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Abstract

To assess the influence of mistuning on the vibration amplitudes of turbo-
machinery rotors, reduced order models (ROMs) are widely used. A variety
of methods are available for single-stage configurations and mostly aero-
elastic effects can be taken into account. More recent research focusses on
extending these methods to include multiple stages. However, due to the
significantly increased computational effort of the aeroelastic simulations
when adding more stages to the models, these ROMs are rarely applied
with the inclusion of multistage aeroelastic effects. It is therefore desirable
to develop reduction methods which minimize the number of these simula-
tions to reduce the computational cost and thereby enable analyses of
rotors with multiple stages including aeroelastic effects. In this paper, a
cyclic Craig-Bampton reduction method with an a priori interface reduction
for multistage rotors is extended with an additional a posteriori interface
reduction to reduce the number of aeroelastic simulations necessary for a
given accuracy level of the ROM. The interface degrees of freedom between
stages are reduced using a modified version of Characteristic Constraint
Modes, to yield a more efficient representation of their displacements while
retaining their monoharmonic nature. The method is applied to a two-stage
axial compressor with full aeroelastic coupling between the stages and its
reduced computational effort is demonstrated. Additionally, two sorting
methods for the degrees of freedom (DOFs) of the ROM are compared.

Introduction

Reduced order models (ROMs) are widely used to analyze the vibra-
tions of rotors in turbomachinery. These are in particular beneficial
when Monte-Carlo-Simulations to evaluate the impact of mistuning
necessitate a large number of frequency response calculations. An over-
view of the mistuning phenomenon and model order reduction
methods can be found in Castanier and Pierre (2006). After the
ROMs were focused on a single stage at first, in the last two decades
more and more methods were developed to deal with multistage
rotors. Laxalde et al. (2007b) developed the multi stage cyclic sym-
metry method, where a modal analysis for the whole rotor is per-
formed at once, but limited to a single harmonic. The complete
ROM is then built from the modes of all harmonics. Therefore, some
interstage coupling effects are omitted, but no substructuring with its
inclusion of additional interface DOFs is necessary. Krattiger et al.
(2019) give an overview of interface reduction methods for
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substructuring based ROMs. Sternchüss et al. (2009) use a superelement approach to reduce individual
sectors of each stage before assembling them. Song et al. (2005) use the classical Craig-Bampton substructur-
ing method to deal with multiple stages. Their main insights are to use travelling wave coordinates for each
stage, thereby generating a single substructure for each harmonic of every stage and the reduction of the
interfaces between stages. The interfaces are forced to be made up of concentric rings of nodes, which are
reduced using Fourier basis functions. This reduction method was extended by Schwerdt et al. (2019) to
include polynomial basis functions for the interface in addition to the Fourier basis, thereby reducing the
number of necessary interface DOFs and eliminating the need for the nodes to have the same number of rings
for both adjacent stages. The original and extended methods were applied to different problems, some of them
including friction and aeroelastic effects (D’Souza et al., 2012; Battiato et al., 2018; Maroldt et al., 2022b).
The incorporation of aeroelastic effects into the ROMs is usually based on aeroelastic coefficients, aero-

dynamic stiffness, and damping, which are obtained by flutter calculations using the tuned system modes in
traveling wave coordinates or blade-alone modes. Thus, an efficient calculation is possible, applying phase- or
time-lagged periodic boundary conditions. Those models have been widely used to calculate tuned and mis-
tuned responses of aerodynamically coupled structures. Aeroelastic coefficients can be calculated e.g. using lin-
earized computational fluid dynamics (CFD) approaches and considered in structural ROMs, as done by
Kielb et al. (2007) and Willeke et al. (2017). As shown by Kersken et al. (2012), comparing the results to
conventional time domain simulations, and Meinzer and Seume (2020) comparing the results to experimental
data, the linearized CFD models can give accurate results. Recently, nonlinear harmonic balance (HB)
approaches have become increasingly important, as they are able to incorporate nonlinear aerodynamic effects,
see e.g. Li et al. (2017). Another recent research area is the influence of multi-row interactions on the aero-
elastic coupling coefficients. As e.g. shown by Schönenborn (2018), Maroldt et al. (2022a) and Gallardo
et al. (2019) interactions with neighboring rows can significantly influence the aerodynamic work done on
the vibrating blade.
When mistuning is present, the orthogonality of the eigenvectors regarding the nodal diameters is lost.

