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ABSTRACT

Thanks to technological advancements, more and more biological data have
been generated in recent years. Data availability offers unprecedented op-
portunities to look at the same problem from multiple aspects. It also un-
veils a more global view of the problem that takes into account the intricated
inter-play between the involved molecules/entities. Nevertheless, biologi-
cal datasets are biased, limited in quantity, and contain many false-positive
samples. Such challenges often drastically downgrade the performance of
a predictive model on unseen data and, thus, limit its applicability in real
biological studies.

Human learning is a multi-stage process in which we usually start with
simple things. Through the accumulated knowledge over time, our cogni-
tion ability extends to more complex concepts. Children learn to speak sim-
ple words before being able to formulate sentences. Similarly, being able to
speak correct sentences supports our learning to speak correct and mean-
ingful paragraphs, etc. Generally, knowledge acquired from related learning
tasks would help boost our learning capability in the current task. Motivated
by such a phenomenon, in this thesis, we study supervised machine learn-
ing models for bioinformatics problems that can improve their performance
through exploiting multiple related knowledge sources. More specifically,
we concern with ways to enrich the supervised models’ knowledge base with
publicly available related data to enhance the computational models’ predic-
tion performance.

Our work shares commonality with existing works in multimodal learn-
ing, multi-task learning, and transfer learning. Nevertheless, there are certain
differences in some cases. Besides the proposed architectures, we present
large-scale experiment setups with consensus evaluation metrics along with
the creation and release of large datasets to showcase our approaches’ su-
periority. Moreover, we add case studies with detailed analyses in which
we place no simplified assumptions to demonstrate the systems’ utilities in
realistic application scenarios. Finally, we develop and make available an
easy-to-use website for non-expert users to query the model’s generated pre-
diction results to facilitate field experts’ assessments and adaptation. We be-
lieve that our work serves as one of the first steps in bridging the gap between
“Computer Science” and “Biology” that will open a new era of fruitful col-
laboration between computer scientists and biological field experts.
Keywords: joint learning, learning from multiple sources, data integration,
biological problems
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ZUSAMMENFASSUNG
Dank des technologischen Fortschritts sind in den letzten Jahren immer mehr
biologische Daten erzeugt worden. Die Datenverfügbarkeit bietet nie dagewe-
sene Möglichkeiten, ein und dasselbe Problem aus verschiedenen Blickwinkeln
zu betrachten. Sie ermöglicht auch eine umfassendere Sicht auf das Problem,
die das komplizierte Zusammenspiel zwischen den beteiligten Molekülen/-
Einheiten berücksichtigt. Dennoch sind biologische Datensätze voreingenom-
men, in ihrer Menge begrenzt und enthalten viele falsch-positive Proben.
Derartige Herausforderungen verschlechtern die Leistung eines Vorhersage-
modells bei ungesehenen Daten oft drastisch und schränken somit seine An-
wendbarkeit in realen biologischen Studien ein.

Das menschliche Lernen ist ein mehrstufiger Prozess, bei dem wir nor-
malerweise mit einfachen Dingen beginnen. Durch das im Laufe der Zeit
angesammelte Wissen erweitert sich unsere Wahrnehmungsfähigkeit auf kom-
plexere Konzepte. Kinder lernen, einfache Wörter zu sprechen, bevor sie
in der Lage sind, Sätze zu formulieren. In ähnlicher Weise unterstützt die
Fähigkeit, korrekte Sätze zu sprechen, unser Lernen, korrekte und sinnvolle
Absätze zu formulieren usw. Im Allgemeinen trägt das bei verwandten Ler-
naufgaben erworbene Wissen dazu bei, unsere Lernfähigkeit bei der aktuellen
Aufgabe zu steigern. Motiviert durch dieses Phänomen, untersuchen wir
in dieser Arbeit überwachte maschinelle Lernmodelle für bioinformatische
Probleme, die ihre Leistung durch die Nutzung mehrerer verwandter Wis-
sensquellen verbessern können. Genauer gesagt beschäftigen wir uns damit,
wie die Wissensbasis der überwachten Modelle mit öffentlich verfügbaren
verwandten Daten angereichert werden kann, um die Vorhersageleistung
der Computermodelle zu verbessern.

Unsere Arbeit weist Gemeinsamkeiten mit bestehenden Arbeiten im Bere-
ich des multimodalen Lernens, des Multi-Task-Lernens und des Transfer-
Lernens auf. Dennoch gibt es in einigen Fällen gewisse Unterschiede. Neben
den vorgeschlagenen Architekturen präsentieren wir groß angelegte Exper-
imente mit konsensuellen Bewertungsmaßstäben sowie die Erstellung und
Freigabe großer Datensätze, um die Überlegenheit unserer Ansätze zu demon-
strieren. Darüber hinaus fügen wir Fallstudien mit detaillierten Analysen
hinzu, in denen wir keine vereinfachten Annahmen treffen, um die Nüt-
zlichkeit der Systeme in realistischen Anwendungsszenarien zu demonstri-
eren. Schließlich entwickeln wir eine einfach zu bedienende Website, auf der
Nicht-Experten die vom Modell generierten Vorhersageergebnisse abfragen
können, um die Bewertung und Anpassung durch Experten vor Ort zu erle-
ichtern. Wir glauben, dass unsere Arbeit einer der ersten Schritte zur Über-
brückung der Kluft zwischen “Informatik” und “Biologie” ist, die eine neue
Ära der fruchtbaren Zusammenarbeit zwischen Informatikern und Biologen
einleiten wird.
Schlagwörter: gemeinsames Lernen, Lernen aus mehreren Quellen, Daten-
integration, biologische Probleme
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Chapter 1

Introduction

1.1 Motivation

Recent technological advancements resulted in major breakthroughs in many
research fields, especially Computer Science and Biology. In 2001, it took
$2.7 billion USD and almost 15 years to complete the first human genome se-
quence as compared to only thousands and days nowadays. Genetics tech-
nologies enable assessments at various levels of granularity, scales, and at
different time points. Our understanding of humans, animals, and other liv-
ing forms has been improved to an unprecedented extent over the past years,
with more and more data generated every day. Besides the whole genome
sequence, public databases now store knowledge about the mutations found
in genes, the disruptions in gene expressions, the protein expression in a par-
ticular tissue/cell line, or the detection of abnormality in genetic factors that
affect a patient’s condition, etc.

Yet human analytical and learning capabilities are restricted to a small
amount of data. This poses opportunities for machine learning (ML) models
which can effectively process big complex data. Due to their exceptional
power in manipulating and utilizing a large volume of data, ML techniques
have been applied to solve a tremendous number of challenging problems,
including but not limited to those in biology. ML models can help prioritize
wet-lab experiment candidates, reason about the underlying phenomena, or
transform massive heterogeneous data into clinically actionable knowledge,
etc. ML approaches have been applied to analyze biomedical data [90, 94,
172], identify diagnostic biomarkers [74, 98, 155, 160, 208], predict disease
prognosis [22, 74, 85, 104, 121], detect disease subtype and select suitable
therapy [64, 146, 151, 163, 212], prioritize and validate drug target [143, 240],
or re-position drug [72, 199, 232].

Nevertheless, existing ML systems do not work effectively for unseen
data [51–54]. The reasons for such phenomena are deep-rooted in some non-
trivial challenges associated with existing biological datasets.

1.2 Challenges in analyzing biological datasets

Firstly, biological datasets usually suffer from the data scarcity and bias prob-
lems. Consider, for example, the protein-protein interaction (PPI) data which



2 Chapter 1. Introduction

is composed of several types of interactions between two proteins. Such in-
teractions are usually analyzed to understand the molecular properties of
certain diseases or search for potential drug targets. For such data, human
intra and inter-species PPIs form the majority of all existing data in public
databases [44, 204]. Similarly, most genome-wide gene expression and pro-
tein expression data come from human studies, and most studies only have
up to 30 samples [165, 180, 210]. As another example, consider the miRNA-
disease associations that encapsulate the pairwise connections between miR-
NAs and diseases. Such data can unveil a better understanding of diseases’
pathology. Nevertheless, the majority of the currently known associations
account for only a few well-studied diseases [52]. Models trained on such
scarce and biased data tend to overfit, and their predictions cannot be gener-
alized on new data. Moreover, due to limited amounts of training data, the
potential of recent deep learning techniques cannot be fully utilized.

Secondly, biological datasets often encounter the curse of dimensionality
problem [112]. That is to say, the dataset contains a huge number of features
but has a very limited number of annotated samples. For example, most of
the gene expression and protein expression datasets contain the expression
information for thousands of genes but only have several to hundreds of
samples [180]. The use of ‘large feature space and small number of samples’
to train ML models leads to unstable and non-generalizable machine learning
models’ performance [14]. As a consequence, when aiming for joint learning
from multiple information sources, one cannot naively concatenate all the
data, and more innovative methods are required.

Thirdly, biological datasets contain many false-positives. That is to say, the
data contains many samples which are marked as positive but are actually
negative. For example, considering the PPI data, it is estimated that the por-
tion of false positives in public databases could be as high as 80% [81]. For
miRNA-disease associations, according to the data deposited in the HMDD
databases [88, 129], the number of false positives associated with a disease
could be more than three-fold the number of true positives [52]. Low training
data quality raises the concern regarding machine learning models’ predic-
tion capability.

1.3 Thesis scope and contributions

In this thesis, for simplicity, we refer to any disease, miRNA, protein-coding
gene, protein, and other biological objects or molecules as biological entities.
The thesis focuses on the development of ML models for two specific biolog-
ical problems: miRNA-disease association and virus-human PPI prediction.
The miRNA-disease association prediction is considered a binary classifica-
tion problem in which, given an input pair miRNA-disease (m, d), predict the
probability (in [0,1] range) that miRNA m is associated with disease d. Simi-
larly, the virus-human PPI prediction is also treated as a binary classification
problem in which given a pair of virus and human proteins (v, h), predict the
probability (in [0,1] range) that the virus protein v interacts with the human
protein h. The detailed problem definitions are given in chapters 3 and 7.
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Being aware of the associated data challenges as described in Section 1.2,
we identify the limitations of existing systems and propose our solutions.

1.3.1 Limitations of existing systems

We identified three types of issues associated with existing works in two bi-
ological problems as described in the following.

Degrading performance quality for new biological entities

We experimentally show that the data challenges often result in drastically
downgraded prediction performance of existing models on unseen biological
entities [51–54]. In chapters 5, 6, and 7, we give details regarding the problem
and our proposed approaches.

Issues in the evaluation setup

We identify four main issues associated with many existing ML model eval-
uation setups. The first and most critical issue is the data leakage problem as
described in detail in Chapter 4. Data leakage refers to the problem in which
the testing data is observed during the model training process. Data leak-
age leads to over-estimation of models’ performance and unfair comparison
between models and is undesirable.

The second issue is the unrealistic assumptions on the number of negative
samples in benchmarked datasets. Many existing systems assume the num-
bers of negative samples are equal to those of the positives. Nevertheless,
for the PPI prediction problem, for example, most proteins only interact with
a limited number of other proteins, which is much smaller than the num-
ber of all proteins (∼ 20, 000) [142]. Similarly, while the number of known
miRNAs is around 2, 000, the most well-studied diseases have at most sev-
eral hundreds of associated miRNAs. Therefore, the assumption of balanced
classes is unrealistic and is insufficient to quantify the systems’ performance
in realistic scenarios.

The third issue attributes to the evaluation strategies. Many existing sys-
tems focus only on the transductive testing setup in which the training data
already contains some labeled data for the entities in the testing data. Nev-
ertheless, they do not quantify how good their proposed models and others
are in the inductive testing setup, where there exist completely new entities
whose prior known associations/interactions are not observed in the training
data. Yet our understanding of humans and the environment is still far from
complete, and due to the limited time and resources, existing knowledge is
often biased towards only some well-studied entities. Evaluating machine
learning models only on the partly known entities neglect an important as-
pect of the system performance on unseen data.

The final issue is related to the use of improper evaluation metrics. Many
existing works rely on the Area under the Receiver Operating Characteristic
(AUC) or the Area under the Precision-Recall Curve (AUPR) scores as the
main evaluation criteria. Nevertheless, such evaluation metrics can result
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in misleading or overestimation in some cases [51, 235]. Such evaluation
metrics would potentially lead to unfair and deceitful comparison among
models.

Unrealistic case studies or use cases

Existing works for biological problems, for example, the miRNA-disease as-
sociation prediction, often include case studies to showcase the system utili-
ties in helping field experts to select potential candidates for wet-lab experi-
ments. However, many existing systems’ case studies often employ artificial
subsets of the possible search space and mainly focus on well-studied bio-
logical entities. Such approaches are delineated from the real use cases since
(i) they place unrealistic assumptions on the testing subsets and (ii) the num-
ber of well-studied entities is very limited while the number of unknown or
little-known entities is overwhelming.

1.3.2 Our proposed solutions

To overcome the existing systems’ limitations and the challenges associated
with biological datasets, we here present our proposed solutions.

Joint learning models to improve prediction performance and data quality

We focus on ML systems for biological problems in which the labeled data
is scarce. We aim to develop models that can effectively mitigate the data
scarcity and bias problem. At the same time, such approaches should also be
able to generate reliable predictions for new biological entities, i.e., the ones
that have not been observed during training.

We notice that besides the given annotated data, there also exists various
related biological knowledge. For example, for the miRNA-disease associa-
tion prediction problem, apart from the limited miRNA-disease known asso-
ciations, there also exist the data corresponding to the miRNA family, the dis-
ease ontology, as well as the miRNA-protein coding gene (PCG) and disease-
PCG associations, etc. The miRNA-PCG and disease-PCG associations store
biologically rich features that affect the miRNA-disease association proba-
bilities. In contrast, the miRNA family and the disease ontology enclose
the functional similarities/differences between miRNAs and diseases. Simi-
larly, for the virus-human protein-protein interaction (PPI) prediction prob-
lem, besides the inter-species virus-human PPIs, we can retrieve the human
PPIs and the abundant sources of unannotated protein sequences from pub-
lic databases. The knowledge acquired from the human intra-species PPI
network stores information related to human proteins’ interaction/binding
patterns. At the same time, the abundant source of protein sequences en-
capsulates the language of the proteins that is a rich information source for
protein representation learning.
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In short, we develop effective ML models that can jointly learn from het-
erogeneous biological information sources. Such a learning strategy is intu-
itive and is motivated by humans. When a person encounters a new prob-
lem, he or she tends to exploit past skills and experiences to solve it. From
a computational perspective, those past skills and experiences are domain
knowledge that is stored in the related data. Combining diverse information
sources helps compensate for missing or unreliable information in each indi-
vidual source. At the same time, multiple knowledgebases centering around
common biological entities can offer global insights into the problem and,
thus, help increase the overall reliability of the prediction.

Yet our employed data often exists in different formats and requires fur-
ther pre-processing effort. In addition, because of the ‘high dimension’ na-
ture of biological datasets, simple concatenation does not work, especially
when the number of annotated samples is limited. Therefore, our focus is
on ways to incorporate such related information sources without further in-
creasing the data dimensionality. We concern with three main research ques-
tions:

• Which are the available sources of information that can be incorpo-
rated?

• How can we integrate such data?

• How can we control the quality and quantity of the added information?

To answer the above questions, we first identify the related information
sources and their biological relevance. From that, we propose simple yet ef-
fective models that offer flexible ways to fuse various information sources
at different stages of the model-building processes. It is essential that the
model has to be simple because a complex learning architecture with a bulky
parameter set would be prone to overfitting, given the limited training sam-
ples. Regarding the quantity and quality of the added side information, we
employ various data filtering techniques, from a naive threshold-based ap-
proach to more complex methods based on expert domain knowledge.

In our joint learning frameworks, the integrated data sources can be uti-
lized as sources to construct the feature space, as sources for statistical em-
bedding learning, as the training data for the added side task(s) in a mul-
titask learning framework, or as the supervised signals for the feature en-
richment and filtering module. We employ the architectures proposed for
language modeling, multitask learning, graph representation learning, and
feature selection to construct our joint learning models. The diverse incorpo-
rated information sources are exploited to inform the learning module with
the related domain knowledge or to guide the data preprocessing unit. The
integrated side data not only helps mitigate the data scarcity and bias problem,
but also claims their benefits in controlling the quantity and quality of the added
information.

Our proposed models gain state-of-the-art performance in two biological
problems, even for new or little-known biological entities. They also show
great potential in overcoming the high false positives problem in the annotated
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training data. More details regarding our joint learning approaches are pre-
sented in chapters 5, 6, and 7.

Consistent evaluation framework

We address the issues related to existing works evaluation setups (ref. Sec-
tion 1.3.1) in three ways. Firstly, we develop a consistent evaluation frame-
work with the modifications for state-of-the-art methods’ training workflow
as well as the implementation for various feature generation methods to over-
come the data leakage problem. At the same time, our proposed joint learning
approaches can also avoid such critical issue because they exploit the re-
lated knowledge sources to learn the corresponding entities’ representations
without resorting on any pre-defined feature generation strategy. Secondly,
we propose replacing the widely adapted metrics with a consensus evaluation
metric that can address the identified limitations to enable fair comparisons
between models. Lastly, we introduce the use of an inductive testing setup
to assess the methods’ performance on new biological entities. At the same
time, we create and release new datasets that consider the nature of biological
data with realistic negative sample rates in various testing scenarios. Thus,
enabling comprehensive comparisons among compared approaches. We be-
lieve such an evaluation framework, consensus metric, and new datasets will
offer fair playgrounds and facilitate future research.

Model realistic use cases and support for field-experts’ assessment and
adoption

This section presents our solution regarding the issue related to unrealistic
case studies as well as our effort in facilitating future research and applica-
tions.

Realistic use cases or case studies
We are the first to add in realistic case studies in which:

• We place no simplified assumptions on the potential candidate search
space.

• We showcase the systems’ utilities for completely new or little-known
biological entities.

• We demonstrate the systems’ applicability in differentiating between
true positive and false positive samples, which is of great interest to
field experts.

Chapters 5, 6, and 7 presents more details regarding our realistic case studies.

An easy-to-use application
One crucial factor that prevents the applicability of any ML model is usabil-
ity. ML approaches that are scattered on the Internet without a detailed user
guide or an easy-to-use application will not be widely adopted among the
research communities. We tackle this problem by developing and releasing a
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web application for the miRNA-disease association prediction that integrates
all our system’s generated prediction results and related domain information
to facilitate field experts’ assessments and adaptation. Chapter 6 gives details
regarding our web application.

1.4 Summary of thesis contribution

In the following, we summarize our thesis contributions:

• We identify and experimentally analyze different types of issues asso-
ciated with existing works.

• We develop a consistent evaluation framework with consensus evalu-
ation metrics and new datasets to enable large-scale, fair, and compre-
hensive comparisons between models.

• We propose novel joint learning models that can flexibly and effectively
integrate diverse information sources to improve ML systems’ perfor-
mance on two biological problems. The proposed learning frameworks
acquire state-of-the-art prediction performance, even on new biological
entities. Also, the systems show great potential in overcoming the high
false positives problem in training data.

• Finally, we add realistic case studies and an easy-to-use web application
to facilitate future research and adaptation.

1.5 Thesis layout

In Chapter 2, we start by introducing the related works regarding machine
learning techniques for supervised classification problems that can exploit
additional information sources besides the given data for the target learning
task. We provide a brief overview of multimodal learning, semi-supervised
learning, transfer learning, and multitask learning, as well as their similari-
ties and differences with regard to our work. In addition, we summarize the
general biological background associated with our studied biological prob-
lems in section 2.5.

Chapter 3 discusses the background knowledge specific to the miRNA-
disease association prediction task. In section 3.1, we present an overview of
the publicly available miRNA-disease association data and their limitations.
Then in section 3.2, we state a formal problem definition followed by an in-
troduction to various types of miRNA and disease similarities and features
employed by existing works. Finally, in section 3.3, we briefly review the re-
lated works in miRNA-disease association prediction along with a detailed
description of seven computational models and some of their variants that
are employed in our experiments.
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Chapter 4 encapsulates our first experimental work in miRNA-disease
association prediction. We present a detailed analysis and discussion of ex-
isting systems’ limitations. From that, we propose our solutions and recom-
mendations.

Chapter 5 continues our work for the miRNA-disease association predic-
tion with the proposal of a multitask learning framework that can exploit in-
formation from five different related knowledge sources and overcome most
existing systems’ issues. In addition to the new model development, we put
forward the employment of the inductive testing setup with the curation and
release of new datasets to evaluate benchmarked models on new miRNAs
and new diseases that have not been observed during training. Moreover, we
introduce a realistic case study corresponding to a disease with many false
positives. We vary the false positive rate in the training data and evaluate
how well the models can identify the true positives in section 5.4.1.

As the multitask model presented in chapter 5 still has some limitations
concerning the quality and quantity of the integrated data, we present a
solution to such issues in chapter 6. We propose a biological-driven mes-
sage passing framework for miRNA-disease association prediction with a
parameter-free mechanism to enrich and filter the integrated information
sources in section 6.1. In addition, we add a realistic case study for a dis-
ease with scarce knowledge in section 6.5.1 and a survival analysis on pub-
licly available miRNA survival and expression data in section 6.5.3. Finally,
we add our support for end-user assessment and adoption by introducing a
web application with all the related biological knowledge in section 6.6.

Chapter 7 is devoted to our work on the virus-human PPI prediction
problem. We start with a brief introduction, the biological background, and
the associated challenges in section 7.1. We then summarize the related works
in section 7.2. Next, we present our proposed multitask learning framework
that can exploit the knowledge from the abundant source of ∼24 million
unannotated protein sequences and the knowledge acquired from the intra-
species human protein-protein interaction network in section 7.3. Finally, we
introduce a realistic case study with promising results for the SAR-Cov-2 hu-
man receptor prediction task in section 7.6.

Lastly, we give the conclusion and a discussion regarding the future work
direction in Chapter 8.

1.6 List of publications

The core contributions of the thesis are presented in the following publica-
tions:

• The contributions in Chapter 4, which identify and analyze limitations
of existing systems as well as present our proposed solutions and rec-
ommendations for the miRNA-disease association prediction, are pub-
lished in:
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– Thi Ngan Dong, Megha Khosla, “Towards a consistent evaluation
of miRNA-disease association prediction models.”, 2020 IEEE Interna-
tional Conference on Bioinformatics and Biomedicine (BIBM), pages
1835-1842, 2020.

• The contributions in Chapter 5, which proposes a multitask learning
framework for miRNA-disease association prediction, along with the
proposal of inductive testing setup, new datasets, and a new realistic
case study for a disease with many false positives, are presented in:

– Thi Ngan Dong, Stefanie Mücke, Megha Khosla, “MuCoMiD: A
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Association Prediction”, in IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics, doi: 10.1109/TCBB.2022.3176456,
2022.

– Thi Ngan Dong, Megha Khosla, “A multitask Convolutional Learn-
ing Framework for miRNA-Disease Association Prediction”, BIOKDD
2021.

• The contributions in Chapter 6, which proposes a message passing frame-
work with multiple data integration for miRNA-disease association pre-
diction, the new inductive testing sets for new disease evaluation, and
the two new realistic case studies are presented in:

– Thi Ngan Dong, Johanna Schrader, Stefanie Mücke, Megha Khosla,
“A Message Passing framework with Multiple data integration for miRNA-
Disease association prediction”, Scientific Reports, volume 12, start
page 16259, 2022.

• The contributions in Chapter 7, which proposes a multitask learning
model for virus-human protein-protein interaction prediction with a
realistic case study for SAR-Cov-2 human receptor prediction, are pre-
sented in:

– Thi Ngan Dong, Graham Brogden, Gisa Gerold, Megha Khosla,
“A multitask transfer learning framework for the prediction of virus-
human protein-protein interactions”, BMC Bioinformatics, volume
22, start page 572, 2021.

– Thi Ngan Dong, Megha Khosla„ “A multitask transfer learning frame-
work for Novel virus-human protein interactions”, ICLR Workshop on
AI for Public Health, 2021.

During the early stages of the Ph.D. studies, I also investigated machine
learning feature selection methods with respect to the training and testing
data complexity. Due to space limit, such an aspect is not touched in this
thesis but is published in:

– Thi Ngan Dong, Megha Khosla. “Revisiting Feature Selection with
Data Complexity for Biomedicine." IEEE 20th International Confer-
ence on Bioinformatics and Bioengineering (BIBE), pages 211-216,
2020.
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From 06.2020 to 12.2020, I worked on patient clinical data retrieved from the
Big Data for Cochlear Implant project. We tried to address various research
questions centering around the patient cochlear implant outcome prediction.
Due to space limit, such contributions are not encapsulated in this thesis but
were presented in an L3S internal report:

– Thi Ngan Dong. “Big Data for Cochlear Implant Project report”, L3S
technical report, 2020.

Starting in early 2022, I join the COVID-19 project and have been working on
patient gene expression data. We develop and release an end-to-end compu-
tational framework that encapsulates the variety of “gene selection” methods
with different selection criteria and objectives. In addition, we create and re-
lease new datasets as well as propose new evaluation metrics for the purpose
of fair and comprehensive comparison between different approaches. Such
contributions are not included in this thesis but are presented in:

– Thi Ngan Dong, Megha Khosla, “A consensus multi-perspective eval-
uation framework for feature selection over gene expression data” in prepa-
ration.

In addition, the following publication was also completed over the course of
this thesis:

– Tianqi Zhao, Thi Ngan Dong, Alan Hanjalic, Megha Khosla, “Multi-
label Node Classification On Graph-Structured Data” submitted to the
Learning on Graphs Conference (LoG) 2022.
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Chapter 2

Background and Related work

The motivation for our work, as many other related works, is that collect-
ing and cleaning annotated training biological data for a particular machine
learning problem is often expensive, time-consuming, and even unrealistic
in some scenarios. To overcome this issue, we exploit the presence of mul-
tiple types of information available pertaining to a problem. To that end,
we develop effective joint learning models inspired by multimodal, transfer,
and multitask learning techniques. In the following, we present the basics of
these core learning techniques and highlight their similarities and differences
from ours. Besides, we present the necessary biological background.

2.1 Multimodal learning

Modality refers to the way in which something happens or is experienced. A
research problem is considered multimodal when it includes multiple such
modalities. Figure 2.1 presents an example of a multimodal learning system
in which the model learns the latent representation from the input images,
text, and audio separately and then later concatenates them to form the input
representation for the target prediction task.

In general, multimodal datasets contain data from different modalities,
observing common phenomena, and are created with the targeted usage of com-
plementary utilization toward learning a complex task. It is very common
that an image caption contains information that is not conveyed in the im-
age. Such information can be the metadata related to the capturing context,
the author, the time and location, etc. Similarly, sometimes it is more straight-
forward to use an image to describe the information, which may not be obvi-
ous or hard to explain from the texts. For instance, using emotion icons or an
X-ray or Magnetic Resonance brain Image (MRI) to present details regarding
the patient’s condition would be more intuitive than a piece of text.

Multimodal learning and our work both focus on jointly learning from
multiple sources. Also, they both have to deal with the problems associated
with the input data quality, for example, the varying level of noise and con-
flict between modalities, or the data scarcity, bias, and false positives in the
added information sources. Nevertheless, our work differs from multimodal
learning in two main points.

Firstly, the integrated data in multimodal learning applications contain
several types of information related to the same input. It is obvious that any
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single source could be employed to construct the feature space for the tar-
geted learning problem. The patient clinical data or the diagnosis images
alone can be utilized as the stand-alone input source for the patient-related
classification task. Nonetheless, not all data sources in our integrated data
pool can be employed as raw input for our targeted classification problem.
Most of them can only be utilized as side information sources that encode com-
plementary domain knowledge related to the entities in our training and test-
ing data.

FIGURE 2.1: A multimodal learning system [110].

Secondly, from a technical perspective, muti-modal learning often in-
volves the utilization of deep learning techniques that learn high-level em-
beddings from the multimodal data and then later combine them to construct
a joint representation as input to a supervised prediction system [174]. In
contrast, our work focuses on simple models with flexible information integra-
tion strategies. It is essential that the model has to be simple and requires a
minimal set of parameters. Because with limited training data, a complex
model with a large parameter set would easily be prone to overfitting.

2.2 Semi-supervised learning

Semi-supervised learning [23] is a machine learning methodology that lies
between supervised and unsupervised learning. Semi-supervised approaches
are often employed in the context where we can acquire massive unanno-
tated data while only having very limited labeled samples. An illustration of
a semi-supervised learning system is presented in Figure 2.2. The learning
objective, in this case, is usually to utilize those unlabeled data to improve the
target classification task. For example, we can retrieve millions of unanno-
tated text documents from the Internet but only have hundreds to thousands
of annotated documents for our text classification task. A semi-supervised
approach, within this context, will train a self-supervised language modeling
model on such a numerous pool of unannotated documents to learn statis-
tical representations for text documents and then feed such representations
as input to train a supervised text classification model on the limited labeled
data.
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FIGURE 2.2: A semi-supervised learning system [245].

To some extent, semi-supervised learning is just one specific technique
employed in our proposed models. Our joint learning approach can exploit
unlabelled data, like the abundant source of unannotated protein sequences,
to improve the target classification task, like virus-human protein interaction
prediction. At the same time, we can flexibly utilize other techniques, like
message passing on the protein-protein interaction network to enrich our fea-
ture representation or feature selection with the disease category information
to filter redundant and noisy features.

2.3 Transfer learning

Transfer learning (TL) [211, 247] is a methodology that focuses on improv-
ing the performance of target machine learning models on target domains
by transferring the knowledge contained in different but related source do-
mains. An example of a transfer learning system is presented in figure 2.3.
The given transfer learning model first trains a ML model for some super-
vised prediction task on the large annotated source data and then fine-tunes
that model using the small number of annotated samples corresponding to
the target prediction problem (which is different from that of the source).
Transfer learning methods can be categorized into homogeneous and hetero-
geneous approaches depending on the input representation of the source and
target domains.

Homogeneous transfer learning [247] assumes that both source and target
domains share the same feature space and only differ in the marginal feature
distribution. To some extent, homogeneous transfer learning has connections
with semi-supervised learning, which transfers the knowledge stored in an
abundant source of unannotated data to improve the input representation
for the target prediction task. Nevertheless, homogeneous transfer learning
covers a broader application context. For example, assume that we have a
rich source of annotated image samples for the car recognition problem but
only a limited number of labeled images for the truck recognition task. A
transfer learning approach, in this case, could be used to train a supervised
classification model to recognize whether the input image contains a car and
then fine-tune that model for the truck recognition problem.
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FIGURE 2.3: A transfer learning approach [59].

Heterogeneous transfer learning [247] aims at transferring knowledge while
the domains have different feature spaces. In other words, the related knowl-
edge is available in the source data, but it is represented in a different way
other than that of the target. Let us take an example. Given that there are
very limited labeled image samples but much more abundant annotated Web
documents that contain images. One could employ a heterogeneous transfer
learning approach to transfer the semantic knowledge stored in those text
documents to improve the target image classification task.

In general, our approach resembles existing works in transfer learning
in many points. Nevertheless, regarding the data sources, our approach is
broader. We can exploit the knowledge from completely different informa-
tion sources, while most existing transfer learning approaches cannot. For
instance, our target problem can be the miRNA-disease association predic-
tion when our learning sources can be the protein-protein interaction data.

2.4 Multitask learning

Multitask learning [21] is an ML paradigm that aims at performance im-
provement through simultaneously learning from multiple related tasks. Trans-
fer learning can be considered as an asymmetric modification of multitask
learning where there is an explicit distinction between the source and target
tasks. An example of a multitask system is presented in figure 2.4 in which
the multitask model tries to generate predictions for four tasks simultane-
ously from the same input. Multitask learning is particularly appropriate
when there are a large number of related tasks and/or each task has only
limited labeled samples.
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FIGURE 2.4: An example of a multitask system [21].

Both multitask learning and our approach aim at learning from multi-
ple sources to improve a supervised prediction’s performance. Neverthe-
less, to some extent, our work is much more flexible. For example, we can
simultaneously learn to predict both virus-human PPI and human-human
PPI. However, our proposed system can be a multi-stage model in which we
asynchronously do feature selection according to the disease category and
shallow node embedding learning from a heterogeneous graph to improve
our target miRNA-disease association prediction task.

2.5 Biological background

2.5.1 DNA and gene

The human genome is encoded in all cells as DNA. DNA, or deoxyribonucleic
acid, refers to a double helix strand of nucleotides that stores the genetic
materials of human and almost all other organisms. Nearly every cell in
the same organism has the same DNA and most human DNA sequences
only differ by less than one percent. Genes are functional units of the DNA.
Protein coding genes (PCGs) are the genes that encapsulate the instructions
for protein generation. Other genes store the genetic information for non-
coding RNAs. It is estimated that the human genome contains approximately
20,000 PCGs [187].

2.5.2 RNA and transcription

RNAs or Ribonucleic acids are chains of nucleotides that share similar struc-
tures to the DNA. However, unlike DNA, RNAs are mostly single strands.
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Gene expression is the process of unzipping parts of the DNA into either RNA
molecules that code for proteins (messenger RNAs, mRNAs, or transcripts)
or non-coding RNA molecules that serve other functions. The conversion
process from PCGs to mRNAs is called transcription. Though most human
cells have the same DNA, the dissimilarity in gene expression enables them
to have non-identical functions and structures. Different genes will have dif-
ferent expression levels under different conditions. Also, the expression of
one gene can affect the expression of some other genes. This phenomenon is
often referred to as genetic interaction or gene functional interaction.

FIGURE 2.5: The relationship between DNA, RNA, protein, transcription and trans-
lation processes [83].

