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Abstract: Coastal aquaculture monitoring is vital for sustainable offshore aquaculture management.
However, the dense distribution and various sizes of aquacultures make it challenging to accurately
extract the boundaries of aquaculture ponds. In this study, we develop a novel combined framework
that integrates UNet++ with a marker-controlled watershed segmentation strategy to facilitate aqua-
culture boundary extraction from fully polarimetric GaoFen-3 SAR imagery. First, four polarimetric
decomposition algorithms were applied to extract 13 polarimetric scattering features. Together
with the nine other polarisation and texture features, a total of 22 polarimetric features were then
extracted, among which four were optimised according to the separability index. Subsequently, to
reduce the “adhesion” phenomenon and separate adjacent and even adhering ponds into individual
aquaculture units, two UNet++ subnetworks were utilised to construct the marker and foreground
functions, the results of which were then used in the marker-controlled watershed algorithm to obtain
refined aquaculture results. A multiclass segmentation strategy that divides the intermediate markers
into three categories (aquaculture, background and dikes) was applied to the marker function. In
addition, a boundary patch refinement postprocessing strategy was applied to the two subnetworks
to extract and repair the complex/error-prone boundaries of the aquaculture ponds, followed by a
morphological operation that was conducted for label augmentation. An experimental investigation
performed to extract individual aquacultures in the Yancheng Coastal Wetlands indicated that the
crucial features for aquacultures are Shannon entropy (SE), the intensity component of SE (SE_I) and
the corresponding mean texture features (Mean_SE and Mean_SE_I). When the optimal features were
introduced, our proposed method performed better than standard UNet++ in aquaculture extraction,
achieving improvements of 1.8%, 3.2%, 21.7% and 12.1% in F1, IoU, MR and insF1, respectively. The
experimental results indicate that the proposed method can handle the adhesion of both adjacent
objects and unclear boundaries effectively and capture clear and refined aquaculture boundaries.

Keywords: coastal aquaculture; GF-3 fully polarimetric; deep learning; marker-controlled watershed;
boundary patch refinement

1. Introduction

Coastal aquaculture has become one of the main sources of animal protein and plays
an important role in supplying food and supporting nutrition and security around the
world. According to the Food and Agriculture Organization of the United Nations, aqua-
culture is one of the fastest-growing food providers, producing up to 114.5 million tons in
total [1]. China is the world’s largest aquaculture country (with 8.346 million hectares), and
the cumulative exports have reached 51.42 million tons, accounting for 60% of the world-
wide total. Although the prosperous development of aquaculture has led to tremendous
economic benefits, it has also had negative impacts on the local coastal environment and
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regional sustainable development. Moreover, most of the reported fishery statistics and
studies only focus on the area of each aquaculture region, ignoring the detailed spatial
location and distribution of aquaculture water resources. Therefore, accurately mapping
the spatial distribution and detailed boundary information of aquacultures is crucial for
sustainable management and the detection of illegal aquacultures and can further pro-
vide important support for policy development and implementation at regional, national
and global levels. Satellite remote sensing technology has the advantages of a wide view
with a large coverage area and short revisit period, thus providing important support for
mapping the spatial distribution of aquacultures at large scales [2,3]. Current studies on
aquaculture mapping mainly use optical remote sensing data [4,5]. For example, Chinese
offshore raft and cage aquaculture areas (in 2018) were investigated using an unsupervised
classification algorithm and artificial interpreters based on Landsat 8 remote sensing im-
ages, with an extraction accuracy of 87.35% [6], and a hierarchical cascade convolutional
neural network was used for the finer resolution mapping of marine aquacultures, which
also achieved a good performance on Worldview-2 imagery [7]. In addition, biophysical
parameters obtained from Sentinel-2 time series images were utilised to accurately map
and analyse the spatial pattern and distribution of aquaculture ponds in China in 2019 [8],
and a workflow for automatic fishpond mapping was implemented on the Google Earth
Engine (GEE) platform using Sentinel-2 images [9]. Meanwhile, a highly efficient method
for mapping aquaculture ponds using Landsat 8 images based on the GEE platform was
proposed to extract the aquaculture pond regions in the Chinese coastal zone in 2017 [10].
Moreover, the spatiotemporal dynamics of aquaculture pond areas in China over the past
few decades were analysed using a time series of Landsat images [4,5,11]. However, optical
satellite data are easily affected by cloudy/rainy weather since it limits data availability
and quality, particularly in coastal areas with high humidity [12]. Compared with optical
sensors, satellite synthetic aperture radar (SAR) systems have the capability of all-weather
acquisition and strong penetration and, therefore, have become a promising data source for
coastal aquaculture monitoring in recent years [13]. The existing methods of aquaculture
extraction based on SAR images can be divided into two modes: single polarisation and
full polarisation. The former mode mainly utilises the backscatter intensities of single-
polarisation or dual-polarisation signals, with limited polarisation features [14]. In contrast,
fully polarimetric SAR data contain four polarimetric channels, which can provide richer
scattering information than that in the single polarisation mode [15]. Moreover, polarimet-
ric decomposition can be used to obtain important polarisation features that reveal the
scattering mechanism for different ground objects [16,17]. Wan et al. applied polarimetric
decomposition to fully polarised SAR data for water body extraction in complex coastal
areas and obtained an accuracy of 94.74%, thus effectively compensating for the lack of a
reliable single-polarisation method [18].

