by

K∗
T,k (ti) = E

{
𝜆

2
k (ti, 𝜃)KT (uk−1 (ti, 𝜃) , 𝜃)

}
, (31)

F∗k (ti) = E {𝜆k (ti, 𝜃)Fk (uk−1 (ti, 𝜃) , 𝜃)} , (32)

where E {⋅} represents the expectation operator. It is noted that the above equations are the approximations of the proba-
bility integrals ∫Θ 𝜆

2
k (ti, 𝜃)KT (uk−1 (ti, 𝜃) , 𝜃) d (𝜃) and ∫Θ 𝜆k (ti, 𝜃)Fk (uk−1 (ti, 𝜃) , 𝜃) d (𝜃), where  (𝜃) is the probability

measurement of the random input. In this way, the probability integrals can be achieved cheaply, but theoretically,
high-accuracy approximation requires a large number of random samples. In numerical examples, we will show that
the sample size requirement can be greatly relaxed, that is, only a small number of random samples are used to
perform (31) and (32), but high-accuracy stochastic solutions are still obtained. Equation (30) is a linear finite ele-
ment equation and existing linear solvers4 can be adopted to efficiently solve the vector dk (ti). To speed up the
convergence in practical computations, we orthogonalize the vector dk (ti) by Gram–Schmidt orthogonalization, which
corresponds to

dk (ti) = dk (ti) −
k−1∑

j=1

dT
k (ti)dj (ti)

dT
j (ti)dj (ti)

dj (ti) , (33)

where
{

dj (ti)
}k−1

j=1 are orthogonal vectors that have been determined via the first k − 1 iterations and they meet
dT

m (ti)dn (ti) = 𝛿mn, m,n = 1, … , k − 1.
According to the deterministic vector dk (ti) obtained by (30), the random variable 𝜆k (ti, 𝜃) is updated by a classical

Galerkin procedure

ak (ti, 𝜃) 𝜆k (ti, 𝜃) = bk (ti, 𝜃) , (34)
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3418 ZHENG and NACKENHORST

where the random variables ak (ti, 𝜃) ∈ R and bk (ti, 𝜃) ∈ R are given by

ak (ti, 𝜃) = dT
k (ti)KT (uk−1 (ti, 𝜃) , 𝜃)dk (ti) , (35)

bk (ti, 𝜃) = dT
k (ti)Fk (uk−1 (ti, 𝜃) , 𝜃) . (36)

A common method for solving (34) is known as the PC-based methods.11,37 In this method, the random variable 𝜆k (ti, 𝜃) is
expanded by PC bases and the expanded coefficients are calculated via an augmented deterministic equation. It alleviates
the computational burden as the augmented deterministic equation is not coupled with degrees of freedom discretized by
the finite element method, but it does not overcome the curse of dimensionality arising in high-dimensional stochastic
problems. To avoid this issue, a non-intrusive method is adopted to calculate random samples of the random variable
𝜆k (ti, 𝜃),30,31,33 which corresponds to

𝜆k

(
ti, ̂𝜽

)
= bk

(
ti, ̂𝜽

)
⊘ ak

(
ti, ̂𝜽

)
∈ R

ns
, (37)

where ̂𝜽 =
{
𝜃

(i)}ns
i=1 is the sample realizations of random sources, the random sample vectors 𝜆k

(
ti, ̂𝜽

)
, ak

(
ti, ̂𝜽

)
,

bk

(
ti, ̂𝜽

)
∈ Rns are the sample realizations of the random variables 𝜆k (ti, 𝜃), ak (ti, 𝜃), and bk (ti, 𝜃), respectively, ⊘

is the Hadamard division operator representing the element-wise division of the vectors bk

(
ti, ̂𝜽

)
and ak

(
ti, ̂𝜽

)
.

Based on the random sample vector 𝜆k

(
ti, ̂𝜽

)
, statistical methods are adopted to provide the probability char-

acteristics of the random variable 𝜆k (ti, 𝜃). We can calculate the kth couple {𝜆k (ti, 𝜃) ,dk (ti)} by iteratively solv-
ing (30) and (37) until a specified convergence criterion is satisfied, the details of which will be discussed in
Section 4. It is noted that both (30) and (37) are insensitive to stochastic dimensionalities since all random sources
are embedded into the random sample vectors ak

(
ti, ̂𝜽

)
and bk

(
ti, ̂𝜽

)
and the computational effort of (37) is

very low, which avoids the curse of dimensionality successfully and will be verified in the numerical example in
Section 5.4.

3.4 Improved scheme of stochastic solutions

We recall the approximation (28) and the stochastic increment is approximated by a stochastic-deterministic decoupling
decomposition Δuk (ti, 𝜃) ≈ 𝜆k (ti, 𝜃)dk (ti), which has low accuracy in many cases. For the explanation of this point, we
consider the sample descriptionsΔuk (ti, 𝜃) ≈ Δuk

(
ti, ̂𝜽

)
∈ Rn×ns and𝜆k (ti, 𝜃) ≈ 𝜆k

(
ti, ̂𝜽

)
∈ Rns . The approximation (28)

is then written as

Δuk

(
ti, ̂𝜽

)
≈ dk (ti) 𝜆T

k

(
ti, ̂𝜽

)
, (38)

which is considered as a rank-1 approximation of the matrix Δuk

(
ti, ̂𝜽

)
, thus it is less accurate for many prob-

lems. To avoid this problem, we let the known matrix D (ti) in (26) be a set of reduced bases and recalculate
the random vector 𝚲 (ti, 𝜃). To solve the random vector 𝚲 (ti, 𝜃), we still adopt the stochastic Newton method
for the linearization and the Galerkin method for building a reduced-order linearized stochastic finite element
equation,

[
DT (ti)KT

(
ũ (ti−1, 𝜃) +D (ti)𝚲(j) (ti, 𝜃) , 𝜃

)
D (ti)

]
Δ𝚲(j) (ti, 𝜃) = DT (ti)F(j)

(
ũ (ti−1, 𝜃) +D (ti)𝚲(j) (ti, 𝜃) , 𝜃

)
, (39)

where the vector 𝚲(j) (ti, 𝜃) ∈ Rk is the stochastic solution of the jth iteration and the vector Δ𝚲(j) (ti, 𝜃) ∈ Rk is the
jth stochastic increment. To solve the increment Δ𝚲(j) (ti, 𝜃), we use a sampling method to solve (39) for all sample
realizations, which is achieved by solving the following equation