2.5.3 Protein and translation

Translation is the process of synthesizing proteins or sequences of amino acids
from the genetic code stored in mRNAs. Proteins are large, complex molecules
responsible for essential biological functions inside living organisms. Pro-
teins rarely act alone but interact with others to carry out biological functions.
Protein expression is defined as the complex mechanism in which proteins are
synthesized, modified, and regulated inside living organisms. Disruptions
in proteins’ expressions are directly associated with various disease condi-
tions [153]. Figure 2.5 presents an illustration of the relationship between
DNA, RNA, protein, and transcription and translation processes.
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2.5.4 Disease and miRNA

Micro RNAs or miRNAs is a highly conserved class of non-coding RNAs
with a length of approximately 22 nucleotides. miRNAs fulfill their diverse
functions by regulating the gene expression of PCGs after transcription. The
transcribed mRNAs can be directly bound by miRNAs, which leads to cleav-
age or destabilization of the mRNAs and represses the translation into pro-
teins [18]. Figure 2.6 illustrates miRNA regulation mechanism.

The binding between the miRNAs and their target mRNAs is facilitated
by complementary base pairing between the so-called seed region of the
miRNAs and the matching sequence in the mRNAs found most often in the
3’UTR [173]. Each miRNA can have hundreds of target mRNAs. Also, each
mRNA can be regulated by more than one miRNA. Though this complicated
regulatory network is not yet fully understood, it is estimated that about one-
third of all PCGs is regulated by at least one miRNA [184]. These ubiquitous
regulatory functions are also responsible for the multitude of cell processes
influenced by miRNAs: cell development, maturation, differentiation, and
apoptosis as well as cell signaling, cellular interactions, and homeostasis [65,
108, 147, 183]. Consequently, the mutation of miRNAs or changes in their ex-
pression can have diverse consequences that can be hard to predict. Recent
studies indicate that miRNAs could serve as potential biomarkers in certain
diseases such as cancers or immune-related diseases [97, 105, 133, 179, 189,
207, 242].

FIGURE 2.6: miRNA regulates protein translation [1]

A miRNA family is the group of miRNAs that share a common ancestor in
the phylogenetic tree. MiRNAs that belong to the same family usually have
highly similar sequence secondary structures and tend to execute similar bi-
ological functions [102]. Similar miRNAs would tend to participate in the
mechanisms of similar diseases. Figure 2.7 presents the sequences of some
miRNAs in the miR-9 family [135].
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FIGURE 2.7: Some miRNAs in the miR-9 family and their sequences [135].

The disease ontology [190] represents the disease etiology classes. Each dis-
ease can have multiple subclasses and, at the same time, can be the subclass
of one to several other diseases. Similar diseases can be expected to associate
with similar miRNAs. Figure 2.8 gives an illustration of the disease ontol-
ogy [52].

FIGURE 2.8: The disease ontology illustration [52].

2.5.5 Virus and infectious cycle

Viruses are the smallest known form of life that can only replicate inside liv-
ing organisms (or hosts). The virus infection process, which is referred to
as the infectious cycle, can be divided into different stages involving many
protein-protein interactions (PPIs) between the virus and its host. These in-
teractions range from the initial binding of viral coat proteins to the host
membrane receptor [196], to the uncoating of the virus genome [39], hijacking
of the host transcription machinery [213], and then assembling and release of
the new viruses [39, 57]. Figure 2.9 presents an illustration of the infectious
cycle. Understanding the PPI between a particular virus and its host plays
a crucial role in unveiling the underlying mechanism of virus infection and
pathogenesis.

Recent studies indicate that viruses’ capsid protein sequences show little
to no conservation. They are structurally dynamic such that they cannot be
easily detected by common sequence-structure comparison [175]. Also, two
viral proteins with entirely different sequences can share similar functions
and interact with a similar set of human proteins.

2.5.6 Pathway enrichment analysis

A biological pathway is a series of actions/interactions among molecules (like
genes, proteins) that can control cell chemistry, transmit signals, or regulate
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FIGURE 2.9: The virus infection cycle [57].

gene expression and, thus, can subtly determine how a person responds to
the world. High-throughput experiments often yield large sets of genes/proteins
that are nearly impossible to interpret manually and draw insights. Pathway
enrichment analysis that aims at identifying subgroups that are significantly
represented or under-represented in a larger input set of genes or proteins, in
such a case, can provide field experts clues about the factors that drive the bi-
ological conditions. The analysis often involves utilizing statistical methods
over an extensive knowledgebase of known pathways such as the Reactome
pathway knowledgebase [61, 62] and returns a list of significantly enriched
pathways and their statistical significance.

2.5.7 Functional enrichment analysis

Each gene is believed to have some pre-defined functions. Large knowledge-
bases like the Gene Ontology [20] are community efforts to organize and
standardize our understanding so far on gene functions. Functional enrich-
ment analysis is a statistical method built upon such knowledgebases to iden-
tify the functional properties that are significantly over or under-represented
in a group of genes. From that, field experts draw insight into the results ob-
tained from high-throughput experiments. Figure 2.10 provides an example
of the pathway and functional enrichment analysis results.
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FIGURE 2.10: Pathway and functional enrichment analysis results [224].
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Chapter 3

Predicting miRNA-disease
association

MiRNA-disease association prediction has promising applications in drug
development as well as disease diagnosis and treatment. In the past decade,
hundreds of computational approaches have been proposed. Nevertheless,
some crucial limitations still prevent existing works from generating reliable
predictions, especially for new miRNAs and new diseases. This chapter sum-
marizes the motivation, background, and related works corresponding to
machine learning models on the miRNA-disease association prediction prob-
lem.

3.1 Introduction

One pivotal element for the success of a drug development process is drug
target selection. Due to the high number of failures in the protein-target drug
trial period, the target in drug selection has started shifting to RNAs. Micro-
RNAs (or miRNAs) are becoming promising drug targets as they can involve
in many biological processes (from cell duplication, propagation, cell death,
etc., to more complicated mechanisms like virus-host interaction) [25, 26, 28].
Identifying potential associations between miRNA and disease would help
in clinical diagnosis, treatment, and drug development. Since wet-lab exper-
iments are expensive and time-consuming, recent years have observed an
upsurge in the number of proposed machine learning-based computational
approaches.

Regarding the data, the curated HMDD v2.0 [129] and HMDD v3.0 [88]
databases are the most complete and widely used information sources among
existing works. As is typical to many biological applications, a major chal-
lenge for building generalizable and eventually well-performing models for
the miRNA-disease association prediction problem is data scarcity. For ex-
ample, the total number of miRNAs and diseases in the standard HMDD
v2.0 [129] database are 578 and 383, respectively, with a total of 6,447 as-
sociations (without any preprocessing and removal of duplicates). Accord-
ingly, the number of known associations is at most 3% the number of possible
miRNA-disease pairs. Such a small and sparse dataset prohibits the utility of
flexible and expressive modern representation learning techniques.
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Even worse, the known association set is biased towards some well-studied
diseases (∼10% of the most well-studied diseases account for ∼60% of the
known associations, and ∼20% of the most well-studied diseases account
for ∼80% of the known associations). Figure 3.1 presents a disease frequency
graph in which the y-axis refers to the number of diseases while the x-axis de-
notes their corresponding number of known associations found in the HMDD
databases. It can be seen that most diseases have less than 20 known associ-
ations, while some of them can have hundreds.

FIGURE 3.1: The disease frequency bar graph.

In addition, known miRNA-disease association data contains many false-
positives. In one of our case study, we discover that the number of false
positives corresponding to a disease could be more than three folds that of
the true positives [52]. These data challenges often leads to biased and non-
generalizable models.

3.2 Background

3.2.1 Problem definition

Given the set of known miRNA-disease associations, we treat the miRNA-
disease association prediction as a binary classification problem where the
label for an input pair node (m, d) is 1 if there is a known association between
them and 0 otherwise. The machine learning model task, in this context, is to
predict a probability in the [0,1] range, indicating how likely there exists an
association between a given miRNA-disease input pair.

3.2.2 Similarity metrics

Due to the lack of information, most existing works often utilize some sim-
ilarity measured among miRNAs or diseases as features. In this section, we
present a brief overview of the most commonly used miRNA and disease
similarities.
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Disease Semantic Similarity (DS)

Existing works often acquires the disease ontology (as described in Section 2.5.4,
Chapter 2) from the MeSH [15] disease descriptor database. For brevity, we
refer to this as the MeSH ontology. A disease directed acyclic graph (DAG) is
a directed graph constructed from a disease ontology (e.g., the MeSH ontol-
ogy) where the nodes represent diseases, and there is a directed link between
node di and node dj if disease di ‘is-a’ specific instance of disease dj or disease
dj is the parent of disease di. The disease semantic similarity[219] measures
the similarity of two diseases based on their relative positions on the disease
DAG. The contribution of disease di to the semantic value of disease dj is then
defined as:{

C(di, di) = 1
C(di, dj) = max{∆ · C(di, dk)|dk ∈ children of dj}, if dj ̸= di

(3.1)

where ∆ is the decaying factor and is set to 0.5 as in [219]. Then the semantic
value for disease di is calculated as S(di) = Σdj∈Di C(di, dj), where Di is the
set of di’s ancestors.

Finally, the semantic similarity between two diseases di and dj is given
by:

S(di, dj) =
∑d∈Di∩Dj

(C(di, d) + C(dj, d))

S(di) + S(dj)
(3.2)

where Di and Dj are the set of ancestors for diseases di and dj, respectively.
However, Xuan et al. [233] argue that the more a particular disease appears
as an ancestor of other diseases, the less specific it is for a particular disease.
Given the likelihood p(d) of a disease node d appearing as ancestors of all
other diseases, Xuan et al. [233] quantify the information content of d, IC(d),
as the negative log of the likelihood, i.e. IC(d) = − log(p(d)). The pheno-
type similarity score between two diseases is then computed as:

S′(di, dj) =
∑d∈Di∩Dj

(IC(d) + IC(d))

∑d∈Di
IC(d) + ∑d∈Dj

IC(d)
(3.3)

The updated similarity score between two diseases is then calculated as an
average of their semantic similarity and phenotype similarity scores:

DS(di, dj) =
S(di, dj) + S′(di, dj)

2
(3.4)

For simplicity, from now on, without explicitly giving the formula, by saying
disease semantic similarity, we mean the disease semantic similarity given
in Equation (3.4).

MiRNA functional similarity (MF)

The miRNA functional similarity (MF) [219] relies on the assumption that
two miRNAs are more similar if they associate with similar diseases. MF is
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estimated based on the similarities among associated disease sets. In partic-
ular, first, the similarity between disease di and a group of disease D is com-
puted as the maximum value of the similarities between di and any member
disease dj ∈ D:

DS(di,D) = max
dj∈D

(DS(di, dj))

Given that Di denote the set of diseases associated with miRNA mi, the func-
tional similarity between two miRNAs mi, mj is then calculated as:

MF(mi, mj) =
∑di∈Di

DS(di,Dj) + ∑dj∈Dj
DS(dj,Di)

|Di|+ |Dj|
. (3.5)

Gaussian Interaction Profile (GIP) Kernel Similarity (MG and DG)

Van et al. [116] first construct the miRNA-disease association matrix A from
the set of known associations. Let nm and nd be the number of miRNAs and
diseases. Then A is a 2D matrix of size nm × nd. Let Aij denotes the value
of A at row ith and column jth. Then Aij = 1 if miRNA ith associates with
disease jth and Aij = 0 otherwise.

Given the miRNA-disease association matrix A, the GIP kernel similar-
ity [116] between two miRNAs is defined as:

MG(mi, mj) = exp(−λm||IP(mi)− IP(mj||2), (3.6)

where IP(mi) and IP(mj) correspond to the ith and jth rows of matrix A,
respectively. The parameter λm is calculated as:

λm =
nm

Σnm
i=1||IP(mi)||2

Similarly, the GIP similarity between two diseases is calculated similarly as:

DG(di, dj) = exp(−λd||IP(di)− IP(dj||2), (3.7)

where IP(di) and IP(dj) correspond to the ith and jth columns of matrix A,
accordingly. The parameter λd is calculated as:

λd =
nd

Σnd
i=1||IP(di)||2

MiRNA target similarity (MP)

Xiao et al. [230] first retrieve the gene functional interaction network from
HumanNet [89] database. Each connection between two genes pi and pj is
associated with a confidence score cij indicating how likely the connection is
‘real’. If there is no functional linkage between the two genes, then cij = 0.
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The similarity score between two genes pi and pj is then defined as:

SP(pi, pj) =

{
1, if pi = pj

cij, otherwise
.

Then the similarity between a gene pi and a group of genes P is then defined
as:

SP(pi,P) = max
pj∈P

(SP(pi, pj))

Let Pi denote the set of genes associated with miRNA mi. Then a target
similarity [230] between two miRNAs mi and mj is defined as:

MP(mi, mj) =
∑pi∈Pi

S(pi,Pj) + ∑pj∈Pj
S(pj,Pi)

|Pi|+ |Pj|
. (3.8)

Disease target similarity (DP)

The disease target similarity [205] is calculated according to the equation 3.8.
Let Pi denote the set of genes associated with disease di. The disease target
similarity score between two disease di and dj is calculated as:

DP(di, dj) =
∑pi∈Pi

S(pi,Pj) + ∑pj∈Pj
S(pj,Pi)

|Pi|+ |Pj|
.

MiRNA sequence geometric similarity (MS)

Each miRNA can be represented as a sequence of nucleotides. Figure 2.7
presents some example of miRNA sequences. Li et al. [126] first map each
miRNA sequence to a 2-dimensional (2D) representation, where each nu-
cleotide in its sequence is converted to a 2-dimensional vector. Let nti denote
the nucleotide at the ith position. The 2D representation xi of nti is com-
puted recursively as: xi = xi−1δ(xi−1 − λi) such that x0 = (0.5, 0.5) and the
decaying factor δ = −0.5. The parameter λi is set as follows

λi =


(0, 0), if nti = A
(0, 1), if nti = C
(1, 1), if nti = G
(1, 0), if nti = U

.

The sequence geometric similarity [126] MS of two miRNAs mi and mj is
then defined as the Euclidean distance between their two corresponding vec-
tors in the above-defined 2D space.

MiRNA sequence alignment similarity (MA)

The miRNA sequence alignment similarity [205] between two miRNAs mi
and mj is calculated according to the Needleman-Wunsch algorithm [157]
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which employs dynamic programming to measure how similar two neu-
cleotide sequences are. In particular, the algorithm first defines a score for
each match, mismatch or match with a gap state between two individual
neucleotides. Then it divides the original problem into smaller problems on
smaller sub-sequences, assigns a score for each possible alignment, and then
return alignments that result in the best scores.

Let NW store the alignment scores calculated by the Needleman-Wunsch
algorithm for all pairs of miRNAs. The final miNRA sequence alignment
similarity matrix MA is calculated such that:

MA(mi, mj) =

{
1, if mi = mj
NW(mi,mj)−min(NW)

max(NW)−min(NW)
, if mi ̸= mj

3.2.3 Other types of input features

MiRNA family feature (MO)

MiRNAs belonging to the same family usually share similar secondary struc-
tures and have similar biological functions [102]. One miRNA family can
contain many miRNAs, while one miRNA might not have the family infor-
mation available. For those that do not belong to any known families, we
assume it belongs to a new family whose name is its own. We model each
miRNA family feature as the one-hot encoding of its family. In particular,
let n f be the number of all miRNA families. Then the miRNA family feature
MOi of a particular miRNA mi is a vector of n f values where a value MOij
at position jth is set to 1 if mi belongs to the jth family and 0 otherwise.

MiRNA target gene feature (MT)

As discussed in section 2.5.4, one miRNA can regulate the expression of hun-
dreds of PCGs. The curated miRNA-PCG associations are usually retrieved
from public databases like miRTarBase [86]. For each miRNA-PCG associa-
tion, such databases calculate a confidence score based on multiple weighting
criteria like the experimental method, the original data sources, etc., to justify
how likely the association is ‘real’. If the confidence scores are not in the [0,1]
range, they are scaled accordingly.

Each miRNA target gene feature is then represented as a one-hot encod-
ing or a weighted vector of its PCG associations. In particular, let np be the
number of PCGs. Then the miRNA target gene feature MTi of a miRNA mi is
defined as a vector of np values where a value MTij at position jth is set to be
(i) 1 if there is a known association between miRNA mi and the jth PCG and
0 otherwise (for the one hot encoding representation) or (ii) the association
confidence score (in [0,1] range) between mi and the jth PCG and 0 if such
association record does not exist (for the weighted representation).
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Disease associated gene feature (DT)

Disruptions in gene expression affect protein expression. Disruptions in pro-
tein expression might lead to diseases. Therefore, changes in gene expression
are believed to associate with diseases. The disease-PCG associations can be
retrieved from public databases like DisGeNET [168]. Such databases usu-
ally curate information from multiple sources under various experimental
methods and conditions. For each association, a confidence score is often cal-
culated to measure how likely such an association is real. If such a confidence
score is not in the [0,1] range, they are scaled accordingly.

Each disease-associated gene feature can be modeled as the one-hot en-
coding or as a weighted representation of its associated PCGs. In particular,
let np be the number of PCGs. Then the disease target gene feature DTi of a
disease di is defined as a vector of np values where a value DTij at position
jth is set to be (i) 1 if there is a known association between disease di and the
jth PCG and 0 otherwise (for the one hot encoding representation) or (ii) the
association confidence score (in [0,1] range) between di and the jth PCG and
0 if such an association does not exist (for the weighted representation).

3.3 Related work

Hundreds of computational models have been proposed in the past decades
for the miRNA-disease association prediction problem. Each approach often
utilizes different architecture, input, experimental setups, and benchmarked
datasets. It is impossible to discuss every approach in detail. This section
presents a brief overview of existing works followed by a detailed discussion
of seven recently proposed models and some of their variants included in our
experiments.

3.3.1 Overview

Regarding the input data, existing works can be grouped into: those that
rely on pre-calculated similarities, those that automatically learn miRNA and
disease representations at run time, and the hybrid techniques.

Similarity-based methods

Similarity-based methods rely on pre-calculated similarities to construct their
feature space. The similarity matrices can be directly used as input features
or indirectly to build the input graph(s) for feature learning. Regarding the
number of similarity metrics employed, similarity-based techniques can be
further divided into single and integrated models. Single similarity-based
approaches only employ two pre-calculated similarities for miRNA and dis-
ease (one for each). The model architecture can vary from a simple ranking
model [219] to more complex systems that involve modern learning tech-
niques like variational auto-encoders [49] or neural matrix completion [126].
Some additional examples of such methods include: the model from Chen
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et al. [38], RWRMDA [30], NetCBI [27], RLSMDA [32], IMCMDA [37], EP-
MDA [55], and GCSENET [132].

Integrated models combine multiple such similarities together. The in-
tegration step can happen before or during the model training process. For
those that happened before, a fixed formula is often employed to calculate a
weighted combination of the multiple input similarities. Then the learning
and prediction strategies are usually similar to those of the single similarity-
based methods. For example, DBNMDA [34] combines two miRNA and two
disease similarities to construct the representation for miRNAs and diseases.
Similarly, NNMDA [239] proposes a weighted mechanism to derive the intra-
connections among miRNAs and diseases from five miRNA and two disease
similarity metrics. Some other examples for this type of methods include:
HGIMDA [35], the model by Wei et al. [117], MDA-SKF [95], EDTMDA [33],
LMTRDA [220], MSFSP [243], SCMFMDA [127], NCMCMDA [31], and SAEMDA [216].

Other similarity integration-based methods learn separate hidden repre-
sentations from different similarity measures, then combine them later. DB-
MDA [244] and MMGCN [205] are two examples of such methods. The for-
mer simply concatenates the two hidden representations, while the latter re-
lies on a multichannel attention mechanism to accomplish such a task.

Feature-learning-based techniques

The feature-learning-based techniques do not rely on pre-calculated similar-
ities but automatically learn the miRNA and disease representations at run
time. DIMIG 2.0 [162] and the model from Ji et al. [93] are two represen-
tatives for this type of methods. Both models employ a similar technique
which integrates the information from multiple information sources to build
large heterogeneous networks and then utilize graph representation learn-
ing techniques over the constructed networks to learn miRNA and disease
representations.

Hybrid approaches

The hybrid approaches are combinations of similarity and feature-learning-
based methods. NEMII [75] is one recent work that falls into this category.
NEMII first construct a bipartite network from the known association data.
The model then utilizes a structural deep network embedding (SDNE) tech-
nique to learn the structural embedding for miRNA and disease. The final
miRNA-disease representation is formulated as the concatenation of their
structural embedding, the miRNA family feature, and the disease semantic
similarity (as described in section 3.2).

In the remaining subsections, we present details regarding seven recently
proposed methods and some of their variants included in our experiments.
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3.3.2 EPMDA [55].

EPMDA is a two stages method that consists of two disjoint modules, one for
feature extraction and one for classification. Let nm and nd denote the num-
ber of miRNAs and diseases, respectively. The feature extraction module
first constructs a heterogeneous network G from the set of known miRNA-
disease associations (encoded by the association matrix A ∈ Rnm×nd), the
miRNA GIP similarity (stored in matrix MG ∈ Rnm×nm), and the disease GIP
similarity (stored in matrix DG ∈ Rnd×nd). The weighted adjacency matrix
(Â ∈ Rnm+nd×nm+nd) of G is then defined as:

Â =

[
MG A
A⊤ DG

]
The feature extraction module then calculates a feature vector for each po-
tential edge or link that connects any two points in G. Let ℓ be an input pa-
rameter representing the maximum circle length. Then the feature vector of a
particular input pair (m, d) is represented as a vector of ℓ values. Each feature
value fi corresponds to the disturbance level resulting from the addition or
deletion of that particular edge to the set of cycles (in which it participates) of
length i in G. The higher the disturbance, the more important that particular
edge is.

EPMDA’s classification module is a 5-layer Multilayer Perceptron Regres-
sion model. For each miRNA-disease input pair (m, d), it takes the feature
vector extracted from the previous step as input and outputs a probability in
[0,1] range indicating how likely miRNA m is associated with disease d. To
better avoid overfitting, EPMDA’s classification model is also trained with L2
or Ridge regularization.

Variants of EPMDA. We investigated a variant of EPMDA where we replaced
the MLP regressor with a linear regressor.

3.3.3 NIMGCN [126].

NIMGCN is an end-to-end learning framework. The model can divided into
two separate components but get trained jointly. Each component is respon-
sible for one task, either to learn the miRNA representations or to learn the
disease representations. For miRNAs, NIMGCN first constructs a homoge-
neous network from the pre-calculated miRNA functional similarity (MF).
Then the model utilizes a 2 GCN layers/encoders followed by multiple non-
linear transformations or neural projections to acquire the miRNA hidden
representations. The disease representation learning component employs the
same architecture as that of the miRNA. However, the input network is con-
structed from the disease semantic similarity (DS).

NIMGCN treats the miRNA-disease association prediction as a matrix com-
pletion problem in which the model learns to fill in the missing entries of the
association matrix A. The association probability corresponding to an input
miRNA-disease pair (m, d) is calculated as the inner product of m’s and d’s
latent representations. NIMGCN is trained by a customized mean squared
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loss function which takes into account only the loss corresponding to the
samples in the training data. NIMGCN architecture is depicted in Figure 3.2.

FIGURE 3.2: NIMGCN model architecture [51].

Variants of NIMGCN. We construct experiments on three of its variations
in which we remove some part of the original model to construct a simpler
one. The variants are summarized in Table 3.1. For NIMGCN1, we remove
the GCN encoders. miRNA functional and disease similarity scores are fed
directly as input to the neural projections to learn hidden representation. For
NIMGCN2, we remove the stack of three neural projections. Output from
GCN encoders is used directly as miRNA and disease hidden representation.
And for NIMGCN3, we use only one GCN encoder and one neural projection
to learn the latent features of miRNA/disease.

TABLE 3.1: NIMGCN and its variants

Model Architecture
NIMGCN original
NIMGCN1 without GCNs
NIMGCN2 2 GCN layers, without neural projection
NIMGCN3 1 GCN layer and 1 neural projection layer

3.3.4 DBMDA [244].

DBMDA is a two stages model which, in addition to the miRNA-disease asso-
ciation data, takes the pre-calculated miRNA functional similarity (MF, the
disease semantic similarity (DS), and the miRNA sequence geometric simi-
larity (MS) as input. For a particular miRNA mi, its functional similarity fea-
tures are the ith row in MF. Other types of similarity features are retrieved
in a similar manner.

For a given miRNA-disease pair (m, d), DBMDA first concatenates the cor-
responding miRNA functional and disease semantic similarity features to
form the input for an auto-encoder whose task is to extract a low dimen-
sional representation for the input pair. At the same time, the sequence sim-
ilarity features of m are fed as input to another auto-encoder to extract its
latent representation. DBMDA then concatenates the output from the two
auto-encoders to form the input to a rotation forest classifier whose task is to
predict potential miRNA-disease associations. DBMDA architecture is illus-
trated in Figure 3.3.
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FIGURE 3.3: DBMDA model architecture [51]

Variants of DBMDA. We want to investigate the effectiveness of miRNA
sequence similarity and autoencoders on DBMDA performance. Therefore,
we also report results from its three variants in which we either remove the
auto-encoder, the miRNA sequence similarity features, or both. As shown
in Table 3.2, the DBMDA model corresponds to the original model. We ob-
tain DBMDA1 by removing the two autoencoders which are used to extract
low dimensional representations from miRNA-disease pair and miRNA se-
quence similarity. Instead, for a particular miRNA-disease pair, we directly
concatenate the miRNA functional, disease, and miRNA sequence similarity
to form a features vector. DBMDA2 corresponds to not using or removing
the miRNA sequence similarity features from the input. For DBMDA3, we
do not use miRNA sequence similarity features and any of the autoencoders.
The concatenated features of miRNA-disease pair are directly used as input
to the rotation forest classifier.

TABLE 3.2: DBMDA and its variants

Model Autoencoder 1 Autoencoder 2 miRNA sequence features
DBMDA

DBMDA1 x x
DBMDA2 x
DBMDA3 x x x

3.3.5 DIMIG 2.0 [162]

DIMIG 2.0 first constructs a heterogeneous network G in which nodes are
miRNAs and PCGs and edges are derived from the known miRNA-PCG as-
sociations and PCG-PCG interactions retrieved from public databases. The
model then treats the miRNA-disease association prediction as a multiclass
classification problem where diseases are the labels. The miRNA nodes are
labeled according to the miRNA-disease association data, while the PCG
nodes are labeled according to the disease-PCG associations retrieved from
a public database. DIMIG 2.0 is a semi-supervised approach that does not
touch the miRNA-disease associations during training. Instead, it assumes
that miRNAs are unlabeled nodes and utilizes only the PCG nodes along
with their labels to learn the model parameters. As PCGs nodes are con-
nected to miRNA nodes (according to the miRNA-PCG association data), the
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learned signals are then propagated through the heterogeneous network to
infer the labels for miRNAs.

3.3.6 MMGCN [205]

MMGCN is an end-to-end model that can utilize the information correspond-
ing to four different similarity measures (the miRNA target similarity (MP,
miRNA sequence alignment similarity (MA), disease semantic similarity (DS),
and disease target similarity (DP). Those similarities are utilized to construct
weighted input networks for representation learning. For each entity (either
miRNA or disease), MMGCN employs a complex architecture consisting of
two GCNs, a multichannel attention mechanism followed by a CNN layer
(as illustrated in Figure 3.4) to learn its hidden representation. Similar to
NIMGCN, MMGCN treats the miRNA-disease prediction as a matrix com-
pletion task. The predicted association probability for a particular miRNA-
disease input pair is calculated as the inner product of the two final input
representations for the corresponding miRNA and disease. MMGCN’s ar-
chitecture is illustrated in Figure 3.4.

FIGURE 3.4: MMGCN model architecture.

3.3.7 GCSENET [132]

GCSENET is a two stages model which consists of a feature extractor and
a binary classifier. The feature extractor serves as a preprocessing unit that
utilizes a multitask learning framework to normalize the miRNA target(MT)
and disease target features (DT). It takes the miRNA functional similarity
(MF), PCG-PCG interactions, and disease semantic similarity (DS) as input
and output predicted matrices for miRNA-PCG and disease-PCG associa-
tions. The input similarities and PCG-PCG interactions are utilized to con-
struct networks for representation learning by GCNs. For each miRNA-PCG
or disease-PCG input pair, the predicted association probability is calculated
as the dot product of the two hidden representations corresponding to the
two input entities.
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The binary classifier takes those predicted PCG association matrices as in-
put and employs a CNN-based classification model to accomplish the miRNA-
disease association prediction task. The feature extractor and binary classifier
are trained separately. Figure 3.5 illustrates GCSENET architecture.

FIGURE 3.5: GCSENet model architecture.

3.3.8 NEMII [75]

NEMII is also a two stages model with two separate components: the fea-
ture extractor and binary classifier. The feature extractor is a shallow em-
bedding learning module that takes the known miRNA-disease association
to construct a miRNA-disease bipartite network for feature learning. NE-
MII feature extractor then utilizes a self-supervised learning model to gen-
erate a structural embedding vector for each miRNA or disease that encodes
miRNA-disease association patterns extracted from the constructed bipartite
network.

The classifier takes as input the learned structural embeddings (output
from the feature extractor module), the miRNA family feature (MO), and the
disease semantic similarities (DS). It represents each miRNA-disease input
pair (m, d) as a big concatenated vector of m’s and d’s structural embeddings,
m’s family features and d’s semantic similarity features (the dth row in the DS
matrix). Then a Random Forest classifier is employed for the classification
task.
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Chapter 4

A consistent evaluation framework

This chapter encapsulates our first work in miRNA-disease association pre-
diction with a detailed discussion on the limitations of existing models as
well as our proposed solutions and recommendations. Most content of this
chapter is taken from our conference paper: “Towards a consistent evaluation of
miRNA-disease association prediction models.” presented at the 2020 IEEE Inter-
national Conference on Bioinformatics and Biomedicine.

4.1 Limitations of existing systems and solutions

4.1.1 Data leakage problem

For a typical machine learning problem, regardless of the model architecture,
the dataset used, or the underlying evaluation setup, there is/are training
set(s) and its/their corresponding test set(s). A training set is used to learn
the model parameters, while a test set is for evaluating the model’s predictive
capability on unseen data. That is to say, data from the test set is always
hidden during the model training phase.

Data leakage in machine learning refers to a scenario in which informa-
tion from the testing set is disclosed in training the model. Data leakage
leads to overestimating models’ predictive power and an unfair compari-
son between models (since different models might get affected differently).
For miRNA-disease association prediction problems, the proposed models
that use pre-calculated similarities that are calculated from the set of known
miRNA-disease associations, like miRNA functional and GIP kernel similar-
ities, would suffer from the data leakage problem.

To understand this, let us first consider the case of miRNA functional sim-
ilarity. We note that the MISIM database is one of the most popular sources
of miRNA functional similarity. The functional similarities in MISIM version
1.0 and MISIM version 2.0 are computed from the HMDD 2.0 and HMDD
3.0 databases, respectively. Those databases are later then employed as the
source for most models’ training and testing data.

Obviously, for a particular training-testing split, we are only allowed to
use the training set information for any ‘learning’ operation. This implies
that the miRNA functional similarities (MF) should be computed from the
training associations solely. Such a rule is violated when the precomputed
similarities are used or the similarities are not re-computed for each training
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FIGURE 4.1: Data leakage problem.

set. Similarly, works using GIP similarity should also compute them using
only the training associations to avoid using any information leakage from
the test set. This is unfortunately not the case where most evaluation setups,
though using multiple train-test splits, utilize the GIP similarities (MG and
DG), which are computed just once before splitting the data. Figure 4.1 illus-
trates the data leakage problem.

In this work, we offer a fix to that by making available the evaluation
framework (with the code) to calculate the miRNA functional, disease se-
mantic, and GIP similarity only from the training association set. Results
about different models’ performance on the correctly calculated similarity
measures are presented in section 4.3.

4.1.2 The evaluation setup

There are no publicly available benchmark training-testing splits for the miRNA-
disease association prediction problem. In other words, there are only sets
of associations between miRNAs and diseases retrieved from the HMDD
databases. Each of the previous works generates its own train-test splits.
K-fold-cross-validation is one of the most popular methods taken by existing
approaches.

Nevertheless, even with the same data-splitting strategy, there are still
many criteria that can affect the fairness of model comparison. These are (1)
the use of random seeds, (2) the differences between actual training-test sets,
and (3) the employed evaluation metrics.

The random seeds

Generally, many of the proposed works only run K-FoldCV once. That is to
say, the author(s) run(s) only one time K-FoldCV with some random seed and
then report the average performance for only that seed. It is expected that for
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different random seeds, even for the same model, we will most likely get dif-
ferent data splits and, therefore, different results. Therefore, we believe that
for K-FoldCV, the compared models should report the average performance
score(s) for several random seeds for fairness purposes.

The training and testing data

In a binary classifier for the miRNA-disease association prediction problem,
known miRNA-disease associations are considered positive samples. Re-
searchers often treat unknown miRNA-disease pairs as potential negative
samples. When it comes to negative samples, both the quantity and the qual-
ity of the negative sample set used in training and testing will significantly
affect the model performance.

Regarding negative training samples, existing works either use the com-
plete set or a random subset of potential negative samples (pairs that do not
share a link) to learn the model parameters. However, using the entire set of
non-connected pairs as negative training samples would result in highly im-
balanced training data since the ratio of positive:negative instances are very
small (around 0.029 for HMDD 2.0 dataset and around 0.039 for HMDD 3.0).
A highly imbalanced training set could introduce an unwanted bias towards
predicting correctly only the negative samples.