Gaofen-3 (GF-3), as the first fully polarimetric C-band SAR satellite of China, was
launched on 10 August 2016 and provides data at a metre-level resolution. Consequently,
many datasets are now available for the precise monitoring of aquacultures. Several studies
have used GF-3 for aquaculture monitoring but have mainly focused on marine floating
raft aquacultures [19,20]. In contrast, there have been few studies that use GF-3 for the
identification of inland aquaculture ponds, which are permanently water-filled surfaces
surrounded by embankment dikes and generally have rectangular shapes [21]. They are
typically independent closed shallow water bodies with an average depth of less than
2 m [22]. In SAR images, smooth aquaculture surfaces have a lower backscatter signal than
rougher non-water surfaces because it corresponds to specular reflection. Previous studies
have mainly focused on extracting large-scale aquaculture information from medium- and
low-resolution remote sensing images. The dikes around many aquaculture ponds are
narrow, usually only a few metres wide, making it difficult to distinguish adjacent aquacul-
tures due to the limitation of the low spatial resolution of the images. Although open-access
time series Sentinel-1 data have been introduced for the large-scale mapping of intensive
aquaculture ponds, the detailed features of small ponds with complex water information
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may be difficult to identify, and adjacent dikes may be difficult to distinguish [3,12–14]. GF-
3 outperforms Sentinel-1 in terms of spatial resolution and polarised scattering information,
making it a superior choice for aquaculture monitoring and analysis. The higher spatial
resolution of GF-3 images enables the details of the aquacultures and the surrounding dikes
to be captured, especially for small-scale aquaculture ponds. Furthermore, fully polarised
GF-3 images contain rich polarised scattering information, providing a comprehensive and
detailed view of the aquaculture areas. To improve the accuracy of aquaculture extraction,
researchers introduced simple watershed thresholding and machine learning algorithms
(decision trees, support vector machines, random forests, etc.) into aquaculture recognition
and effectively improved the aquaculture extraction accuracy. However, when using these
traditional shallow learning methods, the boundaries of the extracted ponds are often un-
clear, and the ponds are easily confused with other ground objects, especially in small-scale
pond areas with complex water information.

Deep learning can be used to learn high-level context features and provides pow-
erful data mining and feature extraction capabilities; therefore, it has received extensive
attention in the remote sensing field. In recent years, convolutional neural network (CNN)
and fully convolutional network (FCN) models have been rapidly developed and are
widely used in remote sensing image feature classification, target detection and semantic
segmentation tasks. Fu et al. used an automatic labelling method based on a CNN to
extract marine aquaculture areas and achieved significant improvements in visual and
quantitative performance [7]. Cui et al. used an FCN to automatically extract floating raft
aquaculture areas from Gaofen-1 images [23]. Zeng et al. proposed an FCN combined with
an RCSA mechanism for the semantic segmentation of aquaculture ponds. Experiments
based on high-spatial-resolution optical satellite images show that the overall accuracy of
the proposed method was significantly better than that of other methods [24]. An FCN is an
end-to-end deep supervisory network architecture that expands the perceptual domain by
convolutional layer downsampling, maximises the use of context information and improves
classification accuracy [25]; therefore, FCNs are being increasingly employed in studies of
high-resolution optical images and fully polarised SAR images to extract a single category
of ground objects. FCN-based UNet, as an updated convolutional network, was recently
introduced in biomedical image segmentation. Compared with an FCN, UNet consists of a
contracting path to capture contextual information and a symmetric expanding pathway
that enables precise localisation, and it works well in cases with small training datasets
and yields precise segmentation results [26]; for example, a semantic segmentation neural
network was combined with UNet with deep residual learning for road area extraction
from high-resolution remote sensing images [27]. Furthermore, a multiscale attention UNet
model with dilated convolution and offset convolution (MDOAU-net) was introduced in
SAR image segmentation for aquaculture raft monitoring [28]. Subsequently (2018–2020),
as an updated strategy, UNet++, a deeply supervised encoder–decoder network, was in-
troduced with redesigned skip pathways/connections and efficient ensembles of UNets
of different depths. UNet++ has displayed a strong performance in alleviating issues
related to the unknown depth of optimal architectures and the semantic gap between the
feature maps of the encoder and decoder subnetworks, thus supporting more accurate
segmentation tasks as a highly flexible feature fusion scheme [29,30].

The marker-controlled watershed (MCW) method is an intuitive and fast segmentation
approach that can be used to split bordering objects and limit the oversegmentation problem
in medical image processing [31–34]. The watershed algorithm is optimised by combining
prior knowledge to obtain a reliable segmentation effect [33,35]. Additionally, numerous
deep learning models have been proposed for medical images and have achieved an
outstanding performance [36,37]. To address the challenge of overlapping and to divide
touching nuclei into several individual nuclei, Xie et al. presented an efficient computing
framework by integrating deep CNNs with MCW. The experimental results indicated that
the proposed method achieved substantial improvements compared with other state-of-
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the-art methods [38]. Other studies have combined MCW with a deep learning model to
enhance the segmentation efficiency and improve accuracy [39–41].

