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Abstract

We develop methods to obtain optimal forecast under long memory in the

presence of a discrete structural break based on different weighting schemes

for the observations. We observe significant changes in the forecasts when

long-range dependence is taken into account. Using Monte Carlo simulations,

we confirm that our methods substantially improve the forecasting perfor-

mance under long memory. We further present an empirical application to

inflation rates that emphasizes the importance of our methods.
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1 | INTRODUCTION

Forecasting is among the most prominent areas of time-
series analysis. It has drawn particular interest in
macroeconomics and finance, although imprecise and
unreliable forecasts might be produced in the presence of
structural breaks due to instabilities. A reason for this
instability is that the usual forecasting strategy when
there are structural breaks in the series would be to esti-
mate the break point and use the post-break data for fore-
casting. This strategy leads on the one hand to only a
short time period used for forecasting and on the other
hand to neglecting available information given by the
dependence structure of the time series. Many studies
(see Clements & Hendry, 2000; Giacomini & Rossi, 2009;
Inoue & Rossi, 2011; Paye & Timmermann, 2006;
Rossi, 2013; Stock & Watson, 1996) provide evidence of
such instabilities. However, Bayesian models have been

proposed by Pesaran et al. (2006), Koop and Potter
(2007), Maheu and Gordon (2008), and Maheu and
McCurdy (2009) to address this issue.

In addition to this instability of forecasts, structural
breaks can also increase estimates of the long-run vari-
ance, which is used for normalization in tests to evaluate
the forecast performance such as the Diebold–Mariano
(DM) test. Such an increase in the long-run variance esti-
mate leads to serious power problems for these tests as
recently pointed out by Casini (2021) and Casini et al.
(2021).

To overcome the aforementioned instabilities, the
problem of forecasting under discrete structural breaks
can be addressed based on weighted observations to
obtain optimal forecasts through minimization of the
mean-square forecast error (MSFE). The most prominent
element of refining the forecasting performance is the
one-step-ahead forecast assumption, which plays an
important role in improving the precision of forecasts
within a variety of methods that propose different
weighting observations. For instance, Pesaran et al.
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(2013) suggest defining optimal weights for each pre-
break and post-break observation. However, Pesaran and
Timmermann (2007) propose an optimal window in
which equal weights are given to observations within the
window and zero weights given to those elsewhere. And,
also defining a post-break window allows equal weights
to be applied to observations within the window after
the break, as the name suggests. Lastly, Pesaran and
Timmermann (2007) use average forecasts across estima-
tion windows (AveW) when time and size of the break is
uncertain, which as Pesaran and Pick (2011) shows to
improve forecasts; this method has the advantage of not
relying on estimated break dates and sizes.

There is a growing literature showing that processes
with structural breaks can empirically mimic long-
memory behavior in the sense of an observationally
equivalent autocovariance function or spectral density.
Examples for this literature include, among others,
Granger and Ding (1996), Granger and Hyung (2004),
Diebold and Inoue (2001), Mikosch and St�aric�a (2004), or
Casini et al. (2021). Hou and Perron (2014) and Qu
(2011) show that the two phenomena are distinct though
and lead to different asymptotic behaviors. A test for long
memory against structural breaks can be found in Qu
(2011) and a multivariate extension in Sibbertsen et al.
(2018).

A study by Sibbertsen and Kruse (2009) points out
that forecasting precision is substantially reduced if a
break in persistence is ignored. Likewise, we might expe-
rience the same problem if we apply the theoretical fore-
casting procedures in Pesaran et al. (2013) under discrete
structural breaks, ignoring possible long-range dependen-
cies, to obtain the optimal forecast of a time series exhi-
biting long memory. In this paper, we adapt the different
forecasting methods discussed in Pesaran et al. (2013) by
introducing long memory in such a setting. This develops
the existence of variance and covariance terms of an
error, which depends solely on the long memory parame-
ter d. Involvement of such terms in the theoretical fore-
casting procedures are substantially important, as they
modify the MSFEs, which results in an increase of the
pre-break weight, a decrease in the post-break weight
and an increase in the optimal window size. Conse-
quently, the approaches in Pesaran et al. (2013) are no
longer robust when long memory is present in the time
series. The main reason for this is that the optimal fore-
cast error is driven by the autocovariance function of the
underlying time series process which is in our case only
hyperbolically decaying and dependent on the memory
parameter d.

In practice, the dates and size of the break and the
memory parameters must be estimated since they are
unknown. A method for estimating the break dates under

long memory has been considered in Lavielle and
Moulines (2000) extending results of Bai and Perron
(1998), and conditional on these estimates, we obtain the
break size estimate. We use the modified local Whittle
(LW) estimator of Hou and Perron (2014) that accounts
for possible low frequency contaminations with band-
width m¼Tδ, where δ� ð0,1Þ to estimate the memory
parameters. Nevertheless, the problem of imprecise esti-
mates deteriorating the forecasting performance remains.