Regarding negative testing samples, many of the models only use a ran-
dom subset of the potential negative samples set. When it comes to evalu-
ation, from a biological perspective, people would most likely want to get
a top-ranked list of miRNAs associated with a particular disease. For those
systems that were evaluated only on a small subset of all possible miRNA-
disease pairs, it is hard and even impossible to get such a global ranked list.
Therefore, in a more realistic setting, the test set should include all negative
pairs (excluding the ones that are already present in the train set) as against
only a random subset. Such a setting is also emphasized in [235].

The evaluation metrics

The last element that should be considered is the use of evaluation metrics. In
terms of measurements, most of the published articles for the current prob-
lem can use either top K Predictive Rate (topK), Area under the Receiver
Operating Characteristic (AUC), or Area under the Precision-Recall Curve
(AUPR).

Many existing systems use topK as the validation method for their case
studies. Models were trained by the associations from one database and veri-
fied on the other. In general, the authors often take HMDD 2.0 o HMDD 3.0 as
the source for training and validate the system performance on some other
databases like dbDEMC 2.0 [236], miR2Disease [96] and miRCancer [231].
HMDD 3.0 and miRNA2Disease are both manually curated databases. Db-
DEMC 2.0 and miR2Disease are databases collected by semi-automatic meth-
ods that focus on human cancers only.

The problem lies in the fact that all those databases usually have a lot in
common since they were all derived from the same set of publications related
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to miRNAs and diseases. For two databases that overlap by a large portion,
a highly overfitting model trained on one database could obtain a very high-
performance score on the other. In that case, the topK performance score
should not be used to indicate the method’s predictive performance. Instead,
the topK performance should be tested on a separate test set that does not have
any intersection with the training set. The topK scores reported in section 4.3
were calculated on the corresponding testing sets only.

For AUC, as previously discussed in [235], the AUC score is sometimes
misleading for highly imbalanced datasets like HMDD 2.0 and HMDD 3.0.
We argue that using the Area under the Precision-Recall Curve (AUPR) is
more appropriate in this case. However, a point to be noted here is the cal-
culation of the Area under the precision-recall curve. The sklearn function
to calculate the Area under the curve1 might suffer from the overestimation
of the actual area because of linear interpolation. For example, if there are
just two points on x- and y-axis, it computes the Area under the line joining
these two points, which is incorrect. We propose the use of Average Preci-
sion (AP) [192] which summarizes a precision-recall curve as the weighted
mean of precision achieved at each threshold (the weight here is the increase
in recall from the previous threshold). AP is computed as:

AP = ∑
n
(Rn − Rn−1) · Pn (4.1)

where Rn, Pn are the recall and precision at the nth threshold correspond-
ingly. AP does not suffer from the issues related to AUC and AUPR scores.

4.1.3 The model building problem

In this part, we are mostly concerned with models that propose either new
system architectures or new types of input features. Generally, more complex
systems with the addition of some non-linearity might work better but have
a higher potential for overfitting. The increased set of parameters due to the
models’ increased complexity consequently requires more training samples
to be trained/learned. For our problem of interest, the amount of positive
training data is limited and is usually of very small size. Therefore, adding
more complexity to the model requires a proper ablation study to ensure
whether the added element results in a gain to the model performance. A
similar thing should be taken into consideration when adding more features
as input to the system. Larger feature spaces usually induce an increased
number of parameters, which may again lead to overfitting. In this work,
motivated by the idea that simpler might be better, besides the originally pro-
posed models, we also construct experiments and report results on multiple
simpler variants of our studied models to justify the benefits or drawbacks
of the added components.

1https://scikit-learn.org/stable/modules/generated/sklearn.metrics.
auc.html#sklearn.metrics.auc
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4.2 Data and Experimental setup

4.2.1 The benchmarked models

In this work, we study three recent state-of-the-art models which are repre-
sentative of three different kinds of popular approaches:

1. NIMGCN [126] proposes a graph convolution network based end-to-end
architecture that learns non-linear representations for miRNA and dis-
ease jointly while minimizing the prediction error.

2. DBMDA [244] uses an autoencoder-based feature extractor to learn the
input representation for the binary classification model. Besides, DB-
MDA proposes the use of a new type of input similarity: the miRNA
sequence geometric similarity (MS).

3. Different from the above two approaches, EPMDA [55] first extracts
graph-based features from the heterogeneous miRNA-disease disease
network and then uses that learned features to train a non-linear classi-
fier.

For a thorough investigation of the models and to assess the gains obtained
by using additional complexities or input features, we also experiment with
several of their simpler variants. A detailed discussion of the benchmarked
models and their variants has already been presented in Section 3.3.

4.2.2 Data Collection

We use two datasets derived from the HMDD 2.0 [129] and HMDD 3.0 [88]
databases as our evaluation datasets. The first dataset, which from now on
we denoted as HMDD2, consists of 5,430 associations between 495 miRNAs
and 383 diseases. The second dataset, denoted as HMDD3, consists of 35,362
associations between 1,062 miRNAs and 893 diseases.

TABLE 4.1: The datasets statistics. nm, nd, N and nd/∈MESH denote the number of
miRNAs, diseases, the known associations, and the number of diseases that are not

found in MESH, respectively.

dataset nm nd N nd/∈MESH
HMDD2 495 383 5,430 55
HMDD3 1,062 893 35,362 360

The MESH terms for disease semantic similarity calculation are down-
loaded from the National Library of Medicine2. Diseases are matched by
names. There are 55 and 360 disease names that are not found in MESH
in HMDD2 and HMDD3, respectively. For those diseases, we fill in the sim-
ilarity matrix with their corresponding GIP similarity (calculated from the
miRNA-disease association network) as described in Section 3.2. All miRNA

2http://www.nlm.nih.gov/
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sequence information was retrieved from miRBase [113]. The two datasets’
statistics are given in Table 4.1.

4.2.3 Experimental setup

For all the models on a particular dataset, we run five times 5-fold CV on the
known miRNA-disease association set with different random seeds. Overall
each model was trained/tested 25 times, corresponding to 25 possible com-
binations of training/testing splits. For simplicity, we call a training/testing
split a data split. For all models, we use the same set of data splits. We report
AUC, AP, and topK scores as mentioned in section 4.1.2. For topK, for each
disease and a particular value of K, we count the number of known associ-
ations that appeared in the top K results predicted by the models (ranked
by the predicted probability, the higher the probability, the higher the rank).
The scores reported in Table 4.2 are the average topK results for the five pop-
ular diseases: Colon Neoplasms, Kidney Neoplasms, Prostate Neoplasms,
Ovarian Neoplasms, and Lung Neoplasms.

Traing and testing data

Following previous works, we also consider all unknown miRNA-disease
pairs as negative samples. Regarding the training data, we experiment with
both balanced and imbalanced training sets. When it comes to testing data,
we use the complete set of negative samples in the test set as described in
Section 4.1.2.

Input similarities

Regarding the input similarity measures, we use the same set of similari-
ties as proposed by the original models: GIP similarities for EPMDA (MG
and DG), miRNA functional (MF) + disease semantic similarity (DS) for
NIMGCN, and miRNA functional(MF) + disease semantic (DS) + miRNA se-
quence geometric similarity (MS) for DBMDA.

We resolve the data leakage issues by re-calculating all similarities accord-
ing to the given data splits. More specifically, for each run, miRNA functional
similarity or miRNA/disease GIP similarity scores are computed using only
the training data’s associations. That means when we do 5-foldCV, those
similarity scores are calculated five times with different inputs. For similari-
ties calculation, whenever possible, we use the original implementation pro-
vided by the authors. All the code for similarities computation is available at
https://git.l3s.uni-hannover.de/dong/simplifying_mirna_disease.

Hyperparameter settings

For DBMDA, we use an autoencoder consisting of one encoder and one de-
coder. The encoder is a densely connected layer of size 32 (the encoded
dimension explicitly given in DBMDA paper) with ReLU activation func-
tion and L1 regularization. The decoder, which has the same size as the
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input, is a densely connected layer with a sigmoid activation function. We
train that autoencoder for 1,000 epochs in all experiments. For the Rota-
tion Forest [177] classifier, we use the implementation from https://github.
com/digital-idiot/RotationForest with all the default parameters. For
NIMGCN, we use all the author’s parameters like the number of epochs, num-
ber of hidden units, etc. For EPMDA, we use the authors’ code and settings
for both feature calculation and the MLP regression model.

4.3 Results and discussion

FIGURE 4.2: Erroneous and correct results on HMDD2 dataset.

In our experiments, we investigate and answer the following research
questions:

• RQ1: Which models are most affected by the data leakage problem
caused by using precomputed similarity features?

• RQ2: How do balanced and imbalanced training data setups compare?

• RQ3: How do our proposed model variants compare with the original
models?

In Section 4.3.1, we answer RQ1 by comparing originally proposed mod-
els with the similarity features computed on the (i) complete association data
and (ii) using only the training split. The results corresponding to RQ2 are
discussed in Section 4.3.2. In Section 4.3.3, we compare the difference in the
performance of different models with and without the added components (to
the model architecture and the input feature set). We report the average and
standard deviation of the AP/AUC scores after 25 runs corresponding to 25
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data splits for all the models. However, for EPMDA and EPMDA1 on HMDD3,
we could only get the results corresponding to one random seed because it
took too much time (nearly 27 days for just one split) to finish the feature
extraction step.

For all figures, the black lines represent the standard deviations among
runs. The longer the line is, the larger the standard deviation is.

FIGURE 4.3: AP scores on HMDD2 and HMDD3 dataset with balance training set.

FIGURE 4.4: AP scores corresponding to balance and imbalance training data.
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4.3.1 Impact of pre-computed similarities

Figure 4.2 shows the comparison of the AUC and AP scores of the three mod-
els on the HMDD2 dataset with balance training set. For all models, the “Erro-
neous results” denote the results retrieved from the compared models using
precomputed similarities. In contrast, “Correct results” indicate the results
obtained from the models that use similarities calculated at run time using
only the given training data.

As expected, we find that the use of pre-calculated similarity does result
in much higher AUC or AP scores. Also, different models get affected differ-
ently by the data leakage problem.

We observe the highest performance drop in EPMDA because its calcu-
lated features heavily rely on the fed GIP similarities. Note that the GIP sim-
ilarities are computed using only the association information.

To represent a disease node, NIMGCN, and DBMDA use disease semantic
similarity (DS) features, which (unlike GIP similarity) are computed from the
disease ontology and not from the miRNA-disease associations. We, there-
fore, observe a lower impact of this correction step on DBMDA and NIMGCN.

Moreover, DBMDA also employs additional miRNA sequence similarity
features that can be computed independently from the associations, making
it relatively more robust to the changes in the miRNA functional similarity
features. Overall, DBMDA is the least affected of all models.

4.3.2 Balanced vs. imbalanced training data

As discussed earlier, the use of an imbalance training dataset might down-
grade the model performance. Figure 4.4 presents a comparison of AP scores
between balance and imbalance training datasets on selected methods. The
performance of DBMDA and their variants are not reported here because
their performance is very low compared to other methods. Interestingly, for
NIMGCN and its variants, the imbalance training set slightly boosts those
models’ performance in HMDD2, but it is not the case for HMDD3. In both
datasets, an imbalance training dataset results in higher AP scores for EP-
MDA but not for EPMDA1. Since the best AP score on HMDD2 is acquired by
EPMDA1 with the balance training set and the best AP score on HMDD3 is
achieved by NIMGCN3 with the balance training set, we recommend the use
of the balance training set.

TABLE 4.2: Average number of associations found in the TopK highest predictions
for five diseases.

Method Top10 Top20 Top30 Top40 Top50
EPMDA 1.44 3.72 6.88 10.83 15.32
EPMDA1 1.8 4.63 8.36 12.83 17.82
DBMDA 0.46 1.26 2.46 4.24 6.36
DBMDA1 0.53 1.29 2.53 4.06 6.01
NIMGCN 1.98 4.73 8.28 12.57 17.45
NIMGCN1 1.87 4.74 8.35 12.61 17.44
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4.3.3 Impact of model architecture

To answer RQ3, we compared the three studied models and their several
variants on HDMM2 and HDMM3 datasets. Figure 4.3 presents the mean AP
scores for these models with standard deviation on the balance training set
(except EPMDA). Table 4.2 presents the topK evaluation results correspond-
ing to studied models and their best-performing variant on HMDD2 with the
balanced training data setup. We make the following observations:

• The simpler variants show a lower standard deviation in the perfor-
mance scores over multiple data splits as compared to the original mod-
els. Low variance in performance naturally increases the confidence in
the model’s decisions.

• Considering the average AP scores, the best performing models on both
datasets is one of the proposed more lightweight variants. EPMDA1
gains the highest AP score on HMDD2 and NIMGCN3 out-performs
other models by a large margin on HMDD3.

• Considering the topK evaluation, the best performing variant for HMDD2
dataset performs comparable (and sometimes better) to the original
models.

From the results retrieved, we believe that adding more complexity or more
input feature does not always result in a performance gain for our problem
of interest. Adding more components or more information requires a proper
ablation study.

4.4 Conclusion and recommendations

In this chapter, we investigate existing ML models for predicting miRNA-
disease associations. We discover three issues related to many existing mod-
els that not only result in overestimating the methods’ performance but also
affect the fairness of model comparison and thus hinder the model develop-
ment process. These include:

• The data leakage problem is rooted in the use of associations from the
testing set to calculate the input features for the training phase.

• The evaluation setup is linked to the training and testing data construc-
tion, as well as the use of unreliable evaluation metrics.

• The addition of more complex architecture or input features which might
lead to overfitting of models and increase in variance in model’s perfor-
mance

Besides presenting an in-depth study about those three types of issues,
we also provide the corresponding fixes and recommendations. More par-
ticularly, we release our code to calculate the right input similarities from
only the training data to overcome the data leakage problem. Additionally,
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we recommend the use of a balanced training set, the complete test set with
all negative pairs, and the AP score as a reliable evaluation metric. When it
comes to model building, we support the construction of a careful ablation
study before adding more complexity or a new type of input features to the
system.
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Chapter 5

The MuCoMID model

Chapter 4 analyzed the existing systems’ issues as well as our proposed so-
lutions and recommendations. Nevertheless, some open issues still exist re-
garding the utilization of similarity measures. Firstly, as these similarities are
derived from the biased association data, the predictions become even more
biased towards well-annotated diseases with many known associated miR-
NAs [87]. Moreover, the errors in the training associations will be further
exaggerated in the derived feature space. Secondly, most similarity-based ap-
proaches cannot work effectively for new miRNAs or new diseases, i.e., in-
stances for which no prior known associated disease (or miRNA) is available.
Thirdly, as the code for similarity calculation is usually not publicly available,
similarity-based techniques are hard to update when there are changes in the
information sources employed for similarity calculation (e.g., recently dis-
covered miRNA-disease associations, disease ontology updates, more PCG
associations information, etc.).

In this chapter, we propose MuCoMiD - a multitask learning framework
for the miRNA-disease association prediction problem, which can overcome
most limitations in similarity-based methods. Such an approach is novel
and has not been studied before. In addition, we take the lead in conduct-
ing large-scale experiments that enable a comprehensive comparison among
models under different evaluation criteria. Besides the widely-adopted K-
fold cross-validation, we propose new testing scenarios and generate new
datasets to justify benchmarked models’ performance on new miRNAs, new
diseases, and when the training data contains many false positives. This
chapter is based on our journal paper: “MuCoMiD: A multitask graph Convolu-
tional Learning Framework for miRNA-Disease Association Prediction” published
in IEEE/ACM Transactions on Computational Biology and Bioinformatics,
2022.

5.1 Proposed approach

In this section, we present our Multitask graph Convolutational neural net-
work model for miRNA-Disease association prediction, which we refer to
as MUCOMID for brevity. Besides the miRNA-disease association predic-
tion, MUCOMID simultaneously learns to predict two additional side tasks.
The model employs different ways of integrating domain knowledge at dif-
ferent stages of the learning process. In particular, information from three
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biological networks: the miRNA family, PCG-PCG interaction, and disease
ontology, are directly used to learn the node representations, thus, avoiding
the use of pre-calculated similarities. Besides, the miRNA-PCG and disease-
PCG associations are employed to construct the training data for the two side
tasks.

Such added side tasks serve as regularizers and help us to incorporate
the related domain knowledge. For example, a miRNA m regulates a set
of proteins p that are responsible for some biological functions. Moreover,
disruptions in the biological functions of p lead to certain disease condition
d. Then m has some influence over disease d via p. The additional tasks of
predicting miRNA-PCG associations and disease-PCG associations help us
encode such influences by embedding m and d closer in the representational
space. Besides, we employ an adaptive loss balancing technique to fine-tune the
multitask loss gradients. This allows us to utilize the full power of multitask
learning without resorting to exhaustive hyperparameter search.

FIGURE 5.1: A schematic diagram of MUCOMID.

Figure 5.1 presents our proposed model architecture. MUCOMID consists
of three main modules: (i) input graph construction in which we build net-
works corresponding to the available side information from miRNA family,
PCG-PCG interactions, and disease ontology (ii) the feature extraction mod-
ule that takes the constructed networks as input and generates the nodes’
representation according to their local neighbors (iii) finally, the multitask
optimization/learning module with one classifier for miRNA-disease associ-
ation prediction, two regressors for miRNA-PCG and disease-PCG associa-
tion confidence score prediction. The second and third modules get trained
jointly using a multitask loss. The multitask loss is a weighted sum of the
three individual task losses and is optimized using a dynamic loss balancing
technique. In the following, we describe each module in detail.
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5.1.1 Input graph construction

We start by describing the construction or retrieval of various biological net-
works that we leverage as additional sources of information and the corre-
sponding rationale.

miRNA family, Gm. A miRNA family is the group of miRNAs that share a
common ancestor in the phylogenetic tree. MiRNAs that belong to the same
family usually have highly similar sequence secondary structures and tend
to execute similar biological functions [102]. Similar miRNAs would tend to
participate in the mechanisms of similar diseases. We retrieve the miRNA
family information from the mirBase database [114]. The miRNA network
Gm is an unweighted undirected graph in which there is a connection be-
tween node A and node B if A and B belong to the same family. Figure 5.2
presents an illustration of the miRNA family network generated from our
data.

FIGURE 5.2: The miRNA family network in which each family forms a cluster.

Disease ontology, Gd. The disease ontology [190] represents the disease eti-
ology classes. A directed connection between two diseases exists if there
exists a is-a relationship between them. Similar diseases can be expected
to associate with similar miRNAs. The disease ontology network Gd is an
unweighted directed network in which there is a directed connection from
A to B if B is a parent of A. Gd can be visualized as a directed tree which
contains only directed connection between children and parents nodes. Each
tree layer represents one layer of abstraction. The uppermost layer represents
the most general disease category. An illustration of the disease ontology is
given in Figure 2.8.

PCG-PCG interaction, Gp. PCGs interact with PCGs to carry out biologi-
cal functions. Therefore, given the fact that protein-coding gene p1 activates
the expression of protein-coding gene p2, if the miRNA m can regulate p1
then there should be some relation between m and p2. In other words, in-
formation from the protein-protein interaction network will bring additional
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insights into the indirect relationship between miRNAs/diseases and the rest
of the PCGs with which a direct interaction is not known. We download the
PCG interaction data from the STRING v10.5 database [203]. As a prepro-
cessing step, we retain only the PCG nodes that have at least one known
association with miRNAs or diseases. We then divide the PCG-PCG interac-
tion confidence scores by 1,000 to convert them to the [0,1] range and further
filter out any PCG-PCG interaction with a confidence score smaller than θp.
The results reported in section 5.3 correspond to θp = 0.3 as it leads to the
highest AP score on the NOVEL-DISEASE test set. The PCG network Gp is an
undirected weighted network in which the edge weights are the normalized
PCG-PCG interactions’ confidence scores. An example of the PCG-PCG in-
teraction network is presented in Figure 5.3 where the edge color intensity
represents the interaction confidence score. The higher the score, the darker
the color is.

FIGURE 5.3: The PCG-PCG interaction network.

5.1.2 Feature extraction

Having constructed the relevant networks, we next extract informative node
representations using the node neighborhood information. As we have no
input node features, we use three embedding layers to encode the feature
representation for miRNA, disease, and PCG nodes. Those embedding lay-
ers are initialized randomly and will get updated during the model training
process.

An embedding layer is essentially a look-up table where the ith row cor-
responds to the learned representation of the ith node. The node embedding
is then passed as an input feature to the graph convolutional layer. A graph
convolutional layer is essentially a linear layer that transforms the node fea-
ture as an aggregation of representations of its 1-hop neighbors. In particular,



5.1. Proposed approach 51

for the input adjacency matrix A and the node embedding matrix X, we ob-
tain the transformed the node feature matrix X′ as follows:

X′ = D̂−1/2ÂD̂−1/2XW, (5.1)

where Â = A + I, I is the identity matrix, D̂ is the degree matrix of Â, and
W is the trainable weight matrix of the graph convolutional layer. We pass
the transformed representation through a ReLU activation to obtain the final
representation X′′ as follows:

X′′ = max(0, X′) (5.2)

As the graph semantics are different for each network, no parameter shar-
ing is employed at this stage. We use three separate graph convolutional
layers to extract the representations for miRNA, PCG, and disease nodes as
illustrated in Figure 5.1. These learned representations will be fed as input to
the multitask optimization/learning module explained in the next section.

5.1.3 Multitask optimization/learning

To effectively utilize information from the miRNA-PCG and disease-PCG as-
sociations, we design a multitask objective to train our model. In particu-
lar, for all input miRNA-disease, miRNA-PCG, and disease-PCG pairs, we
model the pairwise representations as the elementwise products of the cor-
responding node features. For example, for an miRNA-disease input pair
(m, d) denoted by nodes m and d, we obtain the corresponding feature vec-
tor representation as:

xmd = X′′
m ⊙ X′′

d

where X′′
m and X′′

d correspond to the output representations of the graph
convolution-based feature extraction for nodes m and d, respectively.

Using the pairwise representations, we then predict the existence of as-
sociations between miRNA-disease pairs and the confidence scores of asso-
ciations for miRNA-PCG and disease-PCG pairs. In summary, we train our
model with a multitask loss function calculated from these three supervised
tasks and use an adaptive loss balancing technique to dynamically combine
the three individual loss components at training time. Details about individ-
ual task loss and our optimization strategy are presented in the following
sections.

MiRNA-disease binary classification task loss (L1).

We compute the probability of observing an association between an miRNA-
disease input pair (m, d) as:

ymd = σ
(

wT
MDxmd

)
(5.3)
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where wMD is a learnable weight matrix and σ(x) = 1
1+exp(−x) is the sigmoid

function. We use binary cross entropy to calculate the training loss for the
miRNA-disease classification module as follows:

L1 = ∑
m,d

−zmd log ymd − (1 − zmd) log(1 − ymd) (5.4)

where zmd denote the target label known for the corresponding training pair.

MiRNA-PCG regression task loss (L2).

For an input miRNA-PCG pair (m, p), we compute the association confi-
dence score as:

ymp = σ
(

wT
MPxmp

)
(5.5)

where wMP is a learnable weight matrix and σ(x) is the sigmoid function.
We use the sum of squared error to calculate the training loss for the miRNA-
PCG regression module as follows:

L2 = ∑
m,p

(ymp − zmp)
2, (5.6)

where zmp denotes the target confidence score.

Disease-PCG regression task loss (L3).

We adapt the formula presented in equation 5.5 to compute the association
confidence score ydp for a disease-PCG input pair (d, p). L3 is then calculated
using the sum of squared error as in 5.6:

L3 = ∑
d,p

(ydp − zdp)
2, (5.7)

where zdp denotes the target confidence score.

Multitask optimization

We define the final loss for our model as the linear combination of three
losses [123] as follows:

L = L1 + α2L2 + α3L3 (5.8)

where α2 and α3 are the loss weights for the two side tasks. Generally, mul-
titask networks are difficult to train. Finding the optimal combination of
individual task losses is challenging and problem-specific. A task that is too
dominant during training will overwhelm the update signals and prevent
the network parameters from converging to robust shared features that are
useful across all tasks.
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We follow the strategy presented in [123] and update α2 and α3 so that
the difference between the two side tasks’ contribution at each time step t is
minimized. More specifically, at each time step t, the values for α2, and α3 are
computed dynamically as follows:

α2(t) =
L3(t − 1)

L1(t − 1) + L2(t − 1) + L3(t − 1) + 10−10 (5.9)

α3(t) =
L2(t − 1)

L1(t − 1) + L2(t − 1) + L3(t − 1) + 10−10 (5.10)

We use an Adam optimizer [109] with a learning rate of 10−3 to train the
multitask model.

5.2 Experimental setup

5.2.1 MiRNA-disease association data sets

We retrieve the set of miRNA-disease associations from the HMDD v2.0 data-
base [129] and the HMDD v3.0 database [88]. As pre-processing steps, we
retain only the associations for the miRNAs and the diseases for which the PCG asso-
ciation information is available. The filtered data for the HMDD v2.0 database,
which from now on is denoted as HMDD2, contains 2,303 known associations
between 368 miRNAs and 124 diseases. The filtered data for the HMDD v3.0
database, which from now on is referred to as HMDD3, includes 8,747 known
associations between 710 miRNAs and 311 diseases. Statistics about the data
are presented in Table 5.3. Note that the two datasets acquired here differ
from those in chapter 4. The filtered data in this chapter do not include the
miRNAs and diseases that do not associate with any PCG.

5.2.2 MiRNA-PCG association.

We obtain the miRNA-PCG associations from the RAIN database [100]. We
include only the associations with the PCGs that are associated with at least
one Reactome pathway [62] as these would be biologically more significant.
We then normalize the association confidence scores retrieved from the data-
base and filter out any miRNA-PCG association with a confidence score smaller
than a cut-off threshold θm. The results presented in section 5.3 correspond to
θm = 0.5 as it results in the highest AP score for the NOVEL-DISEASE testing
set. In the end, the normalized confidence scores of the retained miRNA-PCG
associations are used as the target values for the miRNA-PCG association
confidence score prediction side task. Statistics about the data are presented
in Table 5.1.
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5.2.3 Disease-PCG association.

We obtain the disease-PCG associations from the DISEASES database [169].
Here also, we retain only the associations (i) with the PCGs that are associ-
ated with at least one Reactome pathway (ii) and have the normalized con-
fidence scores greater than or equal to a confidence cut-off threshold θd. The
results presented in section 5.3 correspond to θd = 0.3 as it results in the
highest AP score in the NOVEL-DISEASE testing set. In the end, the normal-
ized confidence scores of the retained disease-PCG associations are used as
the target values for the disease-PCG association confidence score prediction
side task.

Table 5.1 provides statistics of the three biological networks as described
in section 5.1.1 and the two additional data sets described in section 5.2.2
and 5.2.3. Details about the number of miRNA-PCG, disease-PCG associa-
tions, and PCG-PCG interactions with different confidence cut-off thresholds
can be found in Table 5.2, θ = 0 indicates that we use the whole set without
any filtering.

TABLE 5.1: Statistics for data sets with side information. |E| is the number of connec-
tions/associations. nm, nd, and np are the number of miRNAs, diseases, and PCGs,

respectively.

NETWORK |E| nm nd np

MIRNA-PCG 2,878 714 - 9,236
DISEASE-PCG 29,713 - 312 9,236
MIRNA FAMILY (Gm) 1,354 217 - -
DISEASE ONTOLOGY (Gd) 90 - 128 -
PCG-PCG (Gp) 1,407,590 - - 9,236

TABLE 5.2: The number of miRNA-PCG and disease-PCG associations and PCG-
PCG interactions with different confidence score cut-off threshold (θ).

θ = 0 θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6
miRNA-PCG 178, 716 69, 736 23, 999 5, 343 4,321 2,878 2, 112
disease-PCG 144, 846 144, 846 67, 593 29,713 14, 366 8, 159 5, 721

PCG-PCG 4, 446, 616 4, 446, , 616 2, 621, 256 1,407,590 930, 930 706, 144 57, 6470

5.2.4 Our new testing sets

For small-size data sets like HMDD2 and HMDD3, 5-fold CV evaluation is
limited as the size of the training and testing sets become much smaller.
While one can use HMDD2 for training and HMDD3 for testing, such evalu-
ation is limited as there are many overlapping associations in these two data
sets. We, therefore, carefully construct the following four independent tests
using the HMDD3 data set. HMDD2 is used as the training set for evaluation with
the new testing sets. Let M2 and D2 be the set of all miRNAs and diseases in
HMDD2, respectively. The construction of the four independent testing sets
is described below.
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TABLE 5.3: The miRNA-disease association data statistics where |E|, nm, nd refer to
the number of associations/links, miRNAs and diseases respectively.

DATA SET |E| nm nd

HMDD2 2,303 368 124
HMDD3 8,747 710 311
HELD-OUT1 2,669 324 110
HELD-OUT2 6,641 692 303
NOVEL-MIRNA 3,575 577 115
NOVEL-DISEASE 5,308 346 295

HELD-OUT1 for transductive testing. The HELD-OUT1 testing set contains
only the associations that are present in HMDD3 but not in HMDD2. We fur-
ther remove any associations involving any miRNA that is not in M2 and
any disease that is not in D2. By doing that, we ensure that all nodes in
the testing set are partly observed during training. Finally, HELD-OUT1 con-
tains 2,669 known associations between 324 miRNAs and 110 diseases. We
randomly generate the same number of negative samples from the set of un-
known miRNA-disease pairs.

HELD-OUT2 for inductive testing. We construct the HELD-OUT2 testing set
by including all miRNA and disease nodes and their known associations that
are present in HMDD3 but not in HMDD2. Note that different from HELD-
OUT1, HELD-OUT2 might also contain the associations corresponding to the
miRNA and disease nodes that are not present in the training set HMDD2.
HELD-OUT2 consists of 6,641 known associations between 692 miRNAs and
303 diseases. We randomly generate the same number of negative samples
from the set of unknown miRNA-disease pairs.

NOVEL-MIRNA. From the set of known associations in the HELD-OUT2 test-
ing set, we remove any associations with the diseases that are not in D2 to
construct the NOVEL-MIRNA testing set. NOVEL-MIRNA testing set consists
of 3,575 associations between 577 miRNAs and 115 diseases. Regarding the
node set, NOVEL-MIRNA contains data for 253 new miRNAs that are not ob-
served in the training set HMDD2. We randomly generate the same number
of negative samples from the set of unknown miRNA-disease pairs.

NOVEL-DISEASE. Similarly, for constructing the NOVEL-DISEASE testing
set, we remove any associations with the miRNAs that are not in M2 from
the HELD-OUT2 testing set. NOVEL-DISEASE contains 5,308 associations be-
tween 346 miRNAs and 295 diseases. Regarding the node set, NOVEL-DISEASE
contains data for 185 new diseases that are not observed in the training set
HMDD2. We randomly generate the same number of negative samples from
the set of unknown miRNA-disease pairs.

A schematic Venn diagram of the four large independent testing sets is
presented in Figure 5.4. The corresponding statistics are presented in Ta-
ble 5.3. There are some inconsistencies between the number of miRNAs in
HELD-OUT1, NOVEL-DISEASE, and M2 or between the number of diseases
in HELD-OUT2, NOVEL-MIRNA, and D2 because for some miRNAs and dis-
eases, all their known associations are already presented in the training set
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FIGURE 5.4: An illustration of the four large independent testing sets relations where
HELD-OUT1 = NOVEL-MIRNA ∩ NOVEL-DISEASE, HELD-OUT2 = NOVEL-MIRNA

∪ NOVEL-DISEASE = HMDD3 \ HMDD2.

(HMDD2). Therefore, they do not appear in the known association set of the
corresponding testing sets.

5.2.5 Benchmarked models

We compare our model with seven recently proposed methods: EPMDA [55],
NEMII [75], NIMGCN [126], DBMDA [244], DIMIG 2.0 [244], MMGCN [205],
and GCSENET [132]. More details about our benchmarked models are given
in Section 3.3. Among the state-of-the-art methods, EPMDA relies on the net-
work topology for feature extraction. NEMII learns structural embedding
from the miRNA-disease network. The model also exploits the miRNA fam-
ily and disease ontology information to enrich its input features. NIMGCN,
DIMIG 2.0, MMGCN, and GCSENET utilize GCNs for feature learning.
While DBMDA employs autoencoders for feature transformation. DIMIG
2.0, MMGCN, and GCSENET integrate similar information sources as those
used by MUCOMID. Nevertheless, DIMIG 2.0 utilizes the disease-PCG asso-
ciations to construct the model training objective and the miRNA-PCG asso-
ciations to build the input network for feature learning. MMGCN exploits
miRNA-PCG and disease-PCG associations to calculate the input similarity
matrices. GCSENET uses miRNA-PCG and disease-PCG associations to con-
struct the learning objective for its feature extractor.

5.2.6 Testing setup and evaluation

As in previous works, we perform 5-fold CV for testing on the HMDD2 and
HMDD3 data sets. We run 5-fold CV with 5 random initializations. In other
words, for each data set, we run each model 5 × 5 = 25 times and report the
average performance with the standard deviation.

To test on our new testing sets, we train all models on the HMDD2 data
set. We run the experiments 5 times with random initializations and report
the average performance scores along with the standard deviation.

Evaluation metrics. We report the Area under the Receiver Operating Char-
acteristic (AUC) and the Average Precision (AP) as our evaluation criteria.
For our case studies, we report the number of “true” positives found at the
top K highest prediction.
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5.2.7 Hyperparameter settings

MUCOMID

In all experiments, we fix the number of training epochs to 200, the embed-
ding size and the hidden dimension both to 32. We employ Adam optimizer
with a learning rate of 10−3 for training.