The extraction of coastal aquaculture ponds is similar to the segmentation of nuclei
cells in medical images. Both aquaculture ponds and the nuclei cells are concentrated and
densely distributed, with distinct spatial geometrical features, where the ponds are regular
rectangles and the cells are round or elliptical. When segmenting aquaculture ponds, the
following problems that exist in cell segmentation often occur: adhesion of adjacent objects,
unclear boundaries and objects that are easily confused with the background. As a result, it
is difficult to distinguish the dikes of small-scale aquaculture ponds from the water bodies
inside the ponds due to the constraints of satellite image resolution. Considering that the
fish breeds, methods and types of aquaculture are being gradually diversified, which has
increased the difficulty of aquaculture management, accurately mapping aquaculture areas
is important for their sustainable management and for policy-makers. In this study, we
chose the Gaofen-3 Polarimetric SAR Imagery dataset and explored a novel model that
integrates two UNet++ subnetworks with the marker-controlled watershed (MCW) seg-
mentation strategy, where boundary patch refinement (BPR) postprocessing was employed,
to obtain refined maps of the coastal aquacultures in Yancheng, China.

2. Study Area and Data
2.1. Study Area

This study focused on a typical aquaculture area in the Yancheng Coastal Wetlands Na-
ture Reserve, which is located on the eastern coast of the Jiangsu Province (32◦52′~33◦6′N,
120◦45′~120◦56′E), China, as shown in Figure 1. The study area is characterised by a
subtropical monsoon climate, sufficient rain, abundant tidal flats and shallow bays. The
superior natural conditions provide suitable conditions for the large-scale construction of
aquaculture ponds. Fish, shrimp and crab are the main types of aquaculture species in the
study area. The ponds are densely distributed and most of them have a regular rectangular
shape and are separated by relatively narrow dikes, embankments or levees.
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Figure 1. Location of the study area.

2.2. Satellite Data and Data Processing

Gaofen-3 (GF-3) was the first civilian C-band full polarimetric SAR satellite in China
and was launched by the China National Space Administration (CNSA) in August 2016. GF-
3 carries 12 different imaging modes aboard, ranging from single-polarisation (HH or VV) to
dual-polarisation (HH + HV or VH + VV) and quad-polarisation (HH + HV + VH + VV),
with a resolution of 1 to 500 m [42]. The GF-3 satellite has the ability to monitor ocean,
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land and coastal areas under any weather condition and effectively compensates for op-
tical image defects and susceptibility to cloudy and rainy weather, ocean tides and air
humidity [43]. Such characteristics render GF-3 suitable for aquaculture monitoring in
coastal areas.

In this study, we used C-band fully polarimetric GF-3 images (http://sasclouds.com/
chinese/home/, accessed on 15 March 2021) with a resolution of 4.5 m× 5 m in the azimuth
and range directions, acquired on 12 October 2017 in the Quad-Polarisation Stripmap
1 (QPS1) imaging mode. The data were preprocessed with the PolSARpro software, which
included multilooking processing and a refined Lee filter that was used to reduce speckle
and enhance edges and other features.

3. Methodology

An overview of the proposed method is illustrated in Figure 2. The proposed method
combines three prominent steps: (I) polarimetric feature extraction and optimisation, (II)
segmentation combining UNet++ and MCW segmentation and (III) accuracy assessment.
First, the polarimetric segmentation algorithm was applied to fully polarimetric GaoFen-3
SAR imagery to extract the polarimetric scattering features, four of which were optimised
according to the separability index. Second, we proposed an aquaculture extraction frame-
work that integrates UNet++ with an MCW segmentation strategy, where a boundary patch
refinement (BPR) postprocessing strategy was employed for coastal aquaculture extraction.
Finally, the accuracy of the experimental results was evaluated to verify the feasibility of
the method.
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3.1. Extraction and Optimisation of GF-3 Fully Polarimetric Scattering Features

GF-3 full-polarisation SAR data contain valuable polarimetric scattering information,
which corresponds to the physical scattering mechanism of ground objects and can effec-
tively reflect their composition and structure information. Polarimetric decomposition is of-
ten applied to extract the scattering information in polarimetric SAR data applications [44].
In this research, 13 polarimetric scattering features were extracted by using four polarisation
decomposition algorithms: H/A/Alpha decomposition, Freeman3 decomposition, Huynen
decomposition and Yamaguchi4 decomposition. In addition, 6 other polarisation features

http://sasclouds.com/chinese/home/
http://sasclouds.com/chinese/home/
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and 3 backscattering coefficients were obtained, for a total of 22 polarimetric features, as
shown in Table 1.

Table 1. Descriptions of the 22 polarimetric scattering features used in the study.

Polarimetric Decompositions Methods Acronyms of Features Physical Meanings

H/A/Alpha
Entropy Polarimetric entropy

Anisotropy Polarimetric anisotropy
Alpha Average polarisation scattering angle

Freeman3
Freeman_Odd Surface scattering
Freeman_Dbl Double-bounce scattering
Freeman_Vol Surface scattering

Huynen
Huynen_T11 Symmetry factor
Huynen_T22 Asymmetric factor
Huynen_T33 Irregularity factor

Yamaguchi4

Yamaguchi4_Odd Surface scattering
Yamaguchi4_Dbl Double-bounce scattering
Yamaguchi4_Vol Surface scattering
Yamaguchi4_Hlx Helix scattering

Other polarisation features

SE Shannon Entropy
SE_I Intensity component of SE
SE_P Polarisation component of SE
Serd Single-bounce eigenvalue relative difference
Derd Double-bounce eigenvalue relative difference
RVI Radar Vegetation Index

Backscattering coefficients
HH Co-polarised horizontal scattering matrix elements
HV Cross-polar scattering matrix elements
VV Co-polarised vertical scattering matrix elements

To a certain extent, combining multiple features can mitigate the phenomena of
low discrimination and easy confusion among ground objects, but considering too many
features can easily lead to feature redundancy and even cause a “dimension disaster”. The
selection of suitable features is critical for classification. Therefore, to select the useful
features for separating aquacultures from dikes and other nonaquaculture land cover
classes, the separability index (SI) was calculated for all polarimetric features [45–47]. The
SI is defined as:

SIa,b =
|µa − µb|
Sa + Sb

(1)

where µ and S are the mean values and standard deviations of classes a and b for a
particular feature. The higher the value of SIa,b, the better the separability between class a
and class b [48]. In particular, an SIa,b value between 0.8 and 1.5 indicates an authentic
feature and SIa,b values greater than 2 indicate that a feature is nearly completely separated
from inclusion of other classes [49].