We conduct Monte Carlo experiments to compare the
forecasting performance of the proposed methods with
the ones discussed in Pesaran et al. (2013). We generally
observe that under discrete breaks, with larger breaks,
one can obtain more precisely estimated values and,
hence, an improved forecasting performance in terms of
optimal weight forecasts, post-break forecasts and opti-
mal window forecasts. Apart from this, we observe that
under different estimates of the break size, memory
parameters, and break dates, the MSFE is in all cases
much lower under the proposed methods than those dis-
cussed in Pesaran et al. (2013). However, the elements of
the proposed methods displaying the most significant
changes in the MSFE are the estimated optimal weights
and estimated optimal window, while the rest of the ele-
ments show no change. We further analyze the perfor-
mance by providing the DM test statistics that compares
the forecast accuracy of our proposed methods to the
ones discussed in Pesaran et al. (2013).

We apply different forecasting methods, to both pro-
posed methods in this paper and the ones discussed in
Pesaran et al. (2013) for comparison, to forecast the real
inflation rates for 10 countries covering the period from
January 1967 to December 2017. The general findings,
similar to the Monte Carlo results, are that the methods
proposed in this paper outperform the ones discussed in
Pesaran et al. (2013).

A related though somehow different problem is the
question of the out-of-sample stability of forecasts. This
problem is discussed in Casini (2018) and Perron and
Yamamoto (2021). However, this problem needs a differ-
ent methodology and is therefore not discussed in this
paper.

The rest of the paper is organized as follows. Section 2
sets up the model and derives the forecasting procedures
of the proposed methods, with the error assumed to be
an innovation process with long memory parameter d.
Section 3 conduct Monte Carlo experiments that
compares the forecasting performance of different pro-
posed methods with the ones discussed in Pesaran et al.
(2013). The results and discussion of the empirical
application of our findings are presented in Section 4.
Section 5 concludes. All detailed proofs are gathered in
Appendix S1.
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2 | A SINGLE, DISCRETE BREAK
IN A SIMPLE REGRESSION MODEL

Consider the linear regression model:

yt ¼ βtþσεεt, t¼ 1,…,Tþ1 ð1Þ

where βt describes the mean or slope parameter, σ2ε
describes the scalar error variance subject to a single
break, and εt is the innovation process associated with
long memory.

Now, we assume that βt is subject to a single, discrete
break at Tb, 1 <Tb <T:

βt ¼
β1 for t≤Tb,

β2 for Tb < t≤Tþ1:

�
ð2Þ

Let εt be a long memory process generated according
to the ARFIMAðp,d,qÞ model as proposed by Granger
and Joyeux (1980):

ΦðLÞð1�LÞdεt ¼ Ψ ðLÞηt, as t¼ 1,…,T,

where ηt is i.i.d. white noise with mean 0, variance σ2η ¼ 1
and Ejηtj2þδ <∞ for some δ>0. The AR and MA polyno-
mials, that is, ΦðLÞ and Ψ ðLÞ, respectively, are assumed
to have all roots outside the unit circle.

Now, we simply write εt �ARFIMAð0,d,0Þ because
of the power-like behavior of its covariance function,
where εt has mean E½εt� ¼ 0, the covariance is given by

Cov½εt,εtþk� ¼ E½εt,εtþk� ¼ γðkÞ

¼ σ2ε
ð�1ÞkΓð1�2dÞ

Γð1þk�dÞΓð1�k�dÞ , t¼ 1,…,T,
ð3Þ

and the variance as

Var½εt� ¼ E½ε2t � ¼ γð0Þ ¼ σ2ε
Γð1�2dÞ
Γ2ð1�dÞ , t¼ 1,…,T, ð4Þ

as defined by Beran et al. (2016), where Γð:Þ denotes the
gamma function. The above assumption is chosen only to
simplify the derivations mechanism, but does not affect
the validity of the proofs in general.

The basic concept of this section is to first derive a
general expression for the mean squared forecasting error
in our model and derive as a baseline the MSFE if the
forecasting weights are assumed to be equal. This simple
model serves as a competitor for comparison with a
choice of weights taking the long-memory structure of

the underlying process into account. We then in a next
step derive the MSFE with constant breaks before and
different constant weights after the break. Afterwards we
introduce optimal forecasting windows and derive first
post break window forecasts, afterwards forecasts when
the window contains the break. Last, an average across
the estimation windows is considered.

Now we turn to considering different methods for
weighting past observations wt, when estimating the
regression coefficient. In this case, β̂TðwÞ as suggested by
Pesaran et al. (2013) is given by

β̂TðwÞ ¼
XT
t¼1

wtyt, ð5Þ

subject to the restriction
PT

t¼1wt ¼ 1, such that the
resulting MSFE of the one-step-ahead forecast,
ŷTþ1 ¼ β̂TðwÞ, is minimized.

As we state in the following theorem, we consider the
weights of past observations to be used in the estimation,
β̂TðwÞ, and thereby obtain the resulting general MSFE of
the one-step-ahead forecast.

Theorem 1. In the linear regression model (1),
the scaled MSFE of the one-step-ahead forecast
is generally computed as

E σ�2
ε e2Tþ1ðwÞ

� �
¼ Aþ λ2

XTb

t¼1

wt

 !2

þA
XT
t¼1

w2
t þ2

XT
s¼2

XT
t¼s

ws�1wt γðt� sþ1Þ,

ð6Þ

where k ¼ t� sþ1,A¼ σ2ε
Γð1�2dÞ
Γ2ð1�dÞ ,

γðkÞ ¼ ð�1ÞkΓð1�2dÞ
Γð1þk�dÞΓð1�k�dÞ , λ¼ ðβ1�β2Þ=σε, and

eTþ1ðwÞ ¼ yTþ1� ŷTþ1 describes the forecast
error.