Benchmarked models

For EPMDA, DBMDA and NIMGCN, we use the code and setup released in [51].
For NEMII, MMGCN, and GCSENET, we use the same code and setup as
published by the authors. We emphasize that we substantially strengthened
these methods in our work since, in the original models, the authors sim-
ply take pre-calculated miRNA functional similarities from public databases
(MISIM). Besides, the disease semantic similarity is originally proposed for
the MESH ontology. Nevertheless, such information is not available for our
disease set, and also using those pre-calculated miRNA functional similar-
ities would lead to data leakage [51]. We instead calculate the disease se-
mantic similarity from the disease ontology [190] and the miRNA functional
similarity from the training data associations. This further points to the lim-
ited applicability of existing methods when the original information sources
are updated.

For DIMIG 2.0, we use the code and parameters shared by the author. To
test the model performance on our data, we compare DIMIG 2.0 with the
input features as tissue expression profiles and DIMIG 2.0 with the one-hot
vectors on the subset of our testing data sets that have miRNA expression
profiles available. The two models acquire similar performance. This implies
that the use of tissue expression profiles as node features does not affect the
model performance. We can, therefore, test the model on our data for which
tissue expression information is unavailable by using one-hot encoding for
input node features. The results reported in Section 5.3 correspond to the
model with one-hot vectors as input features on our testing data sets without
removing miRNAs that do not have expression profiles.

5.3 Results

5.3.1 Results on small testing sets

Following previous works, we perform 5-fold CV experiments on the HMDD2
and HMDD3 data sets. The results are shown in Table 5.4. The testing set size
for this scenario is considerably small and contains only 1/5th of the total
associations. Such a train-test scenario allows us to quantify how well the
models learn but is limited in testing the generalization power of the models.

MUCOMID gains a comparable performance compared with state-of-the-
art approaches. There are only minor differences in MUCOMID’s and the
benchmarked methods’ performance on the two data sets. Nevertheless,
among the compared models, NEMII performs the best on the HMDD2 data
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TABLE 5.4: Results corresponding to the 5-fold CV and transductive testing setup.

Method HMDD2 HMDD3 HELD-OUT1
AUC AP AUC AP AUC AP

EPMDA ([55]) 0.744 0.783 0.520 0.594 0.427 0.49
NEMII ([75]) 0.837 0.844 0.898 0.893 0.705 0.642
NIMGCN ([126]) 0.785 0.803 0.795 0.800 0.623 0.601
DBMDA ([244]) 0.553 0.537 0.749 0.696 0.578 0.548
DIMIG 2.0 ([162]) 0.493 0.485 0.516 0.508 0.429 0.471
MMGCN [205] 0.783 0.780 0.911 0.913 0.682 0.627
GCSENET [132] 0.593 0.568 0.613 0.575 0.552 0.538
MUCOMID (OURS) 0.839 0.837 0.916 0.912 0.684 0.68
Improvement over SOTA 0.2% -0.8% 0.5% -0.1% -2.9% 5.9%

set while MMGCN achieves the highest scores on the larger set HMDD3. In
other words, no single benchmarked method claims its superior in both data
sets. For such a reason, we claim that MUCOMID is better than all bench-
marked models in the 5-fold CV testing setup.

The performance of EPMDA drops considerably for the HMDD3 data set.
EPMDA learns edge features in an unsupervised manner corresponding to
its contribution to a cycle of a particular length. Usually, the cycle length
parameter is fixed to a small value due to an exponential increase in run
time with an increase in cycle length. Moreover, the task signal is not used in
learning the edge features. The loss of performance of EPMDA in HMDD3 can
be attributed to the limitation of finding the best cycle length hyperparameter
applicable for HMDD3. This also limits the applicability of this model to a
larger variety of data sets. NEMII, NIMGCN and MMGCN perform better
than DBMDA due to the higher representational capacity of the employed
GCNs and the exploitation of additional graph structure information.

5.3.2 Results on small train but large test sets in transductive
setting

Table 5.4 shows the results corresponding to the HELD-OUT1 testing set with
a positive:negative sample rate of 1:1. Table 5.6 provides additional results
regarding the larger negative sample rates. Recall that HMDD2 is used as
the training set. In this scenario, the testing set size is much larger than the
training set size allowing us to compare the generalization capability of the
models. In general, NEMII acquires the highest AUC score, followed by
MUCOMID with 2.9% lower. Regarding the AP score, MUCOMID attains
the highest with a gain of at least 5.9%. This result is consistent with the ex-
perimental results for different positive:negative test sample rates presented
in Table 5.6. The overall drop in performance of all models in this scenario
as compared to the small testing set size cases points to the hardness of this
particular testing set.
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Among the benchmarked models, EPMDA and DIMIG 2.0 perform the
worst, suggesting that handcrafted topology-based features extraction or semi-
supervised learning on a heterogeneous network without parameter opti-
mization are not promising approaches for the current problem. NEMII and
MMGCN, which exploit multiple sources of information, gain the highest
performance scores. This phenomenon further emphasizes the importance
of information integration.

5.3.3 Results on inductive setting testing sets

TABLE 5.5: Results corresponding to the large inductive testing sets.

Method NOVEL-MIRNA NOVEL-DISEASE HELD-OUT2
AUC AP AUC AP AUC AP

EPMDA 0.44 0.529 0.5 0.5 0.417 0.513
NEMII 0.68 0.652 0.709 0.68 0.66 0.681
DIMIG 2.0 0.452 0.480 0.421 0.467 0.417 0.465
NIMGCN 0.533 0.519 0.672 0.666 0.534 0.509
DBMDA 0.537 0.518 0.569 0.551 0.553 0.595
MMGCN 0.556 0.504 0.711 0.678 0.553 0.493
GCSENET 0.543 0.518 0.557 0.536 0.557 0.517
MUCOMID 0.701 0.704 0.649 0.658 0.667 0.697
Improvement over SOTA 3.1% 8.0% -8.7% -3.2% 1.1% 2.3%

Table 5.5 shows the results corresponding to the inductive setting testing
sets with the positive:negative sample rate of 1:1. Table 5.6 provides addi-
tional results regarding the larger negative sample rates. Recall that HMDD2
is used as the training set. Note that HELD-OUT2 is more than three times
larger than the training data and contains new nodes that have not been seen
in HMDD2.

In general, MUCOMID works effectively also for the inductive setting
and outperforms all of its competitors on two out of the three testing sets.

Input features for benchmarked models

We note that except DIMIG 2.0, the other benchmarked models have some
issues with generating predictions in the inductive settings. Specifically for
EPMDA, which relies on the Gaussian Interaction Profile kernel similarities
extracted from the known associations, input features for new miRNA and
diseases will be all zeros. NEMII, which concatenates the extracted features
from the miRNA-disease association network with the miRNA family and
the disease semantic similarity features, will have part of its input features for
new miRNAs or new diseases as random values. Likewise, the miRNA func-
tional similarity for new miRNAs in the MMGCN, NIMGCN, and DBMDA,
GCSENET models will be all zeros. Therefore, a part of the miRNA-disease
pairs’ final input representation in those models will be random values.
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The NOVEL-MIRNA and HELD-OUT2 testing sets

These two testing sets contain known associations for hundreds of new miR-
NAs, which are not observed in the training data set.

MUCOMID vs. DIMIG 2.0. Though DIMIG 2.0 can predict the association
probabilities for new miRNAs and new diseases, the differences in the two
models’ architecture and learning objectives lead to a significant difference
in their performance. Unlike MUCOMID and other state-of-the-art models,
DIMIG 2.0 is a semi-supervised method that uses only disease-PCG associa-
tions during training but not the known miRNA-disease associations. Also,
DIMIG 2.0 is formulated as a multi-label classification problem with large
but very sparse label matrices. The high sparsity of the labels, along with the
high class imbalance, leads to a degradation in learning.

MUCOMID vs. other methods. As discussed in section 5.3.3, EPMDA, NE-
MII, NIMGCN, MMGCN, DBMDA, and GCSENET have a part of the input
features corresponding to new miRNAs to be zeros or random values. For
such reasons, the performance of state-of-the-art methods drops significantly
on those two testing sets. MUCOMID significantly outperforms all of its
competitors with a gain of up to 8% in AP score. Though the structural
embeddings for new miRNAs and new diseases in the NEMII model are
random, its performance still ranks the second-highest, suggesting that the
miRNA family and disease semantic similarity features are quite informative
for the current classification problem.

The NOVEL-DISEASE testing set

The NOVEL-DISEASE testing set contains known associations for 185 diseases
that are not observed during training. For this testing set, MUCOMID is out-
performed by NEMII and MMGCN by small margins. We argue that the
direct use of miRNA-disease association training data to compute miRNA
similarity or structural embedding by NIMGCN, MMGCN, and NEMII leads
to their better performance (on the NOVEL-DISEASE data set) than MUCO-
MID. These models are usually biased towards giving high scores to the well-
known miRNAs (for which a lot of association information is already known
in training data), leading to overall better scores.

Performance on the testing sets with more negative samples

This section presents the results corresponding to state-of-the-art methods’
performance on large independent testing sets(as described in Section 4.4
in the main paper) with different positive:negative rates. We vary the posi-
tive:negative samples rate such that it is one of {1:1, 1:5, 1:10}.

Table 5.6 presents the results for MUCOMID and state-of-the-art models
on the new data. For each positive sample set, for each negative test rate, we
randomly sample 10 negative sample sets with different seeds. Also, for each
positive + negative set combination, we run each model 10 times to mitigate
the effect of parameter initialization. The results reported in Table 5.6 is the
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TABLE 5.6: AP scores on large test sets with different positive:negative sample rates.
nr1, nr5, and nr10 correspond to the positive:negative rate of 1:1, 1:5, and 1:10.

Data HELD-OUT1 NOVEL-MIRNA NOVEL-DISEASE HELD-OUT2
nr1 nr5 nr10 nr1 nr5 nr10 nr1 nr5 nr10 nr1 nr5 nr10

EPMDA 0.494 0.164 0.09 0.497 0.171 0.095 0.501 0.168 0.092 0.497 0.169 0.093
NEMII 0.727 0.368 0.233 0.754 0.408 0.269 0.721 0.365 0.23 0.741 0.399 0.262
NIMGCN 0.753 0.397 0.255 0.517 0.18 0.099 0.771 0.432 0.286 0.482 0.163 0.089
DBMDA 0.629 0.266 0.155 0.58 0.223 0.127 0.625 0.262 0.153 0.579 0.225 0.129
MMGCN 0.756 0.404 0.261 0.54 0.194 0.108 0.749 0.404 0.262 0.507 0.177 0.098
MUCOMID 0.78 0.457 0.314 0.771 0.445 0.303 0.737 0.398 0.263 0.73 0.395 0.262

average of 1000 runs for each model (with 10 different negative training sets
and 10 different negative testing sets. For each set, each model gets tested 10
times).

We do not have the results available for the GCSENET model because the
originally released code is not optimized to run on GPU. With CPU, it can
only run on one of our CPU-intensive servers and takes around 12 hours to
finish one run. It would take us 12x100x3 = 3600 hours to finish, which is
infeasible.

The reported results show similar trends as what is already presented
above. MUCOMID significantly outperforms state-of-the-art models on two
out of the four testing sets. On the HELD-OUT2 testing set, its performance
closely follows the best method (NEMII). On the NOVEL-DISEASE testing
set, MUCOMID’s performance ranked the third, higher than NEMII. We
note that no single method consistently outperforms MUCOMID on both the
NOVEL-DISEASE and HELD-OUT2 testing sets. These results again highlight
the superiority of our proposed model and the importance of integrating in-
formation from multiple sources.

5.3.4 Ablation study

Multitask vs. Single task

We conduct an ablation study to analyze the contribution of the additional
tasks. The single task baseline (MUCOMID-STT) employs a similar architec-
ture as that of MUCOMID but without the miRNA-PCG and disease-PCG as-
sociation confidence score prediction side tasks. In other words, it also learns
miRNA and disease representation from the miRNA family and the disease
ontology networks, respectively. However, MUCOMID-STT only has one
classifier layer for the miRNA-disease association prediction task, instead of
one classifier and two regressors as that of MUCOMID.

Table 5.7 presents the results for MUCOMID and MUCOMID-STT on the
both 5-fold CV and the independent testing setup. MUCOMID performs
comparably to its single task variant on the 5-fold CV testing setup while
significantly supersedes its competitor on all of the large independent test-
ing sets with much less standard deviation values among runs. These results are
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even more significant when considering the size of the testing data. The per-
formance gain highlights the contribution of the two added side tasks. Since
PCGs are the most important links between miRNAs and their associated
diseases [153], miRNA-PCG and disease-PCG prediction tasks also bring ad-
ditional insights into the miRNA-disease association prediction problem.

TABLE 5.7: Multitask vs. single task ablation study results.

Method MUCOMID SINGLE TASK MUCOMID
AUC AP AUC AP

HMDD2 0.839 ± 0.012 0.837 ± 0.015 0.843 ± 0.01 0.843 ± 0.016
HMDD3 0.916 ± 0.005 0.912 ± 0.006 0.916 ± 0.004 0.913 ± 0.005
HELD-OUT1 0.684 ± 0.003 0.68 ± 0.005 0.674 ± 0.094 0.663 ± 0.092
Novel-miRNA 0.701 ± 0.002 0.704 ± 0.002 0.683 ± 0.095 0.689 ± 0.096
Novel-disease 0.649 ± 0.005 0.658 ± 0.006 0.606 ± 0.084 0.618 ± 0.086
HELD-OUT2 0.667 ± 0.006 0.697 ± 0.007 0.618 ± 0.086 0.66 ± 0.092

Model architecture

TABLE 5.8: Model architecture ablation study results. nr1, nr5, nr10 correspond to the
positive:negative rates of 1:1, 1:5, and 1:10.

Data MUCOMID MUCOMID-GAT MUCOMID-lin MUCOMID-2GCN
nr1 nr5 nr10 nr1 nr5 nr10 nr1 nr5 nr10 nr1 nr5 nr10

HELD-OUT1 .78 .457 .314 .783 .459 .315 .778 .452 .307 .778 .448 .302
NOVEL-MIRNA .771 .445 .303 .777 .46 .318 .75 .411 .272 .763 .425 .28
NOVEL-DISEASE .737 .398 .263 .722 .369 .235 .727 .379 .243 .718 .355 .22
HELD-OUT2 .73 .395 .262 .725 .385 .253 .709 .36 .23 .706 .342 .211

This section provides a more in-depth ablation study to justify MUCO-
MID’s choice of architecture. We compare MUCOMID with three of its vari-
ant: (1) MUCOMID without ReLU activation (MUCOMID-lin) which is a lin-
ear model without any non-linearity added; (2) MUCOMID with Graph At-
tention network (MUCOMID-GAT) in which we replace the GCN layer with
a GAT layer; and (3) MUCOMID-2GCN: MUCOMID with 2 GCN layers and
a ReLU activation added in between.

Table 5.8 presents the acquired scores for the benchmarked models on the
testing sets described in Section 5.3.3. Compared with MUCOMID-lin and
MUCOMID-2GCN, MUCOMID acquires comparable results on the trans-
ductive testing data set (HELD-OUT1) and significantly gains higher AP scores
in the remaining independent testing sets. The gains are more significant
when there are new miRNAs and/or new diseases.

Compared with MUCOMID-GAT, MUCOMID acquires comparable per-
formance on the transductive testing set while significantly outperforming
its competitor on two of the three inductive testing sets. These results claim
that the GCN architecture employed by MUCOMID is more appropriate than
GAT for the miRNA-disease association prediction task, given the limited
available training data.
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To summarize, MUCOMID presents a good balance between model com-
plexity and performance. It performs better than a linear GCN. Adding more
complexity by using GAT does not show considerable improvements.

MUCOMID performance regarding different side information sources

TABLE 5.9: MUCOMID performance with different PCG-PCG data sources.

Database HELD-OUT1 NOVEL-MIRNA NOVEL-DISEASE HELD-OUT2
AUC AP AUC AP AUC AP AUC AP

STRING v10.0 0.681 0.677 0.704 0.705 0.627 0.646 0.647 0.687
STRING v10.5 0.684 0.68 0.701 0.704 0.649 0.658 0.667 0.697
STRING v11.5 0.681 0.678 0.702 0.705 0.617 0.633 0.637 0.674

Since the data sources employed for miRNA-PCG and disease-PCG asso-
ciations only have one version so far, we cannot construct an ablation study
with different versions of such data. In Table 5.9, we present the results
corresponding to different versions of the STRING database. More specifi-
cally, we report the performance of our model on the testing sets described
in Section 5.3.3 corresponding to STRING v10.0, v10.5 (the current version
employed by our model), and v11.5. Each entry in Table 5.9 is the aver-
age after 1000 runs. We observe that MUCOMID’s performance also varies
according to the input PCG-PCG interaction set. Nevertheless, the differ-
ence is not too significant in the transductive settings (HELD-OUT1) and the
NOVEL-MIRNA testing set. We observe more significant differences for the
NOVEL-DISEASE and HELD-OUT2 testing sets. It could be the case that the
PCG interaction profile contributes more toward the model decision for new
diseases.

5.4 Case studies

5.4.1 The Parkinson disease case study

Parkinson disease (PD) is the second most common neurodegenerative dis-
ease worldwide [115]. Existing human association studies for Parkinson dis-
ease resulted in inconsistent findings with several “false positives” reported
by [191].

In this case study, we aim to answer the question of “How effectively can
MUCOMID help in identifying false positives?”. Towards that, we manually
construct a “gold standard” data set based on the data deposited in the HMDD
databases and the data collected from [191]. We mark 12 miRNAs as “true
positives” (those that are confirmed as true positives in the meta analysis [191]),
33 miRNAs as “false positives” (which are marked as positives in the HMDD
databases but are confirmed as negatives in the meta-analysis) and 116 miR-
NAs as “true negatives” (those that are confirmed as negative by the meta-
analysis). Note that among the 12 true positive miRNAs, only 8 are marked
as positive in the HMDD databases.
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Training and Testing data setup. We first construct the training data set by
including diseases other than Parkinson. Let H = HMDD2 ∪ HMDD3. We
remove any known associations for Parkinson disease from H to obtain the
H′ data set. As for Parkinson alone, the false positive rate is nearly 3 fold.
We expect such a high number of false positives also for other diseases. To
mitigate the effect of high false-positive rates for other diseases, we construct
H∗ from H′ such that each miRNA only associates with µ diseases where µ
is the average number of diseases associated with a particular miRNA in H′.
If the number of diseases associated with miRNA m1 is larger than µ, we
randomly sample µ diseases from the set of known associated diseases. If
the number of associated diseases for m1 is smaller than µ, we sample with
duplicates µ diseases from the set of known diseases. We follow the same
strategy to obtain the negative samples set for H∗.

Next, we create the training subset corresponding to the Parkinson’s dis-
ease associations, which we refer to as Ptrain. The number of positive samples
in Ptrain consists of 8 miRNA-Parkinson associations with 8 “true positive”
miRNAs that appear in H and FP × 8 false positives Parkinson-miRNA as-
sociations. In our experiment, FP is varied over: {0.25, 0.5, 0.75, 1, 2, 5, 10}.
The negative samples in Ptrain consist of every possible combination between
Parkinson and any miRNAs that are not “true positive” or “false positive”.

The Parkinson’s training data is the union of H∗ and Ptrain. The Parkin-
son’s testing data consists of all pairwise combinations between Parkinson
and 12 “true positive” and 116 “true negative” miRNAs identified in [191].

FIGURE 5.5: The Parkinson disease case study results.

Figure 5.5 presents the number of true positives found in the top K high-
est predictions of MUCOMID and the MMGCN model on the Parkinson
testing set with varying false-positive sample rates. ‘FP’ refers to the false
positive:true positive sample rate in the training data. The dense red line
represents the number of true positives in the training data. Note that for
each false positive rate, we run each model with 10 different sampled sets,
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and for each set, we run the model 5 times to make the comparison as fair as
possible.

With the increase in the false positive rate, there is a decrease in the per-
formance of both the models, which is intuitive. Remarkably, MUCOMID
significantly outperforms its competitor in differentiating between the “true
positives” and the “false positives”. “True positive” miRNAs consistently
appear in the top predictions generated by MUCOMID. While for MMGCN,
even with only 25% “false positives” added to the training set, for K=8, there
are only 2.92 “true positives” (on average) found. On the other hand, the av-
erage number of true positives (for K=8) found by MUCOMID is 6.06. These
results highlight the added benefit of our proposed model. We believe that
the two added side tasks help inform the model and prevent it from overfit-
ting the noisy training association data. At the same time, it further validates
our concerns associated with secondary features-based methods. MMGCN,
which extracts the input features from the training associations, cannot well
differentiate the false positives from the true positives. We observe similar
results in comparison with other baselines.

5.4.2 Case studies concerning well-studied diseases

To further demonstrate our multitask model’s predictive capability, we eval-
uate the model for three specific diseases: BREASTCANCER, PANCREATIC-
CANCER, and DIABETESMELLITUS-type 2. By constructing these case stud-
ies, we showcase our model’s predictive performance in predicting associa-
tions for a specific new disease. To do that, for a specific disease d, we select
the pairs associated with d from H = HMDD2 ∪ HMDD3 to use as the testing
set. The remaining pairs in H are used as the training data. We do negative
sampling for both the training and testing set so that the number of positive
and negative samples in both training and testing sets are equal. For the test-
ing set, the negative pairs are generated corresponding to only the disease d.
The data set statistics for our case studies are presented in Table 5.10 where
we use the disease names to denote our generated data sets.

TABLE 5.10: The case studies’ data statistics, where n+ and n− refer to the number
of positive and negative associations, respectively.

DISEASE TRAIN SAMPLES TEST SAMPLES

n+ n− n+ n−

BREASTCANCER 8423 8423 324 324
PANCREATICCANCER 8578 8578 169 169
DIABETESMELLITUS 8640 8640 107 107

Figure 5.6 presents the topK evaluation results, while Table 5.11 shows
the top 50 most confident predictions of the associated miRNAs for the three
diseases. For each case study, the known association for that particular dis-
ease is completely hidden from the model training process. The statistics of
our training and testing data can be found in Table 5.10.
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FIGURE 5.6: Results for case studies concerning well-studied diseases.

Looking at Figure 5.6, though the case studies’ diseases are completely
new, our model still attains near-perfect predictions for the top 40 predic-
tions. Compared with DIMIG 2.0 for the top 50 predictions, our model has a
gain of at least 160%.

For BREASTCANCER, the model acquires ∼ 96.04% accuracy for the top
100 predictions. For DIABETESMELLITUS-type 2, the number of known pos-
itive associations is only 107, but out of the top 100 predictions, we can cor-
rectly recognize 91.76 associations (this number is the average of the number
of found associations over five runs). These results again claim the effective-
ness of our model in predicting potential associations for new diseases.

5.5 Conclusion

We propose a multitask graph convolutional learning framework, MUCO-
MID for the problem of predicting miRNA-disease associations. Our end-to-
end learning approach allows automatic feature extraction while incorporat-
ing knowledge from five heterogeneous biological information sources. In-
corporating multiple sources of information helps compensate for the lack of
information in any single source and, at the same time, enables the model to
generate predictions for any new miRNA or disease. Unlike previous works,
our model can be employed in both transductive and inductive settings. To
test the generalization power of models, we test them on both the existing
benchmarked setup and on our constructed large independent testing sets.
Large-scale experiments in several testing scenarios highlight the superiority
of our approach. An ablation study is added to highlight the side tasks’ con-
tribution. We release all the code and data used in this study for reproducibil-
ity and future research at https://git.l3s.uni-hannover.de/dong/cmtt.
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We believe that our design principles will be of independent interest to
other biomedical applications where data scarcity is a major challenge. In
particular, the use of multitask learning to integrate information from het-
erogeneous information sources to overcome the problems of data scarcity
and unreliability of one single data type is a unique perspective and has not
been studied for computational problems in biomedicine.
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TABLE 5.11: The top 50 miRNAs that have the highest association probabilities with
the case study diseases produced by MUCOMID (average after five runs).

No. BREASTCANCER PANCREATICCANCER DIABETESMELLITUS-type 2
1. hsa-mir-21 0.914 hsa-mir-21 0.959 hsa-mir-21 0.841
2. hsa-mir-155 0.91 hsa-mir-146a 0.953 hsa-mir-146a 0.821
3. hsa-mir-146a 0.909 hsa-mir-126 0.95 hsa-mir-155 0.818
4. hsa-mir-145 0.907 hsa-mir-34a 0.95 hsa-mir-145 0.814
5. hsa-mir-126 0.907 hsa-mir-146b 0.95 hsa-mir-29b 0.809
6. hsa-mir-146b 0.906 hsa-mir-34b 0.95 hsa-mir-126 0.808
7. hsa-mir-34b 0.905 hsa-mir-222 0.949 hsa-mir-34a 0.806
8. hsa-mir-34a 0.905 hsa-mir-221 0.949 hsa-mir-221 0.804
9. hsa-mir-222 0.902 hsa-mir-155 0.949 hsa-mir-34c 0.8

10. hsa-mir-34c 0.902 hsa-mir-34c 0.948 hsa-mir-222 0.799
11. hsa-mir-29b 0.902 hsa-mir-29b 0.948 hsa-mir-142 0.796
12. hsa-mir-221 0.899 hsa-mir-145 0.948 hsa-mir-150 0.79
13. hsa-mir-31 0.898 hsa-mir-31 0.947 hsa-mir-223 0.785
14. hsa-mir-142 0.895 hsa-mir-27b 0.945 hsa-mir-205 0.784
15. hsa-mir-210 0.894 hsa-mir-205 0.945 hsa-mir-144 0.783
16. hsa-mir-144 0.892 hsa-mir-181a 0.945 hsa-mir-122 0.779
17. hsa-mir-223 0.891 hsa-mir-27a 0.943 hsa-mir-214 0.779
18. hsa-mir-150 0.891 hsa-mir-214 0.942 hsa-mir-27a 0.773
19. hsa-mir-122 0.887 hsa-mir-150 0.942 hsa-mir-27b 0.771
20. hsa-mir-205 0.887 hsa-mir-142 0.942 hsa-mir-26a 0.77
21. hsa-mir-26a 0.883 hsa-mir-210 0.941 hsa-mir-29a 0.766
22. hsa-mir-27b 0.882 hsa-mir-223 0.941 hsa-mir-375 0.76
23. hsa-mir-27a 0.881 hsa-mir-122 0.94 hsa-mir-24 0.758
24. hsa-mir-29a 0.877 hsa-mir-26a 0.938 hsa-mir-192 0.755
25. hsa-mir-214 0.875 hsa-mir-29a 0.935 hsa-mir-143 0.754
26. hsa-mir-143 0.874 hsa-mir-375 0.934 hsa-mir-92a 0.751
27. hsa-mir-29b-1 0.874 hsa-mir-29c 0.933 hsa-mir-9 0.749
28. hsa-mir-29c 0.873 hsa-mir-92a 0.933 hsa-mir-19b 0.747
29. hsa-mir-375 0.872 hsa-mir-196a 0.932 hsa-mir-486 0.745
30. hsa-mir-24 0.872 hsa-mir-192 0.932 hsa-mir-206 0.743
31. hsa-mir-29b-2 0.869 hsa-mir-29b-1 0.932 hsa-mir-23b 0.736
32. hsa-mir-92a 0.867 hsa-mir-486 0.932 hsa-mir-183 0.731
33. hsa-mir-9 0.865 hsa-mir-342 0.931 hsa-mir-23a 0.729
34. hsa-mir-23b 0.865 hsa-mir-23b 0.928 hsa-mir-1 0.725
35. hsa-mir-124 0.863 hsa-mir-143 0.927 hsa-mir-17 0.725
36. hsa-mir-19b 0.863 hsa-mir-23a 0.927 hsa-mir-20a 0.724
37. hsa-mir-206 0.863 hsa-mir-24 0.926 hsa-mir-93 0.724
38. hsa-mir-342 0.863 hsa-mir-16 0.926 hsa-mir-18a 0.724
39. hsa-mir-16 0.863 hsa-mir-9 0.925 hsa-mir-182 0.723
40. hsa-mir-486 0.862 hsa-mir-125b 0.922 hsa-mir-19a 0.723
41. hsa-mir-196a 0.861 hsa-mir-139 0.921 hsa-mir-18b 0.722
42. hsa-mir-181a 0.858 hsa-mir-206 0.92 hsa-mir-20b 0.722
43. hsa-mir-183 0.857 hsa-mir-215 0.919 hsa-mir-215 0.712
44. hsa-mir-192 0.857 hsa-mir-367 0.918 hsa-mir-22 0.711
45. hsa-mir-23a 0.856 hsa-mir-128 0.916 hsa-mir-15a 0.709
46. hsa-mir-139 0.855 hsa-mir-182 0.916 hsa-mir-195 0.707
47. hsa-mir-125b 0.852 hsa-mir-186 0.915 hsa-mir-125b 0.701
48. hsa-mir-186 0.852 hsa-mir-19a 0.911 hsa-mir-15b 0.701
49. hsa-mir-1 0.852 hsa-mir-183 0.911 hsa-mir-96 0.694
50. hsa-mir-182 0.851 hsa-mir-20a 0.907 hsa-mir-128 0.691
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Chapter 6

The MPM model

In Chapter 5, we propose a novel multitask learning framework that can ad-
dress most limitations in existing works for miRNA-disease association pre-
diction. Nevertheless, regarding the incorporated data sources, MUCOMID
still applies naive filtering techniques with multiple hard thresholds to re-
move data redundancy. Such an approach requires a time-consuming pa-
rameter fine-tuning process each time the incorporated data sources change.
Besides, since such filtering operation does not rely on any biological ground,
the outcome is also questionable. In this chapter, we propose a biologically
data-driven approach that can effectively address such an issue by a simple
yet effective mechanism to enrich and filter the incorporated data. With the
updates in data sources, data preprocessing, and model learning strategy, we
are the first to be able to generate predictions for most known miRNAs and
diseases. Our contribution also lies in developing and releasing a publicly
available, easy-to-use website that encapsulates all the generated predictions
along with their corresponding biologically relevant information to foster as-
sessments and adoption. This chapter is based on our journal paper: “A
message passing framework with Multiple data integration for miRNA-Disease as-
sociation prediction” published in Scientific Reports, 2022.

6.1 Method

We propose MPM- a biologically-motivated data-driven approach that can
overcome most of the issues persisting in existing works. In addition to fus-
ing multiple knowledge sources, we propose a parameter-free mechanism
to enrich and control the quality and quantity of the added data. A cru-
cial design decision of our approach includes modeling the biological rele-
vance of miRNAs for a particular disease via the associated PCGs. We model
each miRNA or disease as a directed network built from the miRNA-PCG,
disease-PCG associations, and PCG-PCG functional interactions. MPM em-
ploys a message passing framework operating over the constructed networks
to enrich the existing data with potential missing links or indirect connec-
tions.

To overcome the noisy data problem, we employ a feature selection strat-
egy with a side-supervised task generated from the well-annotated MESH
ontology [15]. Feature selection at this stage allows us to reduce the tens of
thousands of associated PCGs to only one hundred most important PCGs.
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This enables us to control the quality and the quantity of the added PCG-
related information without introducing any additional parameters. This is
extremely important, especially in the context of learning from scarce data
when over-parameterized models can easily overfit.

Next, we encapsulate the enriched and filtered PCG connections into the
existing miRNA-disease bipartite network to overcome the isolated nodes
problem in existing works. Since PCGs are important connections between
miRNA and diseases [153], the patterns learned from the miRNA-PCG-disease
interconnected networks should be a rich source of information for the miRNA-
disease association prediction problem. At the same time, the newly intro-
duced heterogeneous network will include biological connections between
new miRNAs or new diseases and their associated PCGs. The learning sig-
nals will thus transfer from known miRNAs or known diseases to the new
miRNAs or new diseases via the PCGs. We employ the SDNE model to ex-
tract the patterns (or pre-trained embeddings) from the constructed hetero-
geneous network. Besides the structural features, the final miRNA-disease
pair representation is further augmented with information from the miRNA
family and disease semantic similarity and then fed as input to a Random
Forest classifier to perform the association prediction task.

A schematic diagram of MPM with its main components is presented
in Figure 6.1. MPM consists of a message passing layer (section 6.1.1) , a
feature selection with a side supervised task (section 6.1.2), a Structural Deep
Embedding network (section 6.1.3), and a binary classifier (section 6.1.4). We
use gray for the model’s components/modules, green and pink for miRNA
and disease-related components, respectively.

6.1.1 The message passing framework/module

The data sources

Table 6.1 provides the statistics for our employed data sources. In the fol-
lowing, we describe each source in detail and present the information corre-
sponding to how we utilize it.

The protein functional interaction network. Protein coding genes (PCGs)
are essential connections between miRNAs and diseases [153]. MiRNAs can
affect the PCG transcriptions, resulting in protein expression changes, which
can then lead to diseases. Therefore, besides the knowledge about the protein-
protein interactions as already exploited by MUCOMID [52] (ref. Section 5.1.1),
the knowledge related to whether a particular protein can regulate/inhibit/-
catalyze/activate another protein is also very important for the miRNA-disease
association prediction task. We refer to the multi-relational protein-protein
interaction network, where an edge corresponds to a protein functional rela-
tion as protein functional interaction network.

A pictorial example of the protein functional interaction network is pre-
sented in Figure 6.2. Different relations are depicted using different colors.
Since regulation, inhibition, catalyze, and activation are one-way relations,
we model the protein functional interaction network as a directed graph. We
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FIGURE 6.1: MPM’s architecture.

retrieve the protein functional interaction network from [229] (version 2020).
We generate a directed graph from the given data as follows. Each PCG is
represented as a node; a protein-protein binding interaction is modeled as
two directed edges. Each relation, i.e., inhibit, activate, regulate, and cat-
alyze, is represented by a directed edge between the corresponding nodes.
Overall, our protein functional interaction network consists of 423,672 di-
rected links between 23,611 PCGs. Some PCG nodes might be isolated in the
generated network because we only include experimentally verified interac-
tions.