This requires the calculation of aeroelastic coefficients for modes of all nodal diameters, even if the excitation
is limited to one engine order. Consequently, the number of calculations needed increases rapidly. As
described by He et al. (2007) this still holds for CMS approaches, as for an accurate prediction of the vibra-
tional behaviour the aeroelastic calculation of constraint modes is needed in addition to the cantilever blade
modes.
Only little work on ROMs for multi-stage turbomachinery, including aeroelastic coupling, has been

reported in the open literature. Maroldt et al. (2022b) extended the model of Schwerdt et al. (2019) to
include inter-stage aeroelastic coupling, showing that multi-stage excitation and inter-stage coupling can have
a significant influence on vibration amplitudes and mistuning. The aeroelastic calculations were performed
using a CFD nonlinear harmonic balance approach, which allows for multi-row coupling. The computational
effort of the overall model reduction is mainly influenced by the calculation of the aeroelastic coupling coeffi-
cients, which were simulated for each DOF of the ROM. This leads to a high demand of computational
resources. For the investigated 2 1=2-stage axial compressor test case, the authors needed to perform more
than 700 multi-stage flutter calculations, with each calculation demanding approximately 120 h CPU time
and approximately 19 GB of memory. Both, the memory consumption and the CPU time for the harmonic
balance approach used scale with the number of calculated harmonics and rows. Assuming one harmonic,
which is mostly sufficient for flutter calculations, the memory consumption is approximately three times that
of the steady calculation. The same roughly holds for the CPU time needed for one iteration (Hall et al.,
2002). However, the total calculation time can increase even more due to slower convergence, when includ-
ing more stages. This leads to significantly higher computational cost, when compared to single-stage
calculations.
As mentioned above, neighboring rows can have a significant impact on the aeroelastic coefficients. Therefore,

all rows or at least the neighboring rows in turbomachinery should be included in the model. The computational
effort for a HB calculation of a whole compressor with IGV and s stages (or r rows) is then at least
3 � (2s þ 1) ¼ 3 � r times higher than for a steady calculation of one row. Additionally, calculations need to be
performed for numerous DOFs, which mainly depend on the maximum number of blades, the number of radial
basis functions, and the number of investigated system modes. This quickly exceeds the computational resources
available for the calculations. Even for the 2 1=2-stage axial compressor investigated in this paper, the IGV and
stator were omitted, in order to maintain feasible calculation times. Therefore, reduction of the number of
DOFs is needed to achieve feasible computational times for forced response in multi-stage turbomachinery and
allow the application in industrial design processes.
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Reduced order model

The reduction method presented in this paper is described in this chapter. Starting from the general equation of
motion in the frequency domain

[�Ω2M þ iΩ(Dþ Daero)þ K þ Kaero]bx ¼ bf e (1)

the following common assumptions are made: First, the matrices Daero and Kaero representing the linearized aero-
elastic damping and stiffness effects are not used during the calculation of the reduction basis of the reduced
order model, but are incorporated later into the ROM. This means that the fluid-structure interaction is
quasi-unidirectional. However, aeroelastic coupling between different modes is incorporated. Second, the struc-
tural damping matrix D is omitted, because the aeroelastic damping effects are dominant without friction
dampers for blade integrated disks. If the damping is small, it can be excluded during the creation of the ROM
and later projected into the reduced coordinates exactly like the aeroelastic matrices.
The chapter is organized as follows: The multistage reduction method with a priori interface reduction is pre-

sented. It is extended using Characteristic Constraint Modes, and then methods to select the degrees of freedom
of the reduced order model to include are discussed.