The above result is derived by using Equations (1), (2)
and (5) to obtain the expression of the forecast error, and
then the error is squared, divided by σ2ε and the expected
value is applied to obtain the derivation of the MSFE
scaled by the error variance.

By using Equations (1), (2) and (5), we obtain the sim-
plified expression as

β̂TðwÞ�βT ¼ β1�β2ð Þ
XTb

t¼1

wtþσε
XT
t¼1

wtεt:

Then, the expression of forecast error is given by

PAZA MBOYA and SIBBERTSEN 3
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eTþ1ðwÞ ¼ yTþ1� ŷTþ1,

¼ yTþ1� β̂TðwÞ,

¼ σεεTþ1� β1�β2ð Þ
XTb

t¼1

wt�σε
XT
t¼1

wtεt,

and lastly the MSFE scaled by the error variance is

E σ�2
ε e2Tþ1ðwÞ

� �
¼ Aþ λ2

XTb

t¼1

wt

 !2

þA
XT
t¼1

w2
t þ2

XT
s¼2

XT
t¼s

ws�1wt γðt� sþ1Þ:

Next, we construct the baseline against which all other
forecasting methods are compared by suggesting equal
weights to be used in the estimation β̂TðwÞ, yielding the
MSFE of the one-step-ahead forecast, which is taken as a
reference.

Theorem 2. Under the conditions of Theorem
1, where the equal weights wequal

t ¼ 1=T is sug-
gested, then the scaled MSFE of the one-step-
ahead forecast is computed as

E σ�2
ε e2Tþ1jwequal

t

h i
¼ Aþ λ2b2þA

T
þ 2
T2

XT
s¼2

XT
t¼s

γðt� sþ1Þ,

ð7Þ

where b¼ Tb=T, k ¼ t� sþ1, A¼ σ2ε
Γð1�2dÞ
Γ2ð1�dÞ,

γðkÞ ¼ ð�1ÞkΓð1�2dÞ
Γð1þk�dÞΓð1�k�dÞ and λ¼ ðβ1�β2Þ=σε.

Using Equation (6), we replace the weights
by wt ¼ 1=T, and we obtain the scaled MSFE
for the equal weights.

Remark 1. It is obvious that forecasts using
equal weights to observations will have the
largest MSFEs among all forecasting methods.
This is why we need different methods for
weighting observations while minimizing the
MSFE of the one-step-ahead forecast.

2.1 | Optimal weights in a model with a
single, discrete break

Now, we derive the optimal weights to be used in the
estimation of the regression parameter to minimize the
MSFE of the one-step-ahead forecast.

By using Equation (6), we obtain the optimal weights

by minimizing the equation subject to
PT

t¼1wt ¼ 1. The
first derivatives are

For t≤Tb,

2λ2
XTb

t¼1

wtþ2Awtþ2
Xt
s¼2

ws�1γðt� sþ1Þ

þ2
XT
s¼tþ2

ws�1γðs� t�1Þþθ ¼ 0:

For Tb < t≤T,

2Awtþ 2
Xt
s¼2

ws�1γðt� sþ1Þþ2
XT
s¼tþ2

ws�1γðs� t�1Þ

þθ ¼ 0,

where θ is the Lagrange multiplier associated withPT
t¼1wt.

Hence, as the weights for each prebreak and post-
break observation, we obtain

wt ¼

w1 ¼�λ2

A

XTb

t¼1

wt� 1
A

Xt
s¼2

ws�1γ t� sþ1ð Þþ
XT
s¼tþ2

ws�1γ s� t�1ð Þ
" #

� θ

2A

for 1< t≤Tb,

w2 ¼�1
A

Xt
s¼2

ws�1γ t� sþ1ð Þþ
XT
s¼tþ2

ws�1γ s� t�1ð Þ
" #

� θ

2A

forTb < t≤Tþ1,

8>>>>>>>>>>><
>>>>>>>>>>>:

and w2�w1 ¼ λ2

A

PTb
t¼1wt ¼ λ2

A Tbw1. Then, we substitutePT
t¼1wt ¼ Tbw1þðT�TbÞw2 ¼ 1 to yield the optimal

weights:

For t≤Tb,

w1 ¼ 1
T

A

Tbð1�bÞλ2þA
, ð8Þ

For Tb < t≤T,

w2 ¼ 1
T

Tbλ2þA

Tbð1�bÞλ2þA
, ð9Þ

Remark 2. In comparison to Pesaran et al.
(2013), we introduce the variance and covari-
ance terms of an error that depends on the
long memory parameter d, which results to

4 PAZA MBOYA and SIBBERTSEN
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the Equation (6) and through minimization
leads to an increase in the prebreak weight
and decrease in the postbreak weight
obtained in Equations (8) and (9), respec-
tively. Intuitively, this is due to the strong cor-
relation structure of the long-memory process
and the slowly decaying correlation function
leading to higher weights for observations fur-
ther in the past.