3.2. Segmentation Using Combined UNet++ and the Marker-Controlled Watershed Strategy

The proposed segmentation framework combines three prominent image processing
techniques: UNet++, MCW segmentation and a boundary patch refinement strategy. In
this study, two UNet++ networks are trained: the first network UNet++m predicts the
markers of coastal aquacultures, and the second network UNet++f predicts the image
foreground (coastal aquacultures). The two UNet++ subnetworks are then transformed
into a marker function and a segmentation function with a mathematical morphology
pipeline. MCW segmentation is used to obtain the final segmentation results based on the
generated markers and foreground. As a postprocessing mechanism, the boundary patch
refinement strategy is applied to refine the marker and foreground prediction results.

3.2.1. UNet++ Architecture

UNet is an end-to-end encoder–decoder-based architecture that consists of a con-
tracting path to capture contextual information and a symmetric expanding pathway that
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enables precise localisation [26]. The overall architecture of UNet++ is shown in Figure 3
and mainly consists of convolution units, downsampling and upsampling modules, and
skip connections between convolution units [50]. UNet++ is constructed from UNet (the
blue components in Figure 3) by adding dense skip connections (shown in black) to enable
dense feature propagation along skip connections.
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Let xi,j denote the output of Xi,j, where i is the index of the downsampling layer along
the encoder and j is the index of the convolution layer of the dense block along a skip
pathway. The stack of feature maps represented by xi,j is computed as

xi,j =

H
(
D
(

xi−1,j)), j = 0

H
([[

xi,k
]j−1

k=0
,U
(
xi+1,j−1)]), j > 0

(2)

where functionH(·) is a convolution operation followed by an activation function,D(·) and
U (·) denote a downsampling layer and an upsampling layer, respectively, and [ ] denotes
the concatenation layer. Nodes at level j = 0 receive only one input from the previous layer
of the encoder; nodes at level j = 1 receive two inputs, both from the encoder subnetwork
but at two consecutive levels; and nodes at level j > 1 receive j + 1 inputs, of which j inputs
are the outputs of the previous j nodes of the same skip connection and the j + 1th input is
the upsampled output from the lower skip connection. The reason that all prior feature
maps accumulate and arrive at the current node is that a dense convolution block is applied
along each skip connection.

When i = 0, xi−1,0 in Equation (2) becomes x−1,0, which serves as the input of the
network. The images at node x0,4 are processed through (1,1) convolution to integrate the
multichannel images back into single-channel images as the network output. In our study,
the nodes x0,0, x1,0, x2,0, x3,0 and x4,0 represent images of size 256 × 256, 128 × 128, 64 × 64,
32 × 32 and 16 × 16, respectively, with 64, 128, 256, 512 and 1024 channels, respectively.
Notably, the deep supervision mechanism in the initial UNet++ network is not used. MSE
loss is only measured for x0,4 during the model training stage and only x0,4 is used as the
network output for further assessment.

As shown in Figure 2, the proposed method consists of two parallel UNet++ networks,
where UNet++m is for marker prediction and UNet++f is devoted to foreground prediction.
Detailed information on the two subnetworks is illustrated below.

3.2.2. Marker and Foreground Predictions

In aquaculture areas with a dense spatial distribution, the inhomogeneity of the bright-
ness, pattern of the connecting boundaries and data imbalance problem caused by the small
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total number of pixels at the adjacent boundary compared with the number in the whole
area make the segmentation of adjacent aquacultures challenging. UNet++m is designed
for marker prediction, which indicates the locations of aquacultures. The marker function
predicts the probability that each pixel represents a marker and defines the segmentation
seeds for MCW segmentation. It is very important to extract the markers that truly repre-
sent the true objects. Traditional segmentation generally divides an image into two classes:
foreground and background. Here, to extract the markers efficiently and distinguish aqua-
cultures from the surrounding dikes, we divide images into three categories in the marker
prediction process: foreground, background and dikes. First, a UNet++ network is applied
to obtain a binary segmentation map containing two classes (background and aquaculture).
Second, label augmentation based on morphological operations is performed based on
the segmentation map to create a third class corresponding to the areas between aquacul-
tures (dikes). We use a 3 × 3 square structuring element for Se. The new class contains a
slightly thicker region than the original gap between aquacultures. In this case, the image
is divided into three types: foreground, background and dikes. Among them, the pixels
corresponding to the foreground tend to have a higher probability of being aquaculture and
are considered marker results of the UNet++m network, which are further used to define
segmentation seeds in subsequent MCW segmentation.

Comparatively, the UNet++f network used for foreground prediction is relatively
simple. It roughly divides an image into two categories: aquaculture and nonaquaculture
areas. The aquaculture class result is considered the foreground. Then, the results of marker
prediction and foreground prediction are used as the inputs for MCW segmentation.