Multistage reduction model with a priori interface reduction

In this section the basic multistage reduced order model with a priori interface reduction from Schwerdt et al.
(2019) is presented. It is an extension of the Fourier-Constraint-Modes method Laxalde et al. (2007a) and the
basis for the improvements detailed in the next section. The method’s main idea is to employ a Craig-Bampton
reduction method with interface reduction, where each substructure is a single harmonic of one stage. Although
it is later split up into the Fourier harmonics, for simplicity we will first consider the whole interface between
adjacent stages. It is assumed, that this interface is ring shaped. The displacement of the interface degrees of
freedom is described by a product of two families of basis functions. Polynomial basis functions are used in the
radial direction, while a Fourier basis is used in the circumferential direction. As the displacement of the interface
nodes must be described for each of the three cardinal directions (axial, radial and circumferential), if Fourier
harmonics f from to �fmax and fmax polynomials up to degree pmax are included for a specific interface, a total of
3(2fmax þ 1)(pmax þ 1) DOFs are used for this interface in the ROM.
First, the stages are considered individually in cyclic coordinates. The DOFs of each stage s are grouped into

DOFs belonging to the interfaces with the adjacent stages (previous stage: xsγ, next stage: xsΓ) and the inner
DOFs xsI . The DOFs are then further split into the harmonics h. For each harmonic and stage the mass and
stiffness matrices are:

Msh ¼
Mγγ MγI 0
MI γ MII MIΓ

0 MΓI MΓΓ

2
4

3
5
sh

Ksh ¼
Kγγ KγI 0
KI γ KII KIΓ

0 KΓI KΓΓ

2
4

3
5
sh

(2)

The interfaces are reduced using the basis vectors V calculated from the basis functions evaluated at the node
positions of the interface nodes.

xγ
xI
xΓ

0
@

1
A

sh

¼
Vγ 0 0
0 I 0
0 0 VΓ

2
4

3
5
sh

yγ
xI
yΓ

0
@

1
A

sh

(3)

All interface basis functions are distributed among the stage harmonics according to the equation

f ¼ h+ jb; j [ N0 (4)

where b denotes the number of sectors, ensuring compatibility with the boundary conditions of each harmonic.
Note that an interface harmonic f might belong to different harmonics h in the adjacent stages if their number
of sectors does not match. After the interface reduction, the Craig-Bampton method is applied.

xγ
xI
xΓ

0
@

1
A

sh

¼
Vγ 0 0

Ψ γVγ Φ ΨΓVΓ

0 0 VΓ

2
4

3
5
sh

yγ
yI
yΓ

0
@

1
A

sh

(5)
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Here, Ψ are the constraint modes and Φ ¼ [φ1;φ2; . . . ] denotes a subset of the fixed interface modes.

Ψ shγV shγ ¼ �K�1
shII (KshI γV shγ)

Ψ shΓV shΓ ¼ �K�1
shII (KshIΓV shΓ) [KshII � ω2

shjMshII ]φshj ¼ 0 (6)

This reduction procedure is repeated for each harmonic of each stage. The substructures are assembled,
prescribing displacement compatibility at the interfaces. After assembly the DOFs of the ROM are
[yT1I ; y

T
1Γ ¼ yT2γ; y

T
2I ; . . . ]

T, where all harmonics are present and the equality y1Γ ¼ y2γ is ensured by matching
DOFs from the adjacent stages corresponding to the same interface basis function. This reduced order modeling
method is a way to efficiently perform a modal analysis of a multistage rotor. Therefore, besides using the ROM
directly, mistuning can also be projected into the tuned modes using various methods.
The aeroelastic coefficients are calculated using the finished structural ROM, using the method described in

Maroldt et al. (2022b) and discussed below in the section Aeroelastic Analysis. For each DOF of the ROM a
flutter simulation is performed. The aeroelastic coefficients for this DOF are calculated using the resulting
unsteady pressure distribution together with the displacement of all DOFs.