Modelling miRNAs using the protein functional interaction networks. We
obtain the experimentally validated miRNA-PCG interactions from the miR-
TarBase database [86] (release 8.0 which encapsulates the gene expression
profiles of more miRNAs compared to the RAIN database (employed by MU-
COMID). We then model each miRNA as a network of PCGs built up from
the protein functional interaction network. There is a directed link between
two nodes if there is a directed link between the corresponding nodes in the
functional interaction network. Each PCG node in the network has a feature
vector of one dimension. The feature value of a PCG node is set to 1 if there
is a known interaction between it and the current miRNA, and 0 otherwise.

Modelling diseases using the protein functional interaction networks. We
obtain the disease-PCG associations from the DisGeNET [168] database, which
contains one of the largest publicly available collections of genes associated
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FIGURE 6.2: An example of the protein functional interaction network.

FIGURE 6.3: An example of how a message passing framework functions.

with human diseases. DisGeNET covers the information corresponding to
more diseases than the DISEASES database (employed by MUCOMID). As
above, we then model each disease as a network containing all PCGs from
the protein functional interaction network. There is a directed link between
two nodes if there is a directed link between the corresponding nodes in the
functional interaction network. Each PCG in the network has a feature vector
of one dimension. The feature value of a PCG node is set to be the normalized
confidence score (in [0,1] range) of the corresponding association between the
PCG and the current disease if there exists one, and 0 otherwise.

TABLE 6.1: Statistics for the side data sources. |E|, |Vm|, |Vd|, |Vp| denote the number
of interactions/associations, miRNAs, diseases, and PCGs, respectively.

NETWORK |E| |Vm| |Vd| |Vp|
MIRNA-PCG 345,357 1,618 - 23,611
DISEASE-PCG 510,782 - 3,679 23,611
PROTEIN FUNCTIONAL INTERACTIONS 423,672 23,611

The message passing framework for feature enrichment

The message passing module is responsible for further enriching the input
representations via a simple message passing technique. It takes as input
the miRNAs and diseases modeled using the protein functional interaction
networks with the corresponding node features as described in the previous
section.
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MiRNA-target or disease-PCG association data might be incomplete due
to the lack of biological experiments or other technical limitations. More-
over, the data acquisition methods might fail to detect indirect PCG asso-
ciations. Our message passing strategy allows us to infer such indirect or
missing miRNA-PCG and disease-PCG connections. In particular, at each it-
eration, a message passing step is performed in which only weights of the
nodes with unknown associations (i.e., nodes with initial 0 weights) with
miRNAs/diseases are updated. Formally, the inferred weight for a particu-
lar node i whose original weight is 0 at iteration t is calculated in accordance
with its parents and their degrees as follows:

wt(i) =
1√

din(i)
∑

j∈Par(i)

wt−1(j)√
dout(j)

(6.1)

where Par(i) denotes the set of parent nodes of node i, wt−1(j) is the weight
of node j calculated at iteration t − 1, din(i) and dout(j) denote the in-degree
and the out-degree of nodes i and j, respectively. We provide an example
of how the proposed message passing layer/framework works in Figure 6.3
where the numbers inside the circles indicate nodes’ IDs. ‘w’ indicates the
node feature weight (as described in section 6.1.1). In the first iteration, new
weights for nodes 4, 6, 7 are calculated according to equation (6.1). Only the
weight for node 6 gets updated during the second iteration.

The results presented in Section 6.3 correspond to the output from the
message passing framework after one iteration. We choose one iteration as it
acquires the best performance on all inductive test datasets.

6.1.2 The feature selection module

The disease category

The MESH ontology [15] is a well-organized vocabulary produced by the
National Library of Medicine, where diseases are classified into different cat-
egories. MESH ontology can be visualized as a tree where each layer in the
tree represents one level of granularity. The uppermost level represents the
most general category. We obtain the disease category information from the
MESH database. We assign a label to each disease that corresponds to its
second-level category for "Infection" related diseases and its first-level cate-
gory for the rest. We group all categories which have less than ten members
into one common "Others" category to make the label space less sparse. In
the end, each disease is assigned one of the 28 categories.

Feature selection with a side-supervised task

To remove redundant and noisy miRNA/disease-PCG associations, we em-
ploy another source of information (the disease categories as described in
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Section 6.1.2) as input to our feature selection module. The rationale driv-
ing the feature selection step is that PCGs that are important for differentiat-
ing between diseases of different classes should also be indicative of the dis-
ease conditions and should, therefore, be important factors for the miRNA-
disease association prediction problem.

Formally, we are given the set of diseases D, their associated categories
C, and their inferred (up to t hop(s)) PCG association profiles DIt. We are
interested in finding the top K most important PCG features predictive of the
disease category.

As suggested in [50, 206], ReliefF [111, 161] is a competitive feature se-
lection method for biological datasets. For that reason, we employ ReliefF
to select the K most important PCGs. ReliefF estimates each feature’s im-
portance according to the relationship of n random samples to their nearest
neighbors. For a given sample, the algorithm selects k nearest samples from
the same class (hits) and k nearest samples from each of the other classes
(misses). The feature importance is then quantified as to how well it can dif-
ferentiate between the misses and the hits samples. The results presented in
Section 6.3 correspond to K = 100 as it acquires the best performance on all
inductive testing datasets.

6.1.3 The structural embedding learning

Network construction. Let PK denote the set of K most informative PCGs
for the disease category prediction task obtained as output from the feature
selection module. Let Ap denote the adjacency matrix generated from the
subset of PCG-PCG interactions for all PCGs in PK. Similarly, let Amp be the
adjacency matrix generated from the subset of miRNA-PCG associations for
all PCGs in PK. Adp denotes the adjacency matrix generated from the subset
of disease-PCG associations for all PCGs in PK. Let Amd be the adjacency ma-
trix constructed from the known miRNA-disease associations. We construct
an undirected network Gmdp from the training miRNA-disease associations
and the filtered sets of miRNA-PCG, disease-PCG associations, and PCG-
PCG interactions. The adjacency matrix for Gmdp is then given as follows:

Amdp =

 Zm Amd Amp
AT

md Zd Adp
AT

mp AT
dp Ap


where Zm ∈ Rnm×nm and Zd ∈ Rnd×nd are the matrices of all zeros; nm and

nd are the number of miRNAs and diseases, respectively.

Structural Deep Network embedding. The Structural Deep Network em-
bedding [218] is a node representation learning method that can capture
the network’s global and local structure efficiently by employing a deep au-
toencoder. The model is claimed to be able to learn highly non-linear net-
work structures while being robust to the network sparsity [218]. In par-
ticular, SDNE enforces the first-order similarity constraint, which basically
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implies that two vertices in a network are similar if they are linked by an ob-
served edge as a supervised signal to learn the local network structure. The
second-order proximity, which assumes that two vertices sharing many com-
mon neighbors are similar, is also incorporated into the model to capture the
global network structure. A comparative study presented in [75] indicates
that SDNE acquires the best performance compared with other structural
embedding methods for the miRNA-disease association prediction problem.
For that reason, we adapt SDNE to learn the structural embeddings for miR-
NAs and diseases from the Gmdp network. We use the SDNE implementation
shared by [75] to generate the embeddings for miRNAs and diseases from
the inter-connected miRNA-PCG-disease network. The results presented in
Section 6.3 correspond to the SDNE with two encoder layers of size [1000,
128], one decoder layer, and the output embedding of 128 dimensions as
suggested in [75].

6.1.4 The classification module

The miRNA family features. MiRNAs belonging to the same family usually
share similar secondary structures and have similar biological functions [102].
Therefore, the miRNA family information is highly relevant to the miRNA-
disease association prediction task. We retrieve the miRNA family informa-
tion from mirBase database [113] and construct the corresponding features
using the same steps as described in Section 3.2. In the end, each miRNA is
assigned to one of the 1,375 families. We model each miRNA’s family fea-
tures as the one-hot encoding of its family.

The disease semantic similarity features. The disease semantic similar-
ity [219, 233] quantifies how similar two particular diseases are based on
their relative positions on the disease MESH ontology [15]. We use the code
and the setup in [51] to compute a disease semantic similarity (ref. DS in
Section 3.2) matrix for our 3,679 diseases set. Each entry (i,j) in the matrix
indicates how similar disease i is to disease j. We model each disease’s se-
mantic similarity features as the corresponding row entry in the similarity
matrix.

The classifier. The final classifier module takes the input representation for
miRNA-disease pairs and for each pair, it outputs an association probability
in the [0,1] range. The higher the probability, the more likely the input pair is
associated. For a particular (m, d) input pair, we construct the input feature
vector as the concatenation of their corresponding structural embeddings,
the miRNA family, and disease semantic similarity features. More specif-
ically, Xmd = [Em, Ed, Fm, Sd], where Xmd denotes the input feature vector
corresponding to (m, d); Em, Ed represent the pre-trained embeddings output
from SDNE; while Fm refers to the miRNA family feature for miRNA m; Sd
corresponds to the disease semantic similarity for disease d. A pictorial illus-
tration of the final miRNA-disease pair representation is given in Figure 6.4.
We train a Random Forest classifier[17, 193] with 350 estimators to do the
association prediction task.
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FIGURE 6.4: The final miRNA-disease input pair representation.

6.2 The Experimental data and setup

6.2.1 Compared models

We compare our model with six recently proposed methods: (i) EPMDA [55],
DBMDA [244], and NIMGCN [126], which utilize hand-crafted features de-
rived from known miRNA-disease associations, (ii) MUCOMID [52] and DIMIG
2.0 [162], which use graph convolution networks (GCNs) for feature extrac-
tion from various interaction networks (iii) NEMII [75] which employs hand-
crafted features as well as the latent features extracted using a graph embed-
ding method. A detailed description of benchmarked models is presented in
Section 3.3. As an ablation study, we compare MPM with four of its simpler
variants as summarized in Table 6.8.

6.2.2 The miRNA-disease association data source

We retrieve the set of miRNA-disease associations from the HMDD v2.0 [129]
and HMDD v3.0 [88] databases. We then perform various preprocessing and
filtering steps as described in the “Data acquisition and preprocessing” sec-
tion. In the end, the filtered data for the HMDD v2.0 database (denoted
as HMDD2) contains 4,592 known associations between 442 miRNAs and
309 diseases. The filtered data for the HMDD v3.0 database (referred to as
HMDD3) includes 10,494 known associations between 742 miRNAs and 545
diseases. Note that the two datasets presented here also differ from those in
chapters 4 and 5 because of the difference in preprocessing steps.

Data acquisition and preprocessing

As the quantity and quality of the employed data source greatly impact the
predictive power of the learned models, apart from the model development,
our contribution also lies in the data acquisition and preprocessing. In the
following sections, we describe our data acquisition and preprocessing steps.

Disease ID matching. The data deposited in HMDD 2.0 and HMDD 3.0
only provides disease names. Even worse, different names might refer to the
same diseases. In addition, to retrieve the disease ontology or disease-PCG
associations, we need the diseases’ MESH IDs. Therefore, in the first steps
of our preprocessing pipeline, we match the HMDD 2.0’s and HMDD 3.0’s
disease names with their corresponding MESH IDs.

In order to do that, we first collect the list of disease IDs, along with their
names and synonyms, from the MESH database [15]. We then standardize all
disease names and synonyms (remove redundant spaces and quotations, and
convert all to lowercase). After that, our disease matcher works as follows:
(i) if there is an exact match between the searching disease name and any
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MESH names/synonyms, then it assigns the corresponding MESH ID to that
disease name (ii) otherwise, it outputs a list of names along with their MESH
IDs which are the most similar to the searching name and only contain up
to several different characters in the character sequence. We later quickly
reviewed these lists to increase the data coverage as much as possible.

miRNA name standardization. The HMDD 2.0 and HMDD 3.0 databases
store the known associations reported in scientific publications and do not
reflect the changes in the miRNA knowledgebase over time. Therefore, the
same miRNA might appear with different IDs in the miRNA-disease asso-
ciation databases. To remove unnecessary noise and make the data consis-
tent, we standardize the miRNA IDs according to miRBase [113] - one of the
most reliable and popular databases to retrieve miRNAs related information.
More specifically, we match multiple miRNAs aliases together and obsoleted
IDs to the newly assigned ones according to the data retrieved from miRBase,
version 22.1. Table 6.2 presents the statistics associated with the number of
miRNAs and miRNA-disease associations after standardization.

TABLE 6.2: Before and after miRNA name standardization data statistics. nm and
nmd refer to the number of miRNAs and miRNA-disease associations, respectively.

Database Before After
nm nmd nm nmd

HMDD 2.0 578 6,401 540 5,909
HMDD 3.0 1,120 15,165 859 12,552

6.2.3 The data set up

While the K-fold cross-validation (K-fold CV) technique is widely used among
existing works, it is insufficient to evaluate the models’ performance on com-
pletely new diseases, given the small size of the association datasets. There-
fore, besides 5-fold CV evaluation on the HMDD2 and HMDD3 datasets, we
here propose and employ two realistic testing setups: transductive and induc-
tive to evaluate and compare models. The transductive testing setup aims
at evaluating different models’ performances on a larger, independent test
set which contains the newly discovered associations between the miRNAs
and diseases that have already been observed with some previously known
associations during the training phase. In this setup, we train each model
on the HMDD2 dataset and test it on the HELD-OUT1 test set. HELD-OUT1
contains only associations corresponding to the miRNAs and diseases that
are observed in the HMDD2 dataset. However, the known associations in
HELD-OUT1 do not appear in the training set HMDD2. The inductive testing
setup aims at evaluating models’ performance on completely new diseases
and new miRNAs. In this setup, we conduct large-scale experiments on the
20 independent test sets to test each model’s performance on (i) a dataset with
many new miRNAs (the NOVEL-MIRNA test set), (ii) 18 complete test sets for
new diseases, and (iii) a dataset with many new miRNAs and new diseases
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(the HELD-OUT2 test set). For the evaluation with the NOVEL-MIRNA and
HELD-OUT2 test sets, we train the benchmarked models with the HMDD2
dataset. For the evaluation related to 18 new diseases, we train all models
with all available association data for any disease other than the ones in the
test sets. All datasets’ statistics are presented in Table 6.3 and Table 6.4.

In the following, we present details regarding our generated datasets.

The transductive testing setup

The transductive testing setup aims at evaluating different models’ perfor-
mances on the set of partially observed miRNAs and diseases. We train each
model with the HMDD2 dataset while testing them with the HELD-OUT1 test
set as described below.

Let M and D denote the set of miRNAs and diseases observed in the
HMDD2 dataset, correspondingly. We construct the HELD-OUT1 dataset by
restricting the set of miRNAs and diseases to M and D and including only
the miRNA-diseases associations, which appear in the HMDD3 dataset but
not in the HMDD2 dataset. A mathematical description of HELD-OUT1 is
given below:

HELD-OUT1 = (M × D ∩ HMDD3)\HMDD2

Where M×D denotes the set of all possible pair combinations between miR-
NAs in M and diseases in D. Table 6.3 presents the transductive training and
testing data statistics. We generate the negative training and testing samples
using the negative sampling strategy given in section 6.2.4.

The inductive setting setup

The large independent testing sets
The HELD-OUT2 test set. HELD-OUT2 contains all associations that appear in
HMDD3 but not in HMDD2. We devise this dataset to test all models’ perfor-
mance on a large independent test set that contains both new miRNAs and
new diseases (with respect to the training data). After preprocessing, HELD-
OUT2 contains 6,388 known associations for 697 miRNAs and 509 diseases.
Among those, there are 300 new miRNAs and 282 new diseases that do not
appear in the training set HMDD2.

The NOVEL-MIRNA test set. The NOVEL-MIRNA test set is a subset of the
HELD-OUT2 test set. To construct NOVEL-MIRNA, we remove all associa-
tions related to any disease that does not appear in D. In the end, NOVEL-
MIRNA contains 4,734 known associations for 638 miRNAs and 227 diseases
in which there are 256 new miRNAs that do not appear in the training set
HMDD2. The data statistics for our large independent test sets are presented
in Table 6.3. Note that the datasets presented here differ from those in chap-
ter 5 because of the difference in data preprocessing steps.

The datasets for new diseases
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TABLE 6.3: The association data statistics. |nmd|, |nm|, |nd| refer to the number of
associations, miRNAs and diseases, respectively.

DATASET |nmd| |nm| |nd|
HMDD2 4,592 442 309
HMDD3 10,494 742 545
HMDD2 ∪ HMDD3 10,980 742 591
HELD-OUT1 4,311 382 226
HELD-OUT2 6,388 697 509
NOVEL-MIRNA 4,734 638 227

TABLE 6.4: Statistics for the datasets corresponding to new diseases. |Etrain| and
|Etest| refer to the number of positive training and testing samples, respectively.

DISEASE |Etrain| |Etest| DISEASE |Etrain| |Etest|

D001943 10649 331 D005909 10803 177
D015179 10704 276 D001749 10813 167
D013274 10720 260 D012516 10821 159
D008175 10757 223 D010190 10822 158
D011471 10761 219 D006333 10838 142
D002289 10766 214 D002292 10839 141
D010051 10789 191 D003110 10854 126
D008545 10791 189 D015470 10868 112
D005910 10791 189 D002294 10876 104

The inductive setting setup aims at evaluating models’ performances on
completely new diseases and is described as follows:

• Let H = HMDD2 ∪ HMDD3

• We take out the set of diseases D̂ such that each disease d ∈ D̂ has more
than 100 known associations in H. There are 18 such diseases.

• For each disease d ∈ D̂, a dataset is created as follows: (i) The positive
training set includes all known associations in H except those associ-
ated with d, (ii) The negative training samples are generated according
to section 6.2.4, (iii) We evaluate all models on the complete testing set
where all known associations for d in H form the positive test set and
the negative testing samples consist of all possible combinations of d
and any miRNA that does not appear in the positive testing set.

Table 6.4 presents the statistics corresponding to the 18 datasets for new dis-
eases.

6.2.4 The negative sampling strategy.

We define the negative pool as the set of all possible combinations of miRNA-
disease pairs that do not appear in the set of all known associations. For all
training data, we fix the negative:positive ratio to 1:1. For the independent
testing sets (HELD-OUT1, NOVEL-MIRNA, and HELD-OUT2), we vary the
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ratio to be one of [1:1, 1:5, 1:10]. For each negative:positive sample rate, we
randomly draw 10 subsets from the negative pool and evaluate all models’
performance on all those sampled sets to avoid bias and make the compari-
son as fair as possible. In summary, in the transductive setting, we have 10
train and 10 test sets (corresponding to different negative sample sets). We
evaluate each model by training it on all 100 train and test set combinations,
each with 2 random model initialization. In total, we report the average re-
sults corresponding to 200 experimental runs for the transductive setting.

We use the entire set of unknown interactions as negative test samples for
the experiments corresponding to the new disease datasets. For each dataset,
we run the model with 10 sampled train sets. For each set, we run the model
twice with different random initializations. The reported results presented
in Section 6.3 are the average results over 20 experimental runs.

6.2.5 Evaluation Metrics.

For non-parametric metrics, we report the Area under the Receiver Oper-
ating Characteristic (AUC), the Average Precision (AP) (which summarizes
the Precision-Recall curve). For threshold-based metrics, we report the Sen-
sitivity (or Recall (Rec), referred to as SN), Specificity (SP), Accuracy (ACC),
Precision (Pre), F1, and Matthews correlation coefficient (MCC) scores. Be-
sides, for the new disease test sets, we also report the number of correctly
predicted miRNA-disease associations among the top 100 highest predicted
scores (denoted as Top100) generated by the benchmarked models. For all
tables, bold font is used to highlight the best scores.

6.2.6 Hyperparameter setup and implementation details

MPM and its variants. We experiment with the number of message passing
iteration t in [1, 2, 10]. For the feature selection module, we run ReliefF [111]
with 20 neighbors and the number of selected features K from 50 to 500 with
a step size of 50. The results reported in Section 6.3 correspond to t = 1, and
K = 100, which result in the best average AP score among 18 datasets in the
inductive test setting. For SDNE, we use the default parameter as suggested
by NEMII [75] with the embedding size fixed to 128. The Random Forest
classifier is trained with 350 estimators.

Existing benchmarked models. For EPMDA, DBMDA, and NIMGCN, we use
the code and setup released in [51]. For NEMII and MUCOMID, we use the
same code and setup as published by the authors. For DIMIG 2.0, we follow
the same testing strategies employed in [52].
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6.3 Results

6.3.1 MPM vs. existing works (SOTA)

Tables 6.5 and 6.6 present the average performance scores for all benchmarked
models on our 21 large test sets in the transductive and inductive testing se-
tups. In Table 6.5, we report the average AP and AUC scores corresponding
to different positive:negative testing sample rates. We do not have the results
for EPMDA on the 18 test sets for new diseases because all pairs’ representa-
tions are zeros since new diseases appear as isolated nodes in the network
for the topology-based feature extraction. Table 6.7 shows the results corre-
sponding to the 5-fold CV results on the HMDD2 and HMDD3 datasets. For
each dataset, we randomly split the data according to 5 different random
seeds and report the average performance.

TABLE 6.5: Results on the three large test sets. nr denotes the positive:negative
sample rate.

dataset nr NIMGCN DBMDA EPMDA NEMII MUCOMID DIMIG 2.0 MPM SOTA↑
AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AP

HELD 1:1 .542 .554 .657 .622 .698 .624 .838 .831 .832 .826 .499 .5 .848 .844 1.6%
-OUT1 1:5 .541 .207 .656 .256 .698 .256 .838 .542 .832 .534 .499 .167 .848 .573 5.7%

1:10 .542 .118 .656 .149 .698 .148 .838 .395 .832 .385 .499 .091 .848 .429 8.6%

NOVEL 1:1 .532 .549 .644 .621 .716 .643 .865 .857 .827 .819 .499 .5 .869 .866 1.1%
-MIRNA 1:5 .53 .202 .645 .261 .718 .281 .866 .597 .827 .519 .499 .167 .87 .62 3.4%

1:10 .53 .115 .645 .153 .719 .167 .866 .452 .827 .37 .499 .091 .87 .479 6.0%

HELD 1:1 .513 .517 .638 .617 .704 .648 .859 .853 .811 .812 .499 .5 .863 .865 1.4%
-OUT2 1:5 .513 .176 .638 .257 .703 .291 .859 .581 .812 .514 .499 .167 .863 .621 6.9%

1:10 .512 .097 .638 .015 .704 .176 .858 .435 .811 .368 .499 .091 .862 .485 11.5%

TABLE 6.6: Results on the 18 inductive testing sets for new diseases.

dataset Method AUC AP SN SP Acc Pre F1 Mcc Top100

D001943

MPM .895 .824 55.7 98.6 89.8 91.4 69.1 66.3 99.4
NIMGCN .344 .16 0 99.4 79.1 0 0 -2.3 .0
DBMDA .773 .507 62.4 84.8 80.2 56 57.9 46.3 67.1
NEMII .916 .827 52.5 98.6 89.2 91.1 66.3 63.9 98.4
MUCOMID .669 .414 42.8 75.2 68.6 42.8 36.1 21.1 52.8
DIMIG 2.0 .5 .205 100 0.0 20.5 20.5 34.0 0.0 20.0

D015179

MPM .905 .806 74.2 95.1 91.5 75.6 74.9 69.8 95.2
NIMGCN .373 .134 0 98.9 82 0 0 -2.6 .0
DBMDA .792 .463 77.1 73.5 74.1 44.3 54.8 43.3 53.8
NEMII .910 .797 73.4 94.5 90.9 73.4 73.4 67.9 94.7
MUCOMID .651 .34 76.1 49.5 54 25.8 37.6 20.3 41.3
DIMIG 2.0 .499 .171 100 0 17.1 17.1 29.1 0 11.5

D013274

MPM .938 .837 82 92.7 91 68.3 74.5 69.5 96.0
NIMGCN .394 .132 0 99.9 83.9 0 0 -.8 .0
DBMDA .872 .503 84 84.2 84.2 50.9 63.3 56.8 54.5
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NEMII .952 .835 83.8 92.1 90.8 67.2 74.5 69.7 94.5
MUCOMID .597 .249 69.8 46.7 50.4 21 31.6 12.9 28.8
DIMIG 2.0 .498 .161 100 0 16.1 16.1 27.7 0 18.5

D008175

MPM .926 .764 92.3 76.5 78.7 39.4 55 51 87.6
NIMGCN .374 .115 0 97.9 84.4 0 0 -4.1 .0
DBMDA .829 .437 74.2 84 82.7 44.7 55.2 48.2 52.4
NEMII .935 .749 88.5 84.9 85.4 48.4 62.6 58.3 85.3
MUCOMID .734 .375 55.6 72.4 70.1 37.3 36.7 27.4 43.4
DIMIG 2.0 .499 .138 100 0 13.8 13.8 24.2 0 13.0

D011471

MPM .922 .733 80.1 91.5 90 59.6 68.3 63.5 85.5
NIMGCN .404 .116 0 99.1 85.7 0 0 -2.1 .0
DBMDA .747 .395 64.8 75 73.6 40.4 47.4 35.6 52.6
NEMII .926 .653 78.2 92.2 90.3 61.1 68.6 63.6 72.2
MUCOMID .692 .33 42.3 71.2 67.3 38.8 21.8 15.2 39.1
DIMIG 2.0 .499 .135 100 0 13.5 13.5 23.8 0 14.5

D002289

MPM .934 .802 40 99.5 91.6 92.4 55.7 57.5 92.1
NIMGCN .385 .108 0 99.3 86.2 0 0 -2.1 .0
DBMDA .661 .303 62.9 64.1 64 33 39.7 24.9 39.8
NEMII .947 .800 59.9 98.0 92.9 81.9 69.0 66.2 90.1
MUCOMID .676 .278 61.1 55.9 56.6 28.3 27.7 16.6 31.5
DIMIG 2.0 .498 .132 100 0.0 13.2 13.2 23.4 0.0 10.5

D010051

MPM .958 .792 87.9 92.5 91.9 61.1 72.0 69.0 87.1
NIMGCN .478 .114 0 99.9 88.1 0 0 -.6 .0
DBMDA .845 .4 81.4 79 79.3 40.1 52.9 46.8 46.3
NEMII .960 .76 54.7 97.9 92.8 79.6 63.7 61.9 84.7
MUCOMID .774 .388 81.4 59 61.6 24.1 35.8 28.3 45.5
DIMIG 2.0 .498 .118 100 0.0 11.8 11.8 21.1 0.0 10.5

D008545

MPM .917 .724 52.1 98 92.6 77.6 62.1 59.8 82.5
NIMGCN .466 .108 0 99.9 88.3 0 0 -.6 .0
DBMDA .766 .355 70.4 69.9 69.9 33.4 42.4 32.9 44.6
NEMII .928 .706 31.4 99.3 91.4 86.1 45.3 48.4 79.5
MUCOMID .755 .365 52.5 72.2 69.9 38.7 31.4 25.6 43.4
DIMIG 2.0 .499 .117 100 0 11.7 11.7 20.9 0 8.0

D005910

MPM .947 .759 49 98.4 92.6 80.9 59.3 58.6 81.6
NIMGCN .489 .112 0 99.9 88.3 0 0 -.6 .0
DBMDA .644 .246 36.5 83.9 78.4 30.5 31.9 20.7 32.8
NEMII .953 .731 50.7 98.1 92.6 77.8 60.0 58.5 80.1
MUCOMID .786 .409 32.2 88.8 82.2 46 28.3 24.6 48.0
DIMIG 2.0 .499 .117 100 0.0 11.7 11.7 20.9 0.0 10.0

D005909

MPM .938 .736 75.1 95.6 93.3 67.6 71.1 67.5 79.7
NIMGCN .563 .123 0 99.9 89 0 0 -.8 .0
DBMDA .814 .369 82.0 67.9 69.4 30.7 42.9 36.4 42.5
NEMII .943 .712 86.7 89.1 88.8 49.4 62.9 60.0 78.1
MUCOMID .815 .418 55.4 84.9 81.7 38.3 42.1 35.3 46.5
DIMIG 2.0 .499 .109 100 0 10.9 10.9 19.7 0 12.0

D001749

MPM .94 .785 88.3 84.7 85.1 40.1 55.1 53 88.7
NIMGCN .432 .089 0 99.9 89.6 0 0 -.9 .0
DBMDA .815 .340 76.3 75.6 75.7 31.7 43.8 37.9 40.2
NEMII .948 .767 80.8 91.4 90.3 52.1 63.3 59.9 86.4
MUCOMID .808 .446 43.1 90.7 85.7 52 39 36.4 52.1
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DIMIG 2.0 .498 .103 100 0 10.3 10.3 18.7 0 12.5

D012516

MPM .932 .713 44 99 93.6 82.6 57.3 57.4 78.8
NIMGCN .821 .262 0 99.9 90.1 0 0 -.5 6.5
DBMDA .755 .323 55.6 87.7 84.6 36.9 43.6 36.8 47.6
NEMII .936 .658 42.3 98.3 92.8 73.5 53.2 52.2 73.4
MUCOMID .781 .349 61.3 79.5 77.7 30.5 38.2 31.6 40.7
DIMIG 2.0 .499 .098 100 0 9.8 9.8 17.9 0 13.5

D010190

MPM .944 .749 83.1 94.2 93.1 60.9 70.2 67.5 79.7
NIMGCN .448 .088 0 99.8 90.1 0 0 -1 .0
DBMDA .871 .366 84.4 82 82.2 33.8 48.3 46 39.6
NEMII .947 .744 71.7 96 93.6 66.2 68.5 65.2 76.7
MUCOMID .784 .373 18.6 96.8 89.2 52.1 23.7 23.5 44.7
DIMIG 2.0 .499 .098 100 0 9.8 9.8 17.8 0 9.0

D006333

MPM .949 .669 67.2 95.9 93.4 61.2 64.0 60.5 68.8
NIMGCN .729 .18 0 99.9 91.2 0 0 -.5 4.2
DBMDA .743 .299 58.5 85.9 83.5 32.5 41 35.1 44.1
NEMII .953 .651 60 96.2 93 60.2 60 56.2 65.9
MUCOMID .816 .395 36.5 88.3 83.8 46 29.3 28.1 45.8
DIMIG 2.0 .499 .088 100 0 8.8 8.8 16.1 0 6.0

D002292

MPM .939 .684 80.0 93.1 91.9 52.4 63.3 60.7 70.8
NIMGCN .471 .082 0 99.9 91.2 0 0 -.6 .0
DBMDA .739 .238 52.5 84.4 81.6 27.8 35.6 28.7 32.5
NEMII .945 .653 74.3 93.6 91.9 52.8 61.6 58.3 67.0
MUCOMID .774 .285 86.5 53.2 56.1 16.7 27.4 23.8 31.8
DIMIG 2.0 .498 .087 100 0 8.7 8.7 16 0 5.5

D003110

MPM .945 .659 99.2 19.6 25.8 9.7 17.7 12.6 68.3
NIMGCN .441 .069 0 99.6 91.8 0 0 -1.2 .0
DBMDA .823 .242 91.3 70.4 72.1 23.5 36.8 37.2 23.8
NEMII 0.938 0.600 91.0 82.5 83.2 30.7 45.9 46.8 60.8
MUCOMID .764 .271 97.4 13.2 19.8 8.8 16.1 7.5 31.0
DIMIG 2.0 .498 .078 100 0 7.8 7.8 14.5 0 7.5

D015470

MPM .953 .655 70.9 95.3 93.6 52.8 60.5 57.8 63.4
NIMGCN .732 .158 0 99.9 93 0 0 -.6 3.9
DBMDA .737 .259 64 74.2 73.5 23.8 32.8 27.4 36.1
NEMII .951 .625 53.4 97.4 94.4 61.6 56.7 54.2 60.6
MUCOMID .779 .29 46.5 82.9 80.4 24.2 27.3 22.8 29.6
DIMIG 2.0 .498 .069 100 0 6.9 6.9 13 0 8.5

D002294

MPM .962 .669 90.6 92.5 92.4 45.4 60.5 60.9 62.8
NIMGCN .834 .186 0 99.9 93.5 0 0 -.6 .55
DBMDA .789 .241 68.6 80.8 80 22.8 33.3 31.3 31.8
NEMII .956 .608 90.1 90.8 90.8 40.4 55.7 56.6 59.5
MUCOMID .855 .384 90.9 62.5 64.3 19.7 30.2 31.1 38.7
DIMIG 2.0 .498 .064 100 0 6.4 6.4 12.1 0 8.5

In the three large independent test sets (ref. Table 6.5), MPM outper-
forms all benchmarked models (SOTA) on the HELD-OUT1 (transductive set-
ting), NOVEL-MIRNA (with many new miRNAs), and HELD-OUT2 (with
new miRNAs and new diseases) test sets with a gain of up to 11.5% in AP
score. The gains are more significant when more negative samples are added
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TABLE 6.7: Results for 5-fold cross-validation on the HMDD2 and HMDD3 datasets.

dataset Method AUC AP SN SP ACC Pre F1 MCC

HMDD2

MPM 0.89 0.9 80.7 81.5 81.1 81.3 81.0 62.2
NIMGCN 0.88 0.87 70.2 84.2 77.2 77.9 71.0 54.6
DBMDA 0.72 0.68 66.9 72.4 69.7 70.8 68.8 39.4
EPMDA 0.52 0.61 36.0 64.0 50.0 18.0 24.0 0.0
NEMII 0.9 0.9 81.4 81.5 81.4 81.5 81.4 62.9
MUCOMID 0.91 0.9 83.0 82.5 82.8 82.7 82.8 65.6
DIMIG 2.0 0.5 0.51 100.0 0.0 50.0 50.0 66.7 0.0

HMDD3

MPM 0.91 0.91 83.8 82.0 82.9 82.3 83.0 65.8
NIMGCN 0.89 0.89 84.6 80.7 82.7 81.5 83.0 65.4
DBMDA 0.76 0.71 71.6 74.4 73.0 73.7 72.6 46.1
EPMDA 0.48 0.59 48.0 52.0 50.0 24.0 32.0 0.0
NEMII 0.91 0.91 84.1 82.0 83.0 82.4 83.2 66.1
MUCOMID 0.92 0.92 85.2 84.0 84.6 84.2 84.7 69.2
DIMIG 2.0 0.5 0.5 100.0 0.0 50.0 50.0 66.7 0.0

to the testing data. On the complete test sets for new diseases, MPM consis-
tently acquires the highest Top100 scores in all test sets. Besides, MPM gains
the highest AP scores in 17 out of 18 datasets. In the 5-fold CV evaluation
setup, MUCOMID gains the highest performance in most reported metrics.
MPM closely follows NEMII with slightly worse performance. Nonetheless,
compared to the best-performing model (MUCOMID), MPM attains an equal
AP score in the HMDD2 dataset and a 0.01 lower AP score in the HMDD3
dataset.

