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Abstract
This paper develops two-step methods for solving contact problems with uncertainties. In the first step, we propose stochastic
Lagrangian multiplier/penalty methods to compute a set of reduced basis. In the stochastic Lagrangian multiplier method,
the stochastic solution is represented as a sum of products of a set of random variables and deterministic vectors. In the
stochastic penalty method, the problem is divided into the solutions of non-contact and possible contact nodes, which are rep-
resented as sums of the products of two different sets of random variables and deterministic vectors, respectively. The original
problems are then transformed into deterministic finite element equations and one-dimensional (corresponding to stochastic
Lagrangian multiplier method)/two-dimensional (corresponding to stochastic penalty method) stochastic algebraic equa-
tions. The deterministic finite element equations are solved by existing numerical techniques, and the one-/two-dimensional
stochastic algebraic equations are solved by a sampling method. Since the computational cost for solving stochastic alge-
braic equations does not increase dramatically as the stochastic dimension increases, the proposed methods avoid the curse
of dimensionality in high-dimensional problems. Based on the reduced basis, we propose semi-reduced order Lagrangian
multiplier/penalty equations with two components in the second step. One component is a reduced order equation obtained by
smooth solutions of the reduced basis and the other is the full order equation for the nonsmooth solutions. A significant amount
of computational cost is saved since the sizes of the semi-reduced order equations are usually small. Numerical examples of
up to 100 dimensions demonstrate the good performance of the proposed methods.

Keywords Stochastic contact problems · Stochastic finite element method · Semi-reduced order model · Curse of
dimensionality

1 Introduction

Contact problems play important roles in many practical
applications [26, 27].However, uncertainties are unavoidable
for many problems in practical engineering. The consid-
eration of uncertainties in systems behavior has become
an essential part of the analysis and design of engineering
applications. Although mathematical theories and numeri-
cal methods for the treatment of contact problems are well
understood for the analysis of deterministic problems [6, 9,
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27, 28], there is only limited experience in the treatment of
stochastic contact problems.

This paper focuses on solving two-body contact problems
with random parameters, e.g. random material properties.
There are several methods for solving stochastic contact
problems. The Monte Carlo method (MC) is a powerful tool
for many kinds of stochastic problems. Although MC can be
readily implemented by use of the already existing determin-
istic codes, a large number of deterministic contact problems
need to be solved in order to achieve high-accuracy solutions,
which is prohibitively expensive for large-scale problems in
practice [7]. As an extension of MC, the multilevel Monte
Carlo method (MLMC) has been developed to save the com-
putational cost of MC. It has been applied to the model of
contact between a deformable body and a rough uncertain
substrate in [5] and the effect of uncertainties on quantities
of interest related to contact mechanics of rough surfaces
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in [24]. The adaptive MLMC is also presented to solve the
stochastic obstacle problem in [16].

Another approach is the polynomial chaos (PC)-based
method [12, 29]. In thismethod, the stochastic solution is pro-
jected onto a stochastic space spanned by (generalized) PC
basis. The stochastic Galerkin projection is used to transform
the original stochastic problem into a system of determin-
istic equations whose size is much larger than the original
stochastic problem. However, the accuracy and efficiency
of this method need to be further improved. On one hand,
since the computational effort increases dramatically as the
number of random variables and/or the number of expan-
sion terms increase, the PC-based method suffers from the
curse of dimensionality [2], which is prohibitively expensive,
especially for large-scale and high-dimensional stochastic
problems. On the other hand, the classical PC-based method
cannot accurately capture the discontinuous solutions of
stochastic contact problems, thus it usually works in con-
junction with other methods, e.g. the stochastic collocation
method [2, 3, 10]. Other methods have also been proposed
to solve related problems. The stochastic variational inequal-
ity problem (SVIP) is solved by stochastic projections and
reformulations of SVIP in [14]. Low-rank tensor methods
are used to solve parametrized SVIP of the obstacle type in
[11].

As described so far, efficient methods for solving stochas-
tic contact problems are still insufficient and further inves-
tigations are needed. In this paper we propose efficient
two-step algorithms to solve (high-dimensional) stochastic
contact problems. In the first step, the stochastic Lagrangian
multiplier method and the stochastic penalty method are
developed to compute a set of reduced basis. The stochas-
tic solution in the stochastic Lagrangian multiplier method
is expanded as a sum of products of a set of random vari-
ables and deterministic vectors. The stochastic solution in
the stochastic penalty method is divided into the solutions
of non-contact and possible contact nodes, which are repre-
sented as sums of the products of two different sets of random
variables and deterministic vectors, respectively. Similar
expansions of stochastic solutions have been widely used
in the proper generalized decomposition (PGD)/generalized
spectral decomposition (GSD) methods [19, 22]. In this kind
of method, priori tensor product constructions and sepa-
rated variables representations are adopted to approximate
the solutions. The components of the approximations are cal-
culated by several dedicated iterations [8, 17]. PGD-based
methods have been widely applied to various problems with
great success [8, 25] and the applications on contact problems
can be found in [13, 18].

The improvements of the approximations used in this
paper include two aspects: one is that the non-intrusive
representation of expanded random variables allows com-
plexly nonlinear stochastic problems to be dealt with in a

weak-intrusive way and to avoid the curse of dimensionality
successfully, and the other is that a dedicated expansion is
developed for the stochastic penalty method, which over-
comes the poor convergence of solutions using the same
extended random variables for both non-contact and possible
contact nodes.

Based on the two proposed expansions, original stochas-
tic finite element equations are transformed into deterministic
finite element equations and one-dimensional (correspond-
ing to the stochastic Lagrangian multiplier method)/two-
dimensional (corresponding to the stochastic penaltymethod)
stochastic algebraic equations including all random vari-
ables. They are computed in their individual spaces, that
is, deterministic finite element equations are solved by
existing finite element methods and corresponding one-/two-
dimensional stochastic algebraic equations are solved by a
sampling method, the computational cost of which does not
increase dramatically as the stochastic dimension increases.
Hence the curse of dimensionality in high-dimensional
stochastic spaces is circumvented with great success. The
effectiveness of the proposed approaches is demonstrated on
numerical examples of up to 100 dimensions.

As the so far obtained full-reduced order equations
directly constructed by the reduced basis cannot capture the
nonsmooth solutions of stochastic contact problems imme-
diately, semi-reduced order Lagrangian multiplier/penalty
equations are proposed to overcome that obstacle. This strat-
egy consists of the reduced ordermodel into two components.
One component is a reduced basis model obtained by smooth
solutions and the other is the full order equation for the nons-
mooth solutions. The size of the semi-reduced order equation
is small since the possible contact region is small compared
to the whole domain in many applications, thus the compu-
tational effort is significantly saved. Similar ideas have been
discussed for the static condensation process of determinis-
tic contact problems [21, 26] and problems with localized
solution behavior [1, 15], in which the reduced approxima-
tion basis is adopted in the region with smooth solutions
and a standard finite element approximation is used in the
region with high gradient or discontinuous solutions. In this
paper, the reduced basis in the first step is still considered as
global approximations and smooth parts of the reduced basis
are used to generate the semi-reduced order equations in the
second step.

The paper is organized as follows: The basic setting
of stochastic contact problems is introduced in Sect. 2. In
Sect. 3, we propose the stochastic Lagrangian multiplier
method to solve stochastic contact problems, including the
construction of stochastic solutions, the iterative algorithm
and the algorithm implementation. Following that, a stochas-
tic penalty method is developed in Sect. 4. In Sect. 5, two
numerical examples of low- and high-dimensional cases are
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given to demonstrate the performance of the proposed meth-
ods. Section6 gives conclusions and discussions.

2 Stochastic contact problems

In this paper, we consider linear elastic two-body normal
contact problemswithout friction and adopt thefinite element
method to discretize the problem. The total energy of the
deterministic system is given by

� = U − W + G, (1)

where U , W are the strain and kinetic energy and G comes
from the contribution of the contact traction. Let (�,�,P)

be a complete probability space, where � denotes the space
of elementary events, � is the σ -algebra defined on � and P
is the probability measure. Considering random parameters
θ ∈ � and extending Eq. (1) to the stochastic case, the total
energy of the stochastic system is described as

�(θ) = U (θ) − W (θ) + G (θ) , (2)

whereU (θ),W (θ) and G (θ) are considered as the stochas-
tic strain energy, the stochastic kinetic energy and the
stochastic contact contribution. They have similar forms to
the deterministic cases but are related to the random input θ .
The solution of Eq. (2) is obtained by minimizing the total
potential energy �(θ), that is

δ� (θ) = δU (θ) − δW (θ) + δG (θ) = 0. (3)

Several methods can be used to formulate G (θ), e.g.
Lagrangian multiplier method, penalty method and aug-
mented Lagrangian method, etc [26]. In this paper we only
focus on the Lagrangian multiplier method and the penalty
method. Other methods are beyond the scope of this article
and will be studied in subsequent research.