Characteristic constraint modes for multistage reduction

In this section the reduced order model is extended using the Characteristic Constraint Modes (CCM) method.
The Characteristic Constraint Modes method is an interface reduction method originally developed to be used
after a classic Craig-Bampton reduction Castanier et al. (2001) and Craig et al. (1968). Although applying it
after the a priori interface reduction detailed above does not reduce the computational effort necessary to calcu-
late the modes of the full rotor, this creates a more efficient reduced order model, while each DOF still represents
monoharmonic displacements. If aeroelastic effects are to be included, this can reduce the number of CFD simu-
lations necessary to achieve a given accuracy.
To achieve this goal, the CCM method is modified. Instead of calculating the characteristic constraint modes

of all interface degrees of freedom, they are calculated for each interface harmonic f independently. This way, the
monoharmonic nature of all DOFs is preserved. The interface DOFs yf are expressed using the characteristic
constraint modes ΨCC

f

[y1Γf ; y2Γf ; . . . ]
T ¼ ΨCC

f zfð Þ (7)

which are calculated by solving eigenvalue problems of the submatrices belonging to the interface degrees of
freedom of each interface harmonic f .

[�K ff � (ωCC
fj )

2 �M ff ]ψCC
fj ¼ 0 (8)

All DOFs of the whole rotor ROM can be grouped into inner DOFs and interface DOFs, ordered by the inter-
face harmonic f : y ¼ [yTI ; y

T
�fmax

; . . . ; yTfmax
]T . Then the mass and stiffness matrices are

�M ¼

�MII �MI (�fmax)
�MI (�fmaxþ1) � � �

�M(�fmax)I
�M(�fmax)(�fmax) 0

�M(�fmaxþ1)I 0 �M(�fmaxþ1)(�fmaxþ1)

..

. . .
.

2
6664

3
7775

�K ¼

�KII 0 0 � � �
0 �K(�fmax)(�fmax) 0
0 0 �K(�fmaxþ1)(�fmaxþ1)

..

. . .
.

2
6664

3
7775

(9)

and the matrix blocks used in Equation 8 are found on the diagonal.
To actually increase the efficiency of the ROM using CCM, not all characteristic constraint modes are kept in

the reduced basis. Instead the least important CCM are dropped, which reduces the number of DOFs while
decreasing the accuracy. But because the CCM capture the true interface displacements more efficiently, loosing
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the same amount of interface DOFs of the original ROM would decrease the accuracy even more. This is
demonstrated in section Application.
Although not further analyzed in this paper, the relative efficiency of the CCM method rises with an increas-

ing number of stages. If more stages are present, the CCMs can encompass multiple interfaces, with the oppor-
tunities for the CCM method to optimize the reduction basis improving with an increasing size of the CCM
modal analyses (Equation 8).

DOF selection methods

To select which interface DOFs are the most important ones, two metrics are compared in this paper:

1. Pseudoeigenfrequency of DOFs
2. Influence on system eigenfrequencies

Both methods can be applied to both the original ROM as well as the ROM with characteristic constraint
modes. They assign each DOF a score, that can be used to sort the DOFs from most to least important.
The pseudo eigenfrequencies of the DOFs ωCC are used in the classic CCM method. They are calculated

from the eigenvalues of the characteristic constraint modes. For general ROMs the fraction of the diagonal
entries of the reduced stiffness and mass matrices corresponding to each DOF can be used instead of the eigen-
value of the CCM modal analyses. This way, the same sorting method can also be applied to the
Fourier-Polynomial interface basis.
The system eigenfrequencies method works by first selecting a number of system modes of interest, that the

ROM should represent accurately. Then their eigenfrequencies are calculated using the ROM with all DOFs
present. One by one, each DOF is removed from the ROM temporarily, and the eigenfrequencies of the modes
of interest are calculated again. As is the case for all ROMs that project the system dynamics into a reduced sub-
space, the eigenfrequencies will rise with the removal of a DOF. The more the eigenfrequencies increase when
omitting a specific DOF, the more important this DOF is for the ROM. In this paper the average relative eigen-
frequency increase for all modes of interest is used, but other variants including weighting the modes of interest
are possible. The relative increase of the eigenfrequency j when omitting DOF k from the ROM is defined as
the ratio between the frequency increase Δkωj and the the eigenfrequency ωj calculated with the maximum
number of DOF of the ROM.