̃kT
(
𝚲(j)

(
ti, 𝜃

(q)))Δ𝚲(j)
(

ti, 𝜃
(q)) = ̃f

(j) (
𝚲(j)

(
ti, 𝜃

(q))) (40)
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ZHENG and NACKENHORST 3419

for q = 1, … ,ns, where the reduced-order matrix ̃kT
(
𝚲(j)

(
ti, 𝜃

(q))) ∈ Rk×k and the reduced-order vector
̃f
(j) (
𝚲(j)

(
ti, 𝜃

(q))) ∈ Rk are given by

̃kT
(
𝚲(j)

(
ti, 𝜃

(q))) = DT (ti)KT
(
ũ
(

ti−1, 𝜃
(q)) +D (ti)𝚲(j)

(
ti, 𝜃

(q))
, 𝜃

(q))D (ti) , (41)

̃f
(j) (
𝚲(j)

(
ti, 𝜃

(q))) = DT (ti)F(j)
(
ũ
(

ti−1, 𝜃
(q)) +D (ti)𝚲(j)

(
ti, 𝜃

(q))
, 𝜃

(q))
. (42)

Further, the random vector is updated via

𝚲(j+1) (ti, 𝜃
(q)) = 𝚲(j)

(
ti, 𝜃

(q)) + Δ𝚲(j)
(

ti, 𝜃
(q))

, q = 1, … ,ns. (43)

The computational effort of (40) is very low since its size k is usually not too large. For all sample realizations{
Δ𝚲(j)

(
ti, 𝜃

(q))}ns

q=1, total computational costs of ns solutions of (40) are still low. It is noted that compared to intrusive
methods, the non-intrusive approximation of the random vector 𝚲 (ti, 𝜃) more easily and accurately captures the nodes
in elastic/plastic states. Also, another advantage of the proposed method is that the initial random samples of random
sources are propagated from beginning to the end, that is, the sample realization 𝜃

(q) is propagated to the final stochas-
tic solution via 𝜃

(q) → 𝚲
(

ti, 𝜃
(q)) → u

(
ti, 𝜃

(q)), which provides an easy-to-use and highly accurate way for uncertainty
quantification.

4 ALGORITHM IMPLEMENTATION

4.1 Computational aspects

In this section, we propose efficient numerical formats to accelerate the numerical computation of the proposed method.
Computational costs of the proposed method are concentrated in the assembly of the stochastic tangent stiffness matrix
KT (uk−1 (ti, 𝜃) , 𝜃) in (29), the expectation calculations in (31) and (32), the vector-stochastic-matrix multiplications
in (35) and (36), and the matrix-stochastic-matrix multiplications in (41) and (42). To speed up these computations,
we follow the idea for numerical implementation in Reference 38 and write the stochastic tangent stiffness matrix
KT (uk−1 (ti, 𝜃) , 𝜃) as

KT (uk−1 (ti, 𝜃) , 𝜃) = BTMT (uk−1 (ti, 𝜃) , 𝜃)B, (44)

where B ∈ RnI×n is a deterministic sparse matrix related to the strain-displacement operator, nI is the total number of
integration points, MT (𝜃) ∈ RnI×nI is a block diagonal sparse matrix related to the stochastic elastoplastic constitutive
model. We decompose the stochastic matrix MT (𝜃) into two parts

MT (uk−1 (ti, 𝜃) , 𝜃) = Me (𝜃) +MT,p (uk−1 (ti, 𝜃) , 𝜃) , (45)

where the stochastic matrix Me (𝜃) ∈ RnI×nI is related to the elastic constitutive part (i.e., linear problem) of the mate-
rial and the stochastic matrix MT,p (uk−1 (ti, 𝜃) , 𝜃) ∈ RnI×nI is related to the elastoplastic constitutive part (i.e., nonlinear
problem). The stochastic matrix MT,p (uk−1 (ti, 𝜃) , 𝜃) is much sparser than the stochastic matrix MT (uk−1 (ti, 𝜃) , 𝜃) since
the nodes in plastic states are only a part of the whole domain, or even a small part in most cases. Thus, the stochastic
matrix KT (uk−1 (ti, 𝜃) , 𝜃) can be rewritten as

KT (uk−1 (ti, 𝜃) , 𝜃) = Ke (𝜃) +KT,p (uk−1 (ti, 𝜃) , 𝜃) , (46)

where the stochastic elastic stiffness matrix Ke (𝜃) ∈ Rn×n corresponding to Me (𝜃) and the stochastic plastic tangent
stiffness matrix KT,p (uk−1 (ti, 𝜃) , 𝜃) ∈ Rn×n corresponding to MT,p (uk−1 (ti, 𝜃) , 𝜃) are

Ke (𝜃) = BTMe (𝜃)B, KT,p (uk−1 (ti, 𝜃) , 𝜃) = BTMT,p (uk−1 (ti, 𝜃) , 𝜃)B. (47)

Similarly, the stochastic force vector can be written as

 10970207, 2023, 16, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7253 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [18/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3420 ZHENG and NACKENHORST

Fk (uk−1 (ti, 𝜃) , 𝜃) = F (ti, 𝜃) − BTFI (uk−1 (ti, 𝜃) , 𝜃) . (48)

It is noted that the matrix Ke (𝜃) can be precomputed via Me (𝜃) and does not need to be updated dur-
ing the iterations, while the matrix KT,p (uk−1 (ti, 𝜃) , 𝜃) is updated using MT,p (uk−1 (ti, 𝜃) , 𝜃) on each iteration. Let
Mnonzero

T,p (uk−1 (ti, 𝜃) , 𝜃) ∈ R
nIp(𝜃)×nIp(𝜃) be the nonzero submatrix of MT,p (uk−1 (ti, 𝜃) , 𝜃) (i.e., the stochastic matrix cor-

responding to plastic points), where nIp (𝜃) is a random variable representing the number of integration points of
elements in plastic states. In the numerical implementation, we compute and store Mnonzero

T,p (uk−1 (ti, 𝜃) , 𝜃) via a

third-order tensor Mnonzero
T,p

(
uk−1

(
ti, ̂𝜽

)
,
̂𝜽

)
∈ R

nIp(𝜃)×nIp(𝜃)×ns and all operations on MT,p (uk−1 (ti, 𝜃) , 𝜃) can be performed

on MT,p

(
uk−1

(
ti, ̂𝜽

)
,
̂𝜽

)
(equivalent to Mnonzero

T,p

(
uk−1

(
ti, ̂𝜽

)
,
̂𝜽

)
), which only requires little computational effort

and storage memory. In this way, we can efficiently implement the proposed method. Specifically, (31) and (32) are
calculated via