Similar to the deterministic case, GL (θ) of the stochastic
Lagrangian multiplier method (SLMM) is given by

GL (θ) =
∫
s(θ)

γ (θ)T g (θ) ds, (4)

where s (θ) is the stochastic contact interface, γ (θ) is the vec-
tor of stochastic Lagrangian multipliers and coincides with
the normal contact traction, g (θ) is the random gap vector.
Corresponding the first variation δGL (θ) in Eq. (3) is

δGL (θ) =
∫
s(θ)

[
δγ (θ)T g (θ) + γ (θ)T δg (θ)

]
ds. (5)

Similar to the classical penaltymethod, the stochasticGP (θ)

of stochastic penalty method (SPM) is given by

GP (θ) = 1

2

∫
s(θ)

αg(θ)T g (θ) ds, (6)

where α is the penalty parameter and the corresponding first
variation δGP (θ) in Eq. (3) is calculated as

δGP (θ) =
∫
s(θ)

αg(θ)T δg (θ) ds, (7)

Analogous to the deterministic cases [26], the advantage of
SLMM is that it meets contact constraint conditions exactly.
The drawback is that finite elementmatrices based on SLMM
are not positive definite and have augmented sizes due to
introducing additional variables. It may present difficulties in
dealing with some cases with friction. SPM has no additional
variables but leads to very small physical penetration. We
will develop numerical algorithms for solving the stochastic
solutions based on SLMM and SPM in subsequent sections.

3 Stochastic Lagrangianmultiplier method

In this section, we solve stochastic contact problems by
adopting SLMM. By use of Eqs. (3) and (4) and the clas-
sical finite element discretization, a stochastic finite element
equation regarding SLMM is obtained

[
K (θ) QT

Q 0

] [
u (θ)

γ (θ)

]
=
[

F (θ)

−g (θ)

]
, (8)

where K (θ) ∈ R
n×n is the stochastic stiffness matrix,

F(θ) ∈ R
n is the stochastic force vector and Q ∈ R

nc×n is
the matrix related to nc contact constraints and Lagrangian
multipliers. The details of above finite element discretization
can be found in [26].

It is noted that the coefficient matrix of Eq. (8) is not
positive definite since

[
xT , yT

] [ K (θ) QT

Q 0

] [
x
y

]
= xT K (θ) x + yT Qx

+ xT QT y,∀x ∈ R
n,∀y ∈ R

nc ,
[
xT , yT

]T �= 0 (9)

is indefinite. In order to avoid this difficulty, we rewrite
Eq. (8) in the form

K̃ (θ) ũ (θ) = F̃ (θ) , (10)
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where ũ (θ) = [
u(θ)T , γ (θ)T

]T ∈ R
n+nc ,

K̃ (θ) =
[
K (θ) QT

−Q 0

]
, F̃ (θ) =

[
F (θ)

g (θ)

]
. (11)

The stochastic matrix K̃ (θ) in Eq. (11) is positive definite
since

[
xT , yT

]
K̃ (θ)

[
x
y

]
= xT K (θ) x − yT Qx + xT QT y

= xT K (θ) x > 0, ∀x ∈ R
n,∀y ∈ R

nc ,
[
xT , yT

]T �= 0

(12)

holds. In the next subsection, to take advantage of the positive
definiteness of the matrix K̃ (θ), we solve the reduced basis
based on Eq. (10) rather than Eq. (8).

3.1 Stochastic solutions of SLMM

To efficiently solve the stochastic solution ũ (θ) of Eq. (10),
we introduce the following approximation

ũk (θ) = ũk−1 (θ) + λk (θ) d̃k = D̃�(θ), (13)

where the deterministic vectors d̃k = [
dTk , qTk

]T ∈ R
n+nc ,

dk ∈ R
n , qk ∈ R

nc , the scalar random variable λk (θ) ∈
R, the matrix D̃ = [

d̃1, . . . , d̃k
] ∈ R

(n+nc)×k , the random
variable vector �(θ) = [λ1(θ), . . . , λk(θ)]T ∈ R

k and the
previous approximation ũk−1 (θ) is given by

ũk−1 (θ) =
k−1∑
i=1

λi (θ) d̃i . (14)

For the stochastic components u(θ) and γ (θ) of ũ (θ),
Eq. (13) is equivalent to u (θ) = ∑k

i=1 λi (θ) di and γ (θ) =∑k
i=1 λi (θ) qi , where the vectors di ∈ R

n , qi ∈ R
nc and

each pair (di , qi ) shares the same random variable coeffi-
cient λi (θ). It is noted that all of them are unknown and
iterative algorithms are used to compute them one by one.
The expansion Eq. (13) has been widely used in the context
of PGD/GSD methods [8, 19, 22, 32]. We develop improved
expansions in this paper to deal with stochastic contact prob-
lems and high-dimensional random variables involved.

Based on Eq. (13), Eq. (10) is written as

K̃ (θ) λk (θ) d̃k = F̃ (θ) − K̃ (θ) ũk−1 (θ) , (15)

where ũk−1 (θ) is assumed to be known and the couple
{λk (θ) , d̃k} is the unknown solution to be solved. However,
it is not easy to determine the random variable λk (θ) and the
vector d̃k simultaneously. We adopt the following iterative
algorithm [8, 22] to solve λk (θ) and d̃k :

If the random variable λk (θ) has been known (or given
an initial value), the vector d̃k is solved via the following
deterministic finite element equation obtained by stochastic
Galerkin method [12, 29],

E

{
λ2k (θ) K̃ (θ)

}
d̃k

= E
{
λk (θ)

[
F̃ (θ) − K̃ (θ) ũk−1 (θ)

]}
, (16)

where E {·} is the expectation operator and which can be
rewritten as a compact form,

K̃k d̃k = F̃k, (17)

where the deterministic matrix and vector are given by

K̃k = E

{
λ2k (θ) K̃ (θ)

}
, (18)

F̃k = E
{
λk (θ)

[
F̃ (θ) − K̃ (θ) ũk−1 (θ)

]}
. (19)

Equation (17) can be considered as a finite element equa-
tion for deterministic contact problems, thus existing contact
FEM solver can be used to solve it efficiently [26, 27, 34].
RecallingEq. (13),we approximate the stochastic solution by
random linear combinations of the deterministic basis func-
tions

{
d̃k
}
. Repeated or closemodes of

{
d̃k
}
make the number

of retained terms for the stochastic solution large. Therefore,
in practice, we only want to retain the vector d̃k in domi-
nant modes, so that the number of retained terms is as small
as possible, which will also reduce the size of subsequent
reduced order stochastic finite element equations. For this
purpose, we let the solution d̃k orthogonal to the obtained

vectors
{
d̃i
}k−1
i=1 via Gram-Schmidt orthogonalization, which

is corresponding to

d̃k = d̃k −
k−1∑
i=1

d̃Tk d̃i

d̃Ti d̃i
d̃i . (20)

If the deterministic vector d̃k has been solved by use of
Eqs. (17) and (20), the random variable λk(θ) is updated
via the following deterministic Galerkin procedure

[
d̃Tk K̃ (θ) d̃k

]
λk (θ) = d̃Tk

[
F̃ (θ) − K̃ (θ) ũk−1 (θ)

]
, (21)

where the simplification d̃Tk K̃ (θ) d̃k = dTk K (θ) dk holds
based onEq. (12).A commonly usedmethod to solveEq. (21)
is the polynomial chaos (PC)-based method, which expands
λk(θ) by use of PC basis and solves the unknown expanded
coefficients using a system of linear equations. However,
this kind of method suffers from the curse of dimensionality
when dealing with high-dimensional problems. It is noted
that Eq. (21) is a one-dimensional stochastic algebraic equa-
tion of the random variable λk(θ). In this paper, we propose
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a sampling method to compute λk(θ) [32, 33], which is cor-
responding to,

λk
(̂
θ
) = d̃Tk

[
F̃
(̂
θ
)− K̃

(̂
θ
)
ũk−1

(̂
θ
)]

dTk K
(̂
θ
)
dk

, (22)

where �
(̂
θ
) ∈ R

�×�×ns is the sample representation of
stochastic matrix (or vector, variable) � (θ) ∈ R

�×�, ns is
the number of random samples, the vector
d̃Tk
[
F̃
(̂
θ
)− K̃

(̂
θ
)
ũk−1

(̂
θ
)]∈R

ns , the vectordTk K
(̂
θ
)
dk ∈

R
ns , the vector λk

(̂
θ
) ∈ R

ns represents the random sam-
ple vector of λk (θ). In practical calculations, Eq. (22) is
performed by the element-wise division of the two vectors,
which is similar to the Hadamard division operator. Equa-
tion (22) is less sensitive to the stochastic dimension and
the computational effort is very low even for high stochastic
dimensions, which avoids the curse of dimensionality suc-
cessfully. Further, statistical methods can be used to compute
probability characteristics ofλk (θ) from the random samples
λk
(̂
θ
)
.