Application

To analyze the reduction methods discussed above, they are applied to two rotors. The first rotor (Academic
Rotor) is a simplified geometry without airfoils to show the structural dynamics and compare the effect of the dif-
ferent DOF sorting methods. Aeroelastic effects are incorporated into the analysis of the second rotor (Axial
Compressor). Finally, the influence on eigenfrequencies DOF sorting method is applied to the a priori interface
reduction to gain insight into the problem of optimally selecting the DOFs to include.

Academic rotor

The academic rotor consists of two stages with eight and five sectors respectively. The model has 8 821 and
14 037 nodes per sector for the first and second stage, quadratic hexaeder elements, and a total of about 400 000
DOFs when assembled. In Figure 1 the first stage is the flat bladed disk at the bottom, the second stage consists
of the top bladed disk and the shaft. To compare the different interface reduction methods, the ROM consists

Figure 1. Characteristic Constraint Mode (Left) and its Two Main Constituents (Middle: 4ND, Constant Polynomial,

Axial Displacement; Right: 4ND, Constant Polynomial, Radial Displacement).
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of ten fixed interface modes per blade, totaling 80þ 50 ¼ 130 DOFs. For the interface, a maximum polynomial
degree of 4 and a maximum Fourier harmonic of fmax ¼ 32 was chosen, yielding 5 � (2 � 32þ 1) � 3 ¼ 975
DOFs.
When analyzing the characteristic constraint modes, most are dominated by one or a few of the original inter-

face DOFs. This is expected as each CCM is limited to a single harmonic with 15 DOFs each. For rotors with
more stages or more complicated interfaces requiring higher order polynomials, the CCM can be made up of
more base DOFs each. Figure 1 show a CCM (left) which mostly consists of two base interface DOFs represent-
ing axial and radial displacement. Most notable is that for the CCM, there is less interface displacement for the
same amount of blade displacement compared to the regular basis functions. This matches the goal of the CCM,
to create DOFs which greatly influence the results, and other DOFs which can be ommited.
As a reference solution including aeroelastic effects is infeasible for the axial compressor, all comparisons will

be made against the respective ROM with all DOFs present as a reference to keep a constant methodology
throughout. The interface DOFs are then successively removed and the effect on the eigenfrequencies is shown
in Figures 2 and 3. The colored lines represent the regular ROM without special sorting of the DOFs, where the
polynomial degree is limited to zero to four respectively, and fmax is increased from left to right. The y-axis
shows the mean of the relative error of the first 65 eigenfrequencies compared to the full ROM with all 1 105

Figure 2. Comparison of Interface Reduction Methods. DOFs Sorted by Pseudo Eigenfrequency.

Figure 3. Comparison of Interface Reduction Methods. DOFs Sorted by the Omitted DOF Method.
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DOFs. As expected, adding more DOFs reduces the errors. A high polynomial degree is required for the most
accurate results, but for a smaller number of interface DOFs, a good balance of polynomial degree and Fourier
harmonic yields more efficient ROMs, i.e. smaller errors for the same number of DOFs.
In black and grey, the errors are plotted when DOFs are removed according to the orders calculated by the

DOF selection methods pseudoeigenfrequency of DOFs (Figure 2) and influence on system eigenfrequencies
(Figure 3), where the regular DOFs are used for PolyFourier and the characteristic constraint modes are used for
CCM. The pseudoeigenfrequecy sorting method is considerably worse, but, with the exception of ROMs with a
large number of interface DOFs, still results in better ROMs than without any sorting method, especially if the
characteristic constraint modes are used. Sorting the DOFs by their individual influence on the eigenfrequencies
predictably results in consistently better ROMs, with the CCM method providing an additional benefit.

