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• SWAT model was calibrated and vali
dated in Loukkos basin. 

• RCM/GCM models anticipated an in
crease in average minimum and 
maximum temperatures. 

• Future projection would exhibit a 
decrease in precipitation, with few 
exceptions. 

• Future streamflow was projected under 
two RCPs/SSPs scenarios. 

• Climate change will have an impact on 
annual and seasonal streamflow, 
particularly from 2071–2100.  
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A B S T R A C T   

Climate change is one of the most important factors impacting hydrological regimes. In this paper, climate 
change impact on streamflow of Loukkos basin (northwestern Morocco) is evaluated using SWAT model for three 
future periods: near (2021–2040), mid (2041–2070), and far (2071–2100), compared to baseline 1981–2020. A 
set of bias-corrected climate models was used: five regional climate models (EURO-CORDEX), four global climate 
models (CMIP6) and their ensemble mean, under two representative concentration pathways respectively (RCP 
4.5; RCP 8.5) and (SSP2-4.5; SSP5-8.5). Furthermore, SUFI-2 algorithm in SWAT-CUP was performed to calibrate 
(1981–1997), validate (1998–2015), and analyze uncertainty for each dataset at ten hydrological stations. In 
most stations, statistical performance indicated a good simulation, with a Nash–Sutcliffe efficiency (NSE) greater 
than 0.77 and percent bias (PBIAS) within ±10% on a monthly basis. Overall, 82% of models indicated that 
future climate could decline streamflow. The largest decrease would be for 2071–2100 and under RCP 8.5/SSP5- 
8.5. Our findings could help planners and policymakers in developing reasonable water management policies and 
climate change adaptation measures.   
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Practical implications 

Morocco, as one of the most Mediterranean and North African 
countries, has experienced several frequent drought episodes induced by 
a decrease in precipitation and a significant increase in temperature over 
the last decades (Driouech et al., 2020; Verner et al., 2018). According to 
Toreti et al. (2022), the country is currently experiencing its worst 
drought in three decades. Such changes could have serious implications 
for water resources, agriculture, hydropower production, and a variety 
of socioeconomic sectors. Due to this rapidly intensifying climate 
change, decision-makers now require more detailed and precise infor
mation. Thus, climate modeling and services continue to pique re
searcher’s interest, owing to their importance in guiding policies and 
other societal actions aimed at mitigating and adapting to climate 
change, as well as making society more resilient to climatic risks (Hewitt 
et al., 2021). 

To prepare for and adapt to a changing climate, climate change 
impacts need to be defined. In addition, to investigate the hydrological 
impact of climate change, researchers commonly run hydrological 
models with climate projections, which are typically provided by 
climate model outputs for interest areas (Jose and Dwarakish, 2020). 
Therefore, scientists employ hydrological modeling in conjunction with 
future projected climate from GCMs and/or Regional Climate Models 
(RCMs). 

In this context, this paper aims to develop robust and reliable in
formation on streamflow climate change impact on a Mediterranean 
coastal watershed. Such information can be used to size optimal adap
tation decisions water resource sector. Furthermore, it can be extremely 
beneficial for other socio-economic sectors that are affected by climate 
variability. Therefore, the simulated conditions must be appropriate for 
the hydrological problem addressed. In this study, we project future 
climate impact scenarios on streamflows using hydrological model 
(SWAT), and the climate services of four CMIP5-based models RCMs and 
five CMIP6-based models GCMs (and their ensemble means). 

Introduction 

Climate change’s effects have multiplied and become more frequent, 
affecting all natural systems (IPCC, 2021; Acharki, 2020; Tramblay 
et al., 2018). Therefore, all societal sectors, including water manage
ment, are impeded as a result of these effects. Recently, to support 
climate change mitigation and adaptation, there has been an increase in 
demand for useful and usable climate information, as well as an adapted 
infrastructure known as “climate services” (Larsen et al., 2021; Hewitt 
et al., 2021; Donnelly et al., 2018; van den Hurk et al., 2018). Climate 
information is defined as longer-term risk profiling requiring data over 
decades (Georgeson et al., 2017). According to Hewitt and Stone (2021), 
a climate service may be defined as the provision of climate information 
for use in decision-making. Climate data and services provide a wide 
range of information sources, such as basic climate data, climate change 
scenarios and projections, vulnerability studies, socioeconomic in
dicators related to climate change, and climate change education and 
training (Larsen et al., 2021). For instance, for water-related climate 
services, each service offers varying ensembles of global and regional 
circulation models (RCMs and GCMs), as well as a selection of emissions 
scenarios (RCPs) to drive one or more different hydrological models 
(Donnelly et al., 2018). Furthermore, van den Hurk et al. (2018) high
lighted that most services rely on more sources of climate information 
than climate model outputs. 