The following theorem is obtained by using
Equations (8) and (9) in Equation (6), in which the
reduced form of the scaled MSFE for the optimal weights
is obtained.

Theorem 3. Under the conditions of Theorem
1, we assume that the weights are constant for
each pre-break observation as w1 and those for
each postbreak observation as w2, then the
scaled MSFE of the one-step-ahead forecast is
computed as

E σ�2
ε e2Tþ1jw1,w2

� �¼ AþðTbλw1Þ2þTbAw
2
1

þðT�TbÞAw2
2þ2

XT
s¼2

XT
t¼s

ws�1wt γðt� sþ1Þ:

Using Equations (8) and (9), we obtain the
reduced form of scaled MSFE for the optimal
weights:

E σ�2
ε e2Tþ1jw1,w2

� �¼ AþðT2
bλ

2þTbAÞw2
1þðT�TbÞAw2

2

þ2
XTb

s¼2

XTb

t¼s

ws�1wt γðt� sþ1Þ

þ 2
XT

s¼Tbþ1

XT
t¼s

ws�1wt γðt� sþ1Þ,

¼ A 1þ 1
T

Tbλ2þA

Tbð1�bÞλ2þA

� �
þ2w2

1

XTb

s¼2

XTb

t¼s

γðt� sþ1Þ

þ 2w2
2

XT
s¼Tbþ1

XT
t¼s

γðt� sþ1Þ,

¼ A 1þw2ð Þ

þ2 w2
1

XTb

s¼2

XTb

t¼s

γðt� sþ1Þþw2
2

XT
s¼Tbþ1

XT
t¼s

γðt� sþ1Þ
" #

:

ð10Þ

Now, we compare the MSFEs of the forecasts from
the equal weights to that of the optimal weights. So, we
compute the difference between Equations (7) and (10)
as

E σ�2
ε e2Tþ1jwequal

t

h i
�E σ�2

ε e2Tþ1jw1,w2
� �

¼ Aþ λ2b2þA
T
þ 2
T2

XT
s¼2

XT
t¼s

γðt� sþ1Þ�A

�A
T

Tbλ2þA

Tbð1�bÞλ2þA

� 2
T2

A2

Tbð1�bÞλ2þA
� �2X

Tb

s¼2

XTb

t¼s

γðt� sþ1Þ

� 2
T2

Tbλ2þA
� �2

Tbð1�bÞλ2þA
� �2 XT

s¼Tbþ1

XT
t¼s

γðt� sþ1Þ,

¼ λ2b2� Ab2λ2

Tbð1�bÞλ2þA
þ 2
T2

XTb

s¼2

XT
t¼s

γðt� sþ1Þ,

þ 2
T2

Tb2λ2 Tb2λ2�2 Tbλ2þA
� �� �

Tbð1�bÞλ2þA
� �2 XT

s¼Tbþ1

XT
t¼s

γðt� s

þ1Þ� 2
T2

A2

Tbð1�bÞλ2þA
� �2X

Tb

s¼2

XTb

t¼s

γðt� sþ1Þ:

First, we consider

λ2b2� Ab2λ2

Tbð1�bÞλ2þA

¼ Tbð1�bÞb2λ4þAb2λ2�Ab2λ2

Tbð1�bÞλ2þA
,

¼ Tb3ð1�bÞλ4
Tbð1�bÞλ2þA

≥ 0:

Next, we have

2
T2

XTb

s¼2

XT
t¼s

γðt� sþ1Þ≥ 2
T2

XTb

s¼2

XTb

t¼s

γðt� sþ1Þ,

and

XT
s¼Tbþ1

XT
t¼s

γðt� sþ1Þ ≥
XT

s¼Tbþ1

XTb

t¼s

γðt� sþ1Þ,

¼
XT
s¼2

XTb

t¼s

γðt� sþ1Þ�
XTb

s¼2

XTb

t¼s

γðt� sþ1Þ,

≥ �
XTb

s¼2

XTb

t¼s

γðt� sþ1Þ:

Thus,

PAZA MBOYA and SIBBERTSEN 5
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2
T2

XTb

s¼2

XT
t¼s

γðt� sþ1Þþ 2
T2

Tb2λ2 Tb2λ2�2 Tbλ2þA
� �� �

Tbð1�bÞλ2þA
� �2

XT
s¼Tbþ1

XT
t¼s

γðt� sþ1Þ

� 2
T2

A2

Tbð1�bÞλ2þA
� �2X

Tb

s¼2

XTb

t¼s

γðt� sþ1Þ,

≥
2
T2 1�Tb2λ2 Tb2λ2�2 Tbλ2þA

� �� �
Tbð1�bÞλ2þA
� �2 � A2

Tbð1�bÞλ2þA
� �2

" #

XTb

s¼2

XTb

t¼s

γðt� sþ1Þ≥ 0,

because

Tb2λ2 Tb2λ2�2 Tbλ2þA
� �� �þA2

Tbð1�bÞλ2þA
� �2

¼ T2b4λ4�2T2b3λ4�2Tb2λ2AþA2

T2b4λ4�2T2b3λ4�2Tb2λ2AþA2þT2b2λ4þ2Tbλ2A
≤ 1:

For this reason, we have

E σ�2
ε e2Tþ1jwequal

t

h i
�E σ�2

ε e2Tþ1jw1,w2
� �

¼ λ2b2� Ab2λ2

Tbð1�bÞλ2þA
þ 2
T2

XTb

s¼2

XT
t¼s

γðt� sþ1Þ,

þ 2
T2

Tb2λ2 Tb2λ2�2 Tbλ2þA
� �� �

Tbð1�bÞλ2þA
� �2 XT

s¼Tbþ1

XT
t¼s

γðt� sþ1Þ,

� 2
T2

A2

Tbð1�bÞλ2þA
� �2X

Tb

s¼2

XTb

t¼s

γðt� sþ1Þ≥ 0,

Remark 3. It can be seen that the forecasts
based on optimal weights have a lower MSFE
than that applying equal weights to the
observations.

2.2 | Optimal window and post break
window forecasts

As proposed in Pesaran and Timmermann (2007), an
optimal window is chosen in which equal weights are
used for the observations within the window and zero
weights to the remaining observations.

wt ¼
0, for t<Tv

1
T�Tvþ1

, forTv ≤ t<Tþ1:

8<
: ð11Þ

Suppose that the optimal window size, v, contains
observations from Tv to T (inclusive), where v¼
ðT�Tvþ1Þ=T such that Tv ¼ Tð1� vÞþ1.

Now, we consider the model (1), where βt is subject
to a single, discrete break at Tb,

βt ¼
β1 forTv ≤ t≤Tb,

β2 forTb < t≤Tþ1:

�
ð12Þ

Based on the above considerations, we now mainly
focus on the choice of the window size rather than the
weighting of observations. Henceforth, the following the-
orem is obtained by using Equations (5), (11), and (12),
in which the general scaled MSFE is derived.

Theorem 4. In the linear regression model (1),
we assume that there are equal weights within
the window and zero weights to preceding
observations according to Equation (11), then
the general scaled MSFE of the one-step-ahead
forecast is computed as

E σ�2
ε e2Tþ1

� �¼ Aþ λ2 1�ð1�bÞ
v

� �2
Iðv�ð1�bÞÞ

þ A
Tv

þ 2
T2v2

XT
s¼Tvþ1

XT
t¼s

γðt� sþ1Þ,
ð13Þ

where λ¼ ðβ2�β1Þ=σε, b¼ Tb=T, and Iðv�
ð1�bÞÞ is an indicator function introduced to
allow flexibility in cases whether the window
contain a break or not, and equals to 1 if
v> ð1�bÞ and 0 otherwise.

First, we obtain the simplified form of one-step-ahead
forecast as

ŷTþ1 ¼ β̂TðwÞ,
¼ β2f1� Iðv�ð1�bÞÞgþ Iðv�ð1�bÞÞ

β2ð1�bÞþβ1ðv�ð1�bÞ
v

� �
þ σε
Tv

XT
t¼Tv

εt:

Next, the expression of forecast error is given by

eTþ1 ¼ yTþ1� ŷTþ1,

¼ Iðv�ð1�bÞÞðβ2�β1Þ 1�ð1�bÞ
v

� �

þσεεTþ1� σε
Tv

XT
t¼Tv

εt,
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and finally the MSFE scaled by the error variance is

E σ�2
ε e2Tþ1

� �¼ Aþ λ2 1�ð1�bÞ
v

� �2
Iðv�ð1�bÞÞ

þ A
Tv

þ 2
T2v2

XT
s¼Tvþ1

XT
t¼s

γðt� sþ1Þ:

If we consider the window that contains the break so that
Iðv�ð1�bÞÞ ¼ 1 and minimize the MSFE obtained in
Equation (13), the optimal window size, v0, is

Remark 4. Again compared with Pesaran
et al. (2013), we introduce the variance and
covariance terms of an error that depends on
the long memory parameter d, which results
to Equation (13) and through minimization
leads to an increase in the optimal window
size obtained in Equation (14). Again, this is
intuitively due to the stronger correlation
structure using more information from obser-
vations further in the past.

We now consider the window that contains the break,
so we substitute Equation (14) into Equation (13), and
henceforth, the resulting MSFE for the optimal window
observations is stated in the theorem below.

Theorem 5. In the linear regression model (1),
we assume that there are equal weights within
the window and zero weights to preceding
observations but now the window contains the
break, then the scaled MSFE of the one-step-
ahead forecast is computed as

E σ�2
ε e2Tþ1jv0v> ð1�bÞ

h i
¼ Aþ A

T ð1�bÞ�
A2

4λ2ð1�bÞ2T2

1þ 4

λ2ð1�bÞT2

XT
s¼Tvþ1

XT
t¼s

γðt� sþ1Þ

1þ 4
2λ2 ð1�bÞT2

PT
s¼Tvþ1

PT
t¼s

γðt� sþ1Þ
 !2

2
666664

3
777775,

ð15Þ

where λ¼ ðβ2�β1Þ=σε.

Next, we consider the windows that contain no break
(Iðv�ð1�bÞÞ ¼ 0), so we substitute the size of the
windows with no break, v0v≤ ð1�bÞ ¼ ð1�bÞ, into
Equation (13), and henceforth, the resulting MSFE for
the postbreak window observations is stated in the below
theorem.