In this way, we calculate the k-th couple
{
λk (θ) , d̃k

}
by iteratively solving Eqs. (17) and (22) until a specified
precision is reached, the details of which will be discussed
in Algorithm 1. Also, the same iteration is used to cal-
culate the next couple

{
λk+1 (θ) , d̃k+1

}
until all couples

are obtained. However, it is noted that the above iteration
solves each couple

{
λk (θ) , d̃k

}
in a sequential way and the

stochastic solution ũ (θ) in Eq. (13) is also approximated in
a greedy way. The original stochastic finite element equa-
tion (10) is not exactly met by the stochastic solution ũk (θ)

obtained in this way. Low-accuracy stochastic solutions are
obtained for some problems, as illustrated in Example 5.1. To
improve the accuracy of the stochastic solution, we consider
D̃ = [

d̃1, . . . , d̃k
]
as a set of reduced basis and introduce

reduced order equations to recalculate the random vector
�(θ) = [λ1(θ), . . . , λk(θ)]T ∈ R

k in the next two sections.

3.2 Full-reduced order method based on SLMM

As discussed above, we first build a full-reduced order equa-
tion by applying the known reduced order matrix D̃ obtained
by the above iteration to Eq. (10)

[
D̃T K̃ (θ) D̃

]
�(θ) = D̃T F̃ (θ) , (23)

which is equivalent to

K̃ D̃ (θ)� (θ) = F̃D̃ (θ) , (24)

where the randomvector�(θ) ∈ R
k is the unknown solution

to be recalculated, K̃ D̃ (θ) = D̃T K̃ (θ) D̃ ∈ R
k×k is the

reduced order stochastic matrix and F̃D̃ (θ) = D̃T F̃ (θ) ∈

R
k is the reduced order stochastic force vector. In practice,

we solve Eq. (24) by

K̃ D̃

(
θ(i)
)

�
(
θ(i)
)

= F̃D̃

(
θ(i)
)

(25)

for each random sample realization θ(i), i = 1, . . . , ns and
the random samples �

(̂
θ
) = [

�
(
θ(1)

)
, . . . , �

(
θ(ns )

)] ∈
R
k×ns are obtained by ns solutions of Eq. (25). It is noted

that the random samples θ̂= {θ(i)
}ns
i=1 ∈ � used for solving

Eq. (25) are not necessary to be the same as that used for
solving the reduced order matrix D̃ since only the determin-
istic matrix D̃ is inherited from the iteration and no random
quantities are involved.

The size of Eq. (24) is usually small thanking to the small
value k, thus the computational effort for solving a single
Eq. (25) is very low and the total computational costs of ns
solutions are still low. However, the full-reduced order equa-
tion (24) cannot accurately capture the nonsmooth stochastic
solutions on the contact interface, which will be verified in
Example 5.2. Hence, it is necessary to improve the accuracy
of Eq. (24).

3.3 Semi-reduced order method based on SLMM

In order to improve the computational accuracy of the
stochastic solution of the full-reduced order equation and to
capture the nonsmooth stochastic solution on the stochastic
contact interface, we propose a semi-reduced order method
to solve stochastic contact problems.

Recall the full order stochastic finite element equation (8)
and rewrite it in the form,

⎡
⎣
[
BT
1 K (θ) B1 BT

1 K (θ) B2

BT
2 K (θ) B1 BT

2 K (θ) B2

] [
BT
1 Q

BT
2 Q

]
[
QB1 QB2

]
0

⎤
⎦×

⎡
⎣ u1 (θ)

u2 (θ)

γ (θ)

⎤
⎦ =

⎡
⎣ BT

1 F (θ)

BT
2 F (θ)

−g (θ)

⎤
⎦ , (26)

where the vectors u1(θ) ∈ R
n−nc and u2(θ) ∈ R

nc are
the stochastic solutions of non-contact and possible con-
tact degrees of freedom, the deterministic matrices B1 ∈
R
n×(n−nc) and B2 ∈ R

n×nc are used to locate the non-contact
and possible contact solutions and their elements are given
by

B1,i j = δi,cnon, j , i = 1, . . . , n, j = 1, . . . , n − nc, (27)

B2,i j = δi,ccon, j , i = 1, . . . , n, j = 1, . . . , nc, (28)

where δi j is the Kronecker delta that meets δi j = 1 for i = j
and 0 for i �= j , the set ccon = [

ccon,1, . . . , ccon,nc
] ∈ R

nc

contains the indices of the degrees of freedom on the possible
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contact interface and the set cnon = [
cnon,1, . . . , cnon,n−nc

] ∈
R
n−nc are the indices of the rest of degrees of freedom.
Let the submatrix D1 = [

BT
1 , 0(n−nc)×nc

]
D̃ ∈ R

(n−nc)×k

⊂ D̃ be the reduced basis matrix corresponding to the non-
contact nodes. The stochastic solution of the non-contact
nodes is thus represented as u1(θ) = D1�1(θ) ∈ R

n−nc ,
where �1(θ) = [

λ1,1 (θ) , . . . , λ1,k (θ)
]T ∈ R

k is the ran-
dom vector to be solved. Hence, the solution vector of
Eq. (26) can be rewritten as

⎡
⎣ u1 (θ)

u2 (θ)

γ (θ)

⎤
⎦ =

⎡
⎣ D1 0 0

0 Inc 0
0 0 Inc

⎤
⎦
⎡
⎣�1 (θ)

u2 (θ)

γ (θ)

⎤
⎦ , (29)

where Inc ∈ R
nc×nc is the identity matrix. Based on Eq. (26),

we introduce the following deterministic Galerkin procedure
to build a semi-reduced order stochastic finite element equa-
tion
⎡
⎣ D1 0 0

0 Inc 0
0 0 Inc

⎤
⎦
T ⎡
⎣
[
BT
1 K (θ) B1 BT

1 K (θ) B2

BT
2 K (θ) B1 BT

2 K (θ) B2

] [
BT
1 QT

BT
2 QT

]
[
QB1 QB2

]
0

⎤
⎦

⎡
⎣ D1 0 0

0 Inc 0
0 0 Inc

⎤
⎦
⎡
⎣�1 (θ)

u2 (θ)

γ (θ)

⎤
⎦

=
⎡
⎣ D1 0 0

0 Inc 0
0 0 Inc

⎤
⎦
T ⎡
⎣ BT

1 F (θ)

BT
2 F (θ)

−g (θ)

⎤
⎦ , (30)

which is rewritten as a compact form

⎡
⎣
[
k11 (θ) k12 (θ)

k21 (θ) k22 (θ)

] [
bT1
bT2

]
[
b1 b2

]
0

⎤
⎦
⎡
⎣�1 (θ)

u2 (θ)

γ (θ)

⎤
⎦ =

⎡
⎣ f1 (θ)

f2 (θ)

−g (θ)

⎤
⎦ ,

(31)

where the reduced order matrices and vectors are given by

k11 (θ) = DT
1 BT

1 K (θ) B1D1 ∈ R
k×k,

k12 (θ) = DT
1 BT

1 K (θ) B2 ∈ R
k×nc ,

k21 (θ) = BT
2 K (θ) B1D1 ∈ R

nc×k,

k22 (θ) = BT
2 K (θ) B2 ∈ R

nc×nc

b1 = QB1D1 ∈ R
nc×k,

b2 = QB2 ∈ R
nc×nc ,

f1 (θ) = DT
1 BT

1 F (θ) ∈ R
k,

f2 (θ) = BT
2 F (θ) ∈ R

nc .

(32)

It is noted that only the stochastic solution of non-contact
degrees of freedom is approximated by a reduced order rep-
resentation and the stochastic solution of possible contact
degrees of freedom is still solved in a full order way, thus the
proposed method is a semi-reduced order approach. Further,

the size of the semi-reduced order equation (31) is k + 2nc,
which is slightly larger than the size k ofEq. (24), but still very
small compared to the original stochastic problem Eq. (8) in
most applications. Similar to Eq. (25), we still adopt the sam-
pling method to solve (31) for each sample realization and
total computational costs of ns solutions are still very low.