3.2.3. Marker-Controlled Watershed Segmentation

Traditionally, watersheds are used in hydrological simulations, and oversegmentation
problems are common [31]. MCW segmentation can better address oversegmentation
and optimise watershed algorithms by considering the prior knowledge [33,35]. It is a
nonparameter transformation method, and a marker function and a segmentation function
are used to generate individual fields, with the ability to alleviate the boundary adhesion
phenomenon [34,51]. During the process, the foreground markers obtained from marker
prediction are regarded as segmentation seeds, and the background parts obtained during
segmentation prediction are regarded as topological surfaces. Although a single deep
learning model may display good extraction performance for aquacultures with large areas,
the effectiveness is limited in aggregated areas of small-sized, tightly packed ponds [52,53].
Combinatorial approaches that integrate MCW and CNN have proven effective in segment-
ing touching and overlapping nuclei that are densely clustered in medical images [38,39].
In this study, we combine the MCW framework with two UNet++ subnetworks to address
the adhesion and overlapping problems between adjacent ponds. As illustrated above,
UNet++m is used to calculate the probability that each pixel represents a marker and split
the connected components corresponding to aquaculture markers. Then, UNet++f can
predict the image foreground, which is then transformed into a segmentation function
using mathematical morphology operators. Finally, we use the MCW algorithm to obtain
the final segmented and separated aquaculture result according to the marker function and
segmentation function.

3.2.4. Boundary Patch Refinement

As a postprocessing mechanism, the boundary patch refinement (BPR) framework
can be applied to improve the boundary quality in instance segmentation [54]. In this
study, we add a BPR framework to augment both the UNet++m and UNet++f networks.
An overview of the boundary patch refinement framework is shown in Figure 4. First,
a sliding-window algorithm is implemented along the edges of the segmentation result
to extract a series of patches with complex and error-prone boundaries. Specifically, we
design a 7 × 7 operator with values all equal to 1 to extract the binary map of the coarse
segmentation result. The step size of the sliding window is set to 2, and the V value of



Remote Sens. 2023, 15, 2246 9 of 21

the corresponding patch is calculated. When the value of V is greater than 10, the patch is
regarded as an error-prone boundary, as shown in Figure 4b. However, coarse extraction
results are often redundant, and Euclidean distances are then used here to filter and remove
a subset of patches and obtain sparse patch results, as shown in Figure 4c. In general,
the larger the overlap, the better the segmentation performance, but the computational
cost is high. The threshold of the Euclidean distance can be adjusted to control the degree
of overlap to achieve a better balance of speed and accuracy. Moreover, sample slices
(boundary patches) in the original images that have the same position as the filtered sparse
patches are extracted. Then, the concatenated original image sample slices (Figure 4e) and
the corresponding sample patches (Figure 4f) are again trained in a new UNet++ network
to obtain the refined slice boundary results (as shown in Figure 4g), which are used to
replace the coarse segmentation results at the corresponding positions to obtain the final
fusion results.
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Figure 4. Overview of the boundary patch refinement framework. (a) The coarse segmentation
results produced by a UNet++ instance segmentation model; (b) coarse patch extraction results
for error-prone boundaries; (c) sparse error-prone boundary results obtained after filtering out
some patches using Euclidean distance; (d) original polarisation feature image; (e) image patches of
the error-prone boundaries; (f) filtered sparse error-prone boundary patches; (g) refined boundary
patches; and (h) the final fusion results. The red box indicates the area where changes occur during
the BPR processing.

In this study, we combine UNet++ with MCW segmentation and introduce the
boundary patch refinement (BPR) postprocessing method to propose a novel frame-
work for coastal aquaculture extraction, called MCW (3BPR, 2BPR), where 3 represents
the three categories in the marker prediction (foreground, background and dikes), 2 repre-
sents the two categories in the foreground prediction (aquaculture and nonaquaculture)
3BPR and 2BPR indicate that BPR postprocessing is applied in the UNet++m and UNet++f
subnetworks, respectively.

3.3. Accuracy Assessment and Comparison

To verify the effectiveness of the proposed method, five comparative experiments are
performed in this study with two machine learning models (support vector machine (SVM)
and random forest (RF)) and three deep learning methods (UNet, LinkNet and UNet++).
The aquaculture extraction accuracy is quantitatively evaluated with four accuracy metrics:
F1 score, mean intersection over union (IoU), matching rate (MR) and instantiated F1 score
(insF1). F1 and IoU are pixel-based metrics, presenting the overall classification accuracy
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of the results, and are calculated based on a statistical analysis of the classified pixels to
evaluate the accuracy of semantic segmentation [40]. The calculations are as follows:

precision =
TP

TP + FP
(3)

recall =
TP

TP + FP
(4)

F1 = 2× precision× recall
precision + recall

(5)

IoU =
TP

TP + FP + FN
(6)

where TP, FP, TN and FN denote true positive, false positive, true negative and false
negative, respectively.