K∗
T,k (ti) = BT

̂E

{
𝜆

2
k

(
ti, ̂𝜽

)
Me

(
̂𝜽

)}
B + BT

̂E

{
𝜆

2
k

(
ti, ̂𝜽

)
MT,p

(
uk−1

(
ti, ̂𝜽

)
,
̂𝜽

)}
B, (49)

F∗k (ti) = ̂E

{
𝜆k

(
ti, ̂𝜽

)
F
(

ti, ̂𝜽
)}

− BT
̂E

{
𝜆k

(
ti, ̂𝜽

)
FI

(
uk−1

(
ti, ̂𝜽

)
,
̂𝜽

)}
, (50)

where ̂E {⋅} represents the operator for estimating expectations using random samples, for instance, we have

̂E

{
𝜆

2
k

(
ti, ̂𝜽

)
Me

(
̂𝜽

)}
= 1

ns

ns∑

q=1
𝜆

2
k
(

ti, 𝜃
(q))Me

(
𝜃

(q))
. (51)

Further, the random sample vectors of the random variables ak (ti, 𝜃) and bk (ti, 𝜃) in (35) and (36) are calculated by

ak

(
ti, ̂𝜽

)
= (Bdk (ti))TMe

(
̂𝜽

)
(Bdk (ti)) + (Bdk (ti))TMT,p

(
uk−1

(
ti, ̂𝜽

)
,
̂𝜽

)
(Bdk (ti)) ∈ R

ns
, (52)

bk

(
ti, ̂𝜽

)
= dT

k (ti)F
(

ti, ̂𝜽
)
− (Bdk (ti))TFI

(
uk−1

(
ti, ̂𝜽

)
,
̂𝜽

)
∈ R

ns
, (53)

where the deterministic vector Bdk (ti) ∈ RnI is only calculated at once. Also, introducing a deterministic matrix
BD (ti) = BD (ti) ∈ RnI×k we calculate (41) and (42) by

̃kT
(
𝚲(j)

(
ti, 𝜃

(q))) = BT
D (ti)Me

(
𝜃

(q))BD (ti) + BT
D (ti)MT,p

(
𝚲(j)

(
ti, 𝜃

(q))
, 𝜃

(q))BD (ti) , (54)

̃f
(j) (
𝚲(j)

(
ti, 𝜃

(q))) = DT (ti)F
(

ti, 𝜃
(q)) − BT

D (ti)F(j)I
(
𝚲(j)

(
ti, 𝜃

(q))
, 𝜃

(q))
. (55)

4.2 Algorithm scheme

The proposed nonlinear stochastic finite element method for solving stochastic elastoplastic problems is summarized
in Algorithm 1, which consists of three-loop procedures. The outer loop is from step 3 to step 26, which is used to compute
the stochastic solution u (ti, 𝜃) at each time step ti and the looping number of which is the same as total time steps nt. The
middle loop from step 5 to step 20 is used to solve the couples

{
𝜆j (ti, 𝜃) ,dj (ti)

}k
j=1 in (27), and the inner loop from step 8

to step 16 is used to solve each couple {𝜆k (ti, 𝜃) ,dk (ti)}. Before the outer loop, we precompute the stochastic matrices
Me

(
̂𝜽

)
∈ R

nI×nI×ns,1 , Me

(
̂𝜽

∗)
∈ R

nI×nI×ns,2 and the deterministic matrix B ∈ RnI×nI in step 1, where the sample size ns,1

is used to solve the deterministic vector
{

dj (ti)
}k

j=1 in the middle and inner loops and the sample size ns,2 is adopted to
solve the final stochastic solution in the outer loop. Significant computational effort is saved by setting ns,1 ≪ ns,2, but
good accuracy is still achieved. The performance of this strategy will be illustrated in numerical examples. In step 2,
stochastic solutions ũ(1)

(
t0, ̂𝜽

)
and ũ(2)

(
t0, ̂𝜽

∗)
are initialized for the middle and inner loops and the final solution in

the outer loop. To execute the inner loop, a random sample vector 𝜆

(0)
k

(
ti, ̂𝜽

)
∈ R

ns,1 is initialized in step 7. It is noted
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ZHENG and NACKENHORST 3421

Algorithm 1. Algorithm for solving stochastic elastoplastic problems

1: Precompute the stochastic matrices Me

(
̂𝜽

)
, Me

(
̂𝜽

∗)
and the deterministic matrix B

2: Set stochastic solutions ũ(1)
(

t0, ̂𝜽
)
= 0 ∈ R

n×ns,1 and ũ(2)
(

t0, ̂𝜽
∗)
= 0 ∈ R

n×ns,2 of the step t0

3: for ti = t1,… , tnt do
4: Initialize the stochastic solution u0

(
ti, ̂𝜽

)
= ũ(1)

(
ti−1, ̂𝜽

)
of time step ti

5: while 𝜖u,k ≥ 𝜖u do
6: Calculate the sparse stochastic matrix MT,p

(
uk−1

(
ti, ̂𝜽

)
,
̂𝜽

) (
⇒ KT,p

(
uk−1

(
ti, ̂𝜽

)
,
̂𝜽

))

7: Initialize the random samples 𝜆(0)k

(
ti, ̂𝜽

)
=

{
𝜆

(0)
k

(
ti, 𝜃

(q))
}ns,1

q=1
∈ R

ns,1

8: while 𝜖d,j ≥ 𝜖d do
9: Assemble the matrix K∗

T,k (ti) and the vector F∗k (ti) by (49) and (50)
10: Solve the deterministic vector d(j)k (ti) ∈ Rn by (30)
11: Orthogonalize d(j)k (ti)⊥ {dl (ti)}k−1

l=1 and normalize ‖
‖
‖

d(j)k (ti)
‖
‖
‖
= 1

12: Calculate the random sample vectors ak

(
ti, ̂𝜽

)
, bk

(
ti, ̂𝜽

)
∈ R

ns,1 by (52) and (53)

13: Solve the random sample vector 𝜆(j)k

(
ti, ̂𝜽

)
∈ R

ns,1 by (37)
14: Compute the iterative error 𝜖d,j
15: j ← j + 1
16: end while
17: Update the stochastic solution uk