Axial compressor

Figure 4 shows the axial compressor model used to evaluate the improved interface reduction method with aero-
elastic coupling. The compressor rotor is made of Ti6Al4. The first rotor stage has 24 blades, the second one 31.
To generate multistage coupled modes, the stiffness of the second stage was reduced to 65% of the nominal stiff-
ness. The FEM model uses mostly quadratic hexahedral elements and has a total number of 1.96 million DOFs.
For more details see Maroldt et al. (2022b).
The reduced order model uses 10 fixed interface modes per sector, for a total of 10 � (24þ 31) ¼ 550.

Because the full set of aeroelastic coupling coefficients for all DOFs of the ROM is necessary as a reference
solution, the interface basis functions are limited to fmax ¼ 31 and a maximum polynomial degree of one, for a
total number of 2 � (2 � 31þ 1) � 3 ¼ 378 interface DOFs, when aeroelastic coupling is used. Additionally, a
ROM with a polynomial degree of four was constructed without aeroelastic effects. This ROM has
5 � (2 � 31þ 1) � 3 ¼ 945 interface DOFs.

Aeroelastic analysis

Extensive flutter calculations are performed to calculate aeroelastic coupling coefficients of the DOFs. Aeroelastic
simulations were only conducted for the 2 1=2-stage axial compressor, as it features realistic blade geometries. A
detailed description of the CFD approach is described by Maroldt et al. (2022b), however, a brief summary is
given below.
The aeroelastic coefficients are calculated via harmonic balance calculations (Frey et al., 2014) using the CFD

code TRACE 9.3 by the German Aerospace Center (DLR). The harmonic balance simulations use the initial
state solution of the whole 2 1=2-stage compressor, based on mixing planes. The computational domain is visible
in Figure 4 left. As described above, the demands of the computational cost is high. Consequently, the number
of nodes is reduced, using wall functions at the hub with an average dimensional wall distance yþ � 56.
Low-Reynolds wall treatment is still used at all other walls with an average yþ � 1:2. The single-passage mesh
consists of 5.4 million nodes. The simulations were performed at the rotational speed of 124 Hz, at which
EO23 is in resonance with a mode of interest. The k � log (ω) version (Müller and Morsbach, 2018) of the
Menter SST-turbulence model is applied.
The flutter calculations use a reduced computational domain of only rotor 1, stator 1, and rotor 2. For each

circumferential Fourier harmonic f ¼ �15; . . . ; 15 all corresponding DOFs are mapped onto the CFD mesh of
both rotor 1 and 2. The deformations are scaled down by factor α to a maximum deformation of 0.1 mm.
Assuming linearity of the flow field an arbitrary α can be chosen, as long as no strong deformation of the

Figure 4. 2 1=2-Stage Axial Compressor Test Case.
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numerical mesh is involved. Calculations are performed for a single degree of freedom i (called active DOF),
which vibrates at the investigated frequency (ω ¼ 2π � 2 845 Hz).
Only the circumferential mode order of the Fourier harmonic f and the corresponding frequency in the sta-

tionary frame of reference ðstatÞ or the rotational frame of reference ðrotÞ

ωstat ¼ ωþ f Ω; ωrot ¼ ω (10)

are included in the calculation with one harmonic. This allows inter-stage coupling, e.g. an active mode of rotor
2 can create unsteady pressure fluctuations on rotor 1. Any scattered cut-on circumferential mode would be
cut-off, therefore, no mode scattering was considered here.
The unsteady pressure distributions on the blades created by the active DOF j and the deformations of all

other DOFs k of the calculated Fourier harmonic f are then used to calculate the aeroelastic work Waero;k;j.
Afterwards, the aeroelastic coefficients dk;j (damping) and kk;j (stiffness) are calculated based on the aeroelastic
work (Willeke et al., 2017)

dk;j ¼ �ReðWaero;k;jÞ
ωπαjαk

; kk;j ¼
ImðWaero;k;jÞ

παjαk
: (11)

Here, the aeroelastic coefficients are calculated for one rotational speed only. If accurate results for a broad speed
range with multiple excited resonances are desired, the aeroelastic simulations must be repeated for different rota-
tional speeds.