3.4 Algorithm implementation of SLMM

The proposedSLMMfor solving stochastic contact problems
is summarized in Algorithm 1, which includes a double-
loop iterative procedure. The inner-loop iteration from step
3 to 10 is used to compute the couple

{
λk (θ) , d̃k

}
and

the outer loop from step 2 to 15 corresponds to recursively
approximate the stochastic solution ũk(θ). In order to com-
pute each couple

{
λk (θ) , d̃k

}
, the random sample vector

λk,0
(̂
θ
) = {

λk,0
(
θ(i)
)}ns

i=1 ∈ R
ns is initialized in step 3. In

practical implementation, any nonzero vectors with size ns
can be used as the initialization and it almost has no influence
on the proposed method. The vector d̃k, j is determined by
solving the deterministic finite element equations in step 5,
where the subscript j represents the j-th round iteration of{
λk, j (θ) , d̃k, j

}
. Following that, d̃k, j requires to be orthog-

onalized and normalized along the whole iterative process.
With the obtained vector d̃k, j , the random variable λk, j (θ) is
then updated in step 7. The iterative error in step 8 is given
by

εl, j =
∥∥d̃k, j − d̃k, j−1

∥∥∥∥d̃k, j−1
∥∥ = ∥∥d̃k, j − d̃k, j−1

∥∥ . (33)

where ‖�‖ = E
{
�T�

}
. The outer-loop iteration then gen-

erates a new approximated stochastic solution uk(θ) in step
11 and updates the deterministic matrix D̃ in step 12. The

Algorithm 1 SLMM for solving stochastic contact problems
1: Discretize and generate the stochastic finite element equation (8)
2: while εg,k > εg do
3: Initialize random samples λk,0

(̂
θ
) = {

λk,0
(
θ(i)
)}ns

i=1 ∈ R
ns

4: while εl, j > εl do
5: Compute d̃k, j by solving Eq. (17)

6: Orthogonalize d̃k, j⊥
{
d̃i
}k−1
i=1 by using Eq. (20) and normalize∥∥d̃k, j∥∥ = 1

7: Compute λk, j
(̂
θ
) ∈ R

ns via Eq. (22)
8: Compute the iterative error εl, j
9: j ← j + 1
10: end while
11: Update the stochastic solution ũk(θ) = ũk−1(θ) + λk(θ)d̃k
12: Update the deterministic matrix D̃ = [

D̃, d̃k
] ∈ R

(n+nc)×k

13: Compute the iterative error εg,k
14: k ← k + 1
15: end while
16: Solve the semi-reduced order stochastic finite element equation (31)
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iterative error in step 13 is defined as

εg,k = ‖uk (θ) − uk−1 (θ)‖
‖uk (θ)‖

=
E

{[
λk (θ) d̃k

]T [
λk (θ) d̃k

]}

E

{[
k∑

i=1
λk (θ) d̃k

]T [ k∑
i=1

λk (θ) d̃k

]}

= E
{
λ2k (θ)

}
k∑

i=1
E
{
λ2i (θ)

} , (34)

which measures the contribution of the k-th stochastic incre-
ment λk(θ)d̃k to the stochastic solution uk(θ). Based on the
knownmatrix D̃, the semi-reduced order stochastic finite ele-
ment equation with the size k+2nc is obtained and solved in
step 16. We highlight that the sample size ns used for solv-
ing the reduced basis can be different from that for solving
the semi-reduced order stochastic equation. In practice, we
can adopt a small size in step 3 to calculate the reduced basis
and after obtaining the matrix D, a large sample size is reset
in step 16 to solve the semi-reduced order stochastic finite
element equation, which saves computational costs.

4 Stochastic penalty method

In this section, we propose a SPM to solve stochastic contact
problems. According to Eqs. (3) and (6) and the classical
finite element discretization, the stochastic finite element
equation obtained by the penalty method is described as

[
K0 (θ)+αKp

]
u (θ) = F (θ) , (35)

where K0(θ) ∈ R
n×n is the stochastic stiffness matrix, α is

the penalty parameter, Kp ∈ R
n×n is a deterministic matrix

related to possible contact constraints and the detail of its
assembly can be found in [26].

In the approximation Eq. (13), the vectors
{
d̃k
}
of possible

contact and non-contact degrees of freedom share the same
random variable coefficients {λk (θ)}. It does not work well
for SPM since a large penalty parameter biases the random
variables {λk (θ)} towards the solution of the possible contact
degrees of freedom. Let us give a simple explanation for
this point. For the purpose, we still consider an Eq. (13)-like
approximation used to SPM, that is, the coefficient of the
deterministic vector d∗

k ∈ R
n is a random variable λ∗

k (θ) ∈
R. Similar to Eq. (21), λ∗

k (θ) is solved under a known vector
d∗
k

[
d∗T
k

(
K (θ) + αKp

)
d∗
k

]
λ∗
k (θ) = d∗T

k Fk (θ) , (36)

which is further rewritten as

λ∗
k (θ) = d∗T

k Fk (θ)

d∗T
k

[
K (θ) + αKp

]
d∗
k

≈ 1

α

d∗T
k Fk (θ)

d∗T
k K pdk

, (37)

the approximate equivalence in which holds for a large
penalty parameter α. The penalty parameter biases λ∗

k (θ)

towards the contribution of d∗T
k K pd∗

k , which cannot capture
the contribution of non-contact nodes well.

4.1 Stochastic solutions of SPM

In order to solve Eq. (35), we introduce the following approx-
imation to avoid the difficulty suffering from the expansion
Eq. (13),

uk (θ) = uk−1 (θ) + �uk (θ) ∈ R
n, (38)

where the vector uk−1 (θ) ∈ R
n is the previous approxi-

mation of the stochastic solution and it is usually already
known, the vector �uk (θ) ∈ R

n is the unknown stochastic
increment to be solved. The size of uk (θ) in Eq. (38) is the
same as the original stochastic problem, which is different
from the augmented vector ũk (θ) ∈ R

n+nc in SLMM.
To calculate the unknown stochastic increment �uk (θ),

we introduce the following two equivalent approximations

�uk (θ) = [
λk,1 (θ) Z1 + λk,2 (θ) Z2

]
dk (39)

= [Z1dk, Z2dk] λk (θ) , (40)

where dk ∈ R
n is the unknown deterministic vector to be

solved, the random variable vector λk (θ) = [
λk,1 (θ) , λk,2

(θ)]T ∈ R
2 is also unknown, the index matrices Zm =

BmBT
m ∈ R

n×n , m = 1, 2, Bm have been given in
Eqs. (27) and (28). They can also be calculated by Z1,i j =
n−nc∑
k=1

δi,cnon,k δ j,cnon,k and Z2,i j =
nc∑
k=1

δi,ccon,k δ j,ccon,k for i, j =
1, . . . , n. Equation (35) thus becomes as

K (θ)�uk (θ) = Fk (θ) , (41)

where the matrix K (θ) = K0 (θ)+αKp ∈ R
n×n and the

vector Fk (θ) = F (θ) − K (θ) uk−1 (θ) ∈ R
n .

Similar to SLMM, an alternating iteration is adopted in
this section to solve the triplet

{
λk,1 (θ) , λk,2 (θ) , dk

}
in

Eq. (39) one by one. Specially, for known random variables
λk,1 (θ) and λk,2 (θ), the vector dk is solved via the following
deterministic finite element equation obtained by the approx-
imation Eq. (39) and stochastic Galerkin method

K̃kdk = F̃k, (42)
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where the deterministic matrix and vector are given by

K̃k = E

{[
λk,1 (θ) Z1 + λk,2 (θ) Z2

]T
K (θ)×

[
λk,1 (θ) Z1 + λk,2 (θ) Z2

]}

=
2∑

i, j=1

ZT
i E

{
λk,i (θ) λk, j (θ) K (θ)

}
Z j , (43)

F̃k = E

{[
λk,1 (θ) Z1 + λk,2 (θ) Z2

]T
Fk (θ)

}

=
2∑

i=1

ZT
i E

{
λk,i (θ) Fk (θ)

}
. (44)

Further, Eq. (42) can be rewritten as

(
K̃0,k + α K̃ p,k

)
dk = F̃k, (45)

where the matrices K̃0,k and K̃ p,k are obtained by Eq. (43)

K̃0,k =
2∑

i, j=1

ZT
i E

{
λk,i (θ) λk, j (θ) K0 (θ)

}
Z j , (46)

K̃ p,k =
2∑

i, j=1

E
{
λk,i (θ) λk, j (θ)

}
ZT
i K p (θ) Z j . (47)

In this way, Eq. (42) (or Eq. (45)) can also be considered as
a finite element equation with penalty parameters for deter-
ministic contact problems and existing contact FEM solvers
are available. Similar to SLMM, we retain the dominant vec-
tor dk and Eq. (20) is still adopted to orthogonalize the vector
dk .