(
ti, ̂𝜽

)
= uk−1

(
ti, ̂𝜽

)
+ 𝜆k

(
ti, ̂𝜽

)
dk (ti)

18: Compute the iterative error 𝜖u,k
19: k ← k + 1
20: end while
21: Update the random vector 𝚲(1)

(
ti, ̂𝜽

)
∈ R

k×ns,1 by Algorithm 2

22: Update the stochastic solution ũ(1)
(

ti, ̂𝜽
)
= ũ(1)

(
ti−1, ̂𝜽

)
+D (ti)𝚲(1)

(
ti, ̂𝜽

)

23: Solve the random vector 𝚲(2)
(

ti, ̂𝜽
∗)
∈ R

k×ns,2 by Algorithm 2

24: Compute the stochastic solution ũ(2)
(

ti, ̂𝜽
∗)
= ũ(2)

(
ti−1, ̂𝜽

∗)
+D (ti)𝚲(2)

(
ti, ̂𝜽

∗)

25: ti ← ti+1
26: end for

that any nonzero vectors of size ns,1 can be used as the initialization and it almost has no influence on the computational
accuracy and efficiency of the proposed method. With the known random sample vector, the deterministic vector d(j)k (ti)
is solved in step 10 via linearized finite element equations. By using the Gram–Schmidt orthogonalization (33) in step 11,
d(j)k (ti) is orthogonalized and normalized along the whole iteration. With the obtained vector d(j)k (ti), the random sample

vector 𝜆(j)k

(
ti, ̂𝜽

)
of the random variable 𝜆

(j)
k (ti, 𝜃) is calculated in step 12 by the non-intrusive approach. After the inner

loop, the stochastic solution uk

(
ti, ̂𝜽

)
is recursively updated in step 17 in the middle loop. Then we can calculate the

sparse stochastic matrix MT,p

(
uk−1

(
ti, ̂𝜽

)
,
̂𝜽

)
in step 17 based on the new stochastic solution and start the next inner

loop. Based on the known matrix D (ti) obtained by the middle and inner loops, we can generate reduced-order stochastic
problems in steps 21 to 24 in the outer loop. The random vectors 𝚲(1)

(
ti, ̂𝜽

)
and 𝚲(2)

(
ti, ̂𝜽

∗)
are recalculated by solving

ns,1 and ns,2 k-dimensional nonlinear stochastic finite element equations using Algorithm 2, which simply extends the
classical Newton iteration to the reduced-order nonlinear stochastic finite element equations but has better convergence
and lower computational effort. Corresponding stochastic solutions ũ(1)

(
ti, ̂𝜽

)
and ũ(2)

(
ti, ̂𝜽

∗)
are thus updated. The

stochastic solution ũ(1)
(

ti, ̂𝜽
)

is only used to the next middle and inner loops and ũ(2)
(

ti, ̂𝜽
∗)

is considered as the final
stochastic solution of the time step ti.
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3422 ZHENG and NACKENHORST

Algorithm 2. Algorithm of the reduced-order Newton iteration

1: for q = 1,… ,ns do
2: Initialize the solution 𝚲

(
𝜃

(q)) = 0 ∈ Rk

3: while 𝜖NR,k ≥ 𝜖NR do
4: Assemble the reduced-order tangent matrix ̃kT

(
𝚲(j) (ti, 𝜃)

)
∈ Rk×k and the vector ̃f

(k) (
𝚲(j) (ti, 𝜃)

)
∈ Rk

by (54) and (55)
5: Solve the increment Δ𝚲

(
𝜃

(q)) ∈ Rk by (40)
6: Update the solution 𝚲(k+1) (

𝜃

(q)) = 𝚲(k)
(
𝜃

(q)) + Δ𝚲(k)
(
𝜃

(q))

7: Compute the iterative error 𝜖NR,k
8: k ← k + 1
9: end while

10: q ← q + 1
11: end for

Two iterative criteria in Algorithm 1 are used to check the convergence, that is, 𝜖d,j in step 14 and 𝜖u,k in step 18. The
locally iterative error 𝜖d,j is defined as

𝜖d,j =
‖
‖
‖

d(j)k (ti) − d(j−1)
k (ti)

‖
‖
‖

‖
‖
‖

d(j)k (ti)
‖
‖
‖

= 2 − 2d(j)Tk (ti)d(j−1)
k (ti) , (56)

which measures the difference between the vectors d(j)k (ti) and d(j−1)
k (ti) and the calculation is stopped when d(j)k (ti) is

almost the same as d(j−1)
k (ti). Similarly, the globally iterative error 𝜖u,k is defined as

𝜖u,k =

‖
‖
‖
‖

uk

(
ti, ̂𝜽

)
− uk−1

(
ti, ̂𝜽

)‖
‖
‖
‖

‖
‖
‖
‖

uk

(
ti, ̂𝜽

)‖
‖
‖
‖

=
̂E

{
𝜆

2
k

(
ti, ̂𝜽

)}
dT

k (ti)dk (ti)
∑k

i,j=1
̂E

{
𝜆i

(
ti, ̂𝜽

)
𝜆j

(
ti, ̂𝜽

)}
dT

i (ti)dj (ti)
=

̂E

{
𝜆

2
k

(
ti, ̂𝜽

)}

∑k
i=1

̂E

{
𝜆

2
i

(
ti, ̂𝜽

)} , (57)

which measures the contribution of the kth couple {𝜆k (ti, 𝜃) ,dk (ti)} to the stochastic solution uk (ti, 𝜃). However, (57)
is not a good criterion in many cases since the random variables

{
𝜆j (ti, 𝜃)

}k
j=1 are calculated in a sequential way and

̂E

{
𝜆

2
k

(
ti, ̂𝜽

)}
does not keep decreasing. We avoid this issue by replacing

{
𝜆j (ti, 𝜃)

}k
j=1 in (57) with new random variables

{
̃
𝜆j (ti, 𝜃)