Results

First, the results of the ROMs without aeroelastic effects are analyzed. They are shown in Figures 5 and 6. For
both ROMs, the maximum accuracy gain by sorting the DOFs is about a factor of ten, which is noticeably
lower than the gain achievable for the academic rotor, where in the best case it is on the order of 100. One
explanation for this might be the fact, that there are not enough Fourier harmonics to be included into the
ROM, since fmax is limited to the number of blades of the second stage, whereas it is four times the maximum
number of blades for the academic rotor. Other factors influencing the results are the location of the interface,
the higher disk to blade stiffness ratio of the axial compressor and the number of modes considered.
Adding aeroelastic coefficients, the system matrices cease to be Hermitian and the arbitrary damping must be

considered. Therefore, the second order system of equations is converted to a first order system and the complex

Figure 5. Comparison of Interface Reduction Methods Without Aeroelastic Effects. Polynomial Degree Limited to

Four. DOFs Sorted by the Omitted DOF Method.
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eigenvalues are analyzed. Their errors are plotted in Figures 7 and 8, split into absolute value and angle in the
complex plane, to give an indication of the accuracy of the eigenfrequencies and damping values respectively.
The number of DOFs refers to the second order system. The errors of the absolute value of the eigenvalues
behave very similarly to the ROM without aeroelastic effects. This suggests that the aeroelastic effects do not sig-
nificantly alter the mode shapes of the rotor. The errors of the eigenvalue angles are not given relative to the ref-
erence ROM, but as an absolute value because the range of aeroelastic damping values can include zero. Overall,
the damping values are quite accurately captured by the ROM even with a low number of DOFs. Among the
first 330 eigenvalues, the maximum and mean angle to the imaginary axis are 3:2e-3 rad and 2:1e-2 rad respect-
ively. This is presumably due to the small blade deflections of the interface DOFs, creating only small aero-
dynamic forces on the blades. However, depending on the investigated rotor, this might vary. Similar to the case
without aeroelastic damping, the maximum accuracy improvement from sorting the DOFs is on the order of
ten, with the CCM yielding only a small improvement for low numbers of interface DOFs.

Figure 7. Comparison of Interface Reduction Methods. Relative Error of the Absolute Value of the State Space

Eigenvalues Including Aeroelastic Effects. DOFs Sorted by the Omitted DOF Method.

Figure 6. Comparison of Interface Reduction Methods Without Aeroelastic Effects. Polynomial Degree Limited to

One. DOFs Sorted by the Omitted DOF Method.
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Importance of interface DOFs

While the DOF selection methods outlined in this paper are helpful to increase the efficiency of reduced order
models, they need a larger ROM in the first place from which DOFs are selectively removed. This is not an
issue for a posteriori interface reduction methods, as in any case they require a larger initial reduction basis.
To use a priori reduction methods most effectively, the DOFs to include must be selected in advance. To assess
the relative importance of the interface DOFs with the combined Fourier- and polynomial basis functions, the
order of the DOFs resulting from the influence on eigenfrequencies sorting method is analyzed in Figures 9, 10,
11 and 12. Here, the cumulative distribution of the interface DOFs is plotted from the most important to the
least important DOF according to the sorting method. Figures 9 and 10 show the distribution of interface har-
monics for the academic rotor and the axial compressor; the distribution of the DOFs grouped by polynomial
degree is pictured in Figures 11 and 12. For both rotors, polynomials up to degree five were used, and interface
harmonics up to degree fmax ¼ 32(31) for the academic rotor (axial compressor), which corresponds to four
times (exactly) the number of blades of the stage with more blades.
As expected, the lower harmonics and polynomial degrees are more important than the higher ones. This is

easiest to see in Figure 12, where the most important DOFs all belong to the constant polynomial group. The
higher order polynomials appear successively with increasing number of DOFs. Here, about 80% of constant
and linear polynomial DOFs are more important than the first fourth order polynomial DOF. Comparing the

Figure 9. Cumulative Distribution of the Interface Dofs

Grouped by Nodal Diameter for the Academic Rotor.