Based on the obtained vectordk , an updated randomvector
λk (θ) = [

λk,1 (θ) , λk,2 (θ)
]T is solved by Eq. (40) and the

following deterministic Galerkin procedure

(
[Z1dk, Z2dk]

T K (θ) [Z1dk, Z2dk]
)

λk (θ)

= [Z1dk, Z2dk]
T Fk (θ) , (48)

which is rewritten as

[
ck,11 (θ) ck,12 (θ)

ck,21 (θ) ck,22 (θ)

] [
λk,1 (θ)

λk,2 (θ)

]
=
[
hk,1 (θ)

hk,2 (θ)

]
, (49)

where the random variables ck,i j (θ) and hk,i (θ) are given
by

ck,i j (θ) = dTk ZT
i K (θ) Z jdk ∈ R, (50)

hk,i (θ) = dTk ZT
i Fk (θ) ∈ R (51)

for i, j = 1, 2.By taking advantage of the proposed sampling
method used in Eq. (22), the stochastic solutions λk,1 (θ)

and λk,2 (θ) of Eq. (49) are solved via the following two
decoupled equations

λk,1
(̂
θ
) = sk,1

(̂
θ
)

sk,0
(̂
θ
) ∈ R

ns , (52)

lambdak,2
(̂
θ
) = sk,2

(̂
θ
)

sk,0
(̂
θ
) ∈ R

ns , (53)

where the random sample vectors of the numerators sk,1
(̂
θ
)
,

sk,2
(̂
θ
) ∈ R

ns and the denominator sk,0
(̂
θ
) ∈ R

ns are given
by

sk,1
(̂
θ
) = ck,22

(̂
θ
)
hk,1

(̂
θ
)− ck,12

(̂
θ
)
hk,2

(̂
θ
)
,

sk,2
(̂
θ
) = ck,11

(̂
θ
)
hk,2

(̂
θ
)− ck,21

(̂
θ
)
hk,1

(̂
θ
)
,

sk,0
(̂
θ
) = ck,11

(̂
θ
)
ck,22

(̂
θ
)− ck,12

(̂
θ
)
ck,21

(̂
θ
)
.

(54)

Computational costs for solving Eqs. (52) and (53) are still
very low. Also, similar to Eq. (22) used in SLMM, both
Eq. (52) and (53) are insensitive to the stochastic dimension,
thus SPM can also be applied to high-dimensional stochastic
contact problems.

4.2 Semi-reduced order method based on SPM

In order to build a reducedorder equation for SPM,we rewrite
the approximate stochastic solution uk(θ) as

uk (θ) = [Z1D, B2]�(θ) , (55)

where �(θ) = [
λ1,1 (θ) , . . . , λk,1 (θ) , uT2 (θ)

]T ∈ R
k+nc

is a random vector and u2(θ) ∈ R
nc is the stochastic solu-

tion of the possible contact degrees of freedom. Similar to
Eq. (30), the semi-reduced order stochastic finite element
equation of SPM is then given as

[
DT ZT

1 K (θ) Z1D DT ZT
1 K (θ) B2

BT
2 K (θ) Z1D BT

2 K (θ) B2

]
�(θ)

=
[
DT ZT

1 F (θ)

BT
2 F (θ)

]
, (56)

where the sizes of the stochastic submatrices and subvec-
tors are DT ZT

1 K (θ) Z1D ∈ R
k×k , DT ZT

1 K (θ) B2 ∈
R
k×nc , BT

2 K (θ) Z1D ∈ R
nc×k , BT

2 K (θ) B2 ∈ R
nc×nc ,

DT ZT
1 F (θ) ∈ R

k and BT
2 F (θ) ∈ R

nc . The sampling
approach used in Eq. (25) is again adopted to solve the
semi-reduced order stochastic finite element equation (56)
for each sample realization. One-sample solution of Eq. (56)
is cheaply solved since its size k + nc is much smaller than
the original stochastic problem. Total computational costs
for ns random samples�

(̂
θ
) = [

�
(
θ(1)

)
, . . . , �

(
θ(ns )

)] ∈
R

(k+nc)×ns of the solution are still low.
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4.3 Algorithm implementation of SPM

Algorithm 2 SPM for solving stochastic contact problems
1: Discretize and generate the stochastic finite element equation (35)
2: while εg,k > εg do

3: Initialize the random samples λ
(0)
k

(̂
θ
) ={

λ
(0)
k,1

(
θ(i)
)
, λ

(0)
k,2

(
θ(i)
)}ns

i=1
∈ R

ns×2

4: while εl, j > εl do

5: Compute d( j)
k by solving Eq. (42)

6: Orthogonalize dk, j⊥ {di }k−1
i=1 by using Eq. (20) and normalize∥∥∥d( j)

k

∥∥∥ = 1

7: Compute λ
( j)
k,1

(̂
θ
)
, λ

( j)
k,2

(̂
θ
) ∈ R

ns via Eqs. (52) and (53)
8: Compute the iterative error εl, j
9: j ← j + 1
10: end while
11: Update the stochastic solution uk(θ) = uk−1(θ) + �uk(θ)

12: Update the matrix D = [D, dk ]
13: Compute the iterative error εg,k
14: k ← k + 1
15: end while
16: Solve the semi-reduced order stochastic finite element equation (56)

The proposed stochastic penalty method for solving
stochastic contact problems is summarized in Algorithm 2
and the procedure is similar to Algorithm 1. It is noted that
samples of two random variables λk,1(θ) and λk,2(θ) need
to be initialized in step 3 and corresponding updates of two
random variables are processed in step 7. After the inner-
loop iteration, the stochastic increment �uk(θ) in step 11 is
updated via Eqs. (39) or (40). Similar to Eq. (34), the iterative
error in step 13 is now defined by use of random variables{
λk,1(θ)

}
k ,

εg,k =
E

{
λ2k,1 (θ)

}
∑k

i=1 E

{
λ2i,1 (θ)

} , (57)

and the iterative error εl, j in step 8 has been defined in
Eq. (33).

5 Numerical examples

In this section, we test the proposed SLMM and SPM by two
numerical examples. For both SLMM and SPM, the conver-
gence errors are set as εl = 1 × 10−3 and εg = 1 × 10−6 in
Algorithm 1 and 2. The number of random samples is ns =
1 × 104 and the reference solutions are obtained by 1 × 104

standard MCS. The penalty parameter is α = 106 N/m2 in
SPM.

Fig. 1 Euler Bernoulli beam supported by a rigid block with a gap

5.1 Euler Bernoulli beam limited by a rigid block

This example considers a one-dimensional Euler Bernoulli
beam shown in Fig. 1, which is clamped at one end and
subjected to a distributed load q(x). The deflection of the
free end of the beam is limited by a rigid block. There is
a small random gap between the end of the beam and the
rigid block. The bending rigidity E I (x, θ) is considered as
a Gaussian random field with the mean function E I (x) and
the covariance function given by

CE I (x1, x2) = σ 2
E I exp

(
−|x1 − x2|

lx

)
. (58)

By use of Karhunen–Loève (KL) expansion [4, 31], the ran-
dom field E I (x, θ) is approximated by the following series
expansion

E I (x, θ) = E I (x) +
r∑

i=1

ξi (θ)
√

κi fi (x), (59)

where r is the truncation number, {ξi (θ)}ri=1 are indepen-
dent standard Gaussian random variables and {κi , fi (x)}ri
are solved by the homogeneous Fredholm integral equation
of the second kind,

∫
L
CE I (x1, x2) fi (x1) dx1 = κi fi (x2) . (60)

In this example the following numerical parameters are
adopted: the distributed load q(x) = 1 × 103 kN/m, the
length of the beam L = 1 m, the mean value of the bending
rigidity E I (x) = 1 × 107 N · m2, the standard deviation
σE I = 0.2E I (x), the correlation length lx = 1 m, the
truncation number r = 5 and the random gap is a uniform
random variable on [1, 1.5] × 10−2 m. It is noted that the
random samples θ(i) such that min

x
E I
(
x, θ(i)

) ≤ 1 × 10−3

are dropped out to make sure that all realizations are pos-
itive, thus E I (x, θ) is considered as a truncated Gaussian
random field in the numerical implementation The model is
discretized into 100 two-nodeEulerBernoulli beamelements
[23]. In this element, each node includes 2 degrees of free-
domgiven by the vertical displacement and the rotation. Thus
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Fig. 2 The solution of the free end without the rigid block and the
random gap

Fig. 3 Iterative errors of different numbers of the retained item k

101 nodes and n = 202 degrees of freedom (two of which
are fixed at the left boundary) are defined totally, where the
number of the possible contact degrees of freedom is nc = 1.

Figure 2 shows the comparison between the probability
density functions (PDFs) of the stochastic solution of the
vertical displacement of the free end without the rigid block
and the random gap. The free end is in the contact state for
the stochastic solution exceeding 0.015m and is in the non-
contact state for the stochastic solution less than 0.01m. The
stochastic contact occurs for the solution in the random gap
interval. In other words, the occurrence of the contact state
between the free end and the rigid block is random since the
stochastic solution and the gap are independent in the interval
[1, 1.5]×10−2. It is necessary to check the stochastic contact
state in practical computations.

We make use of the proposed Algorithm 1 and 2 to solve
this problem. Iterative errors of the proposed SLMM and
SPMare shown Fig. 3, which indicates that SPM ismore effi-
cient than SLMM in this case since only k = 3 retained items
are needed to achieve the specified accuracy while SLMM
needs nine items.