Theorem 6. In the linear regression model (1),
we assume that there are equal weights within

the window and zero weights to preceding
observations but now the window contains no
break, then the scaled MSFE of the one-step-
ahead forecast is computed as

E σ�2
ε e2Tþ1jv¼ ð1�bÞ� �

¼ A 1þ 1
T ð1�bÞ

� �
þ 2

T2ð1�bÞ2
XT

s¼Tvþ1

XT
t¼s

γðt� sþ1Þ,

where b ¼ Tb=T.

2.3 | Averaging across estimation
windows

The theoretical properties of the average across estima-
tion windows (AveW) are discussed in Pesaran and Pick
(2011). Using the model (1), the one-step-ahead forecast
for the AveW is

ŷTþ1 ¼
1
m

Xm
i¼1

ŷTþ1ðvðiÞÞ,

where

ŷTþ1ðvðiÞÞ ¼
1

T�TvðiÞ þ1

XT
t¼TvðiÞ

yt:

v0 ¼

ð1�bÞþ 4

2λ2ð1�bÞT2

XT
s¼Tvþ1

XT
t¼s

γðt� sþ1Þ

1� A

2λ2ð1�bÞT
, if λ2 ≥

AT
2ðT�TbÞTb

1, if λ2 <
AT

2ðT�TbÞTb
:

8>>>>>>>><
>>>>>>>>:

ð14Þ
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Here, we take the average over m different estimation
windows containing breaks so that Iðv�ð1�bÞÞ ¼ 1,
while given uncertainty over the break dates, we begin
with the minimum window, vmin ¼ 0:05. Then, we set
vðiÞ ¼ ðT�TvðiÞ þ1Þ=T such that TvðiÞ ¼ Tð1� vðiÞÞþ1, and
using Equations (1), (5), (11), (12), and (2.3), the resulting
MSFE for the AveW forecast is stated in the following
theorem.

Theorem 7. In the linear regression model (1),
we assume the average over m different estima-
tion windows containing breaks, then the
scaled MSFE of the one-step-ahead forecast is
computed as

E σ�2
ε e2Tþ1jvmin

� �¼ Aþ λ

m

Xm
i¼1

v ið Þ � 1�bð Þ
v ið Þ

I v ið Þ � 1�bð Þ� �" #2

þ A
m2

Xm
i¼1

1þ2 i�1ð Þ
Tv ið Þ

þ 2
m2

Xm
i¼1

1
T2v2ið Þ

XT
s¼Tv ið Þþ1

XT
t¼s

γ t� sþ1ð Þ,

ð16Þ

where λ¼ ðβ2�β1Þ=σε, b¼ Tb=T, vmin ¼ 0:05,
and m is the number of windows.

First, we proceed with the one-step-ahead
forecast for AveW

ŷTþ1 ¼
1
m

Xm
i¼1

ŷTþ1ðvðiÞÞ,

¼ β2þ
β2ð1�bÞ

m

Xm
i¼1

1
vðiÞ

IðvðiÞ �ð1�bÞÞ

�β1ð1�bÞ
m

Xm
i¼1

1
vðiÞ

IðvðiÞ �ð1�bÞÞ

þ β1
m

Xm
i¼1

IðvðiÞ �ð1�bÞÞ�β2
m

Xm
i¼1

IðvðiÞ

�ð1�bÞÞþσε
m

Xm
i¼1

1
TvðiÞ

XT
t¼TvðiÞ

εt:

Using the result above, the one-step-ahead fore-
cast error for AveW is

eTþ1 ¼ yTþ1� ŷTþ1,

¼ σεεTþ1þðβ2�β1Þ
m

Xm
i¼1

vðiÞ � ð1�bÞ
vðiÞ

IðvðiÞ �ð1�bÞÞ

�σε
m

Xm
i¼1

1
TvðiÞ

XT
t¼TvðiÞ

εt,

and finally the MSFE for AveW forecast is

E σ�2
ε e2Tþ1jvmin

� �¼ Aþ λ

m

Xm
i¼1

v ið Þ � 1�bð Þ
v ið Þ

I v ið Þ � 1�bð Þ� �" #2

þ A
m2

Xm
i¼1

1þ2 i�1ð Þ
Tv ið Þ

þ 2
m2

Xm
i¼1

1
T2v2ið Þ

XT
s¼Tv ið Þþ1

XT
t¼s

γ t� sþ1ð Þ:

3 | SIMULATION RESULTS

In this section, we provide a Monte Carlo simulation
study of the forecasting performance of the different opti-
mal methods proposed in this paper and compare them
to the ones discussed in Pesaran et al. (2013). We exam-
ine the simulation results for a long memory time series
with a single, discrete break based on the simple linear
regression model (1) applied to different forecasting
methods.

Initially, we simulate a fractionally integrated time
series and choose stationary long memory parameters
d� f0:1; 0:2; 0:3; 0:4g, standard break dates b�
f0:2; 0:9; 0:95g, break sizes λ� f0:5; 1; 2g, and sample
sizes T � f250; 500; 1000g. Next, we use the simulated
fractionally integrated time series to obtain the modified
LW estimator of the memory parameters d̂ as in Hou and
Perron (2014) with bandwidth m¼Tδ, where δ¼ 0:8. We
report the chosen bandwidth that is said to be MSE-optimal
in estimating the long memory parameters although the
results are robust to other smaller bandwidths, e.g. δ¼ 0:75.
We also estimate the break dates b̂ as suggested by
Lavielle and Moulines (2000), and conditional on these
estimates, we obtain the break size estimates λ̂.