}k

j=1
that are calculated as following.31 To this end, we calculate the autocorrelation function of the random

vector 𝚲 (ti, 𝜃) by

C𝚲𝚲 (ti) = ̂E

{
𝚲
(

ti, ̂𝜽
)
𝚲T

(
ti, ̂𝜽

)}
∈ R

k×k
, (58)

which is decomposed into

C𝚲𝚲 (ti) = Q (ti)Z (ti)QT (ti) (59)

by the eigen decomposition, where Q (ti) ∈ Rk×k is an orthonormal matrix and Z (ti) is a diagonal matrix with elements on

the diagonal in descending order. A new random vector is given by ̃𝚲 (ti, 𝜃) = QT (ti)𝚲 (ti, 𝜃) =
[
̃
𝜆1 (ti, 𝜃) , … ,

̃
𝜆k (ti, 𝜃)

]T
∈

Rk and its autocorrelation function is C
̃𝚲̃𝚲 (ti) = Z (ti). Substituting new random variables

{
̃
𝜆j (ti, 𝜃)

}k

j=1
into (57) the

iterative error 𝜖u,k becomes as

𝜖u,k =
̂E

{
̃
𝜆

2
k (ti, 𝜃)

}

∑k
i=1

̂E

{
̃
𝜆

2
i (ti, 𝜃)

} = Zk (ti)
Tr (Z (ti))

, (60)
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ZHENG and NACKENHORST 3423

where Tr (⋅) is the trace operator and Zk (ti) is the kth diagonal element of the matrix Z (ti). In this way, the iterative error
𝜖u,k keeps decreasing as the retained item k increases. More details of this improved error estimation can also be found in
Reference 31. Also, the iterative error 𝜖NR,k in step 3 in Algorithm 2 is defined as

𝜖u,k =
‖
‖
‖
Δ𝚲(k)

(
𝜃

(q))‖‖
‖

‖
‖
‖
𝚲(k)

(
𝜃
(q)
)‖
‖
‖

, (61)

which measures the contribution of the kth incrementΔ𝚲(k)
(
𝜃

(q)) to the solution 𝚲(k)
(
𝜃

(q)) and the iteration stops when
the increment contributes little to the final solution.

Let us revisit the weak intrusiveness of the proposed method. On one hand, the matrix K∗
T,k (ti) and the vector F∗k (ti)

assembled in step 9 in Algorithm 1 only involve the sample matrices Me

(
̂𝜽

)
, MT,p

(
uk−1

(
ti, ̂𝜽

)
,
̂𝜽

)
and the sample vec-

tors F
(

ti, ̂𝜽
)

, FI

(
uk−1

(
ti, ̂𝜽

)
,
̂𝜽

)
in (49) and (50), which can be assembled using existing codes in non-intrusive ways (a

slight modification taking advantage of sparsity to save memory and accelerate computation). In step 10, existing numer-
ical solvers are used to solve (30), where the matrix K∗

T,k (ti) keeps the same size and matrix properties as the original
stochastic matrix KT (uk−1 (ti, 𝜃) , 𝜃). On the other hand, the recalculated Equation (40) only requires few effort for assem-
bling the reduced-order matrix and vector in (41) and (42) and its solution by Algorithm 2 is fully non-intrusive. In these
senses, we implement the intrusive approximation (25) of the stochastic solution only in weakly intrusive ways and most
existing codes can be reused as-is or slightly modified.

5 NUMERICAL EXAMPLES

In this section, we test the proposed nonlinear stochastic finite element algorithm by a two-dimensional stochastic elasto-
plastic problem. The convergence errors are set as 𝜖d = 1 × 10−3, 𝜖u = 1 × 10−6 in Algorithm 1 and 𝜖NR = 1 × 10−10 in
Algorithm 2. For all examples, the sample sizes in step 2 in Algorithm 1 are set as ns,1 = 100 and ns,2 = 1 × 104, respec-
tively. Reference solutions are obtained by using 1 × 104 MC simulations. To eliminate the influence caused by sampling
processes, the same 1 × 104 random samples are used for both the proposed SFEM and MC simulations. All examples are
performed on a laptop (dual-core, Intel Core i7, 2.40 GHz).

5.1 Problem setting

We consider a plate with a hole shown in Figure 1A, where the length l = 2 m and the width w = 1 m. The radius of the
circle is r = 0.2 m. Vertical forces f (x, y) are applied on two sides. We only consider a quarter plate shown in Figure 1B for
the analysis due to the symmetry. It is noted that we need to assume that the random material properties have the same
symmetry as the geometry. Otherwise, we can only perform the analysis on the whole domain instead of the quarter. By
means of finite element discretization, np = 292 nodes and ne = 514 linear triangular elements are generated, and n = 584
degrees of freedom are involved in total. The stochastic displacement in the x direction ux (t, 𝜃) = 0 holds on the boundary
ΓD1 and the stochastic displacement in the y direction uy (t, 𝜃) = 0 holds on the boundary ΓD2.

We only consider a deterministic hardening parameter 𝜛 (𝜃) = 1 × 104 Pa in (11), but it is not a limitation of the
proposed method. A random variable/field 𝜛 (𝜃) is easy to be embedded into the proposed computational framework.
The stochastic bulk modulus 𝜅 (𝜃) and the stochastic shear modulus 𝜇 (𝜃) in (10) are given by

𝜅 (𝜃) =
E (x, y, 𝜃)
3 (1 − 2𝜈)

, 𝜇 (𝜃) =
E (x, y, 𝜃)
2 (1 + 𝜈)

, (62)

where the Poisson rate 𝜈 = 0.29, the Young’s modulus E (x, y, 𝜃) is a Gaussian random field with the mean value
E0 (x, y) = 2.07 × 105 Pa and the covariance function

Cov (x1, y1; x2, y2) = 𝜎

2
Cov exp

(

− |x2 − x1|

lx
−

|y2 − y1|

ly

)

, (63)
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3424 ZHENG and NACKENHORST

(A) (B)

F I G U R E 1 Model setting: (A) Model of the plate with a hole (B) finite element mesh of the quarter plate and the two reference point A
and B. (A) Physical model. (B) Finite element mesh.

where the standard deviation 𝜎Cov = 0.1E0 (x, y) and the correlation lengths lx = ly = 1 m. By using the Karhunen–Loève
(KL) expansion,39,40 the random field E (x, y, 𝜃) is approximated as

E (x, y, 𝜃) = E0 (x, y) +
rE∑

j=1
𝜉j (𝜃)

√
𝜒E,jEj (x, y) , (64)

where rE is the number of the truncation,
{
𝜉j (𝜃)

}rE
j=1 are mutually independent standard Gaussian random variables, and

{
𝜒E,j,Ej (x, y)