The PDFs of the stochastic vertical displacement of the
free end obtained by SLMM, SPM and MCS are compared
in Fig. 4, where the SLMM (initial) and SPM (initial) rep-
resent the solutions obtained by the iterative step 2 to 15 of
Algorithm1 and 2, i.e. the stochastic solution uk(θ) in step 11
after the last iteration, and the SLMM (final) and SPM (final)
represent the solutions obtained by semi-reduced stochastic
finite element equations in step 16 of Algorithm 1 and 2.
As shown in Fig. 4a, b, the solutions of both SLMM (final)
and SPM (final) have good agreement with MCS, which
demonstrates the high accuracy of the proposed methods.
SLMM (initial) shows less accuracy and the semi-reduced
stochastic finite element equation is necessary to improve
the approximation accuracy while SPM (initial) is already
of high accuracy. It is noted that the PDFs in Fig. 4 are dis-
continuous at the boundary values 0.01m and 0.015m of the
random gap. In fact, as shown in Fig. 5, for each sample
realization of the random gap, the PDF of the vertical dis-
placement of the free end is discontinuous at the value of the
sample. If all samples of the gap are considered in the case of
Fig. 5, we can obtain the PDF that is continuous in the inter-
val of the random gap but still discontinuous at the boundary.
The proposed methods can capture this characteristic well,
as depicted in Fig. 4.Moreover, PDFs of contact forces of the
free end obtained by SLMM and MCS are shown in Fig. 6,
which indicates the proposed SLMM is in good accordance
with MCS and accurately captures the discontinuous contact
force around zero (i.e. the non-contact state).

5.2 Contact between hemisphere and rigid body

In this example we consider a hemisphere in contact with
a rigid body shown in Fig. 7a where the radius is 1.0 m and
the force f (x, y) = 1.5 × 103 MN/m. We only use a half
model for the analysis by taking advantage of the symmetry.
The finite element mesh is depicted in Fig. 77b, including
374 nodes and 672 triangular elements with linear shape
functions. Poisson’s ratio of the hemisphere is ν = 0.2. The
Young’smodulus E (x, y, θ) is considered as aGaussian ran-
dom field with the mean value E(x, y) = 210 GPa and the
covariance function

CEE (x1, y1; x2, y2) = σ 2
E exp

(
−|x1 − x2|

lx
− |y1 − y2|

ly

)
,

(61)

where the standard deviation σE = 0.1E(x, y) and the cor-
relation lengths lx = ly = 1 m. Similar to Eq. (59), we
approximate the randomfiled E (x, y, θ)byuse ofKLexpan-
sion. The number of the truncated item of KL expansion is
adopted as r = 10. Again, the sample realizations θ(i) such
that min

x,y
E
(
x, y, θ(i)

) ≤ 1× 10−3 are dropped out to gener-

ate positive random samples.
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Fig. 4 PDFs of the stochastic vertical displacement of the free end
obtained by SLMM, SPM and MCS

Fig. 5 PDFs of the stochastic vertical displacement of the free end
under different sample realizations of the random gap

Fig. 6 PDFs of the stochastic contact force of the free end obtained by
SLMM and MCS

Fig. 7 Model (top) and its finite element mesh (bottom)
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Fig. 8 Iterative errors of different numbers of the retained item k

The iterative errors of SLMM and SPM are shown in
Fig. 8. The items k = 11 for SLMM and k = 9 for SPM
are retained to achieve the specified accuracy, which indi-
cates that SPM is still more efficient than SLMM. In this
sense, SPM is suggested to be a better choice for solving
most stochastic contact problems.

Thefirst six reducedbasis in x and y directions obtainedby
SLMM and SPM are depicted in Fig. 9. As shown in Fig. 9a,
b, the comparison of the reduced basis in the x direction
between SLMM and SPM indicates that the reduced basis
of possible contact nodes are more dominant components
in SPM. It is seen from Fig. 9c, d that this conclusion is
more obvious in the y direction since the contact boundary is
closely related to the displacement in the y direction. Also,
the first item dx1 and dy1 of SLMM are similar to that of
SPM since both of them are solved by contactless stochastic
problems.

To illustrate the accuracy of the proposed methods, we
compare the solutions obtained by the proposedmethods and
MCS. As shown in Fig. 10, the solutions of five characteristic
nodes are checked, including the contact nodes, the possi-
ble contact nodes and the non-contact nodes on the possible
contact interface, the nodes near and far from the possible
contact interface. For the contact nodes on the possible con-
tact interface, SLMM matches contact boundary conditions
accurately. The relative errors between the vertical displace-
ments of contact nodes obtained by SPM and the gaps are
shown in Table 1, where gapi represents the initial gap value
of the i-th contact node (i.e. the cyan points) shown in Fig. 10.
The results in Table 1 show the high accuracy of SPM for
solving the solutions of contact nodes. The possible contact
nodes (i.e. the red points in Fig. 10) on the possible contact
interface are the nodes that are in contact states for some sam-
ples of random parameters and in non-contact states for other
samples, thus they are in ‘possible’ contact states. Accurately
capturing possible contact states is a difficulty for stochastic
contact problems since their PDFs are strongly discontinu-

Fig. 9 First six reduced basis {dxi }6i=1 in the x direction and
{
dyi
}6
i=1

in the y direction obtained by SLMM and SPM

ous. PDFs of the solutions of the possible contact nodes are
shown in Fig. 11, which indicates that both SLMM and SPM
are in good accordancewithMCSand can capture the discon-
tinuities well. Figure 12 depicts PDFs of the solutions of the
non-contact nodes (i.e. the blue points inFig. 10) on the possi-
ble contact interface.The stochastic solutions are less than the
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Fig. 10 Five characteristic nodes: the contact nodes (the cyan points
•), the possible contact nodes (the red points •), the non-contact nodes
(the blue points •) on the possible contact interface, the nodes near and
far from the possible contact interface (the points A and B •)

Fig. 11 PDFs of solutions of the possible contact nodes on the possible
contact interface obtained by SLMM, SPM and MCS

corresponding gap values for all samples of random param-
eters, thus all of them are in non-contact states. All of the

Fig. 12 PDFs of solutions of the non-contact nodes on the possible
contact interface obtained by SLMM, SPM and MCS

above nodes are on the possible contact interface and their
stochastic solutions are solved by the full order component
of the semi-reduced order stochastic finite element equation.
The proposed methods have good accuracy for these nodes.
We also check the nodes that are not on the possible con-
tact interface, whose stochastic solutions are solved by the
reduced order component of the semi-reduced order stochas-
tic finite element equation. PDFs of the solutions of the points

Table 1 Relative errors between
the vertical displacements of
contact nodes obtained by SPM
and the initial gap values

Contact points 1 2 3 4 5 6 7 8 9 10

gapi × 103 (m) 0.70 1.27 1.97 4.09 5.75 7.89 11.44 14.12 17.71 22.77

|min(uc,i )−ga pi
ga pi

| × 107 11.02 4.65 4.44 1.63 0.87 0.70 0.42 0.22 0.67 0.31

|max(uc,i )−ga pi
ga pi

| × 107 6.67 2.91 2.99 1.12 0.57 0.51 0.32 0.11 0.37 0.17
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Fig. 13 PDFs of the stochastic displacements of the points A and B

A and B (as depicted in Fig. 10) in x and y directions are
shown in Fig. 13. The good accuracy of SLMM and SPM is
certified again.

For comparisons, we solve the stochastic solutions by use
of the full-reduced order method proposed in section 3.2 and
the PC-based stochastic Lagrangian multiplier method given
in “Appendix”. The size of the full-reduced order equation
is equal to the retained items k = 11. Two-order Hermite PC
basis of ten standard Gaussian random variables are adopted.
The number of PC basis is 66 and the size of the derived finite
element equations is about 5 × 104, which is much higher
than the original stochastic problem. Solutions of the con-
tact nodes on the possible contact interface obtained by the
full-reduced order method and PC-based SLMM are seen
in Fig. 14, which indicates that both the full-reduced order
method andPC-basedSLMMcannotmeet the contact bound-
ary exactly.

where tS (second) is the computational time for computing
the reduced basis, tU is the computational time for solving
the semi-reduced order stochastic finite element equation and
tT is the total time.