In both transductive and inductive testing setups, we observe similar
trends with large performance gaps among the state-of-the-art methods. In
the three large independent test sets (HELD-OUT1, NOVEL-MIRNA, HELD-
OUT2), DIMIG 2.0 performs the worst, followed by NIMGCN, then DBMDA,
EPMDA, MUCOMID, and then NEMII. In the 18 complete test sets for new
diseases, regarding the AP scores, the order is slightly changed to NIMGCN,
followed by DIMIG 2.0, then DBMDA, MUCOMID, and then NEMII. DIMIG
2.0 is a recently proposed model that formulates the miRNA-disease associ-
ation prediction problem as a semi-supervised node classification task with
diseases as labels. The model can integrate information from four additional
knowledge sources (miRNA-PCG, disease-PCG associations, PCG-PCG in-
teractions, and disease ontology) but only performs training using the known
disease-PCG association set. Though DIMIG 2.0 can generate predictions for
new miRNAs and new diseases, the large and sparse label set and the weak
training signals lead to its limited predictive performance. With all AUC
scores close to 0.5, the model does not perform better than a random guess.

NIMGCN performs the worst compared to other supervised baselines be-
cause it only relies on the miRNA functional and disease semantic similari-
ties to construct the networks for the feature learning. The miRNA functional
similarity is heavily biased toward well-known diseases and cannot general-
ize well to new diseases [219]. Also, new miRNAs appear as isolated nodes
in the network and will get completely random representations. Therefore,
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NIMGCN’s prediction capability is limited for the little-known or completely
new miRNAs or diseases.

Regarding the input sources, DBMDA improves over NIMGCN by inte-
grating another biologically-related information source: the miRNA sequence
similarity. DBMDA gains significantly better performance than NIMGCN but
is still much lower than MUCOMID, NEMII, and MPM in most test sets,
suggesting that the miRNA sequence similarity does bring additional bene-
fit, but the gains are not too significant.

EPMDA proposes a topologically related feature extraction technique for
miRNA-disease pair representation. Unlike most existing works, which fo-
cus on learning effective representations for miRNAs and diseases separately,
EPMDA learns the miRNA-disease pair representation directly as a property
of the miRNA-disease heterogeneous network constructed from the miRNA
and disease Gaussian Interaction Profile kernel similarities and the miRNA-
disease known associations. Even though EPMDA does not employ any ad-
ditional information sources, its performance is still better than NIMGCN and
DBMDA. This suggests that learning the pair representation directly from the
heterogeneous network with raw miRNA-disease associations is a fruitful
direction. Nonetheless, the edge perturbation score has at least O(n3) time
complexity and cannot scale well to a large network [51]. Besides, fine-tuning
the network cycle length parameter is not a trivial task [51].

MUCOMID proposes a multitask learning model that integrates five ad-
ditional information sources to overcome the data scarcity problem. Though
promising, the model applies hard-threshold filtering to filter out redundant
information in the additional information sources. The results reported in
Tables 6.5 and 6.6 correspond to MUCOMID’s performance without the fil-
tering step (since not all of our data have the interaction/association confi-
dence scores available). The thresholds need to be fine-tuned for each dataset
separately. For that reason, it requires considerable time and effort for pa-
rameter fine-tuning in order to employ MUCOMID for a completely new
dataset. This points to an important aspect of information integration which
focuses on effectively controlling/managing the quality and quantity of the
added knowledge sources. Nonetheless, MUCOMID gains the highest per-
formance in the 5-fold CV testing setup. Also, the method shows promising
performance, which overcomes the problems associated with hand-crafted
similarity-based methods in all testing setups.

NEMII learns structural embeddings directly from the miRNA-disease
bipartite network constructed from the known miRNA-disease association
data. Besides, the model is further informed by information from the miRNA
family and disease semantic similarity. Though new miRNAs and new dis-
eases get completely random representation from the structural embedding
learning module, NEMII’s performance on the 20 inductive testing datasets
is still one of the highest, thanks to the biological information from the miRNA
family and disease semantic similarity features. Overall, the effective feature
extraction strategy, combined with the domain knowledge from the added
side information sources, helped NEMII gain the highest performance scores
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among state-of-the-art methods on most testing datasets. These results sup-
port the exploitation of structural information from the miRNA-disease as-
sociation data and the importance of information integration.

MPM improves over state-of-the-art methods with a parameter-free yet
effective mechanism to control the quality and quantity of the added infor-
mation sources. At the same time, it addresses the existing limitation in
the NEMII model by integrating additional biological relations to the new
miRNAs and new diseases. The learned signals from the well-studied miR-
NAs/diseases will be transferred to the diseases (with only scarce knowl-
edge) via their associated PCGs. These improvements help MPM gain state-
of-the-art performance on 20 out of the 21 independent test sets in both trans-
ductive and inductive testing setups with a gain of up to 11.5% in AP score.

6.4 Ablation studies

6.4.1 MPM and simpler variants

Here, we compare MPM with four of its simpler variants as summarized
in Table 6.8. MPM-NO-MP is a variant of MPM without the message pass-

TABLE 6.8: Simpler variants of MPM.

Model Message Passing Feature Selection SDNE PCG associations
MPM-NO-MP X
MPM-NO-FS X
MPM-NO-SDNE X
NEMII [75] X X X
MPM-NO-MPFS X X

ing layer that takes the raw miRNA-PCG and disease-PCG associations as
input to the feature selection and structural embedding learning modules.
Similarly, MPM-NO-FS is a variant of MPM without the feature selection
module. The structural embedding learning module encapsulates all en-
riched miRNA-PCG and disease-PCG associations output from the message
passing layer into its heterogeneous network for learning node embeddings.
MPM-NO-MPFS is a variant of MPM without the message passing and the
feature selection modules. The heterogeneous network input to SDNE sim-
ply integrate all raw miRNA-PCG, disease-PCG associations retrieved from
miRTarBase[86] and DisGeNET [168]. MPM-NO-SDNE is a variant of MPM
in which there is no structural embedding learning. Instead, the pair rep-
resentation for a particular miRNA-disease pair is the concatenation of the
enriched and filtered miRNA-PCG, disease-PCG associations, miRNA fam-
ily, and disease semantic similarity features.

Table 6.9 presents the results for MPM and its variants on three large in-
dependent test sets. Table 6.10 reports the results for the 18 inductive testing
datasets for new diseases. We observe that MPM supersedes all of its simpler
variants on the transductive testing set (HELD-OUT1), two inductive testing
sets with many new miRNAs (NOVEL-MIRNA and HELD-OUT2), and 15 out
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TABLE 6.9: Results for MPM and its simpler variants on the three large test sets. nr
denotes the positive:negative sample rate.

dataset nr MPM-NO-MP MPM-NO-FS MPM-NO MPM-NO MPM
-MPFS -SDNE

AUC AP AUC AP AUC AP AUC AP AUC AP

HELD 1:1 .846 .84 .814 .809 .824 .816 .837 .83 .848 .844
-OUT1 1:5 .846 .564 .814 .503 .824 .516 .837 .546 .848 .573

1:10 .847 .418 .814 .357 .824 .369 .837 .401 .848 .429

NOVEL 1:1 .866 .859 .823 .818 .836 .828 .842 .834 .869 .866
-MIRNA 1:5 .866 .602 .823 .519 .836 .538 .842 .552 .87 .62

1:10 .867 .46 .823 .519 .823 .373 .836 .391 .87 .479

HELD 1:1 .859 .86 .814 .819 .831 .832 .846 .847 .863 .865
-OUT2 1:5 .859 .607 .814 .533 .831 .554 .846 .581 .863 .621

1:10 .859 .468 .814 .391 .831 .411 .846 .439 .862 .485

TABLE 6.10: AP scores of MPM and its variants on 18 test sets for new diseases.

Disease MPM MPM-NO MPM-NO MPM-NO MPM-NO

-MP -FS -MPFS -SDNE

D001749 0.785 0.77 0.567 0.589 0.58
D001943 0.824 0.811 0.679 0.693 0.654
D002289 0.802 0.795 0.662 0.678 0.589
D002292 0.684 0.67 0.51 0.525 0.531
D002294 0.669 0.646 0.529 0.531 0.493
D003110 0.659 0.619 0.487 0.54 0.515
D005909 0.736 0.726 0.597 0.63 0.523
D005910 0.759 0.767 0.642 0.66 0.626
D006333 0.669 0.671 0.578 0.602 0.566
D008175 0.764 0.751 0.615 0.62 0.611
D008545 0.724 0.715 0.58 0.598 0.558
D010051 0.792 0.782 0.505 0.654 0.579
D010190 0.749 0.761 0.589 0.622 0.598
D011471 0.733 0.738 0.618 0.633 0.569
D012516 0.713 0.699 0.546 0.585 0.55
D013274 0.837 0.811 0.657 0.693 0.643
D015179 0.806 0.785 0.645 0.693 0.614
D015470 0.655 0.653 0.509 0.513 0.497

of 18 complete test sets for new diseases. The gains are the most significant
on the three independent test sets (c.f. Table 6.9), especially when more nega-
tive testing samples are added. These results support the contribution of each
added component. At the same time, they validate our choice of architecture.

Besides, among the simpler variants, we observe a considerable perfor-
mance drop on the variants without the feature selection modules (MPM-
NO-FS and MPM-NO-MPFS) or on the MPM-NO-SDNE model. Without
the feature selection module, the network employed for the embeddings
generation contains too many PCG association connections. As biological
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data usually contains many false positives, adding all PCG associations in-
troduces additional noise and redundancy. Similarly, without the structural
embeddings (MPM-NO-SDNE), MPM only relies on the associated PCGs,
miRNA, and disease semantic similarity features to generate predictions with-
out the information about the miRNA/disease interaction patterns. The drop
in performance observed in MPM’s simpler variants further emphasizes the
importance of our feature selection module for information filtering as well
as the SDNE module for feature extraction from the raw association struc-
tural patterns.

6.4.2 MPM with different binary classifiers

TABLE 6.11: MPM with different binary classifiers results on the 18 inductive testing
dataset for new diseases.

dataset Classifier AUC AP SN SP Acc Pre F1 Mcc Top100

D001943

SVM .906 .829 82.2 87.9 86.7 64.2 71.8 64.4 97.8
Random Forest .895 .824 55.7 98.6 89.8 91.4 69.1 66.3 99.4
AdaBoost .892 .788 78.3 74.7 75.4 65 65.5 54 96.6
K-Nearest Neighbors .838 .615 68.2 88.8 84.6 61.4 64.5 55 84.6
Gaussian Naive Bayes .511 .207 76.6 24.8 35.4 20.8 32.7 1.3 20.7
MLP .806 .698 69.2 68 68.3 52.5 52 39 92.5
Decision Tree .839 .654 91.6 28.1 41.1 3.6 42.6 17.5 92.9

D015179

SVM .913 .798 90.7 66.6 70.7 37.1 52.3 44.4 92.1
Random Forest .905 .806 74.2 95.1 91.5 75.6 74.9 69.8 95.2
AdaBoost .892 .77 52 95.8 88.4 82.7 55.9 55.6 93.9
K-Nearest Neighbors .841 .514 83.9 71.8 73.8 41 54.2 45.1 65.6
Gaussian Naive Bayes .534 .181 86.9 19.6 31.1 18.2 30.1 6.4 18.6
MLP .836 .685 87.2 45.6 52.7 28.9 41.8 26.7 86.7
Decision Tree .864 .69 55.3 98.0 90.7 86.3 65.8 63.7 89.6

D013274

SVM .949 .841 70.2 97 92.7 81.9 75.6 71.7 95.4
Random Forest .938 .837 82 92.7 91 68.3 74.5 69.5 96.0
AdaBoost .926 .79 79.4 89.7 88 67.5 70.1 65.6 94.3
K-Nearest Neighbors .808 .431 85.7 58.7 63 29.7 43.7 33.4 56.2
Gaussian Naive Bayes .564 .181 90.4 22.3 33.2 18.2 30.3 11.6 18.9
MLP .905 .786 40.5 99.2 89.8 91.1 55.5 56.4 92.3
Decision Tree .825 .562 83.4 69.2 71.5 44.6 55.2 44.7 64.9

D008175

SVM .936 .768 95.4 63.4 67.8 30.8 46.2 41.8 87.5
Random Forest .926 .764 92.3 76.5 78.7 39.4 55 51 87.6
AdaBoost .921 .731 97.5 20.7 31.3 20.7 32.2 13.7 85.6
K-Nearest Neighbors .848 .585 71.2 94.7 91.5 68.3 69.7 64.7 78.2
Gaussian Naive Bayes .563 .155 91.9 20.5 3.4 15.6 26.7 10.9 17.1
MLP .859 .653 89.6 42.8 49.2 26.6 38.1 25.4 80.1
Decision Tree .815 .518 92.7 42.6 49.5 26.6 38.6 25 67.7

D011471

SVM .933 .776 59.1 97.2 92.0 76.9 66.8 63.1 91.1
Random Forest .922 .733 80.1 91.5 90 59.6 68.3 63.5 85.5
AdaBoost .908 .717 56.9 96.6 91.2 66.5 60 56.8 84.7
K-Nearest Neighbors .882 .562 75.9 91 88.9 56.9 65 59.5 73.2
Gaussian Naive Bayes .555 .15 87.6 23 31.7 15.1 25.8 8.8 14.5
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MLP .882 .669 49.1 96.8 90.3 72.9 56.4 53.8 79.6
Decision Tree .864 .605 78.5 83.5 82.8 58.4 64.2 57.5 77.5

D002289

SVM .943 0.800 55.4 98.4 92.7 83.7 66.7 64.4 90.9
Random Forest .934 .802 40 99.5 91.6 92.4 55.7 57.5 92.1
AdaBoost .938 .756 69.5 96.2 92.6 74.1 71.1 67.3 86.8
K-Nearest Neighbors .769 .4 42.2 94.8 87.8 55.8 47.9 41.8 61.5
Gaussian Naive Bayes .567 .15 92.7 20.5 30 15.1 26 11.4 14.9
MLP .869 .663 62.6 90.2 86.5 62.6 58.5 53.8 80.0
Decision Tree .858 .604 41.1 98 90.5 81.3 51 51.6 72.6

D010051

SVM .964 .798 90.3 91.3 91.2 58.2 70.8 68.1 88.9
Random Forest .958 .792 87.9 92.5 91.9 61.1 72.0 69.0 87.1
AdaBoost .953 .751 84 93 91.9 63.2 71.6 68.4 84.6
K-Nearest Neighbors .886 .506 88.4 76.7 78.0 34.2 49.1 45.7 60.7
Gaussian Naive Bayes .588 .14 95.3 22 30.7 14.1 24.5 14 14.7
MLP .932 .749 84.6 86.8 86.6 52.5 62.7 59.4 85.2
Decision Tree .907 .625 74.4 84.4 83.2 60.5 59.1 55.3 72.2

D008545

SVM .934 .752 50.5 98.2 92.6 78.7 61.4 59.3 83.7
Random Forest .917 .724 52.1 98.0 92.6 77.6 62.1 59.8 82.5
AdaBoost .922 .688 39.1 97.9 91.0 84.9 47.5 50.6 80.9
K-Nearest Neighbors .845 .513 65.7 94.2 90.9 60.1 62.8 57.7 70.8
Gaussian Naive Bayes .564 .132 90.6 22.1 30.1 13.3 23.2 10.1 11.3
MLP .886 .641 21.9 99.2 90.2 80.8 32.1 36.9 75.5
Decision Tree .883 .577 62 95.8 91.8 70.4 62.1 59.9 71.9

D005910

SVM .96 .781 79.6 96.4 94.4 74.5 77.0 73.9 83.8
Random Forest .947 .759 49 98.4 92.6 80.9 59.3 58.6 81.6
AdaBoost .945 .741 49.4 98.2 92.5 81.2 58.2 58.2 82.0
K-Nearest Neighbors .892 .622 74.5 95.7 93.2 69.8 71.9 68.2 78.0
Gaussian Naive Bayes .589 .139 95.9 21.9 30.5 14 24.4 14.3 13.5
MLP .892 .646 60.7 94.5 90.5 62.4 59.7 55.6 75.1
Decision Tree .917 .607 63.2 93.7 90.1 46.1 52.6 49.7 61.5

D005909

SVM .945 .734 70.9 96 93.3 68.7 69.8 66 79.2
Random Forest .938 .736 75.1 95.6 93.3 67.6 71.1 67.5 79.7
AdaBoost .935 .678 73.3 94.6 92.3 64 66.7 63.6 77.0
K-Nearest Neighbors .879 .542 69.4 94.4 91.7 60.8 64.7 60.3 70.2
Gaussian Naive Bayes .583 .129 94.9 21.8 29.8 13 22.8 13 13.7
MLP .873 .537 39.8 96.6 90.3 61.2 45.7 43.3 62.7
Decision Tree .902 .558 77.1 91.3 89.7 47.5 58.5 55.9 64.0

D001749

SVM .947 .759 85.9 87.4 87.3 44.2 58.3 55.8 85.0
Random Forest .94 .785 88.3 84.7 85.1 40.1 55.1 53 88.7
AdaBoost .929 .712 89.9 60.3 63.3 33.6 45.5 38.1 84.0
K-Nearest Neighbors .909 0.528 84.4 91.1 90.4 52.3 64.6 61.7 60.8
Gaussian Naive Bayes .56 .116 88.7 22.6 29.4 11.7 20.6 8.4 11.5
MLP .905 .647 73.8 90.7 89 52.2 59.7 55.9 73.9
Decision Tree .778 .411 90.8 55.6 59.3 30.8 41.3 35.8 45.4

D012516

SVM .943 .714 43.1 98.9 93.5 81.7 56.4 56.5 77.6
Random Forest .932 .713 44 99 93.6 82.6 57.3 57.4 78.8
AdaBoost .929 .653 48.9 98 93.2 78.1 57.5 57.3 76.1
K-Nearest Neighbors .844 .502 52.6 97.1 92.7 66.5 58.7 55.3 68.4
Gaussian Naive Bayes .578 .115 90.7 24.6 31.1 11.6 20.6 1.8 11.1
MLP .862 .542 49.8 95.9 91.3 58.1 52.8 48.8 63.9
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Decision Tree .902 .597 52.4 97.8 93.3 74.4 60.3 58.5 72.0

D010190

SVM .949 .791 66.9 97.4 94.4 73.9 70.2 67.3 84.2
Random Forest .944 .749 83.1 94.2 93.1 60.9 70.2 67.5 79.7
AdaBoost .939 .733 47.7 98.3 93.4 85.0 53.7 56.3 80.7
K-Nearest Neighbors .921 .561 87.7 91.2 90.9 52 65.3 63.2 64.7
Gaussian Naive Bayes .579 .114 94.3 21.4 28.5 11.5 20.5 11.7 11.4
MLP .919 .672 39.1 98.5 92.7 76.5 49.8 50.4 72.2
Decision Tree .918 .598 86.5 91.5 91 57.5 68.3 65.9 68.9

D006333

SVM .956 .675 70.4 95.5 93.3 60.1 64.7 61.3 70.5
Random Forest .949 .669 67.2 95.9 93.4 61.2 64 60.5 68.8
AdaBoost .951 .621 47 97.3 92.9 67.2 51.9 51.1 66.6
K-Nearest Neighbors .848 .49 65.7 95.3 92.7 57.3 61.2 57.3 65.9
Gaussian Naive Bayes .617 .112 98.6 24.4 30.9 11.1 20.0 15.6 11.0
MLP .816 0.502 46.7 96.4 92.0 57.7 50.3 47.1 60.8
Decision Tree .909 .585 65.8 95.8 93.1 61.4 62.4 59.4 67.9

D002292

SVM .944 .662 85.3 88.9 88.6 42.5 56.7 55.1 67.6
Random Forest .939 .684 80.0 93.1 91.9 52.4 63.3 60.7 70.8
AdaBoost .921 .621 88.5 75.5 76.7 36.9 49.6 46.9 67.1
K-Nearest Neighbors .891 .416 86.4 80.1 80.6 29.8 44.1 43.2 51.6
Gaussian Naive Bayes .577 .102 93.6 21.5 27.8 10.2 18.4 10.6 10.4
MLP .913 .573 79.1 86 85.4 41.6 52.4 50.1 62.2
Decision Tree .897 .488 81.4 93.1 92.1 53.1 64.2 61.8 58.1

D003110

SVM .943 .549 99.6 26.7 32.4 11 19.6 16.5 59.4
Random Forest .945 .659 99.2 19.6 25.8 9.7 17.7 12.6 68.3
AdaBoost .939 .636 96.2 47.5 51.3 20.2 31.8 26.9 66.5
K-Nearest Neighbors .597 .097 98.3 6.7 13.8 8.2 15.1 5.3 11.1
Gaussian Naive Bayes .578 .091 95.4 19.9 25.7 9.1 16.7 10.5 8.1
MLP .888 .485 98.9 10.8 17.7 8.6 15.9 8.1 53.2
Decision Tree .814 .361 90.7 62.7 64.9 28.6 40.2 37.7 39.5

D015470

SVM .953 .64 73.8 94.3 92.9 49.1 58.9 56.6 64.2
Random Forest .953 .655 70.9 95.3 93.6 52.8 60.5 57.8 63.4
AdaBoost .944 .597 83.3 91.3 90.7 42.9 55.9 55.4 60.1
K-Nearest Neighbors .915 .457 80.2 92.7 91.8 44.9 57.6 56.2 54.9
Gaussian Naive Bayes .589 .083 96.4 21.2 26.4 8.3 15.4 11.2 7.6
MLP .911 .562 69.6 92.1 90.6 45.1 53.4 51 57.3
Decision Tree .921 .425 81.7 92.2 91.4 44.5 56.9 56.1 48.7

D002294

SVM .962 .647 93.5 91.1 91.3 42.1 58 59.3 61.8
Random Forest .962 .669 90.6 92.5 92.4 45.4 60.5 60.9 62.8
AdaBoost .952 .601 86.7 91.2 90.9 43.6 56.0 56.8 60.8
K-Nearest Neighbors .915 .401 85.5 89.7 89.5 36.4 51.1 51.6 47.6
Gaussian Naive Bayes .59 .077 97.1 20.8 25.7 7.8 14.4 11.1 6.3
MLP .928 .564 83.6 89.4 89 39.5 52.3 52.4 56.5
Decision Tree .936 .465 91.3 90.4 90.4 40 55.4 56.6 52.1

This section presents an ablation study regarding MPM’s performance with
different binary classification models. In addition to the originally proposed
model (with Random Forest), we also report the performance of MPM with
the following classifiers: SVM [202], AdaBoost [2], K-Nearest Neighbors [101],
Gaussian Naive Bayes [67], Multi-layer Perceptron [154] (MLP), and Decision
Tree [43]. For all added binary classifiers, we use the default parameter sets.
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Table 6.11 presents the results corresponding to MPM with different binary
classifiers on the 18 test sets for new diseases, averaged over 20 experimental
runs. Looking at the results, we see that the Random Forest model results
in the highest Precision, F1, and Top100 scores in 11 out of the 18 test sets.
These results support our choice of architecture.

6.5 Case studies

Let H = HMDD2∪HMDD3 denote the set of all known associations retrieved
from the HMDD databases. We here present three case studies to showcase
the application of MPM in realistic scenarios.

6.5.1 MPM for a disease with scarce knowledge

Down syndrome or Trisomy 21 is a condition in which a child is born with
an extra copy of their 21st chromosome [178]. Down Syndrome’s patients usu-
ally suffer from mild-to-moderate learning disabilities[178]. According to the
data deposited in the HMDD 2.0 and HMDD 3.0 databases and two recent
works [60, 185], there are only 10 miRNAs known to be associated with the
disease of our interest. We assume that Down Syndrome is a completely new
disease and take similar steps as those presented in the 6.2.3 section to con-
struct the training and testing data. In short, our training data consists of
all known associations in H for all diseases other than the Down Syndrome.
We test MPM on the complete test set consisting of all possible combinations
between the Down Syndrome and 1,618 miRNAs.

TABLE 6.12: MPM’s prediction scores for Down Syndrome and all 1,618 miRNAs.

Rank miRNA pred. Rank miRNA pred.

... 82 hsa-mir-125b-2 0.579253110400618
2 hsa-mir-155 0.963881105523116 . . .
3 hsa-mir-146a 0.934014942433006 105 hsa-mir-99a 0.482246263067031
4 hsa-mir-16-1 0.895608127697913 . . .

. . . 140 hsa-mir-1246 0.404202397336283
33 hsa-mir-27b 0.689694528927961 . . .

. . . 261 hsa-let-7c 0.244887327696169
38 hsa-mir-27a 0.671913693062923 ...

. . . 1576 hsa-mir-802 0.130087980984639

How effective is MPM in restricting and prioritizing the search space for
the potentially associated miRNAs? Table 6.12 presents the average pre-
dictions made by MPM after 20 experimental runs. Though we perform
the search on a complete test set of 1,618 testing samples and the training
data does not contain known associations for Down Syndrome, 3 known-to-
associate miRNAs (marked as blue in Table 6.12) already appear in the top 4
highest predicted results. The other associated miRNAs appear at 33th, 38th,
82th, 105th, 140th, 261th, and 1576th positions in the prediction list. With 3
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appearing in the top 4 and 5 out of 10 known associations appearing in the
top 38 of the generated prediction results, our method would significantly
help restrict and prioritize the search space for wet-lab experiments.

How effective is MPM with some added domain knowledge? Since Down
Syndrome relates to a redundant chromosome 21 copy, we retrieve the miRNA
location information from miRTarBase [86] and present MPM’s predicted re-
sults for all miRNAs located on chromosome 21 in Table 6.13. Blue is used
to mark the associated miRNAs. Note that the model training data does not
contain the association data for Down Syndrome.

TABLE 6.13: MPM’s prediction results for Down Syndrome and the miRNAs that are
located on chromosome 21.

rank miRNA pred. rank miRNA pred.

1 hsa-mir-155 0.963881105523116 11 hsa-mir-4760 0.172962854437391
2 hsa-mir-125b-2 0.579253110400618 12 hsa-mir-5692b 0.168364046134056
3 hsa-mir-99a 0.482246263067031 13 hsa-mir-6508 0.163143029370321
4 hsa-let-7c 0.244887327696169 14 hsa-mir-6070 0.16232917173827
5 hsa-mir-548x 0.239129159103197 15 hsa-mir-6815 0.159395572782035
6 hsa-mir-3648-1 0.206785057828119 16 hsa-mir-8069-1 0.155993241075239
7 hsa-mir-4759 0.200771150543586 17 hsa-mir-6724-1 0.153456269809843
8 hsa-mir-3197 0.19795748172893 18 hsa-mir-6501 0.152740622433185
9 hsa-mir-6130 0.194382789321313 19 hsa-mir-6814 0.145666592873055
10 hsa-mir-4327 0.176297567535453 20 hsa-mir-802 0.130087980984639

By restricting the miRNA search space, we have much more promising
prediction results, with 4 out of 5 associated miRNAs appearing at the top of
the list. Adding more related domain information like chromosomal location,
tissue expression profiles, etc., thus helps in restricting the miRNA search
space to obtain more meaningful prediction results. Nonetheless, we release
predicted association probabilities for all 1,618 miRNAs to encourage field
experts’ assessments as well as to enable them to perform customized subset
selection without the need to retrain/rerun the model.

6.5.2 MPM for a disease with many false positives

Parkinson disease (PD) is the second most common neurodegenerative dis-
ease worldwide [115]. Existing human association studies for the Parkinson
disease resulted in inconsistent findings with many "false positives" as re-
ported in [191]. In this case study, we take a closer look at the generated
predictions from MPM for the Parkinson disease. We train MPM with all the
available data in H. More specifically, besides the data for other diseases, the
training data contains 61 known associations for Parkinson. Among those,
there are 8 true positives (those that are confirmed as positives in [191]) and
26 false positives [191] (those that are marked as positive in H but are con-
firmed as negative in [191]).
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TABLE 6.14: The predicted association probabilities for the true positive (marked as
blue) and true negative miRNAs [191] corresponding to the Parkinson disease.

rank miRNA pred. rank miRNA pred. rank miRNA pred.

1 hsa-mir-7-1 0.99 38 hsa-mir-425 0.93 75 hsa-mir-345 0.81
2 hsa-mir-30d 0.99 39 hsa-mir-10b 0.93 76 hsa-mir-142 0.8
3 hsa-mir-19b-1 0.99 40 hsa-mir-29a 0.93 77 hsa-mir-708 0.8
4 hsa-mir-146a 0.99 41 hsa-mir-99b 0.93 78 hsa-mir-1249 0.78
5 hsa-mir-335 0.99 42 hsa-mir-543 0.93 79 hsa-mir-190a 0.78
6 hsa-mir-193a 0.99 43 hsa-mir-34b 0.93 80 hsa-mir-129-1 0.77
7 hsa-mir-214 0.98 44 hsa-mir-431 0.92 81 hsa-mir-331 0.76
8 hsa-mir-141 0.98 45 hsa-mir-99a 0.92 82 hsa-mir-181c 0.75
9 hsa-mir-151a 0.98 46 hsa-mir-19a 0.92 83 hsa-mir-150 0.73
10 hsa-mir-126 0.98 47 hsa-mir-29c 0.92 84 hsa-mir-489 0.72
11 hsa-mir-7-2 0.98 48 hsa-mir-1301 0.91 85 hsa-mir-505 0.68
12 hsa-mir-146b 0.98 49 hsa-mir-30b 0.91 86 hsa-mir-203a 0.67
13 hsa-mir-29b-2 0.98 50 hsa-mir-152 0.9 87 hsa-mir-454 0.65
14 hsa-mir-30a 0.98 51 hsa-mir-125b-2 0.9 88 hsa-mir-130a 0.64
15 hsa-mir-199b 0.98 52 hsa-mir-125a 0.9 89 hsa-mir-149 0.62
16 hsa-mir-34c 0.98 53 hsa-mir-137 0.9 90 hsa-mir-1264 0.62
17 hsa-mir-132 0.98 54 hsa-mir-204 0.89 91 hsa-mir-744 0.61
18 hsa-mir-451a 0.97 55 hsa-mir-224 0.89 92 hsa-mir-301b 0.6
19 hsa-mir-133b 0.97 56 hsa-mir-148b 0.89 93 hsa-mir-154 0.59
20 hsa-mir-10a 0.97 57 hsa-mir-409 0.89 94 hsa-mir-184 0.55
21 hsa-mir-16-1 0.97 58 hsa-mir-504 0.89 95 hsa-mir-223 0.54
22 hsa-mir-30c-2 0.97 59 hsa-mir-186 0.89 96 hsa-mir-532 0.49
23 hsa-mir-127 0.96 60 hsa-mir-448 0.88 97 hsa-mir-1296 0.48
24 hsa-mir-145 0.96 61 hsa-mir-769 0.87 98 hsa-mir-873 0.44
25 hsa-mir-195 0.96 62 hsa-mir-1248 0.87 99 hsa-mir-125b-1 0.42
26 hsa-mir-497 0.96 63 hsa-mir-92a-2 0.87 100 hsa-mir-1298 0.35
27 hsa-mir-338 0.96 64 hsa-mir-328 0.86 101 hsa-mir-939 0.34
28 hsa-mir-222 0.96 65 hsa-mir-92a-1 0.86 102 hsa-mir-488 0.29
29 hsa-mir-221 0.96 66 hsa-mir-20a 0.85 103 hsa-mir-330 0.24
30 hsa-mir-22 0.96 67 hsa-mir-25 0.85 104 hsa-mir-192 0.2
31 hsa-mir-299 0.96 68 hsa-mir-23a 0.85 105 hsa-mir-626 0.19
32 hsa-mir-424 0.95 69 hsa-mir-191 0.85 106 hsa-mir-26b 0.16
33 hsa-mir-21 0.95 70 hsa-mir-140 0.84 107 hsa-mir-577 0.16
34 hsa-mir-17 0.95 71 hsa-mir-136 0.83 108 hsa-mir-654 0.15
35 hsa-mir-148a 0.94 72 hsa-mir-16-2 0.82 109 hsa-mir-378a 0.15
36 hsa-mir-143 0.94 73 hsa-mir-98 0.82 110 hsa-mir-501 0.12
37 hsa-mir-28 0.94 74 hsa-mir-27b 0.81

We present the predicted association probabilities for all 12 true positive
and 98 true negative miRNAs retrieved from the meta analysis [191] corre-
sponding to the Parkinson disease in Table 6.14. Though the training data
contains more than three folds of the false-positive associations (26 false pos-
itives vs. 8 true positives), we observe that all 12 true positives reported
in [191] could be found in the top 50 predictions. Among those, 5 out of
12 appear in the top 8, while 8 out of 12 show up in the top 19 predictions.
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These results support that MPM acquires good performance in differentiat-
ing between the true positive and true negative miRNAs even with the noisy
training data.