Sorted Using the Influence on Eigenfrequencies Method.

Figure 10. Cumulative Distribution of the Interface Dofs

Grouped by Nodal Diameter for the Axial Compressor.

Sorted Using the Influence on Eigenfrequencies Method.

Figure 8. Comparison of Interface Reduction Methods. Error of the Angle of the Complex State Space Eigenvalues

Including Aeroelastic Effects. DOFs Sorted by the Omitted DOF Method.
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plots of the two rotors, the academic rotor shows a greater spread in Fourier harmonic importance and a similar
importance of the polynomial degrees, while the results are reversed for the axial compressor, which shows a
greater spread of the polynomial degrees. This can be explained by the fact, that the academic rotor has fewer
blades per stage compared to the axial compressor. Thus, to achieve a similar ratio of interface harmonics to the
number of sectors per stage, more interface harmonics are needed for the axial compressor. Not pictured are the
displacement directions. For both of the rotors, their importance is very similar, with axial and radial displace-
ments being slightly more important than circumferential ones.
Going by these results, the following observations and recommendations can be made:

• The constant and linear polynomial terms are almost equally important.
• The maximum polynomial degree and interface harmonic to include must be balanced, not in absolute

values, but relative to the number of sectors per stage.
• The lower importance of the higher order polynomials demonstrates the advantage of polynomial basis func-

tions compared to using only Fourier harmonics for each ring of nodes on the interfaces in the basic Fourier
Constraint Modes method.

• Equation 5 and Figure 1 show that the interfaces should be located in such a way as to minimize the influ-
ence of the interface DOFs. This is achieved by minimizing the interface displacements for all rotor system
modes of interest. This way the system modes can be expressed well by the fixed interface modes alone.
Conversely, the blade displacements of the Constraint Modes must be minimized. The choice of interface
locations demonstrated herein is sub optimal, because its proximity to one stage means that the interface
DOFs are required to accurately represent the system modes where this stage participates.

Conclusions

In this paper, a reduction method based on substructuring in cyclic coordinates for multistage turbomachinery
rotors is presented. By including an a posteriori reduction of the interface between adjacent stages in addition to
the a priori interface reduction used in other methods, less DOFs are needed for a given accuracy of the ROM.
This enables the CFD simulations to be reduced in number, as fewer are necessary to capture aeroelastic effects
for a given level of accuracy. Additionally, methods for sorting DOFs by their importance are compared,
showing that ROM efficiency gains are achievable even without changing the ROM basis functions. Analyses of
the resulting order of DOF provide insights that enable the user to better select of the interface basis functions
for a priori interface reduction.
However, open questions and needs for further research remain. Instead of sorting the ROM DOFs with

respect to their influence on the first n eigenfrequencies, one can use a weighted sum or select a subset of the
eigenfrequencies, for example those close to a resonance crossing. In this case, the sorting method could also be
extended to the fixed-interface modes, further reducing the number of CFD calculations.
Ideally, an alternative to the CCM method could be developed, thereby incorporating the goal to accurately

represent some modes directly into the generation of the ROM instead of only using it later to sort the DOFs of
a generally good reduction basis. Additionally, the method presented here must be compared to Laxalde’s multi-
stage cyclic symmetry method for different accuracy requirements and rotors of different sizes (numbers of

Figure 12. Cumulative Distribution of the Interface

Dofs Grouped by Polynomial Degree for the Axial

Compressor. Sorted Using the Influence on Eigenfrequencies

Method.

Figure 11. Cumulative Distribution of the Interface

Dofs Grouped by Polynomial Degree for the

Academic Rotor. Sorted Using the Influence on

Eigenfrequencies Method.
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stages). The development of a hybrid method is also possible, where multiple rotor sections consisting of mul-
tiple stages are connected using the interface reduction methods presented in this paper.
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