}rE
j=1 are eigenvalues and eigenfunctions of the covariance function Cov (x1, y1; x2, y2). They are solved by the

following homogeneous Fredholm integral equation of the second kind,

∫

Ω

Cov (x1, y1; x2, y2)Ej (x1, y1) dx1dy1 = 𝜒E,jEi (x2, y2) . (65)

Similarly, the yield stress 𝜎Y (x, y, 𝜃) is a Gaussian random field with the mean value 𝜎Y,0 (x, y) = 250 Pa and the covariance
function given in (63). It is also approximated as

𝜎Y (x, y, 𝜃) = 𝜎Y,0 (x, y) +
r
𝜎Y∑

i=1
𝜂i (𝜃)

√
𝜒
𝜎Y,i𝜎Y,i (x, y) , (66)

where the standard deviation 𝜎Cov = 0.1𝜎Y,0 (x, y) and {𝜂i (𝜃)}
r
𝜎Y

i=1 are mutually independent standard Gaussian random
variables and they are independent of the random variables {𝜉i (𝜃)}

rE
i=1. We let the number of the truncation r

𝜎Y = rE =
10 and the stochastic dimensionalities are 20 in total. Studies on the truncation error can be found in Reference 25,
which is beyond the scope of this article. According to (65), 𝜒

𝜎Y,i = 𝜒E,i and 𝜎Y,i (x, y) = Ei (x, y), i = 1, … , rE hold. The
samples 𝜃(i) such that minx,y∈Ω E

(
x, y, 𝜃(i)

)
≤ 1 × 10−3 and minx,y∈Ω 𝜎Y

(
x, y, 𝜃(i)

)
≤ 1 × 10−3 are dropped out in practical

implementation. Furthermore, in many applications, the modified exponential covariance kernel is suggested to simulate
random fields due to its good properties.41,42 We only consider the classical exponential covariance kernel in this article.
It is easy to consider the modified exponential covariance kernel in the proposed SFEM by a slight modification of (63).

According to the KL expansion (64), the stochastic matrix Me (𝜃) in (45) has a separated form

Me (𝜃) =
rE∑

i=0
𝜉i (𝜃)Me,i. (67)
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ZHENG and NACKENHORST 3425

The elastic stochastic stiffness matrix Ke (𝜃) is thus calculated by

Ke (𝜃) = BTMe (𝜃)B =
rE∑

i=0
𝜉i (𝜃)Ke,i, (68)

where the deterministic matrices Ke,i = BTMe,iB ∈ Rn×n
, i = 0, 1, … , rE. The matrices in (49), (52), and (54) are then

computed via

BT
E

{
𝜆

2
k

(
tj, ̂𝜽

)
Me

(
̂𝜽

)}
B =

rE∑

i=0
E

{
𝜆

2
k

(
tj, ̂𝜽

)
𝜉i

(
̂𝜽

)}
Ke,i, (69)

(Bdk (ti))TMe

(
̂𝜽

)
(Bdk (ti)) =

rE∑

i=0
𝜉i

(
̂𝜽

) (
dT

k (ti)Ke,idk (ti)
)
, (70)

BT
D (ti)Me (𝜃)BD (ti) =

rE∑

i=0
𝜉i (𝜃)

(
DT (ti)Ke,iD (ti)

)
. (71)

In this way, we can deal with the stochastic elastic part of the nonlinear problem by precomputing and storing the
matrices B and

{
Ke,i

}rE
i=0. Only the stochastic matrix Mp (𝜃) needs to be assembled in each iteration, which saves a lot of

computational effort and storage memory.

5.2 Example 1: Subjected to a monotonic load

In this case, we consider the force f (x, y) = 200N, which is loaded monotonically in nt = 11 time steps {t0, t1, … , t10}. For
each time step, the iterative errors 𝜖u,k are shown in Figure 2, which demonstrates that the proposed method has good
convergence. For all time steps, k = 6 to 12 retained terms

{
𝜆j (ti, 𝜃) ,dj (ti)

}k
j=1 can achieve high-accuracy approximations

of the stochastic solutions u (ti, 𝜃). For the final stochastic solutions and the post-processing, 90 deterministic vectors
dj (ti) ∈ R584 and 90 sample vectors 𝜆j

(
ti, ̂𝜽

)
∈ R104 are required to store. The first six deterministic vectors

{
dj (ti)

}6
j=1 in

the y direction at the time steps t1 and t10 are depicted in the first and second lines of Figure 3, respectively. For the time
step t1, all elements are in elastic states. The vectors

{
dj (t1)

}
j only involve global behavior and they are not used to capture

local nonlinear properties. Further, the vectors
{

dj (t1)
}

j can be used to approximate the stochastic solution as long as all
elements are in elastic states. In other words, only one set of vectors

{
dj (t1)

}
j is sufficient to approximate all stochastic

solutions of stochastic elastic problems, which is independent of the time step. As a comparison, the vectors
{

dj (t10)
}

j

2 4 6 8 10 12

10-6

10-4

10-2

100

F I G U R E 2 Iterative errors of different time steps.
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3426 ZHENG and NACKENHORST

F I G U R E 3 The first six vectors
{

dj (ti)
}6

j=1 in the y direction at the time step t1 (the first line) and the time step t10 (the second line).

2 4 6 8 10 12 14

Displacement 10-4

0

2000

4000

6000

8000

P
D

F

2 4 6 8 10 12 14

10-4

0

20

40

60

80

(A) (B)

F I G U R E 4 PDFs of displacements of the points A and B in the y direction at the time step t10 obtained by the proposed SFEM and
MCS. (A) PDFs obtained by the proposed SFEM and MCS. (B) Absolute errors between the proposed SFEM and MCS.

involve local nonlinear properties to capture the stochastic solutions in plastic states. They are different for different time
steps since more elements are in plastic states as the time step increases.