6.5.3 Survival analysis for Precursor B-cell lymphoblastic leukemia

Precursor B-cell lymphoblastic leukemia (PBLL) is the most common type of
Acute lymphoblastic leukemia that is characterized by a high number of B-
cell lymphoblasts found in blood and bone marrow. According to the data
deposited in the HMDD databases, there are 7 miRNAs known to be asso-
ciated with PBLL. In this case study, we perform survival analysis on PBLL
patients’ data.

MiRNA expression and survival outcome. We download the miRNA ex-
pression and survival information for PBLL patients from TCGA Genomic
Data Commons (GDC) [68] using the GDC Data Transfer Tool [69]. As a pre-
processing step, we remove the patients without survival information and
retain only the records that have the Sample Type as Primary Tumor. For the
patients that have only one sample, the miRNA expression values are taken
as the read per million values. For each patient with more than one sample,
each miRNA expression value is calculated as the average of all the available
reads per million values. The final preprocessed data contains the miRNA
expression profiles and survival outcomes for 167 PBLL patients. For each
miRNA, we use StepMiner [182] to compute a threshold that can robustly dif-
ferentiate between the high and low expression levels. The computed thresh-
olds are used to discretize the data so that the miRNA continuous expression
values can be divided into high, intermediate, and low expression classes.
We use the log-rank test [80, 144, 167] to assess the statistical significance
of the survival difference between the high and low expression classes. The
Kaplan-Meier analysis and log-rank test are performed using the lifelines [42]
package.

MPM prediction. We train MPM with all known associations deposited in
the HMDD databases for all diseases other than PBLL and generate MPM’s
prediction scores for all 1,618 miRNAs.

FIGURE 6.5: The Kaplan survival curve of PBLL patients.
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FIGURE 6.6: Kaplan–Meyer survival curves of PBLL patients stratified by the top
miRNAs with the highest prediction scores.

Results. The Kaplan-Meier survival curve for PBLL patients is presented
in Figure 6.5. According to the log-rank test results, we identify 310 miR-
NAs associated with patients’ survival outcomes with a p-value < 0.05. We
refer to this set as L. We observe that none of the known-to-be-associated
miRNAs (deposited in the HMDD databases) appear in L. But from the top
10 miRNAs that have the highest prediction scores generated by MPM, 8
already appear in L. Among the top 20 miRNAs that have the highest pre-
diction scores, 13 already appear in L. Table 6.15 presents the top miRNAs
that have the highest prediction scores that appear in L, along with their
rank in MPM’s prediction list. The full list of L and all MPM’s prediction
scores can be downloaded from https://git.l3s.uni-hannover.de/dong/
mpm/-/tree/master/PBLL. Figure 6.6 shows the Kaplan-Meir survival curves
of PBLL patients stratified by the top miRNAs that have the highest predic-
tion scores generated by MPM. All things considered, for PBLL, MPM pre-
diction results agree well with the survival analysis results. This further sup-
ports the applicability of MPM in identifying potential prognostic miRNAs
for complex diseases.
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TABLE 6.15: The top miRNAs with the highest prediction scores that appear in L -
the list of associated miRNAs output from the survival analysis.

rank miRNA pred. rank miRNA pred. rank miRNA pred.
2 hsa-mir-17 0.98 24 hsa-mir-181a-2 0.9 51 hsa-mir-132 0.79
3 hsa-mir-20a 0.98 25 hsa-mir-19b-1 0.9 54 hsa-mir-106a 0.78
4 hsa-mir-155 0.98 27 hsa-mir-22 0.89 56 hsa-mir-378a 0.76
5 hsa-mir-16-1 0.97 29 hsa-mir-92a-1 0.86 58 hsa-mir-200c 0.75
6 hsa-mir-150 0.97 31 hsa-mir-106b 0.85 61 hsa-mir-149 0.75
7 hsa-mir-34a 0.96 33 hsa-mir-181b-1 0.85 62 hsa-mir-100 0.74
9 hsa-mir-146a 0.95 37 hsa-mir-130a 0.84 63 hsa-mir-200b 0.74
10 hsa-mir-18a 0.95 38 hsa-mir-125a 0.83 64 hsa-mir-192 0.74
14 hsa-mir-19a 0.94 40 hsa-mir-204 0.83 71 hsa-mir-16-2 0.73
15 hsa-mir-15a 0.94 45 hsa-mir-122 0.81 72 hsa-mir-98 0.73
17 hsa-mir-145 0.93 46 hsa-mir-25 0.81 73 hsa-mir-107 0.72
18 hsa-mir-143 0.92 47 hsa-mir-15b 0.81 75 hsa-mir-335 0.72
19 hsa-mir-26a-1 0.92 48 hsa-mir-148a 0.8 76 hsa-mir-26b 0.72
23 hsa-mir-31 0.91

6.6 An integrated, easy-to-use website

We provide an easy-to-use website to query the predictions generated by our
proposed model on 1,618 miRNAs and 3,679 diseases at http://software.
mpm.leibniz-ai-lab.de/. It is important to note that the model is trained
from the data corresponding to only a few hundred miRNAs and a few hun-
dred diseases. We offer a large computational prediction capability for thou-
sands of available diseases and miRNAs through the website. To enable a
comprehensive analysis by the field experts, we also integrate the biologi-
cally related features into the application. In the following, we present de-
tails regarding the related biological features and a user guide for the web
application.

6.6.1 Biological related features to support biologist justifi-
cation and verification

As the associated pathway information is more intuitive compared with the
list of associated PCGs, we perform pathway and functional enrichment anal-
ysis on the list of interacting/associated PCGs for each miRNA/disease and
encapsulate the corresponding information into our web application. We
perform pathway enrichment analysis by using the API provided by Reac-
tome [62] and functional enrichment analysis by using the goscripts pack-
age [152]. We retain only pathways and GO terms whose p-values are smaller
than 0.05.

6.6.2 The user guide

Figure 6.7 shows the start screen when opening the application tab in the web
app and illustrates the main steps to use it. First, the user selects the i) Main
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FIGURE 6.7: Web app start screen.

Category by clicking on the corresponding tab at the top of the application,
i.e. miRNA, Disease or Pathway, marked with i) in Figure 6.7. In the next step
ii) Entity Selection, the user selects a specific entity from that main category
by either typing a valid entity name in the search field or by selecting an en-
tity from the drop-down menu. The drop-down menu (which also serves as a
search field) is marked with ii) in Figure 6.7 and opens upon selection. After
a specific entity to inspect is selected, the user chooses the iii) Information
Type they want to display by selecting the corresponding tab, marked with
iii) in Figure 6.7.

Inspecting miRNAs

If the user wants to inspect a specific miRNA, they choose one of the fol-
lowing tabs: miRNA-Family, GO information, Pathway Information, Disease As-
sociations (which shows confirmed associations retrieved from the HMDD
databases) or Disease Predictions (which shows predicted association proba-
bilities generated by MPM) tabs to query the desired information type.

• miRNA-Family will display all miRNAs that belong to the same family
as the selected miRNA.

• GO information provides the GO terms (with their IDs, names, and p-
values) enriched by the set of PCGs associated with the selected miRNA.

• Pathway information will show all pathways (with their IDs, names, and
p-values) enriched by the set of PCGs associated with the selected miRNA.
The GO and pathway information are sorted ascending by their p-value.
The smaller the p-value, the more significant the corresponding path-
way/GO term is enriched.

• The Disease Associations encapsulates all diseases associated with the se-
lected miRNA that are retrieved from the HMDD databases. The MeSH
ID with the corresponding disease name is provided.

• Disease Predictions encloses the predictions generated by MPM for the
selected miRNA. Each disease record includes the disease MeSH ID, its
name, and the predicted association probability, sorted in descending
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order. Additionally, the column Confirmed Association shows if this spe-
cific association exists in the HMDD databases (indicated by ‘yes’) or
not ( marked as ‘-’).

Inspecting Diseases

A disease can be inspected in similar ways as those of a miRNA. Neverthe-
less, instead of miRNA family, the displayed information for a disease con-
tains the Disease Ontology, i.e., the child and parent diseases of the selected
disease entity. Figure 6.8 present the displayed screen for the Amyloidosis dis-
ease corresponding to the ‘miRNA predictions’ tab. The predicted associated
miRNAs are shown in the left column, with their corresponding confidence
score in the middle column. The right column indicates whether this associ-
ation was found in the HMDD databases (marked as ‘yes’) or not (marked as
‘-’).

Inspecting Pathways

When inspecting specific pathways, the user can choose between display-
ing the most significant miRNAs or diseases corresponding to the selected
pathway entity. Figure 6.9 shows an example query for the pathway Estab-
lishment of Sister Chromatid Cohesions most significant Disease Associations. The
diseases are sorted ascending by their p-value in the right column, with the
corresponding disease ID in the left and the disease name in the middle col-
umn.

6.7 Conclusion and discussion

We propose a message passing framework with multiple data sources inte-
gration, MPM, for the problem of predicting miRNA-disease associations.
MPM exploits information from multiple data sources to enrich and filter
the raw biologically relevant features without introducing additional param-
eters. Besides detecting new associations of the partially observed miRNAs
or diseases, MPM can successfully generate predictions for new diseases
(which has no prior observed association in the training data). Our case stud-
ies further support (i) the reliability of MPM for predicting associations for
diseases with scarce knowledge and (ii) its robustness in ranking the true
positives higher when many false positives are present in the training data.
In addition, MPM generated predictions for the PBLL disease agree quite
well with the results retrieved from survival analysis on the publicly avail-
able miRNA expression data. Besides the proposed machine learning model,
we also make the generated predictions more accessible to non-expert users
by encapsulating all the generated and related domain information into a
publicly available website. By releasing such a user-friendly interface, we
aim to foster assessments and future adoption.
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FIGURE 6.8: The Web app’s encapsulated information for the Amyloidosis disease.

6.7.1 Potential applicability to miRNA-small molecule drug
association prediction

Small molecule drugs are organic compounds with low molecular weights
of around 900 Daltons. Small molecules form the majority of existing drugs
and can be rapidly diffused across cell membranes [36]. Identification of
miRNA-small molecule drug associations can help in disease therapy devel-
opment. One of the first machine learning-based models for miRNA-small
molecule drug association prediction is proposed by Jamal et al. [91]. The
authors present a traditional machine learning approach that represents each
miRNA-small molecule drug pair as a concatenated feature vector of miRNA
and small molecule drug integrated similarities. The feature representations
are then used as input to the Random Forest based binary classifier. More re-
cent methods usually involve the use of graph representation learning tech-
niques [78, 125, 140, 170, 171, 195, 214, 217], kernel methods [215] and matrix
factorization [222]. A recent review about miRNA-small molecule drug asso-
ciation can be found in [36].

One shared characteristic of existing works is the utilization of small molecule
drug and miRNA pre-calculated similarities. Though these works usually
combine various similarities to mitigate bias and lack of information, they
still suffer from issues related to the use of pre-calculated similarities, such
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FIGURE 6.9: The Web app’s encapsulated information for the Establishment of Sister
Chromatid Cohesion pathway.

as being hard to update and maintain [52]. Graph-based methods addition-
ally encapsulate raw miRNA-small molecule drug associations in the con-
structed network but the number of known associations is usually too small
compared to the similarity connections. This prevents the model from learn-
ing informative association patterns. Overall, it is essential to perform task
specific information filtering to remove noise and balance the amount of side
information added.

Our model architecture can be easily adapted for the miRNA-small molecule
drug association prediction problem. The types of input information as uti-
lized by our model are also available for this problem. Firstly, one can extract
small molecule drug similarity features based on side effects [76], functional
consistency [139], chemical structure [82], and indication phenotype [76].
Secondly, we can retrieve small molecule drug-targeted genes from public
databases like DrugBank [228]. Finally, each small molecule drug is also as-
signed to one or more ATC codes [56], which incorporate information such
as its anatomical distribution, therapeutic effects, and structural characteris-
tics. Such ATC codes are also organized into a hierarchy with different lev-
els of granularity, like the disease ontology in our case. Nevertheless, there
are still some open questions and considerations regarding (i) the choice
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of similarity features, (ii) the biological rationale(s) for adding PCG asso-
ciations as intermediate connecting points, and (iii) the most suitable su-
pervised problem for performing feature selection (for example, should one
use drug first level ATC code classification?). Answering such questions
would require an in-depth understanding of the problem. Compared with
the existing approaches, one advantage of our proposed model is that it of-
fers a parameter-free information filtering mechanism to filter out redundant
connections. High-quality input enables us to learn meaningful association
patterns from the input network. Also, to the best of our knowledge, the
SDNE method employed by MPM has never been used in existing works for
miRNA-small molecule drug association prediction.
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Chapter 7

Predicting virus-human
protein-protein interaction

This chapter presents another application of our joint learning approaches
on the protein-protein interaction (PPI) prediction problem. The chapter is
based on our journal article: “A multitask transfer learning framework for the
prediction of virus-human protein-protein interactions” published in BMC Bioin-
formatics, 2021.

7.1 Introduction

Virus infections cause an enormous and ever increasing burden on health-
care systems worldwide. The ongoing COVID-19 pandemic caused by the
zoonotic virus, SARS-CoV-2, has resulted in enormous socio-economic losses [166].
Viruses infect all life forms and require host cells to complete their repli-
cation cycle by utilizing the host cell machinery. Virus infection involves
several types of protein-protein interactions (PPIs) between the virus and its
host. These interactions include the initial attachment of virus coat or en-
velope proteins to host membrane receptors, hijacking of the host transla-
tion and intracellular transport machineries resulting in replication, assem-
bly and subsequent release of virus particles [13, 71, 197]. Besides providing
mechanistic insights into the biology of infection, knowledge of virus-host
interactions can point to essential events needed for virus entry, replication,
or spread, which can be potential targets for the prevention, or treatment of
virus-induced diseases [181].

In vitro experiments based on yeast-two hybrid (Y2H), ligand-based cap-
ture MS, proximity labeling MS, and protein arrays have identified tens of
thousands of virus-human protein interactions [8, 70, 77, 92, 120, 138, 198,
226, 238]. These interaction data are deposited in publicly available databases
including InAct [106], VirusMetha [19], VirusMINT [24], and HPIDB [5], and
others. However, experimental approaches to unravel PPIs are limited by
several factors, including the cost and time required, the generation, cultiva-
tion and purification of appropriate virus strains, the availability of recom-
binantly expressed proteins, generation of knock in or overexpression cell
lines, availability of antibodies and cellular model systems. Computational
approaches can assist in vitro experimentation by providing a list of most
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probable interactions, which actual biological experimentation techniques
can falsify or verify.

In this chapter, we cast the problem of predicting virus-human protein in-
teractions as a binary classification problem and focus specifically on emerg-
ing viruses that has limited experimentally verified interaction data.

7.1.1 Key Challenges in learning to predict virus-Human PPI

Limited interaction data. One of the main challenges in tackling the current
task as a learning problem is the limited training data. Towards predicting
virus-host PPI, some known interactions of other human viruses collected
from wet-lab experiments are employed as training data. The number of
known PPIs is usually too small and thus, not representative enough to en-
sure the generalizability of trained models. In effect, the trained models
might overfit the training data and would give inaccurate predictions for any
given new virus.

Difference to other pathogens. A natural strategy to overcome the limitation
posed by scarce virus protein interaction data is to employ transfer learning
from available intra-species PPI or PPI data for other types of pathogens.
This may, in its simplest fashion, not be a viable strategy as virus proteins
can differ substantially from human or bacterial proteins. Typically, they are
highly structurally and functionally dynamic. Virus proteins often have mul-
tiple independent functions so that they cannot be easily detected by com-
mon sequence-structure comparison [73, 175, 176]. Besides, virus protein
sequences of different species are highly diverse [58]. Consequently, mod-
els trained for intra-species human PPI [29, 130, 131, 188, 201] or for other
pathogen-human PPI [11, 47, 79, 124, 149, 200] cannot be directly used to
predict virus-human protein interactions.

Limited information on structure and function of virus proteins. While for
human proteins, researchers can retrieve information from many publicly
available databases to extract features related to their function, semantic an-
notation, domains, structure, pathway association, and intercellular localiza-
tion, such information is not readily available for most virus proteins. Protein
crystal structures are available for some virus proteins. However, for many,
predictive structures based on the amino acid sequence must be used. Thus,
for the majority of virus proteins, currently, the only reliable source of virus
protein information is its amino acid sequence. Learning effective representa-
tions of the virus proteins, therefore, is an important step towards building
prediction models. Heuristics such as K-mer amino acid composition are
bound to fail as it is known that virus proteins with completely different se-
quences might show similar interaction patterns.

7.1.2 Our Contributions

In this work, we develop a machine learning model which overcomes the
above limitations in two main steps, which are described below.
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Transfer Learning via Protein Sequence Representations. Though the train-
ing data on interactions as well as the input information on protein features
are limited, a large number of unannotated protein sequences are available
in public databases like UniProt. Inspired by advancements in Natural Lan-
guage Processing, Alley et al. [3] trained a deep learning model on more than
24 million protein sequences to extract statistically meaningful representa-
tions. These representations have been shown to advance the state-of-the-art
in protein structure and function prediction tasks. Rather than using hand-
crafted protein sequence features, we use the pre-trained model by [3] (re-
ferred to as UNIREP) to extract protein representations. The idea here is to
exploit transfer learning from several million sequences to our scant training
data.

Incorporating Domain Information. We further fine-tune UNIREP’s globally
trained protein representations using a simple neural network whose param-
eters are learned using a multitask objective. In particular, besides the main
task, our model is additionally regularized by another objective, namely pre-
dicting interactions among human proteins. The additional objective allows
us to encode (human) protein similarities dictated by their interaction pat-
terns. The rationale behind encoding such knowledge in the learnt represen-
tation is that the human proteins sharing similar biological properties and
functions would also exhibit similar interacting patterns with viral proteins.
Using a simpler model and an additional side task helps us overcome over-
fitting, which is usually associated with models trained with small amounts
of training data.

We refer to our model as MULTITASK TRANSFER (MTT) and is further
illustrated in Section ??. To sum up, we make the following contributions.

• We propose a new model that employs a transfer learning-based ap-
proach to first obtain the statistically rich protein representations and
then further refines them using a multitask objective.

• We evaluated our approach on several benchmark datasets of different
types for virus-human and bacteria-human protein interaction predic-
tion. Our experimental results (c.f. Section 7.5) show that MTT outper-
forms several baselines even on datasets with rich feature information.

• Experimental results on the SARS-COV-2 virus receptor shows that
our model can help researchers to reduce the search space for yet un-
known virus receptors effectively.

• We release our code for reproducibility and further development at https:
//git.l3s.uni-hannover.de/dong/multitask-transfer.

7.2 Related work

Existing works mainly cast the PPI prediction task as a supervised machine
learning problem. Nevertheless, the information about non-interacting pro-
tein pairs is usually not available in public databases. Therefore, researchers
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can only either adapt models to learn from only positive samples or employ
certain negative sampling strategy to generate negative examples for training
data. Since the quality and quantity of the generated negative samples would
significantly affect the outcome of the learned models, the authors in [124,
158, 159] proposed models that only learned from the available known pos-
itive interactions. Nourani et al. [158] and Li et al. [124] treated the virus-
human PPI problem as a matrix completion problem in which the goal was to
predict the missing entries in the interaction matrix. Nouretdinov et al. [159]
use a conformal method to calculate p-values/confidence level related to the
hypothesis that two proteins interact based on similarity measures between
proteins.

Another line of work which casts the problem as a binary classification
task focussed on proposing new negative sampling techniques. For instance,
Eid et al [58] proposed Denovo - a negative sampling technique based on
virus sequence dissimilarity. Mei et al. [150] proposed a negative sampling
technique based on one class SVM. Basit et al. [11] offered a modification
to the Denovo technique by assigning sample weights to negative examples
inversely proportional to their similarity to known positive examples during
training.

Dick et al. [47] utilizes the interaction pattern from intra-species PPI net-
works to predict the inter-species PPI between human-HIV-1 virus and hu-
man. Though the results are promising, this cannot be directly applied to
completely new viruses where information about closely-related species is
not available or to viruses whose intra-species PPI information is not avail-
able.

The works presented in [41, 45, 46, 107, 137, 141, 246] employed differ-
ent feature extraction strategies to represent a virus-human protein pair as
a fixed-length vector of features extracted from their protein sequences. In-
stead of hard-coding sequence feature, Yang et al. [234] and Lanchantin et
al. [118] proposed embedding models to learn the virus and human proteins’
feature representations from their sequences. However, their training data
was limited to around 500,000 protein sequences. Though not very common,
other types of information/features were also used in some proposed mod-
els besides sequence-based features. Those include protein functional infor-
mation (or GO annotation) as in [136], proteins domain-domain associations
information as in [10], protein structure information as in [79, 119], and the
disease phenotype of clinical symptoms as in [136]. One limitation of these
approaches is that they cannot be generalized to novel viruses where such
kind of information is not available.

Among the network-based approaches, Liu et al. and Wang et al. [134,
223] constructed heterogeneous networks to compute virus and human pro-
teins features. Nodes of the same type were connected by either weighted
edges based on their sequence similarity or a combination of sequence simi-
larity and Gaussian Interaction Profile kernel similarity. Deng et al. [45] pro-
posed a deep-learning-based model with a complex architecture of convo-
lutional and LSTM layers to learn the hidden representation of virus and
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human proteins from their input sequence features along with the classifi-
cation problem. Despite the promising performance, those studies still have
the limitation posed by hand-crafted protein features.

7.3 Method

We first provide a formal problem statement.

Problem Statement. We are given protein sequences corresponding to in-
fectious viruses and their known interactions with human proteins. Given
a completely new (novel) virus, its set of protein(s) V along with its (their)
sequence(s), we are interested in predicting potential interactions between V
and the human proteins.

We cast the above problem as that of binary classification. The posi-
tive samples consist of pairs of virus and human proteins whose interac-
tion has been verified experimentally. All other pairs are considered to be
non-interacting and constitute the negative samples. In Section 7.4, we add
details on positive and negative samples corresponding to each dataset.

Summary of the approach. The schematic diagram of our proposed model
is presented in Figure 7.1. As shown in the diagram, the input to the model
is the raw human and virus protein sequences which are passed through
the UniRep model to extract low dimensional vector representations of the
corresponding proteins. The extracted embeddings are then passed as ini-
tialization values for the embedding layers. These representations are fur-
ther fine-tuned using the Multilayer Perceptron (MLP) modules (shown in
blue). The fine-tuning is performed while learning to predict an interaction
between two human proteins (between proteins A and B in the figure) as
well as the interaction between human and virus proteins (between proteins
B and C). In the following, we describe in detail the main components of our
approach.

7.3.1 Extracting protein representations

Significance of using protein sequence as input. We note that the protein
sequence determines the protein’s structural conformation (fold), which fur-
ther determines its function and its interaction pattern with other proteins.
However, the underlying mechanism of the sequence-to-structure matching
process is very complex and cannot be easily specified by hand-crafted rules.
Therefore, rather than using hand-crafted features extracted from amino acid
sequences, we employ the pre-trained UNIREP model [3] to generate latent
representations or protein embeddings. The protein representations extracted
from UNIREP model are empirically shown to preserve fundamental proper-
ties of the proteins and are hypothesized to be statistically more robust and
generalizable than hand-crafted sequence features.

UNIREP for extracting sequence representations. In particular, UNIREP
consists of an embedding layer that serves as a lookup table for each amino
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FIGURE 7.1: Our proposed MTT model for the virus-human PPI prediction problem.

acid representation. Each amino acid is represented as an embedding vector
of 10 dimensions. Each input protein sequence of length N will be denoted
as a two-dimensional matrix of size Nx10. That two-dimensional matrix will
then feed as input to a Multiplicative Long Short Term Memory (mLSTM)
network of 1900 units. The 1900 dimension is selected experimentally from
a pool of architectures that require different numbers of parameters as de-
scribed in [16], namely, a 1900-dimensional single layer multiplicative LSTM
(∼18.2 million parameters), a 4-layer stacked mLSTM of 256 dimensions per
layer (∼1.8 million parameters), and a 4-layer stacked mLSTM with 64 di-
mensions per layer (∼0.15 million parameters). The output from mLSTM is
a 1900 dimensional embedding vector that serves as the pre-trained protein
embedding for the input protein sequence. We use the calculated pre-trained
virus and human protein embeddings to initialize our embedding layers. The
two supervised PPI prediction tasks will further fine-tune those embeddings
during training.
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7.3.2 Learning framework

We further fine-tune these representations by training two simple neural net-
works (single layer MLP with ReLu activation) using an additional objective
of predicting human PPI in addition to the main task. More precisely, the
UNIREP representations will be passed through one hidden layer MLPs with
ReLU activations to extract the latent representations. Let X denote the em-
bedding lookup matrix. The ith row corresponds to the embedding vector
of node i. The final output from MLP layers for an input v is then given by
hid(v) = MLP(X(v)). To predict the likelihood of interaction between a pair
(v1, v2) we first perform an element-wise product of the corresponding hid-
den vectors (output of MLPs) and pass it through a linear layer followed by
sigmoid activation. In the following we provide a detailed description of our
multitask objective.

Training using a multitask Objective

Let Θ, Φ denote the set of learnable parameters corresponding to fine-tuning
components (as shown in Figure 7.1 in green and blue boxes), i.e., the Mul-
tilayer Perceptrons (MLP) corresponding to the virus and human proteins,
respectively. Let W1, W2 denote the two learnable weight matrices (param-
eters) for the linear layers (as depicted in gray boxes in the Figure). We
use VH, and HH to denote the training set of virus-human, human-human
PPI, correspondingly. We use binary cross entropy loss for predicting virus-
human PPI predictions, as given below:

L1 = ∑
(v,h)∈VH

−zvh log yvh(Θ, Φ, W1)− (1 − zvh) log(1 − yvh(Θ, Φ, W1)),

(7.1)
where variables zvh is the corresponding binary target variable and yvh is the
predicted likelihood of observing virus-human protein interaction, i.e.,

yvh(Θ, Φ, W1) =σ((hid(v)⊙ hid(h))W1), (7.2)

where σ(x) = 1/1 + e−x is the sigmoid activation and ⊙ denotes the element-
wise product.

For human PPI, we predict the confidence score of observing an interac-
tion between two human proteins. More specifically, we directly predict zhh′

- the normalized confidence scores for interaction between two human pro-
teins as collected from STRING [203] database. Predicting the normalized
confidence scores helps us overcome the issues with defining negative inter-
actions. We use mean square error loss to compute the loss for the human PPI
prediction task as below where yhh′ is computed similar to (7.2) for human
proteins and N is the number of (h, h′) pairs.

L2 =
1
N ∑

(h,h′)∈HH
(yhh′(Θ, W2)− zhh′)

2 (7.3)
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We use a linear combination of the two loss functions to train our model.

L = L1 + α · L2 (7.4)

where α is the human PPI weight factor.

7.4 Data Description and Experimental set up

We commence by describing the 13 datasets used in this work to evaluate
our approach. For all tables, |E+|, |E−| refer to the number of positive and
negative interactions, respectively. |Vh|, |Vv|, and |Vb| denote the number of
human, virus and bacteria proteins, correspondingly.

7.4.1 The realistic host cell-virus testing datasets

The NOVEL H1N1 and NOVEL EBOLA datasets. We retrieve the curated or
experimentally verified PPIs between virus and human from four databases:
APID [4], IntAct [106], VirusMetha [19], and UniProt [40] using the PSIC-
QUIC web service [6]. In total, there are 11,491 known PPIs between 246
viruses and humans. From this source of data, we generate new training and
testing data for the two viruses: the human H1N1 Influenza virus and Ebola
virus. We name the two datasets NOVEL H1N1 and NOVEL EBOLA accord-
ing to the virus present in the testing set. The positive training data for the
NOVEL H1N1 dataset includes PPIs between human and all viruses except
H1N1. Similarly, the positive training data for the NOVEL EBOLA dataset in-
cludes PPIs between human and all viruses except Ebola. The positive test-
ing data for the human-H1N1 dataset contains PPIs between human and 11
H1N1 virus proteins. Likewise, the positive testing data for the human-Ebola
dataset contains PPIs between human and three of the eight Ebola virus pro-
teins (VP24, VP35, and VP40).

Negative sampling techniques such as the dissimilarity-based method [58],
the exclusive co-localization method [145, 148] are usually biased as they re-
strict the number of tested human proteins. It is also unrealistic for a new
virus because information about such restricted human protein set, gener-
ated from filtering criteria based on the positive instances, is typically un-
available. For those reasons, we argue that random negative sampling is the
most appropriate, unbiased approach to generate negative training/testing
samples. Since the exact ratio of positive:negative is unknown, we conducted
experiments with different negative sample rates. In our new virus-human
PPI experiments, we try four negative sample rates: [1,2,5,10]. In addition,
to reduce the bias of negative samples, the negative sampling in the training
and testing set is repeated ten times. In the end, for each dataset, we test
each method with 4x4x10 = 160 different combinations of negative training
and negative testing sets (with fixed positive training and test samples). The
statistics for our new testing datasets are given in Table 7.1.
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TABLE 7.1: The virus-human PPI realistic benchmark datasets’ statistics.

TRAINING DATA TESTING DATA

|E+| |E−| |Vh| |Vv| |E+| |E−| |Vh| |Vv|

NOVEL H1N1 10, 858 varies 7, 636 641 381 varies 622 11
NOVEL EBOLA 11, 341 varies 7, 816 659 150 varies 290 3

ZHOU’S H1N1 10, 858 10, 858 7, 636 641 381 381 622 11
ZHOU’S EBOLA 11, 341 11, 341 7, 816 659 150 150 290 3

2697049 24, 698 246, 980 16, 638 1, 066 278 448, 651 16, 627 27
333761 23, 892 238, 920 16, 638 1, 070 534 132, 482 16,627 8
2043570 24, 372 243, 720 16, 638 1, 085 309 66, 199 16, 627 4
644788 24, 825 248, 250 16, 638 1, 090 54 33, 200 16, 627 2

The DEEPVIRAL [136] Leave-One-Species-Out (LOSO) benchmark datasets.
The data was retrieved from the HPIDB database [5] to include all Pathogen-
Host interactions that have confidence scores available and are associated
with an existing virus family in the NCBI taxonomy [63]. After filtering, the
dataset includes 24,678 positive interactions and 1,066 virus proteins from 14
virus families. We follow the same procedure as mentioned in [136] to gen-
erate the training and testing data corresponding to four virus species with
taxon IDs: 644788 (Influenza A), 333761 (HPV 18), 2697049 (SARS-CoV-2),
2043570 (Zika virus). From now on, we will use the NCBI taxon ID of the
virus species in the testing set as the dataset name. For each dataset, the pos-
itive testing data consists of all known interactions between the test virus and
the human proteins. The negative testing data consists of all possible combi-
nations of virus and 16, 627 human proteins in Uniprot (with a length limit
of 1000 amino acids) that do not appear in the positive testing set. Similarly,
the positive training data consists of all known interactions between human
protein and any virus protein, except for the one which is in the testing set.
The negative training data is generated randomly with the positive:negative
rate of 1:10 from the pool of all possible combinations of virus and 16, 627
human proteins that do not appear in the positive training set. Statistics of
the datasets are presented in table 7.1. Though performing a search on the
set of 16, 627 human proteins might not be a fruitful realistic strategy, we still
keep the same training and testing data as released in the DEEPVIRAL study
in our experiments to have a direct and fair comparison with the DEEPVIRAL
method.

7.4.2 The widely used new virus-human PPI prediction bench-
marked datasets.

The two datasets released by Zhou et al. [246] are widely used by recent pa-
pers to evaluate state-of-the-art models on new virus-human PPI prediction
tasks. We refer to them as ZHOU’S H1N1 and ZHOU’S EBOLA where each
dataset was named after the viruses in the testing sets. ZHOU’S H1N1 and
ZHOU’S EBOLA share similar positive training and testing samples with the
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NOVEL H1N1 and NOVEL EBOLA datasets. However, they differ in the nega-
tive training and testing samples sets. While the negative samples in NOVEL
H1N1 and NOVEL EBOLA were generated randomly from the pool of all
possible pairs, the negative training/testing samples in ZHOU’S H1N1 and
ZHOU’S EBOLA were generated based on the protein sequence dissimilar-
ity score. Therefore, ZHOU’S H1N1 and ZHOU’S EBOLA have the limita-
tions as mentioned in section 7.4.1 and are not ideal for evaluating the new
virus-human PPI prediction task. The data statistics for these two datasets
are shown in Table 7.1.

7.4.3 The specialized testing datasets

The dataset with protein motif information (DENOVO SLIM [58]). The
DENOVO SLIM dataset Virus-human PPIs were collected from VirusMen-
tha database [19]. The presence of Short Linear Motif (SLiM) in virus se-
quences was used as a criterion for data filtering. SLiMs are short, recurring
patterns of protein sequences that are believed to mediate protein-protein in-
teraction [48, 156]. Therefore, sequence motifs can be a rich feature set for
virus-human PPI prediction tasks. The test set [58] contained 425 positives
and 425 negative PPIs (Supplementary file S12 used in DeNovo’s study ST6).
The training data consisted of the remaining PPI records and comprised of
1590 positive and 1515 negative records for which virus SLiM sequence is
known and 3430 positives and 3219 negatives without virus SLiM sequences
information. DENOVO_SLIM negative samples were also generated using the
Denovo negative sampling strategy (based on sequence dissimilarity).