Then, we use these estimates in a simple linear
regression model (1) with d̂, b̂, and λ̂ in place of d, b, and
λ to compute feasible forecasts and report the MSFE
results for N ¼ 10,000 replications.

As expected, these forecasts provide large improve-
ments in MSFE relative to the equal weights forecasts.

We also generally observe that in all cases, the fore-
casting performance of the estimated optimal weight and
estimated optimal window methods proposed in this
paper (II) outperform the ones discussed in Pesaran et al.
(2013) (I).

In Tables A3–A6, we observe that the forecasts based
on optimal weights, postbreak window, and optimal win-
dow have the highest MSFE when the break size, λ, is
small; their performance improves dramatically when λ
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is large. This shows that the methods are dependent on
the ability to detect the break accurately, which is easier
when the break size, λ, is large otherwise the detection of
the break is difficult.

Additionally, we may conclude that for the breaks
that are large and easily identified (i.e., large λ), the
methods offer substantial improvements in their forecast-
ing performance, except for AveW. This implies that the
incorrect estimation of the break dates can markedly
affect the forecast results. Therefore, accurate estimation
of the break point b̂ is extremely necessary to obtain more
precise forecast results.

Lastly, we observe that as T increases the forecasts of
these methods improve considerably except for AveW,
whereas forecasts appear to perform relatively well for
smaller T in most cases.

Furthermore, we present the power results of the DM
test statistics as suggested by Diebold and Mariano
(1995); this test is used for comparison of one-step-ahead
forecast errors of different estimated optimal forecasting
methods, both, those obtained under the methods pro-
posed in this paper (II) and the ones discussed in Pesaran
et al. (2013) (I).

The simulation studies concentrate on forecast hori-
zon, h¼ 1 and a squared errors (SE) loss function for the
DM test.

In Tables A7 and A8, we observe that power results
appear quite high to reject the null hypothesis of equal
forecast accuracy against the alternative hypothesis that
states the methods proposed in this paper (II) are more
accurate than the ones discussed in Pesaran et al. (2013)
(I), mainly the estimated optimal weight and estimated
optimal window in our case. Power results of the DM test
for other sample sizes and break dates are not shown
here but yield similar results.

4 | INFLATION RATE FORECASTS

In this section, the performance of inflation rate forecast-
ing is considered. Hyung et al. (2006) and Bos et al.
(2002) investigate out-of-sample forecasting of US infla-
tion rates and find evidence of long memory; their find-
ings are the inspiration for this study. Moreover, these
authors explore the possibility of developing a single
model that captures both occasional structural breaks
and all long memory components. Likewise, Hassler and
Wolters (1995) use a model with fractional integration
allowing for long memory and show evidence of long
memory in monthly inflation rates across all countries.
Additionally, Gadea et al. (2004) and Hsu (2005) illustrate
the risks of neglecting the presence of structural breaks
in the modeling of inflation rates.

We collect data from the OECD1 and use the monthly
CPI series for 10 countries, namely, Germany, France,
Italy, Belgium, Finland, USA, Korea, GBR, India, and
OECDE covering the period from January 1967 to
December 2017. First, we deseasonalize the data and then
transform the inflation rates to πt by taking their log dif-
ferences, that is, πt ¼ logðCPItÞ� logðCPIt�1Þ, which is
common in the literature.

In our case, we observe a single break in the mean for
all countries after obtaining the residual sum of squares
estimator considered in Lavielle and Moulines (2000),
and we apply the modified LW estimator of Hou and
Perron (2014) with bandwidth m¼T4=5 to estimate the
memory parameter of the inflation series.

In Table A1, we show that stationary long memory
exists in all series under consideration.

We apply the estimated values of break date, break
size, and memory parameter to obtain the MSFE results
under different optimal forecast methods; clearly, those
obtained under the methods proposed in this paper
(II) outperform the ones discussed in Pesaran et al.
(2013) (I) in most cases. In this paper, we observe that
the estimated AveW methods provide the best forecasts
of the inflation rates in most cases. In contrast, the esti-
mated postbreak window performs poorly, displaying the
highest MSFEs among all methods in all cases.

Moreover, Table A9 presents the p values of less than
5% in all countries; this implies that our proposed
methods provide the best forecasts in comparison to
those in Pesaran et al. (2013).

Figure B1 presents the series of inflation rates for
10 countries, where the red vertical lines represent their
corresponding estimated break dates. As before, we
obtain the memory parameter estimate d̂ as in Hou and
Perron (2014) based on the bandwidth parameter δ¼ 0:8.
We also obtain the break date estimate b̂ as suggested by
Lavielle and Moulines (2000), and conditional on these
estimates, we obtain the break size estimate λ̂.