Aquaculture ponds are structures with relatively regular textures, most of which are
approximately rectangular, similar to buildings. The matching rate (MR) is an object-based
evaluation metric designed to consider the geometrical properties of building extraction
results [55], and it is introduced here to evaluate the geometric quality of aquaculture
segmentation results. MR represents the numeric ratio between the number of matched
objects and the total number of objects and is defined as follows:

Eos
(
Oi, Sj

)
= 1−

∣∣Sj ∩Oi
∣∣

|Oi|
(7)

Eus
(
Oi, Sj

)
= 1−

∣∣Sj ∩Oi
∣∣∣∣Sj

∣∣ (8)

M
(
Oi, Sj

)
=

{
0, Eos

(
Oi, Sj

)
> T

∣∣∣∣Eus
(
Oi, Sj

)
> T

1, Eos
(
Oi, Sj

)
≤ T&Eus

(
Oi, Sj

)
≤ T

(9)

MR =
∑ i,j M(Oi, Sj)

NOi

(10)

where Oi is a reference object in a ground-truth map L, Sj is a segmented object in the
prediction map P, Eos and Eus represent the oversegmentation error and undersegmentation
error, respectively, and M

(
Oi, Sj

)
is the matching rate for Oi and Sj.

In addition, InsF1 is applied in this study to further evaluate the instance segmentation
ability of the network model. InsF1 is based on the IoU and was used in the Urban 3D
challenge in 2018 and the Ali Tianchi Building Intelligence Census Competition in 2020
as a criterion for assessing instance segmentation performance [56]. InsF1 is instantiated
based on TP, FP and FN results under the constraint that the IoU is greater than 0.5. The
equations are as follows:

precisionIoU>0.5 =
TPIoU>0.5

TPIoU>0.5 + FPIoU>0.5
(11)

recallIoU>0.5 =
TPIoU>0.5

TPIoU>0.5 + FNIoU>0.5

(12)

InsF1 =
precisionIoU>0.5 × recallIoU>0.5

precisionIoU>0.5 + recallIoU>0.5
(13)
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4. Experiments and Results
4.1. Experimental Setup

All the algorithms are implemented based on PyTorch, and the experiments are
conducted on an NVIDIA RTX3080 with 10 GB of memory. For the coarse segmentation of
the two subnetworks, we implement several data augmentation methods, such as mirror
transformation, vertical flipping, horizontal flipping, shifting, random rotation and random
scaling, to expand the size of the dataset. The BCE loss is used to update the model
parameters. The Apollo optimiser is selected as the network optimiser [57]. The learning
rate is initially set at 5× 10−4 and adjusted with a cosine annealing learning rate scheme [58].
The batch size during the training phase is fixed as four based on 512 × 512 tiles. We use
test time augmentation (TTA) during the inference phase, which includes vertical and
horizontal image flipping, and then produce a coarse segmentation output.

4.2. Separability of Polarimetric Features and Feature Optimisation

The separability index (SI) corresponding to 22 features was calculated, as shown in
Figure 5, to intuitively evaluate the separability between two class pairs, namely, (1) aqua-
cultures and dikes and (2) aquacultures and other (urban, vegetation and bare soil). The
higher the SI value of a given feature, the better the separability between class pairs [45]. SE
and SE_I, with SI values exceeding 1.5, can be used to separate the aquacultures from other
classes (dikes and others) compared to other polarimetric features. Therefore, SE and SE_I
are selected for the identification of aquaculture based on the feature separation criterion.
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In addition, considering the regular shape and dense distribution of aquaculture
ponds, eight texture features: mean, entropy, variance, contrast, second moment, homo-
geneity, dissimilarity and correlation, are applied to the two optimised features (SE and
SE_I) to consider the spatial associations among pond objects. The SI values of the afore-
mentioned texture features for SE and SE_I are shown in Figure 6. For texture features,
the SI of Mean_SE and Mean_SE_I is higher than that of the other listed features and
exceeds 1; therefore, Mean_SE and Mean_SE_I can be considered valuable auxiliary fea-
tures for aquaculture extraction. Therefore, two polarimetric features (SE and SE_I) and
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two texture features (Mean_SE and Mean_SE_I) are selected as the optimal features suitable
for aquaculture pond extraction.
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4.3. The Results of Coastal Aquaculture Mapping and Accuracy Assessment

Figure 7 depicts the distribution of coastal aquacultures in the study area using the
proposed method. The classification results were consistent with the ground truth in the
study area. Coastal aquacultures are mainly densely distributed and located around rivers
near the seaside.

To fully evaluate the performance of our proposed method, we compared our result
with the results obtained using the SVM, RF, UNet, LinkNet and UNet++ methods. As
shown in Table 2, our deep learning method achieved a higher extraction accuracy than
machine learning methods in aquaculture extraction; the proposed method (MCW (3BPR,
2BPR)) yielded the highest F1 score of 95.75% and IOU of 91.85%, improvements of 1.77%
and 3.2% compared with those of the UNet++ network. Moreover, the MCW (3BPR, 2BPR)
method can accurately capture the shape of aquaculture objects, with the highest matching
rate of 77.00%, which is 21.74% higher than that of UNet++. It is obvious that the proposed
method performs better in instance segmentation with the highest InsF1 of 87.05%.

Table 2. Accuracy assessment of different models (%).