To verify the validity of the proposed methods for solv-
ing high-dimensional stochastic contact problems, different
stochastic dimensions r = 10 and 100 are solved using
SLMM and SPM. All of them are tested on a laptop (dual-
core, Intel Core i7, 2.40GHz). Computational times are listed
in Table 2, which indicates that the proposed SLMM and
SPM are efficient even for the stochastic dimension 100. For
both SLMMand SPM, as the stochastic dimension increases,
the computational time tU for solving the semi-reduced order
stochastic finite element equations slightly increases since
the retained item k is a bit larger than the low-dimensional
case while the computational time tS for computing reduced
basis increases. In this paper, we adopt KL expansion (as
shown in Eq. (59)) to approximate the random fields and
the stochastic matrix K (θ) in SLMM and SPM has the
form K (θ) = ∑r

i=0 ξi (θ) Ki . Extra computational effort
and storage are needed for a large number of deterministic
matrices {Ki }ri=0, thus the computational time tS is high for
the high-dimensional case.High-performance computational
equipment and parallel computing can be used to reduce the
computational time furthermore.
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Fig. 14 PDFs of solutions of the contact nodes on the possible contact interface obtained by full-reduced order method and PC-based SLMM

Table 2 Computational costs of
different stochastic dimensions

SLMM SPM

Dimension tS tU tT tS tU tT MCS

10 43.51 7.33 50.84 28.90 8.17 37.07 1742.39

100 221.48 19.86 241.34 240.81 28.45 269.26 2003.91

Further, we study the influence of the sample size ns on the
proposed methods and only SLMM used for the case of 10
stochastic dimensions is tested as an illustration. In numerical
implementation, the sample sizes ns = 101, 102, 103, 104 in
step 3 of Algorithm 1 are first used to solve the reduced basis
matrix D and ns is then reset as 104 in step 16 to solve the
semi-reduced order stochastic finite element equation. PDFs
of stochastic displacements of the point A in the y direc-
tion obtained by different sample sizes ns are compared in

Fig. 15a and their absolute errors relative to the reference
PDF obtained by MCS are seen from Fig. 15b, which indi-
cates that the computational accuracy decreases slightly as
the sample size ns decreases. It is noted that the PDF accu-
racy is acceptable in most cases even only 10 samples are
adopted to calculate the reduced basis, thus we do not need
to carefully choose the sample size in many problems.

Further, computational costs of different sample sizes are
listed in Table 3, where the times tS , tU and tT have the same
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Fig. 15 PDFs of stochastic displacements of the point A in the y direc-
tion obtained by SLMM and different sample sizes ns (top) and their
absolute errors relative to the reference PDF obtained byMCS (bottom)

Table 3 Computational costs of different sample sizes ns

Size ns 101 102 103 104

tS 34.11 35.72 39.89 43.51

tU 6.55 7.20 7.15 7.33

tT 40.78 42.92 47.04 50.84

meaning as that in Table 2. It is seen that for all cases, the
computational times tU for solving the semi-reduced order
stochastic finite element equations are almost the same since
the number of retained terms is very close. While the com-
putational times tS for calculating reduced basis decreases as
the sample size decreases since the computational costs for
performing Eqs. (18), (19) and (22) are reduced.

6 Conclusion

This paper develops two semi-reduced order stochastic finite
element methods for solving stochastic contact problems and
two numerical examples are used to certify their accuracy

and efficiency. Based on the approximations of stochastic
solutions proposed for SLMM and SPM and the correspond-
ing iterative algorithms, the reduced basis are calculated
by solving deterministic finite element equations and one-
/two-dimensional stochastic algebraic equations. By use of
the obtained reduced basis, the original problems are trans-
formed into semi-reduced order stochastic finite element
equations, whose solutions are solved by using a non-
intrusive sampling method. The proposed methods can be
applied to high-dimensional stochastic contact problems and
avoid the curse of dimensionality successfully. In these
senses, the proposed methods provide novel and efficient
numerical strategies for solving stochastic contact problems.

We only focus on the stochastic Lagrangian multiplier
method and stochastic penalty method in this paper. Extend-
ing other methods for solving deterministic contact problems
to the stochastic cases is attractive, e.g. the augmented
Lagrangian multiplier method. Also, we only consider lin-
ear elastic contact problems. Contact problems coupled with
other nonlinearities should be further studied, e.g. material
nonlinearity or large deformations.
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Appendix

PC-based stochastic Lagrangianmultiplier method

Although the PC-based methods are well-known for solving
many stochastic problems [20, 30], there is only little effort in
solving stochastic contact problems. We provide a compara-
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tive study between the proposed methods and the PC-based
method in Example 5.2. In this section, we give a simple pro-
cess to solve the stochastic finite element equation (8) using
the PC-based stochastic Lagrangian multiplier method.

In the context of the PC-basedmethod, the stochastic solu-
tion of Eq. (8) is represented as

[
u (θ)

γ (θ)

]
=

P∑
i=1

�i (θ)

[
ui
γi

]
, (62)

where {�i (θ)}Pi=1 are PC basis, the total number P of the
PC basis is (r + p)!/r !/p!, where (·)! represents the facto-
rial operator, r and p are the number of random variables
and the order of PC basis, respectively, the unknown vector[
uTi , γ T

i

]T ∈ R
n+nc are the deterministic expanded coeffi-

cients corresponding to the basis �i (θ). Although there are
theoretical guidelines [29], the type of PC basis and the
expansion order still need to be specified manually. Substi-
tuting Eq. (62) into Eq. (8) and applying stochastic Galerkin
method we have

P∑
i=1

E

{[
K (θ) QT

Q 0

]
�i (θ)� j (θ)

}[
ui
γi

]

= E

{[
F (θ)

−g (θ)

]
� j (θ)

}
, j = 1, . . . , P, (63)

equivalently,

P∑
i=1

[
K ji δ j i QT

δ j i Q 0

] [
ui
γi

]
=
[

Fj

−g j

]
, j = 1, . . . , P, (64)

where the matrices K ji = E
{
K (θ)�i (θ)� j (θ)

} ∈
R
n×n , the vectors Fj = E

{
F (θ)� j (θ)

} ∈ R
n , g j =

E
{
g (θ)� j (θ)

} ∈ R
nc and which can be rewritten as

[
K̃ Q̃T

Q̃ 0

] [
ũ
γ̃

]
=
[

F̃
−g̃

]
, (65)

where the solutions ũ = [
uT1 , . . . , uTP

]T ∈ R
nP , γ̃ =[

γ T
1 , . . . , γ T

P

]T ∈ R
nc P and the deterministic matrices are

given by

K̃ =
⎡
⎢⎣

K11 · · · K1P
...

. . .
...

KP1 · · · KPP

⎤
⎥⎦ ∈ R

nP×nP ,

Q̃ =
⎡
⎢⎣
Q

. . .

Q

⎤
⎥⎦ ∈ R

nc P×nc P ,

F̃ =
[
FT
1 , . . . , FT

P

]T ∈ R
nP ,

g̃ =
[
gT1 , . . . , gTP

]T ∈ R
nc P .

(66)

It is worth noting that the size of the PC-derived deter-
ministic finite element equation (65) is nP = (n + nc)
(r + p)!/r !/p!, which is significantly higher than the origi-
nal stochastic problem. It is prohibitively expensive to solve
Eq. (65) for high-dimensional and large-scale stochastic con-
tact problems and thus leads to the curse of dimensionality.

References

1. Ammar A, Pruliere E, Férec J et al (2009) Coupling finite elements
and reduced approximation bases. Eur J Comput Mech/Revue
Européenne de Mécanique Numérique 18(5–6):445–463. https://
doi.org/10.3166/ejcm.18.445-463

2. Arnst M, Ghanem R (2012) A variational-inequality approach to
stochastic boundary value problemswith inequality constraints and
its application to contact and elastoplasticity. Int J Numer Methods
Eng 89(13):1665–1690. https://doi.org/10.1002/nme.3307

3. Baroth J, Bressolette P, Chauvière C et al (2007) An efficient
SFE method using Lagrange polynomials: application to nonlinear
mechanical problems with uncertain parameters. ComputMethods
Appl Mech Eng 196(45–48):4419–4429. https://doi.org/10.1016/
j.cma.2007.04.017

4. Betz W, Papaioannou I, Straub D (2014) Numerical methods for
the discretization of random fields by means of the Karhunen–
Loève expansion. Comput Methods Appl Mech Eng 271:109–129.
https://doi.org/10.1016/j.cma.2013.12.010

5. Bierig C, Chernov A (2015) Convergence analysis of multilevel
Monte Carlo variance estimators and application for random obsta-
cle problems. Numer Math 130(4):579–613. https://doi.org/10.
1007/s00211-014-0676-3

6. Bostan V, Han W (2006) A posteriori error analysis for finite ele-
ment solutions of a frictional contact problem. Comput Methods
Appl Mech Eng 195(9–12):1252–1274. https://doi.org/10.1016/j.
cma.2005.06.003

7. Chevalier L, Cloupet S, Soize C (2005) Probabilistic model
for random uncertainties in steady state rolling contact. Wear
258(10):1543–1554. https://doi.org/10.1016/j.wear.2004.11.012

8. Chinesta F, Keunings R, Leygue A (2013) The proper general-
ized decomposition for advanced numerical simulations: a primer.
Springer, New York. https://doi.org/10.1007/978-3-319-02865-1

9. Duong TX, De Lorenzis L, Sauer RA (2019) A segmentation-
free isogeometric extended mortar contact method. Comput Mech
63(2):383–407. https://doi.org/10.1007/s00466-018-1599-0

10. Forster R, Kornhuber R (2010) A polynomial chaos approach to
stochastic variational inequalities. J Numer Math. https://doi.org/
10.1515/jnum.2010.012