5 | CONCLUSION

This paper shows the advantages of incorporating long-
range dependencies to obtain optimal forecasts, when-
ever long memory is present in the time series. In
addition to Pesaran et al. (2013), the methods proposed
in this paper incorporate the variance and covariance
terms of an error, where the error term is the innovation
process associated with long memory. This results to
some improvements in the MSFEs, where through mini-
mization an increase in the pre-break weight, a decrease
in the post-break weight and an increase in the optimal
window size is obtained. For that reason, there are
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changes in the optimal weight and optimal window
methods in comparison to Pesaran et al. (2013), while the
rest of the methods seem to yield no changes.

Our methods, in comparison to the ones discussed in
Pesaran et al. (2013), provide superior inflation rate fore-
casts by incorporating adjustments based on long mem-
ory. The findings are interesting because they reveal
important improvements in the minimization of the
MSFE, which is our ultimate goal.
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APPENDIX A: TABLES

These tables present the forecasting performance of dif-
ferent estimated optimal forecasting methods; both, those
obtained under the methods proposed in this paper
(II) and the ones discussed in Pesaran et al. (2013) (I).
We use the simulated fractionally integrated time series
to estimate the memory parameters with the modified
LW estimator of Hou and Perron (2014) with bandwidth
m¼Tδ, where δ¼ 0:8. We also estimate the break dates b̂
as suggested by Lavielle and Moulines (2000), and

conditional on these estimates, we obtain the break size
estimates λ̂. We report the relative MSFE results under
different optimal forecasting methods with different esti-
mated values of the break date, break size and memory
parameter. We generally observe that the forecast of the
estimated equal weight method provides the largest
MSFEs among all forecasting methods. This is always
true for most cases.

In Tables A6, A5, and A4, we observe that in most
cases, there is an decrease in efficiency of the proposed
methods due to the decrease in the sample size T.

Morever, in Table A3, we observe that in most cases,
the forecasting performance of the optimal proposed
methods perform better than those in Table A2, due to
the increase in the actual break date, b¼ 0:9 for the time
period T¼ 500.

Tables A7 and A8 present the power results of the
Diebold–Mariano (DM) test statistics as suggested by
Diebold and Mariano (1995); this test is used for compari-
son of one-step-ahead forecast errors of different estimated
optimal forecasting methods, both, those obtained under
the methods proposed in this paper (II) and the ones dis-
cussed in Pesaran et al. (2013) (I). The simulation studies
concentrate on forecast horizon, h¼ 1 and a squared
errors (SE) loss function for the DM test. The power
results appear quite high to reject the null hypothesis of
equal forecast accuracy against the alternative hypothesis
that states the methods proposed in this paper (II) are
more accurate than the ones discussed in Pesaran et al.
(2013) (I), mainly the estimated optimal weight and esti-
mated optimal window in our case. Power results of the
DM test for other sample sizes and break dates are not
shown here but yield similar results.

This table presents the empirical application to infla-
tion rates forecasting performance for 10 countries. We
observe that the estimated AveW methods provide the
best forecasts of the inflation rates in most cases. In con-
trast, the estimated postbreak window performs poorly,
displaying the highest MSFEs among all methods in all
cases.

In the table below, we observe that all countries have
p values less than 5%; this implies that our proposed
methods provide the best forecasts in comparison to
those in Pesaran et al. (2013).
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TABLE A9 p values for the DM test statistic (p value) for different countries.

Country DEU FRA ITA BEL FIN USA KOR GBR IND OECDE

Estimated optimal weight 0.0422 0.0272 0.0036 0.0413 0.0155 0.0157 0.0145 0.0102 0.0203 0.0392

Estimated optimal window 0.0480 0.0316 0.0045 0.0282 0.0124 0.0238 0.0179 0.0156 0.0091 0.0421

TABLE A7 Power results of the

DM test statistics. We set T¼ 500, b¼
0:2,h¼ 1 and SE loss function.

Estimated optimal weight Estimated optimal window

λ 0.5 1 2 0.5 1 2

d¼ 0:1 0.9404 0.9997 1.0000 0.9342 0.9878 0.9865

d¼ 0:2 0.8679 0.9744 1.0000 0.8612 0.9686 0.9963

d¼ 0:3 0.8191 0.9000 0.9955 0.8054 0.8974 0.9957

d¼ 0:4 0.7375 0.7928 0.8996 0.7451 0.8008 0.9104

TABLE A8 Power results of the

DM test statistics. We set T¼ 500, b¼
0:9,h¼ 1 and SE loss function.

Estimated optimal weight Estimated optimal window

λ 0.5 1 2 0.5 1 2

d¼ 0:1 0.9861 1.0000 1.0000 0.9606 0.9838 0.9831

d¼ 0:2 0.9392 0.9979 1.0000 0.9144 0.9864 0.9970

d¼ 0:3 0.8741 0.9641 0.9993 0.8526 0.9484 0.9990

d¼ 0:4 0.7635 0.8533 0.9550 0.7690 0.8531 0.9562
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FIGURE B1 Inflation rates for 10 countries with their respective memory estimate d̂, break size estimate λ̂, and break date estimate b̂.

The red vertical line indicate the break point estimate.

APPENDIX B: Figures

Figure B1 present the series of inflation rates for 10 countries, where the red vertical lines represent their corresponding
estimated break dates.
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