To verify the computational accuracy of the proposed method, probability density functions (PDFs) of the points A and
B (shown in Figure 1B) obtained by the proposed nonlinear SFEM and MCS are compared in Figure 4A, which indicates
that the PDFs obtained by the proposed method are very consistent with that of MCS. To quantify the approximate errors
of PDFs, the absolute errors between the proposed SFEM and MCS are given in Figure 4B. Since the values of tails of
the PDFs are very close to zero, relative errors are not suitable to describe the approximate errors for whole PDFs. The
relative error around the maximum PDF (the corresponding displacement is about 7.0 × 10−4) of the point A can be
roughly estimated to be 1%, and that of the point B (the corresponding displacement is about 3.2 × 10−4) is less than 1%,
which indicates the high accuracy of the proposed method. We highlight that the proposed method can also be used as a
stochastic reduced-order method. To show this point, ten sample realizations of displacement-load curves of the points A
and B obtained by the reduced basis

{
dj (ti)

}
j=1 and MC simulations (i.e., full-order equations) are depicted in Figure 5A,C,

respectively, and the corresponding errors relative to MCS are shown in Figure 5B,D. The maximum relative errors of
both point A and point B are less than 0.01%, which demonstrates the high-accuracy approximation of the reduced-order
equations.
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ZHENG and NACKENHORST 3427
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F I G U R E 5 Ten sample realizations of displacements of the points A and B in the y direction. (A) Sample realizations of the
displacement of the point A. (B) Relative errors relative to the displacements from MCS. (C) Sample realizations of the displacement of the
point B. (D) Relative errors relative to the displacements from MCS.

A fine mesh including np = 722 nodes and ne = 1331 elements is further solved by using the proposed nonlinear
SFEM. PDFs and sample realizations of similar accuracy in Figures 4 and 5 are achieved. For the two meshes, the numbers
of retained terms at different time steps are compared in Figure 6. It is seen that the numbers of retained terms have no big
difference in the two cases. For the coarse mesh, the computational time of the proposed SFEM is 126.83 s, including the
solving time 20.74 s for calculating the matrices {D (ti)}i (i.e., the total time from the step 4 to the step 22 in Algorithm 1)
and the updating time 106.09 s for solving the final stochastic solutions (i.e., the total time of the steps 23 and 24 in
Algorithm 1), and the computational times of MCS is 1689.69 s, which indicates that the proposed SFEM saves a lot of
computational time compared to MCS. As a comparison, the solving time and the updating time for the fine mesh are 95.13
and 265.89 s, respectively. Since the sizes of the stochastic matrix MT (uk−1 (ti, 𝜃) , 𝜃) and the finite element Equation (30)
of the fine mesh are larger than that of the coarse mesh, higher computational effort is required for the fine mesh.

5.3 Example 2: Subjected to a cyclic load

In this case we consider a cyclic load shown in Figure 7 and nt = 41 time steps {t0, t1, … , t40} are adopted for the time dis-
cretization. The numbers of retained terms at different time steps {ti}40

i=1 are listed in Figure 8. It is seen that more retained

 10970207, 2023, 16, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7253 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [18/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3428 ZHENG and NACKENHORST

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

F I G U R E 6 Comparison of the numbers of retained terms at different time steps for models with 292 and 722 nodes.
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F I G U R E 7 History of the cyclic load.

terms are required for the time steps close to t10 and t30. Since the time steps t10 and t30 correspond to the maximum and
the minimum loads, more terms are needed to approximate the strongly nonlinear stochastic solutions. As comparisons,
we need less retained terms to approximate the stochastic solution of the step times close to t20 and t40 since the corre-
sponding loads are very small (even zeros when t20 and t40). The first six vectors

{
dj (ti)

}6
j=1 at the time steps t30 and t40

are depicted in the first and second lines of Figure 9. Comparing the time steps t10 and t30, although the two cases are
subjected to loads with the same absolute value, the vectors

{
dj (t10)

}
j shown in the second line of Figure 3 and

{
dj (t30)

}
j

shown in the first line of Figure 9 have different modes due to the effects of the plastic strains. For the time step t40, the
stochastic solution is linear in most regions and nonlinearities only occur in the regions with stochastic residual plastic
strains. In this case, the vectors

{
dj (t40)

}
j shown in the second line of Figure 9 are only used to capture the stochastic

displacements caused by the stochastic residual plastic strains, and its number is only slightly more than the number of
vectors for approximating stochastic solutions of elastic states.

The PDFs of the displacements of the points A and B in the y direction at the time step t40 are shown in Figure 10A
and the corresponding absolute errors are shown in Figure 10B. The relative errors around the magnitudes of PDFs (the
corresponding displacements are about−4.5 × 10−5 for the point A and−6.3 × 10−5 for the point B) are less than 2.5% and
2.0%, respectively, which indicates that the proposed SFEM still has high accuracy for the case under cyclic loads. But
the errors are slightly increased than that of the case under monotonic loads illustrated in Example 5.2. Furthermore, ten
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F I G U R E 8 The numbers of retained terms at different time steps.

F I G U R E 9 The first six vectors
{

dj (ti)
}6

j=1 in y direction at time step t30 (the first line) and time step t40 (the second line).

sample realizations of displacement-load curves of the points A and B obtained by the proposed nonlinear SFEM and MC
simulations are shown in Figure 11A,C, respectively. The corresponding errors relative to MCS are shown in Figure 11B,D,
which indicates that relative errors of stochastic displacements of the points A and B are very small and the proposed
SFEM can still be used as a stochastic reduced-order approach under complex loading. It is also seen that most relative
errors are still less than 0.01%. The relative errors are a bit larger for some steps corresponding to the time steps 20 to
30 due to the stochastic displacements close to zero. The computational times of the proposed nonlinear SFEM and MC
simulations are 427.88 s (including the solving time 88.16 s and the updating time 339.72 s) and 6414.12 s, respectively,
which demonstrates that the proposed method is still cheap enough. Also, compared to the computational cost for this
example and that for Example 5.2, it is found that the computational cost almost proportionally increases with the number
of total time steps. Thus, reducing the number of total time steps with an adaptive time-stepping method will greatly
reduce the computational cost, which is beyond the scope of this article and will be investigated in future research.