123

https://doi.org/10.3166/ejcm.18.445-463
https://doi.org/10.3166/ejcm.18.445-463
https://doi.org/10.1002/nme.3307
https://doi.org/10.1016/j.cma.2007.04.017
https://doi.org/10.1016/j.cma.2007.04.017
https://doi.org/10.1016/j.cma.2013.12.010
https://doi.org/10.1007/s00211-014-0676-3
https://doi.org/10.1007/s00211-014-0676-3
https://doi.org/10.1016/j.cma.2005.06.003
https://doi.org/10.1016/j.cma.2005.06.003
https://doi.org/10.1016/j.wear.2004.11.012
https://doi.org/10.1007/978-3-319-02865-1
https://doi.org/10.1007/s00466-018-1599-0
https://doi.org/10.1515/jnum.2010.012
https://doi.org/10.1515/jnum.2010.012


Computational Mechanics

11. Garreis S, Ulbrich M (2017) Constrained optimization with low-
rank tensors and applications to parametric problems with PDEs.
SIAM J Sci Comput 39(1):A25–A54. https://doi.org/10.1137/
16M1057607

12. Ghanem RG, Spanos PD (2003) Stochastic finite elements: a spec-
tral approach. Courier Corporation, North Chelmsford. https://doi.
org/10.1007/978-1-4612-3094-6

13. Giacoma A, Dureisseix D, Gravouil A et al (2015) Toward an opti-
mal a priori reduced basis strategy for frictional contact problems
with LATIN solver. Comput Methods Appl Mech Eng 283:1357–
1381. https://doi.org/10.1016/j.cma.2014.09.005

14. Jiang H, Xu H (2008) Stochastic approximation approaches to the
stochastic variational inequality problem. IEEE Trans AutomCon-
trol 53(6):1462–1475. https://doi.org/10.1109/TAC.2008.925853

15. Kerfriden P, Passieux JC, Bordas SPA (2012) Local/global model
order reduction strategy for the simulation of quasi-brittle fracture.
Int J NumerMethods Eng 89(2):154–179. https://doi.org/10.1002/
nme.3234

16. Kornhuber R, Youett E (2018) Adaptive multilevel Monte Carlo
methods for stochastic variational inequalities. SIAM J Numer
Anal 56(4):1987–2007. https://doi.org/10.1137/16M1104986

17. Ladevèze P, Passieux JC, Néron D (2010) The Latin multiscale
computational method and the proper generalized decomposition.
Comput Methods Appl Mech Eng 199(21–22):1287–1296. https://
doi.org/10.1016/j.cma.2009.06.023

18. Néron D, Ladevèze P (2010) Proper generalized decomposition for
multiscale and multiphysics problems. Arch ComputMethods Eng
17(4):351–372. https://doi.org/10.1007/s11831-010-9053-2

19. Néron D, Boucard PA, Relun N (2015) Time-space PGD for the
rapid solution of 3D nonlinear parametrized problems in the many-
query context. Int J Numer Methods Eng 103(4):275–292. https://
doi.org/10.1002/nme.4893

20. Newberry F, Hampton J, Jansen K et al (2021) Bi-fidelity reduced
polynomial chaos expansion for uncertainty quantification. Com-
put Mech. https://doi.org/10.1007/s00466-021-02096-0

21. Nour-Omid B, Wriggers P (1986) A two-level iteration method for
solution of contact problems. Comput Methods Appl Mech Eng
54(2):131–144. https://doi.org/10.1016/0045-7825(86)90122-2

22. Nouy A (2007) A generalized spectral decomposition technique
to solve a class of linear stochastic partial differential equations.
Comput Methods Appl Mech Eng 196(45–48):4521–4537. https://
doi.org/10.1016/j.cma.2007.05.016

23. Oñate E (2013) Structural analysis with the finite element method.
Linear statistics: volume 2: beams, plates and shells. Springer, New
York. https://doi.org/10.1007/978-1-4020-8743-1

24. Rey V, Krumscheid S, Nobile F (2019) Quantifying uncertainties
in contact mechanics of rough surfaces using the multilevel Monte
Carlo method. Int J Eng Sci 138:50–64. https://doi.org/10.1016/j.
ijengsci.2019.02.003

25. Scanff R, Néron D, Ladevèze P et al (2022) Weakly-invasive
LATIN-PGD for solving time-dependent non-linear parametrized
problems in solid mechanics. Comput Methods Appl Mech Eng
396(114):999. https://doi.org/10.1016/j.cma.2022.114999

26. Wriggers P, Laursen TA (2006) Computational contact mechanics.
Springer, New York. https://doi.org/10.1007/978-3-540-32609-0

27. Wriggers P, Nackenhorst U (2006) Analysis and simulation of con-
tact problems. Springer, NewYork. https://doi.org/10.1007/3-540-
31761-9

28. Wriggers P, Scherf O (1995) An adaptive finite element algorithm
for contact problems in plasticity. Comput Mech 17(1):88–97.
https://doi.org/10.1007/BF00356481

29. Xiu D, Karniadakis GE (2002) The Wiener–Askey polynomial
chaos for stochastic differential equations. SIAM J Sci Comput
24(2):619–644. https://doi.org/10.1137/S1064827501387826

30. Zakian P, Khaji N (2019) A stochastic spectral finite element
method for solution of faulting-induced wave propagation in mate-
rially random continua without explicitly modeled discontinuities.
Comput Mech 64(4):1017–1048. https://doi.org/10.1007/s00466-
019-01692-5

31. Zheng Z, Dai H (2017) Simulation of multi-dimensional ran-
dom fields by Karhunen–Loève expansion. Comput Methods Appl
Mech Eng 324:221–247. https://doi.org/10.1016/j.cma.2017.05.
022

32. Zheng Z, Dai H (2021) Structural stochastic responses determina-
tion via a sample-based stochastic finite element method. Comput
Methods Appl Mech Eng 381(113):824. https://doi.org/10.1016/j.
cma.2021.113824

33. Zheng Z, Beer M, Dai H et al (2022) A weak-intrusive stochastic
finite element method for stochastic structural dynamics analysis.
Comput Methods Appl Mech Eng 399(115):360. https://doi.org/
10.1016/j.cma.2022.115360

34. Zienkiewicz OC, Taylor RL (2005) The finite element method for
solid and structuralmechanics. Elsevier, NewYork. https://doi.org/
10.1016/C2009-0-26332-X

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1137/16M1057607
https://doi.org/10.1137/16M1057607
https://doi.org/10.1007/978-1-4612-3094-6
https://doi.org/10.1007/978-1-4612-3094-6
https://doi.org/10.1016/j.cma.2014.09.005
https://doi.org/10.1109/TAC.2008.925853
https://doi.org/10.1002/nme.3234
https://doi.org/10.1002/nme.3234
https://doi.org/10.1137/16M1104986
https://doi.org/10.1016/j.cma.2009.06.023
https://doi.org/10.1016/j.cma.2009.06.023
https://doi.org/10.1007/s11831-010-9053-2
https://doi.org/10.1002/nme.4893
https://doi.org/10.1002/nme.4893
https://doi.org/10.1007/s00466-021-02096-0
https://doi.org/10.1016/0045-7825(86)90122-2
https://doi.org/10.1016/j.cma.2007.05.016
https://doi.org/10.1016/j.cma.2007.05.016
https://doi.org/10.1007/978-1-4020-8743-1
https://doi.org/10.1016/j.ijengsci.2019.02.003
https://doi.org/10.1016/j.ijengsci.2019.02.003
https://doi.org/10.1016/j.cma.2022.114999
https://doi.org/10.1007/978-3-540-32609-0
https://doi.org/10.1007/3-540-31761-9
https://doi.org/10.1007/3-540-31761-9
https://doi.org/10.1007/BF00356481
https://doi.org/10.1137/S1064827501387826
https://doi.org/10.1007/s00466-019-01692-5
https://doi.org/10.1007/s00466-019-01692-5
https://doi.org/10.1016/j.cma.2017.05.022
https://doi.org/10.1016/j.cma.2017.05.022
https://doi.org/10.1016/j.cma.2021.113824
https://doi.org/10.1016/j.cma.2021.113824
https://doi.org/10.1016/j.cma.2022.115360
https://doi.org/10.1016/j.cma.2022.115360
https://doi.org/10.1016/C2009-0-26332-X
https://doi.org/10.1016/C2009-0-26332-X

	Semi-reduced order stochastic finite element methods for solving contact problems with uncertainties
	Abstract
	1 Introduction
	2 Stochastic contact problems
	3 Stochastic Lagrangian multiplier method
	3.1 Stochastic solutions of SLMM
	3.2 Full-reduced order method based on SLMM
	3.3 Semi-reduced order method based on SLMM
	3.4 Algorithm implementation of SLMM

	4 Stochastic penalty method
	4.1 Stochastic solutions of SPM
	4.2 Semi-reduced order method based on SPM
	4.3 Algorithm implementation of SPM

	5 Numerical examples
	5.1 Euler Bernoulli beam limited by a rigid block
	5.2 Contact between hemisphere and rigid body

	6 Conclusion
	Acknowledgements
	Appendix
	PC-based stochastic Lagrangian multiplier method

	References