Model F1 IOU Matching Rate insF1

SVM 91.02 83.52 - -
RF 91.30 83.99 - -

UNet 94.45 89.49 47.96 70.83
LinkNet 94.40 89.40 38.64 62.00
UNet++ 93.98 88.65 55.26 74.94

MCW (3BPR, 2BPR) 95.75 91.85 77.00 87.05
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5. Discussion
5.1. Multiclass Segmentation Strategy during Marker Prediction

The predominant regions during the segmentation of aquacultures are the background,
aquaculture interior (foreground) and areas between aquacultures (dikes), with intensity
differences shown in Figure 8. The intensity of the dikes overlaps that of the aquacultures
and background to some extent. The ordinary marker extraction process defines a final
marker based on two categories: foreground and background. However, including the



Remote Sens. 2023, 15, 2246 14 of 21

areas between aquacultures as part of the background may result in a certain overlap in the
intensity distributions of the foreground and background, making the separation of pixels
more difficult. In this study, we applied a multiclass segmentation strategy in the UNet++m
network to divide the intermediate markers into three categories (aquaculture, background
and dike). The addition of the dike class contributed to separating the touching borders
of the aquacultures and ensured the reliability of the marker prediction result obtained
with the UNet++m network. Then, the generated aquaculture class was selected as the
marker result.
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5.2. Impacts of Boundary Patch Refinement

As illustrated above, the proposed method consists of two independent UNet++ net-
works: UNet++f for foreground prediction and UNet++m for marker prediction. However, a
low proportion of boundaries easily leads to an imbalance problem during instance segmen-
tation, thus resulting in imprecise and coarse segmentation results. In this study, boundary
patch refinement (BPR) is applied to both UNet++f and UNet++m (MCW (3BPR, 2BPR)) to
improve the boundary quality through a crop-then-refine strategy. Additionally, three
comparative experiments are conducted to evaluate the performance of the BPR strategy:
UNet++-based marker-controlled watershed segmentation (MWC (3, 2)), UNet++-based
marker-controlled watershed segmentation in which BPR is applied to UNet++f (MCW
(3, 2BPR)) and UNet++-based marker-controlled watershed segmentation where BPR is
applied to UNet++m (MCW (3BPR, 2)), as shown in Table 3. With the MCW framework,
experiments using BPR for both the UNet++m and UNet++f models (the proposed MCW
(3BPR, 2BPR)) achieve the highest extraction accuracy, with values of 95.75%, 91.85%, 77%
and 87.05% for F1, IoU, MR and insF1, respectively. The F1 and IoU of the four MCW-based
methods are over 95% and 91%, respectively. While the pixel-based metrics (F1 and IoU) of
the ablation study and the proposed method are very similar, the improvements are even
more significant in terms of the object-based metric (MR) and instance-based metric (insF1).
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For the MCW (3, 2) method, the MR and insF1 values are 64.12% and 81.11%, respectively.
When the BPR is added to UNet++f, MR and insF1 are improved to 70.33% and 80.12%,
respectively. After introducing the BPR strategy into UNet++m, MCW (3BPR, 2) yields MR
and insF1 improvements of 10.72% and 5.01%, respectively. The highest MR and insF1
(77% and 87.05%, respectively) are obtained by the method with BPR and the two UNet++
networks in the MCW framework (the proposed method). The result demonstrates the
importance of performing boundary patch refinement with the two UNet++ subnetworks
of the MCW framework; notably, the MR and insF1 values are increased by 12.88% and
5.94%, respectively, compared to those for MCW (3, 2).

Table 3. Comparison experiments for the BPR strategy, where the best is in bold. Note that ‘
√

’
represents that the corresponding BPR strategy was used, and the meaning of ‘×’ is the opposite.

Model
Boundary Patch Refinement

F1 IoU MR insF1
UNet++m UNet++f

MCW (3, 2) × × 95.47 91.34 64.12 81.11
MCW (3, 2BPR) ×

√
95.59 91.55 70.33 84.12

MCW (3BPR, 2)
√

× 95.74 91.83 74.87 86.12
MCW (3BPR, 2BPR)

√ √
95.75 91.85 77.00 87.05

To qualitatively detail the effect of the BPR framework on aquaculture extraction,
we present the results of the ablation study in four representative areas, as shown in
Figure 9. The results of MCW (3, 2) show obvious omissions for some small, shallow ponds.
However, after adding the BPR strategy, the missing small ponds are successfully extracted,
as shown in Figure 9b. Moreover, Figure 9a,d show two cases in which BPR has successfully
considered the previously unextracted pond corners and edge areas in regular rectangles.
Figure 9c shows the problem of oversegmentation that exists for MCW (3, 2). The BPR
approach mitigates over-segmentation and improves the segmented shape of the compact
small ponds. The results suggest that the BPR performs well in repairing and refining the
boundaries of aquacultures. Some small aquacultures are very difficult to distinguish due
to the speckle noise and limited resolution of SAR imagery. With the BPR strategy, we can
identify more small aquacultures, and it also works well in separating adjacent ponds into
individual objects and reducing the “adhesion” phenomenon.

5.3. Classification Performance of Single Classifiers and the Proposed Combined Model

We further compared the proposed MCW (3BPR, 2BPR) with several single classifiers,
including two machine learning models (support vector machine and random forest) and
three deep learning methods (UNet, LinkNet and UNet++), to assess its effectiveness.
Figure 10 shows the regional aquaculture details in four typical areas. It can be intuitively
seen that the SVM and RF results have many broken fragments (Figure 10b,c). The single
deep learning models (UNet, LinkNet and UNet++) are also incapable of identifying small
ponds with shallow water levels and misclassify some corners of large- and medium-sized
ponds into nonaquaculture land types (Figure 10a,d). Comparatively, the classification
results of our proposed method are consistent with the ground truth in the study area.