5.4 Example 3: High-dimensional stochastic case

In this example, we consider a high-dimensional stochastic case by letting the number of the truncation rE = r
𝜎Y = 50

in (64) and the total stochastic dimensionalities are 100 in this case. The sample size in step 2 in Algorithm 1 are reset
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F I G U R E 10 PDFs of displacements of the points A and B in the y direction at the time step t40 obtained by the proposed SFEM and
MCS. (A) PDFs obtained by the proposed SFEM and MCS. (B) Absolute errors relative to the PDFs by MCS.
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F I G U R E 11 Ten sample realizations of the stochastic displacements of the points A and B in the y direction. (A) Sample realizations of
the displacement of the point A. (B) Relative errors relative to the displacements from MCS. (C) Sample realizations of the displacement of
the point B. (D) Relative errors relative to the displacements from MCS.
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ZHENG and NACKENHORST 3431

as ns,1 = 1000. The monotonic load in Example 5.2 and 11 time steps are adopted. The iterative errors 𝜖u,k of each time
step {ti}10

i=1 are shown in Figure 12 and k = 8 to 14 retained terms
{
𝜆j (ti, 𝜃) ,dj (ti)

}k
j=1 are required for the specified pre-

cision. Compared to the iterative errors shown in Figure 2, the convergence rate is lower in this case due to the large
uncertainties caused by high-dimensional random variables. The comparison between the number of retained terms of
each time step for the stochastic dimensionalities 20 (i.e., the case in Example 5.2) and 100 is depicted in Figure 13. The
number of retained terms of each time step in this case is greater than that of the stochastic dimensionalities 20 and 109
deterministic vectors dj (ti) ∈ R584 and 109 random sample vectors 𝜆j

(
ti, ̂𝜽

)
∈ R104 are involved in total. The solving and

updating times of the proposed method and the MCS time are 49.92, 137.62, and 1726.35 s, respectively, which is a little
bit time-consuming since more retained terms

{
𝜆j (ti, 𝜃) ,dj (ti)

}
are required to be resolved.

The PDFs of the stochastic displacements of the points A and B in the y direction at the time step t10 are shown in
Figure 14A and the corresponding absolute errors are seen from Figure 14B. Comparing Figures 4B and 14B, larger abso-
lute errors are obtained in high-dimensional stochastic cases. The PDFs shown in Figure 14A are very close to that of
the low-dimensional case considered in Figure 4A since the last few dozens of random terms expanded by KL expan-
sion (64) maybe have less contributions to the quantities of interest. It is noted that the proposed SFEM solves both
low- and high-dimensional stochastic problems in a unified computational frame and no additional modifications for

2 4 6 8 10 12 14
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10-4

10-2

100

F I G U R E 12 Iterative errors of different time steps when the stochastic dimensionality 100.
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F I G U R E 13 Comparison of the numbers of retained terms at different time steps with the stochastic dimensionalities 20 and 100.
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F I G U R E 14 PDFs of displacements of the points A and B in the y direction at the time step t10 obtained by the proposed SFEM and MCS
when the stochastic dimensionality 100. (A) PDFs obtained by the proposed SFEM and MCS. (B) Absolute errors relative to the PDFs by MCS.
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F I G U R E 15 Comparison of the numbers of retained terms at different time steps with the standard deviations 𝜎Cov = 0.1□ and 0.2□.

high-dimensional stochastic problems are performed. Thus, we only need to execute the stochastic analysis under 100
stochastic dimensionalities directly in this case. If there are larger uncertainties caused by high-dimensional expansions,
only more additional retained terms are required to capture the large variability of the stochastic solutions.

5.5 Example 4: Random sources with large variability

In this example, we consider that the stochastic Young’s modulus E (x, y, 𝜃) and the stochastic yield stress 𝜎Y (x, y, 𝜃) have
larger variability by letting the standard deviations as 0.2E0 (x, y) and 0.2𝜎Y,0 (x, y), that is, 0.2 times the mean values,
hereinafter which is simply notated as 𝜎Cov = 0.2□. The number of the truncation rE = r

𝜎Y = 10 in (64) and the total
stochastic dimensionalities are 20. The monotonic load in Example 5.2 and 11 time steps {t0, t1, … , t10} are still adopted
in this case. The comparison between the number of retained terms of each time step for the cases 𝜎Cov = 0.1□ (i.e., the
case in Example 5.2) and 𝜎Cov = 0.2□ is depicted in Figure 15. It is seen that the number of retained terms of the case
𝜎Cov = 0.2□ are greater than that of the case 𝜎Cov = 0.1□ for all time steps, and 139 terms

{
𝜆j (ti, 𝜃) ,dj (ti)

}
are retained to

approximate the stochastic solution with large variability. The computational time is 178.06 s, including the solving time
35.75 s and the updating time 142.31 s, which is much less than the computational time 1746.46 s for MC simulations.
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F I G U R E 16 PDFs of displacements of the points A and B in the y direction at the time step t10 obtained by the proposed SFEM and
MCS. (A) PDFs obtained by the proposed SFEM and MCS. (B) Absolute errors relative to the PDFs by MCS.

Since more terms
{
𝜆j (ti, 𝜃) ,dj (ti)

}
are solved in this case, the computational cost is little higher than that of the case

𝜎Cov = 0.1□. The PDFs of the displacements of the points A and B in the y direction at the time step t10 are shown in
Figure 16A and the corresponding absolute errors are shown in Figure 16B. Magnitudes of absolute errors are very small
compared to the magnitudes of their PDFs and the proposed SFEM still has good accuracy in this case. Also, the proposed
method can well capture the long-tailed characteristics of the PDFs, which is of great help for uncertainty quantification
in many stochastic problems. For instance, a high-accuracy approximation of PDF tails is critical in structural reliability
analysis. Applying the proposed SFEM to uncertainty quantification for stochastic elastoplastic problems is beyond the
scope of this article and will be carried out in a follow-up study.

6 CONCLUSIONS AND DISCUSSIONS

This article develops an accurate and efficient nonlinear stochastic finite element method to solve stochastic elastoplas-
tic problems. A stochastic Newton method is adopted to linearize the nonlinear stochastic finite element equation at
each time step. A weakly intrusive approximation of the stochastic solution and a dedicated iteration are used to solve
the corresponding linearized stochastic finite element equations. In this way, the original stochastic problem is trans-
formed into a series of deterministic linear finite element equations and the corresponding one-dimensional stochastic
algebraic equations. Existing FEM solvers can be used to solve the deterministic linear finite element equations without
any modification. All stochastic analyses are performed by the one-dimensional stochastic algebraic equations that are
efficiently solved by a proposed non-intrusive method. The curse of dimensionality of high-dimensional stochastic elasto-
plastic problems is thus circumvented with great success, which has been illustrated via a numerical case of up to 100
stochastic dimensionalities. However, there are still several intriguing issues that require to be investigated further. Only
stochastic Newton iteration is used to deal with the stochastic nonlinearity in this article. Other nonlinear iterations, for
example, stochastic quasi-Newton method, can also be developed for this purpose. Also, it is attractive to introduce adap-
tive time-stepping strategies to reduce the number of total time steps, which will save a lot of computational effort of the
proposed method.
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