The BARMAN’S dataset [10] with protein domain information. The dataset
was retrieved from VirusMINT database [24]. Interacting protein pairs that
did not have any “InterPro” domain hit were removed. In the end, the
dataset contained 1,035 positives and 1,035 negative interactions between 160
virus proteins of 65 types and 667 human proteins. 5-Fold cross-validation
was then employed to test each method’s performance.

7.4.4 The bacteria human PPI prediction datasets.

We evaluate our method on three datasets for three human pathogenic bac-
teria: BACILLUS ANTHRACIS (B1), YERSINIA PESTIS (B2), and FRANCISELLA
TULARENSIS (B3), which were shared by Fatma et al. [58].

The data was first collected from HPIDB [5]. B1 belongs to a bacterial
phylum different from that of B2 and B3, while B2 and B3 share the same
class but differ in their taxonomic order. B1 has 3057 PPIs, B2 has 4020, and
B3 has 1346 known PPIs. A sequence-dissimilarity-based negative sampling
method was employed to generate negative samples. For each bacteria pro-
tein, ten negative samples were generated randomly. Each of the bacteria was
then set aside for testing, while the interactions from the other two bacteria
were used for training. For simplicity, we use the name of the bacteria in the
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testing set as the name of the dataset. The statistics for those three datasets
are presented in table 7.2.

TABLE 7.2: The bacteria-human PPI benchmark datasets’ statistics.

TRAINING DATA TESTING DATA

|E+| |E−| |Vh| |Vb| |E+| |E−| |Vh| |Vb|

BACILLUS ANTHRACIS 5366 15590 1559 2674 3057 9440 944 1705
YERSINIA PESTIS 4403 12880 1288 2278 4020 12150 1215 2147
FRANCISELLA TULARENSIS 7077 21590 2159 3041 1346 3440 344 1023

7.4.5 Description of Compared Methods

We compare our method with the following seven baseline methods and two
simper variants of our model.

• GENERALIZED [246]: It is a generalized SVM model trained on hand-
crafted features extracted from protein sequence for the novel virus-
human PPI task. Each virus-human pair is represented as a vector of
1,175 dimensions extracted from the two protein sequences.

• HYBRID [45]: It is a complex deep model with convolutional and LSTM
layers for extracting latent representation of virus and human proteins
from their input sequence features and is trained using L1 regularized
Logistic regression.

• DOC2VEC [234]: It employs the doc2vec [122] approach to generate pro-
tein embeddings from the corpus of protein sequences. A random for-
est model is then trained for the PPI prediction task.

• MOTIFTRANSFORMER [118]: It is a transformer-based deep neural net-
work that pre-trains protein sequence representations using unsuper-
vised language modeling tasks and supervised protein structure and
function prediction tasks. These representations are used as input to an
order-independent classifier for the PPI prediction task.

• DENOVO [58]: This model trains an SVM classifier on a hand-crafted
feature set extracted from the K-mer amino acid composition informa-
tion using a novel negative sampling strategy. Each protein pair is rep-
resented as a vector of 686 dimensions.

• DEEPVIRAL [136]: It is a deep learning-based method that combines in-
formation from various sources, namely, the disease phenotypes, virus
taxonomic tree, protein GO annotation, and proteins sequences for intra-
and inter-species PPI prediction.

• BARMAN [10]: It used an SVM model trained on a feature set consisting
of the protein domain-domain association and methionine, serine, and
valine amino acid composition of viral proteins.
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• 2 simpler variants of MTT: Towards ablation study, we evaluate two
simpler variants: (i) SINGLETASK TRANSFER (STT), which is trained on
a single objective of predicting pathogen-human PPI. STT is basically
the MTT without the human PPI prediction side task and (ii) NAIVE
BASELINE, which is a Logistic regression model using concatenated hu-
man and pathogen protein UNIREP representations as input.

7.4.6 Implementation details and parameter set up

We use Pytorch [164] to implement our model and run it on an Nvidia GTX
1080-Ti with 11GB memory. We use Adam optimizer [109] for the model pa-
rameter optimization. For all datasets, we left out 10% of the training data
for validation and performed a grid search for the best combination of pa-
rameters on that validation set. For datasets other than NOVEL H1N1 and
NOVEL EBOLA, we perform parameter grid searching with the MLP hidden
dimension hid in [8, 16,32, 64], α in [10−3, 10−2, 10−1, 1], the number of epochs
from 0 to 200 with a step of 2 and the learning rate lr in [10−3, 10−2]. For the
NOVEL H1N1 and NOVEL EBOLA datasets, we test each with 160 different
combinations of negative training and negative testing. Therefore, we fix the
hidden dimension to 16, α = 10−3, lr = 10−3 and only perform grid search-
ing on the number of epochs. The reported results for each dataset are the
results corresponding to the best-performed model on the validation set.

For the DOC2VEC model, we use the released code shared by the authors
with the given parameters. For the GENERALIZED and DENOVO models, we
re-implement the methods in Python using all the parameters and feature
set as described in the original papers. For BARMAN and DEEPVIRAL, the
results are taken from the original papers or calculated from the given model
prediction scores.

7.4.7 Evaluation metrics

For all benchmark datasets except the case study, we report five metrics: the
Area under Receiver Operating Characteristic curve (AUC) and the area un-
der the precision-recall curve (AP), the PRECISION, RECALL, and F1 scores.

For the case study, we report the topK score with K from 1 to 10. TopK is
equal to 1 if the human receptor for SARS-COV-2 virus appears in the top K
proteins that have the highest scores predicted by the model and 0 otherwise.

7.5 Result Analysis

In the following four subsections, we provide a detailed comparison of MTT
with (i) methods employing hand-crafted input features, (ii) sequence embedding-
based methods, (iii) an approach that uses protein domain information, (iv)
simpler variants of MTT as ablation studies respectively. All statistical test
results present in this section are those from the pair-wise t-test [225] on the
F1 scores attained from multiple runs on the same dataset.
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FIGURE 7.2: MTT vs. state-of-the-art methods on small testing datasets.

7.5.1 Comparison with methods employing hand-crafted fea-
tures

GENERALIZED [246] and DENOVO [58] are the two traditional methods re-
lying on hand-crafted features extracted from the protein sequences. The
number of hand-crafted features employed by DENOVO and GENERALIZED
are 686 and 1,175, respectively. They both employ SVM for the classifica-
tion task. Since SVM scales quadratically with the number of data points,
DENOVO and GENERALIZED are not scalable to larger datasets.

Figure 7.2 presents their comparison between MTT on small testing datasets.
Detailed scores are given in Table 7.3. The performance gains are statistically
significant with a p-value of 0.05. Results from the two-tailed t-test [103, 186]
support that MTT significantly outperforms DENOVO in all benchmarked
datasets with a confidence score of at least 95%. Compared with GENERAL-
IZED, MTT has higher performance in six out of seven datasets (except DEN-
OVO_SLIM). The difference is the most significant on the BARMAN, ZHOU’S
H1N1, and ZHOU’S EBOLA datasets. On DENOVO_SLIM dataset, MTT’s F1
score is lower than GENERALIZED and only 2% higher than DENOVO. This
is expected since DENOVO_SLIM is a specialized dataset favoring methods
using local sequence motif features, which are exploited by DENOVO and
GENERALIZED.

HYBRID is one recently proposed, deep learning-based method. Despite
that, the input features are still manually extracted from the protein sequence.
Since the code is not publicly available, we only have the AUC score corre-
sponding to the ZHOU’S H1N1 dataset, which is also taken from the original
paper as listed in table 7.3. Compared with HYBRID, MTT has higher AUC
score. Though comparison on the AUC for one dataset does not bring much
insight, we include this method here for completeness.
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TABLE 7.3: MTT vs. methods based on hand-crafted features.

DATASET MODEL AUC AP PRE REC F1

ZHOU’S H1N1
DENOVO 0.8656 0.8619 77.75 77.95 77.85
GENERALIZED 0.8600 0.8606 76.96 77.17 77.06
HYBRID 0.937 - - - -
MTT 0.9461 0.9589 86.28 86.51 86.40

ZHOU’S EBOLA

DENOVO 0.8864 0.8366 83.44 84.00 83.72
GENERALIZED 0.9154 0.9078 84.77 85.33 85.05
MTT 0.9680 0.9766 90.93 91.53 91.23

DENOVO_SLIM

DENOVO 0.8701 0.8631 81.92 82.12 82.02
GENERALIZED 0.8891 0.8851 84.74 84.94 84.84
MTT 0.9221 0.9324 83.92 84.12 84.02

BARMAN

DENOVO 0.8217 0.8415 74.60 74.98 74.79
GENERALIZED 0.8214 0.8458 74.90 75.27 75.08
MTT 0.9804 0.9802 93.53 94.05 93.79

BACILLUS

DENOVO 0.9843 0.9650 94.80 94.83 94.83
GENERALIZED 0.9833 0.9668 95.75 95.78 95.76
MTT 0.9997 0.9992 98.75 98.78 98.76

YERSINA

DENOVO 0.9712 0.9302 93.14 93.16 93.15
GENERALIZED 0.9758 0.9362 94.01 94.03 94.02
MTT 0.9988 0.9971 97.32 97.34 97.32

FRANCI

DENOVO 0.9782 0.9584 95.55 95.62 95.58
GENERALIZED 0.9799 0.9565 95.84 95.91 95.88
MTT 0.9998 0.9996 98.95 99.03 98.99

7.5.2 Comparison with sequence embedding based methods

DOC2VEC and MOTIFTRANSFORMER are state-of-the-art methods based on
sequence embeddings or representations. DOC2VEC utilizes the embeddings
learned from the extracted k-mer features while MTT and MOTIFTRANS-
FORMER employ the embedding directly learned from the amino acid se-
quences. In addition, MTT is a multitask-based approach that incorporates
additional information on human protein-protein interaction into the learn-
ing process.

Figure 7.3 shows a comparison in F1 score of MTT and DOC2VEC over all
benchmarked datasets. Detailed scores are presented in Table 7.4. Since the
code for the MOTIFTRANSFORMER model is not publicly available, we only
have the corresponding results available for the ZHOU’S H1N1 and ZHOU’S
EBOLA datasets, which are also taken from the original paper. ‘-’ denotes
the score is not available. Compared with MOTIFTRANSFORMER, MTT has
a slightly worse F1 score on ZHOU’S H1N1 and significantly better F1 score
on ZHOU’S EBOLA datasets.

Comparison with DOC2VEC. MTT out-performs DOC2VEC in 5 out of 9
benchmark datasets, and the performance gap is statistically significant with
a p-value smaller than 0.05. MTT is significantly better than DOC2VEC on the
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FIGURE 7.3: MTT vs. state-of-the-art methods on the NOVEL EBOLA and NOVEL

H1N1 datasets over different combinations of negative training and testing sets.

TABLE 7.4: MTT vs. embedding-based methods

DATASET MODEL AUC AP PRE REC F1

ZHOU’S H1N1
DOC2VEC 0.9601 0.9674 89.04 89.34 89.19
MOTIFTRANSFORMER 0.945 − - - 86.50
MTT 0.9461 0.9589 86.28 86.51 86.40

ZHOU’S EBOLA

DOC2VEC 0.9781 0.9832 91.99 92.67 92.33
MOTIFTRANSFORMER 0.968 − - - 89.6
MTT 0.9680 0.9766 90.93 91.53 91.23

DENOVO_SLIM
DOC2VEC 0.9644 0.9681 88.60 88.87 88.73
MTT 0.9221 0.9324 83.92 84.12 84.02

BARMAN
DOC2VEC 0.8671 0.8922 79.95 80.37 80.16
MTT 0.9804 0.9802 93.53 94.05 93.79

BACILLUS
DOC2VEC 0.9900 0.9739 96.29 96.32 96.31
MTT 0.9997 0.9992 98.75 98.78 98.76

YERSINA
DOC2VEC 0.9814 0.9510 94.50 94.52 94.51
MTT 0.9988 0.9971 97.32 97.34 97.32

FRANCI
DOC2VEC 0.9878 0.9606 96.77 96.84 96.81
MTT 0.9998 0.9996 98.95 99.03 98.99
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NOVEL EBOLA dataset, while on the NOVEL H1N1 dataset, the reverse holds
true. DOC2VEC outperforms MTT in three testing datasets whose negative
samples were drawn from a sequence dissimilarity method. We also note
that these datasets might be biased since in the ideal testing scenario, we do
not have knowledge about the set of human proteins that interacted with the
virus. Therefore, such dissimilarity-based negative sampling is infeasible.

7.5.3 Comparison with a method that utilizes protein domain
information

BARMAN features set is constructed from the domain-domain association
and the hand-crafted feature extracted from the protein sequences. Since the
protein domain information is not available for all viral proteins, the BAR-
MAN method has restricted application. A comparison between BARMAN
and MTT is presented in table 7.5. Due to data and code availability, we only
have the results for the BARMAN model on one dataset. From reported re-
sults, we could clearly see that MTT outperforms its competitor for a large
margin in all available metrics.

TABLE 7.5: MTT vs. BARMAN- a method that utilizes protein domain information.

MODEL AUC AP PRE REC F1

BARMAN 0.7300 − − 67.00 69.41
MTT 0.9804 0.9802 93.53 94.05 93.79

7.5.4 Comparison with methods that used GO, taxonomy and
phenotype information

DEEPVIRAL exploited the disease phenotypes, the viral taxonomies, and pro-
teins’ GO annotation to enrich its protein embeddings. Table 7.6 presents a
comparison between MTT and DEEPVIRAL on the four datasets released by
DEEPVIRAL’s authors. The reported results on each dataset are the average
after five experimental runs for DEEPVIRAL and ten experimental runs for
MTT. Results from the pair-wise t-test indicate that MTT is significantly bet-
ter than DEEPVIRAL on three out of four datasets. In addition, we observe
MTT and STT significantly supersede their competitor regarding the aver-
aged F1 score. The gain is more significant on smaller datasets (644788 and
333761)

7.5.5 Ablation Studies

We compare our method with two of its simpler variants: the STT and the
NAIVE BASELINE baseline models. STT is the MTT model without the hu-
man PPI prediction task. NAIVE BASELINE concatenates the learned embed-
dings for the virus and human proteins to form the input to a Logistic Regres-
sion model. Figure 7.4 presents a comparison between the F1 score of MTT
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TABLE 7.6: MTT vs. DEEPVIRAL.

DATASET MODEL AUC AP PRE REC F1

2697049
DEEPVIRAL 0.7288 0.0015 0.07 0.07 0.07
MTT 0.7566 0.0021 0.97 0.97 0.97

333761
DEEPVIRAL 0.8009 0.0147 1.72 1.72 1.72
MTT 0.8160 0.0262 6.35 6.35 6.35

2043570
DEEPVIRAL 0.7708 0.0116 0.52 0.52 0.52
MTT 0.6956 0.0096 1.89 1.91 1.90

644788
DEEPVIRAL 0.9325 0.0357 3.70 3.70 3.70
MTT 0.9537 0.0302 3.54 22.04 5.46

FIGURE 7.4: Ablation study on benchmarked datasets.

and its variants on our benchmarked datasets. Table 7.7 show all reported
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scores over all datasets. The reported results are average after 10 runs. Re-
sults from pair-wise t-test indicate that MTT is significantly better than STT
in five out of nine benchmarked and the four DEEPVIRAL datasets with a
p-value smaller than 0.05. While in the remaining four datasets, the differ-
ence is not statistically significant. This confirms that the learned patterns
from the human PPI network bring additional benefits to the virus-human
PPI prediction task.

TABLE 7.7: Ablation study detailed results.

DATASET MODEL AUC AP PRE REC F1

H1N1
NAIVE BASELINE 0.8310 0.8003 75.92 76.12 76.02
STT 0.9472 0.9590 85.86 86.09 85.98
MTT 0.9461 0.9589 86.28 86.51 86.40

EBOLA

NAIVE BASELINE 0.8876 0.8665 82.12 82.67 82.39
STT 0.9655 0.9749 90.13 90.73 90.43
MTT 0.9680 0.9766 90.93 91.53 91.23

DENOVO_SLIM

NAIVE BASELINE 0.8843 0.8673 83.80 84.00 83.90
STT 0.9207 0.9343 84.04 84.24 84.14
MTT 0.9221 0.9324 83.92 84.12 84.02

BARMAN’s
NAIVE BASELINE 0.8084 0.8198 73.75 74.11 73.93
MTT 0.9804 0.9802 93.53 94.05 93.79
STT 0.9801 0.9802 93.83 94.29 94.06

BACILLUS

NAIVE BASELINE 0.9842 0.9619 93.75 93.78 93.77
STT 0.9995 0.9986 97.93 97.96 97.95
MTT 0.9997 0.9992 98.75 98.78 98.76

YERSINA

NAIVE BASELINE 0.9741 0.9277 92.61 92.64 92.63
STT 0.9987 0.9970 97.18 97.30 97.24
MTT 0.9988 0.9971 97.32 97.34 97.32

FRANCI

NAIVE BASELINE 0.9851 0.9680 94.36 94.43 94.39
STT 0.9997 0.9993 98.84 98.92 98.88
MTT 0.9998 0.9996 98.95 99.03 98.99

2697049
NAIVE BASELINE 0.5686 0.0010 0 0 0
STT 0.7457 0.0017 0.07 0.07 0.07
MTT 0.7566 0.0021 0.97 0.97 0.97

333761
NAIVE BASELINE 0.7002 0.0110 3.55 3.56 3.55
STT 0.8114 0.0213 4.72 4.72 4.72
MTT 0.8160 0.0262 6.35 6.35 6.35

2043570
NAIVE BASELINE 0.6624 0.0076 0.32 0.32 0.32
STT 0.6706 0.0087 1.11 3.01 1.46
MTT 0.6956 0.0096 1.89 1.91 1.90

644788
NAIVE BASELINE 0.8410 0.0089 1.82 1.85 1.83
STT 0.9705 0.0459 3.97 9.26 4.65
MTT 0.9537 0.0302 3.54 22.04 5.46
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Compare with NAIVE BASELINE, MTT wins in eight out of nine bench-
marked and the four DEEPVIRAL datasets. On the remaining dataset (NOVEL
H1N1), the difference is not statistically different. STT significantly outper-
forms NAIVE BASELINE in eight out of nine datasets. This claims the effec-
tiveness of our chosen architecture.

7.6 Case study for SARS-CoV-2 binding prediction

The virus binding to cells or the interaction between viral attachment pro-
teins and host cell receptors is the first and decisive step in the virus repli-
cation cycle. Identifying the host receptor(s) for a particular virus is often
fundamental in unveiling the virus pathogenesis and its species tropism.

Here we present a case study for detecting the human protein binding
partners for SARS-COV-2. Our virus-human PPI dataset is retrieved from
the InAct Molecular Interaction database [106] (the latest update is 07.05.2021).
We retrieve the protein sequences from Uniprot [40]. In the next section, we
describe the construction of the training and testing dataset to predict SARS-
COV-2 binding partners.

7.6.1 Training, Validation and Test Sets for Virus-Human PPI

The statistics for our SARS-COV-2 binding prediction dataset are presented
in table 7.8. We construct the corresponding datasets as follows.

Training Set. As positive interaction samples, we include in the training data
only direct interactions between the human proteins and any virus except the
SARS-COV and SARS-COV-2. Direct interaction requires two proteins to di-
rectly bind to each other, i.e. without an additional bridging protein. More-
over, the interacting human protein should be on the cell surface. Without
loss of generality, we perform our search for the binding receptor on the set
of all human proteins that have a KNOWN direct interaction with any virus
and locate to the cell surface. Our surface human protein list consists of all
reviewed Uniprot proteins that meet at least one of the following criteria:
(i) appears in the human surfacetome [12] list or (ii) has at least one of the
following GO annotations [7, 20]:{CC-plasma membrane, CC-cell junction}.

The negative samples for training data contain indirect (interactions that
are not marked as direct in the database) between the human proteins and
any virus except SARS-COV and SARS-COV-2. The indirect interactions can
be a physical association (two proteins are detected in the same protein com-
plex at the same point of time) or an association in which two proteins that
may participate in the formation of one or more physical complexes with-
out additional evidence whether the proteins are directly binding to specific
members of such a complex).

Validation and Test Sets. As established in studies [84, 194, 241], angiotensin-
converting enzyme 2 (ACE2) is the human receptor for both SARS-COV
[128] and SARS-COV-2 viruses [84]. The positive validation and testing set
consist of interaction between the known human receptor (ACE2) and the
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corresponding spike proteins of SARS-COV and SARS-COV-2, respectively.
Our negative validation and testing set encapsulate of all possible combi-
nations the two viral spike proteins and 52 human proteins that meet our
filtering criteria.

7.6.2 The intra human PPI for the Side Task

Since we are interested in only the direct interaction between virus and hu-
man proteins, we also customize our intra human PPI training set. Our intra
human PPI dataset is also retrieved from the InAct [106] database (the lat-
est update is 07.05.2021). We retain only interactions between two human
proteins that appear in the virus-human PPI dataset constructed above. The
confidence scores are normalized into the [0,1] ranges. All confidence scores
corresponding to “indirect” interactions are set to 0. In the end, our intra-
human PPI training set consists of 96,458 interactions between 5,563 human
proteins.

TABLE 7.8: The case study statistics.

TRAINING VALIDATION TESTING HUMAN PPI
|Vh| |Vv| |E+| |E−| |E+| |E−| |E+| |E−| |E|

5, 563 834 554 17, 418 1 51 1 51 96, 459

7.6.3 Results

FIGURE 7.5: Case study results for benchmarked methods.
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FIGURE 7.6: MTT’s top 10 highest predictions in the virus binding case study.

FIGURE 7.7: DOC2VEC’s top 10 highest predictions in the virus binding case study.

Finally, we here evaluate the prediction methods on how effective they are
in ranking human protein candidates for binding to an emerging virus enve-
lope protein. Figure 7.5 presents the methods’ performance after ten runs on
the case study dataset. TopK is equal to 1 if the true human receptor appears
in the top K proteins that correspond to the highest predicted scores by the
model and is equal to 0 otherwise. The reported scores plotted in Figure 7.5
are the average after ten experimental runs with random initialization.

Using this method we find that ACE2, the only SARS-COV-2 receptor
proven in in vivo and in vitro studies[9, 84, 227], consistently appears as the
highest ranked prediction of MTT in each of the ten experimental runs. We
observe a significant difference between the highest ranked performance of
MTT and its competitors. The performance gain shown by MTT over STT
is quite substantial after ten runs and supports the superiority of our multi-
task framework. The next highest nine hits presented in both models have
not been shown to interact with SARS-CoV-2 in in vitro studies. Interest-
ingly, dipeptidyl peptidase 4 (DDP4), a receptor for another betacoronavirus
MERS-CoV [221] also scored highly in the MTT method. However, although
in silico analysis has speculated a possible interaction [209], it is yet to be
shown experimentally. Similarly, the serine protease TMPRSS2, which is re-
quired for SARS-CoV-2 S protein priming during entry [84], appeared in po-
sition 7 using the Doc2vec model. Finally, aminopeptidase N (ANPEP) the
receptor for the common cold coronavirus 229E appeared as first hit in the
Doc2vec model [237].

In Figures 7.6 and 7.7, we plot the average confidence scores (correspond-
ing to predicted interaction probability) corresponding to top 10 predictions
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of MTT and DOC2VEC models. The dots represent the average confidence
scores after 10 experimental runs while the lines represent the standard de-
viation. Specifically, the proteins are ranked based on the average (over 10
runs) confidence scores as predicted by the two models. While for MTT, the
receptor ACE2 always occurs at the top of the list with average confidence
score of more than 0.70 (which is more than 11% higher than the confidence
score assigned to the second hit), DOC2VEC assigns it a score of less than
0.44 where ACE2 is ranked 2nd based on average scores. Moreover, there
is negligible difference between the prediction scores for ACE2 and the first
predicted hit ANPEP in case of DOC2VEC.

These results indicate that MTT can provide high-quality prediction re-
sults and can help biologists to restrict the search space for the virus inter-
action partner effectively. This case study showcases the effectiveness of our
method in solving virus-human PPI prediction problem and aims to convince
biologists of the potential application of our prediction framework.

7.7 Conclusion

We presented a thorough overview of state-of-the-art models and their lim-
itations for the task of virus-human PPI prediction. Our proposed approach
exploits powerful statistical protein representations derived from a corpus of
around 24 Million protein sequences in a multitask framework. Noting the
fact that virus proteins tend to mimic human proteins towards interacting
with the host proteins, we use the prediction of human PPI as a side task to
regularize our model and improve generalization. The comparison of our
method with a variety of state-of-the-art models on several datasets show-
case the superiority of our approach. Ablation study results suggest that the
human PPI prediction side task brings additional benefits and helps boost
the model performance. A case study on the interaction of the SARS-COV-2
virus spike protein and its human receptor indicates that our model can be
used as an effective tool to reduce the search space for evaluating host protein
candidates as interacting partners for emerging viruses. In future work, we
will enhance our multitask approach by incorporating more domain infor-
mation including structural protein prediction tools [99] as well as exploiting
more complex multitask model architectures.
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Chapter 8

Conclusion and future outlook

8.1 Conclusion

More and more data is becoming available in recent years and in the future.
Data availability unveils unprecedented opportunities for machine learning
models on biological problems. Yet biological data is biased and limited in
quality and quantity. Those challenges lead to biased and non-generalizable
models. In addition, data scarcity restricts the application of deep learn-
ing techniques that require a large amount of annotated data to train. This
thesis focuses on machine learning models for two biological problems: the
miRNA-disease association and virus-human protein-protein interaction pre-
diction. To summarize, we make the following contributions.

8.1.1 Identification and analysis of existing systems’ limita-
tions

We start with identifying and experimentally analyzing some critical limita-
tions of existing works. We pinpoint the data leakage problem that results in
overestimating methods’ performance and unfair comparison between mod-
els. Besides, we present some other issues related to existing systems’ ex-
perimental setup and evaluation metrics. To address those limitations, we
develop and release a consistent evaluation framework with the implemen-
tation of various similarity calculations, a consensus evaluation metric, and
updates to the existing works’ training workflow.

8.1.2 New model development

The second focus of the thesis is on new model development. The motiva-
tion for our work is that collecting and cleaning annotated training biologi-
cal data for a particular machine learning problem is often expensive, time-
consuming, and even unrealistic in some scenarios. We notice that besides
the given small annotated data, other publicly available related information
sources exist. Our strategy in such a context is to develop machine learning
frameworks that can exploit such related knowledge. Yet simple concatena-
tion does not work, especially when there are limited training samples. We
try to provide the answers to three research questions: (i) which are the avail-
able information sources? (ii) how can we incorporate such information into
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our systems? and (iii) concerning a particular source, how much should we
add?

Joint learning architectures

To answer the above questions, for each biological problem, we identify the
available related data and their corresponding biological rationale. We then
propose joint learning models that can flexibly integrate multiple side infor-
mation sources at different stages of the model building process. The inte-
grated knowledge sources can be fused as the data to learn biologically rich
statistical representations, as the materials to construct the input networks
for representation learning, as the raw features, as the supervised signals to
guide our data preprocessing and filtering module, or as the training data for
the additional side tasks. We employ the architectures proposed for language
modeling, multitask learning, graph representation learning, and feature se-
lection to construct our joint learning systems. Combining information helps
us to overcome the data scarcity issue. At the same time, such an approach of-
fers global views of the target problems that enable machine learning models
to generate more reliable predictions. Results from large-scale experiments
claim that our proposed architectures acquire state-of-the-art performance on
the selected biological problems.

Data preprocessing

Besides presenting the answers to the questions of which and how to in-
tegrate, we also come up with ways to control the quality and quantity of
the incorporated data sources. Our data preprocessing pipelines encapsulate
various processing techniques, from naive threshold filtering to more com-
plicated approaches that employ field experts’ domain knowledge. For ex-
ample, concerning the virus receptor prediction task, we clean the added side
information by selecting only the human protein-protein interactions that are
marked as ‘direct binding’ and are between two human proteins that show up
at the cell membrane. Concerning the miRNA-disease association prediction,
we propose a parameter-free learning module that is motivated by biological
heuristics to enrich and filter the incorporated miRNA and disease-protein
coding gene associations. Such effective data preprocessing strategies also
contribute toward the success of our joint learning models.

8.1.3 Fair and comprehensive evaluation

The third focus area of the thesis is on fair and comprehensive comparison
among benchmarked systems. As the given annotated data is scarce and bi-
ased, evaluating machine learning approaches on little-known or completely
new entities is an important evaluation criterion that has been neglected in
existing works. To address such an issue, we curate and release new datasets
to enable the assessments under various testing scenarios, including those
with realistic negative sample rates and those with little or completely new
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entities. We believe such newly created datasets will enable large-scale ex-
periments and, thus, facilitate future research and development in the field.

8.1.4 Support for end-users assessment and adoption

Our final effort concentrates on supporting field experts’ assessment and
adoption. In our work, we add realistic case studies in which we place no
simplified assumptions on the potential candidate search space. Such newly
added case studies offer the answers to challenging and practical questions
like (i) what is the proposed method’s performance on a completely new or
little-known disease? (ii) how well the system can differentiate between true
and false positives, given the noisy training data? (iii) how good the system
is in identifying the human receptor for a completely new virus? or (iv) how
much do our predictions agree with the results acquired from a survival anal-
ysis on publicly available patient data? In addition, we develop and release
an easy-to-use web application that encapsulates all our model’s generated
predictions as well as the related biological knowledge to support field ex-
perts’ assessment and future adoption.

Though the answers to the questions of which and how to incorporate the
related information sources depend heavily on the learning tasks, we do be-
lieve that our design principles, the fair and comprehensive evaluation strat-
egy, the realistic case studies, and the easy-to-use web application will be of
independent interest to and would help facilitate future research in biomed-
ical applications.

8.2 Future outlook

In our opinion, future works can go in one of the following four potential
directions.

8.2.1 New model development or new application for exist-
ing models

One can develop or adapt existing joint learning approaches for other super-
vised prediction problems. We believe that our models would benefit other
prediction tasks where data scarcity and biased issues persist. For exam-
ple, one can apply our proposed joint learning model to the miRNA-small
molecule drug association prediction problem as discussed in Section 6.7.
Similarly, one can adopt the existing multitask framework for virus-human
protein-protein interaction prediction to tackle some of the realistic research
questions in drug development like the virus human receptor prediction,
predicting the human protein that helps the virus to replicate, or predicting
the human protein that helps the virus to get out of the human cell, etc. At
the same time, researchers can propose joint learning approaches for other
biological problems where the related knowledge sources exist.
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8.2.2 End-user experience enhancement

People might focus on end-user experience enhancement. Works focusing
on user experience enhancement should provide a user-friendly interface like a
portable application or a publicly available website. Such easy-to-use tools
would enlarge the research impact by facilitating end-users assessments and
adaptation. Besides, some of the nice-to-have features of the tool would in-
clude:

Automation of data/results filtering with different filtering criteria. This
functionality would enable field experts to select only the subset of entities
that they are interested in or take a closer look at the generated results to
validate their hypothesis or assess the generated predictions based on their
domain knowledge.

Support for hypothesis testing by integrating more related biological infor-
mation like the miRNA tissue expression profile, miRNA chromosomal lo-
cation, clinical disease phenotype, etc. Such a feature would enable users
to draw biological insights about the generated predictions based on their
expertise.

Comparison of the generated predictions from different models. As the
performance of machine learning models varies given the input data, it could
be the case that model A generates better prediction than model B on dataset
D, but model B can be better than model A on some specialized dataset D′.
Therefore, enabling the user to compare models’ performance with different
input datasets offers them the ability to choose the best model for their own
data, thus, facilitating future research and increasing the reach and impact of
existing machine learning models.

Possibility to train the model on the fly with user-customized data. Most
publicly available models are only trained or fine-tuned on public databases.
Nevertheless, data sharing is one of the critical issues in biological applica-
tions. Because of privacy and many other factors, field experts might want
to have the model trained on their in-house or private data. Yet not everyone
is familiar with coding and machine learning system training and testing.
Offering the model to be trained/tested on users’ customized data with just
a few clicks enable non-expert users to adapt existing models to their own
problem.

Allowing configurable model parameters. This functionality serves as an
add-on to the above feature by enabling advanced users to find the hyperpa-
rameter set that is best fitted to their customized dataset.

8.2.3 Input data or feature enhancement

One can also focus on input data or feature enhancements. In what follows,
researchers could propose the incorporation of additional data sources or
a more complex learning architecture. For example, for the virus-human
protein-protein interaction prediction problem, one future work would be
to integrate additional relevant domain information like the experimentally
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verified or predicted protein structural information (from computation pre-
diction tool like [99]) or to exploit more complex multitask learning archi-
tectures. In addition, since data quality significantly affects the learning
model’s outcome, the other fruitful approach would be to focus on effective
data filtering or expert-driven negative sample selection strategies. Properly
cleaned data with ‘true’ negative samples help the model to learn informa-
tive patterns and, thus, help it to improve the prediction performance.

8.2.4 Model explainability

One future direction would be to focus on explainability or models that can
generate explanations. As the majority of machine learning systems focus
on supporting end-user decision-making processes, generated explanations
that can help in model debugging and end-user convincing is one important
aspect in future machine learning applications. One can employ post-hoc
explanation techniques [66] to generate instance-level explanations or utilize
association rule-based models to extract the set of rules/reasons that lead
to the model’s decision. Nevertheless, domain expertise will be required to
translate these explanations into biological rationales.
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