In terms of pixel-based metrics, the proposed MCW (3BPR, 2BPR) model achieves the
highest F1 and IoU (95.75% and 91.85%, respectively). The F1 values of the aforementioned
six models are all greater than 91, and the IoU is above 83 (Table 2), which proves the feasi-
bility of using GF-3 polarimetric SAR data for this type of extraction work. Compared with
the machine learning models, the deep learning methods yield significant improvements
in F1 and IoU values. The deep learning models have achieved relatively high pixel-level
accuracy; therefore, MR and insF1, which reflect the geometric quality and segmentation
effect of extracted aquaculture ponds, are the key indicators that can be used to assess
the performance of the model. Among the three single deep learning classifiers, UNet++
performs the best and yields the highest accuracy for aquaculture identification (55.26%
for MR, 74.94% for insF1). Therefore, UNet++ is considered the best single deep learning
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method and is integrated with the MCW segmentation framework and BPR to form the
proposed MCW (3BPR, 2BPR) model. As described in Table 2, the MR and insF1 values of
the proposed method are increased by 21.74% and 12.11% compared with those of the
single UNet++ network. The results show that the proposed MCW (3BPR, 2BPR) method
in the study area achieves the highest F1 of 95.75%, IOU of 91.85%, MR of 77.00% and
insF1 of 87.05%.
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5.4. The Transferability and Robustness of the Integrated Framework

In this study, an MCW (3BPR, 2BPR) framework that integrates the MCW and BPR
strategies is proposed to establish a refined and detailed aquaculture extraction scheme that
includes precise and high-quality boundary information. To evaluate the transferability
and robustness of the MCW (3BPR, 2BPR) framework, we extract aquaculture information
with the MCW (3BPR, 2BPR) framework using three deep learning models (Table 4). For
three single deep learning models, the pixel-level precision F1 and IoU values are as high
as 93 and 88, respectively, but the values of object-oriented precision MR and instance
segmentation precision insF1 are relatively low. When the MCW (3BPR, 2BPR) framework is
added, F1 and IoU slightly increase; notably, the MR and insF1 values for UNet++, UNet
and LinkNet are improved by 21.74% and 12.11%, 27.72% and 16.29% and 32.78% and
22.07%, respectively. The highest F1, IoU, MR and insF1 (95.75%, 91.85%, 77.00% and
87.05%, respectively) are obtained with MCW (3BPR, 2BPR) based on UNet++ (the proposed
method). This result demonstrates the importance of MCW (3BPR, 2BPR), as MR and insF1
are greatly improved by adding the proposed framework. Deep learning is a method that
facilitates the accurate extraction of aquaculture ponds, and the proposed MCW (3BPR,
2BPR) framework can further improve the geometric quality and segmentation effect of
aquaculture objects, thereby solving a series of boundary problems, such as incompleteness,
fragmentation and adhesion. Since the framework achieves good results based on the
aforementioned three deep learning models, the MCW (3BPR, 2BPR) framework is confirmed
to be applicable and transferable.

Table 4. Results of applying the framework to different deep learning models, where the best is in bold.

Model Model F1 IoU MR insF1

Single model
UNet++ 93.98 88.65 55.26 74.94

UNet 94.45 89.49 47.96 70.83
LinkNet 94.40 89.4 38.64 62.00

MCW (3BPR, 2BPR)
UNet++ 95.75 91.85 77.00 87.05

UNet 95.17 90.79 75.68 87.12
LinkNet 94.99 90.46 71.42 84.07

6. Conclusions

In this study, we make the first attempt to explore the potential of deep learning based
on GF-3 imagery for aquaculture extraction in coastal areas. We propose a generalised
combinatorial model called MCW (3BPR, 2BPR), which is confirmed to be suitable for a
variety of deep learning methods (UNet++, UNet and LinkNet). It combines an MCW
segmentation framework with deep learning networks, in which a BPR postprocessing
strategy is employed, and obtains high-precision aquaculture pond results in coastal areas
using high-resolution GaoFen-3 polarimetric SAR remote sensing images. Compared with
traditional methods, the following conclusions can be drawn.

(1) GF-3 data contain rich and valuable surface scattering information and can thus be
used for aquaculture extraction. A total of 22 features were obtained from four typical
polarimetric segmentations and other polarimetric parameters. The separability index
(SI) of all the features was calculated, and four features were optimised: SE, SE_I,
SE_Mean and SE_I_Mean.

(2) Compared with traditional machine learning methods, the introduction of deep
learning methods greatly improved the extraction accuracy, with F1 greater than
94% and the IoU greater than 88%. In addition, compared with those of the UNet++
network alone, the F1, IOU, MR and insF1 of UNet++-based MCW (3BPR, 2BPR) (the
proposed method) were improved by 1.7%, 3.2%, 21.74% and 12.11%, respectively.

(3) The BPR postprocessing method optimised the extraction of boundary information
for the aquaculture ponds, eliminating the error, omission and adhesion issues at the
boundaries (dikes and dams). Notably, the MR and insF1 values increased by 12.88%
and 5.94%, respectively.
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(4) The proposed MCW (3BPR, 2BPR) framework in this paper is not only applicable to
UNet++ but also applicable to other deep learning models, such as LinkNet and UNet,
and can obtain high-quality results. It was further confirmed that the MCW (3BPR,
2BPR) framework has certain robustness and universality.

GF-3 remote sensing images contain rich polarimetric information and can be used
as an important data source for aquaculture extraction. The proposed MCW (3BPR, 2BPR)
framework is devoted to enhancing boundary accuracy and preserving detailed information
in the edge areas around aquacultures.
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