The Sixth Assessment Report (AR6) of the Intergovernmental Panel 
on Climate Change (IPCC, 2021) predicts an increase in average tem
peratures (between 1.5 ◦C and 4 ◦C) and a decrease in precipitation 
(between 4% and 27%) over the Mediterranean region including North 
Africa. Additionally, the IPCC (2021) noted an observed and projected 
increase in dry climatic impact-drivers (aridity, hydrological, agricul
tural and ecological droughts, and fire weather). Therefore, a significant 

increase in temperature would have a significant impact on a region’s 
water resources. Besides, numerous studies (Tramblay et al., 2018; Guo 
et al., 2020; Gebrechorkos et al., 2020; IPCC, 2021) highlighted that 
climate change is anticipated to have a net negative impact on water 
resources in almost every part of the world. In the Mediterranean region, 
which is considered as a hotspot of climate change (IPCC, 2021), several 
studies (Meddi and Eslamian, 2021; Sinan and Belhouji, 2016) have 
confirmed a decline in water resources in recent decades. They also 
predict that the Mediterranean region will be inevitably subjected to a 
future potential decrease in water resources (López-Ballesteros et al., 
2020; Mami et al., 2021; Martínez-Salvador et al., 2021; Saade et al., 
2021; Tramblay et al., 2018; Pulido-Velazquez et al., 2021). 

In order to assess and quantify future hydrologic responses to climate 
change, scientists employ hydrologic modeling in conjunction with 
future projected climate produced from General Circulation Models 
(GCMs) and/or Regional Climate Models (RCMs) (Quansah et al., 2021). 
In fact, GCMs provide reliable climate information, that is required to 
support mitigation policies, on global and large regional scales, covering 
a huge and diverse environment (Fang et al., 2015; Lee et al., 2019; Raju 
and Kumar, 2020; IPCC, 2021). Regional climate models, with a higher 
spatial resolution, have been established to resolve the heterogeneity of 
diverse geographical regions in a very efficient manner, alleviating the 
uncertainty of GCMs (Lee et al., 2019). Several researchers (Luo et al., 
2018; Tramblay et al., 2018) highlighted that RCMs provide more 
suitable climate information on smaller scales. Furthermore, RCMs/ 
GCMs climate model outputs and knowledge gained from them form the 
scientific basis for climate services, which are designed to provide 
tailored information to decision-makers and policymakers (Hewitt and 
Stone, 2021; Hewitt et al., 2021; van den Hurk et al., 2018). However, 
global and regional climate model projections still contain significant 
biases, which is inherited through GCM forcing or caused by systematic 
model errors that lead to inconsistencies between models (Martínez- 
Salvador et al., 2021; Teutschbein and Seibert, 2012). For this reason, 
bias correction of RCM/GCM data is required before using the data in 
any climate change effects investigation (Luo et al., 2018). Various bias 
correction methods have been developed (e.g., linear scaling, local in
tensity scaling, power transformation, distribution mapping, and 
quantile mapping). They have been advocated to minimize differences 
between observed and simulated values of climate variables (Awotwi 
et al., 2021; Brouziyne et al., 2020; Fang et al., 2015; Lee et al., 2019; 
Luo et al., 2018; Mami et al., 2021; Martínez-Salvador et al., 2021; 
Teutschbein and Seibert, 2012). 

Currently, the Coupled Model Intercomparison Project Phase 6 
(CMIP6) dataset is the most recent GCM dataset. This dataset differs 
from CMIP3 and CMIP5 datasets in terms of forcing scenarios and car
bon emissions, in addition to a better representation of physical pro
cesses (Bourdeau-Goulet and Hassanzadeh, 2021). A new set of Shared 
Socioeconomic Pathway (SSP) scenarios is used (O’Neill et al., 2017). 
Historical data and predictions based on several SSP scenarios are 
included in CMIP6 data, which are compatible with CMIP3 and CMIP5 
Representative Concentration Pathways (RCPs) (van Vuuren et al., 
2011) via shared policy assumptions. CMIP6 improves upon CMIP5 with 
more modeling groups, experiments, scenarios, and some advancements 
in current climate simulation, including increased spatial resolution 
(Grose et al., 2020; Di Virgilio et al., 2022). According to Zhu and Yang 
(2020) and Fan et al. (2020), the benefits of using CMIP6 models rather 
than CMIP5 models are especially apparent when investigating climatic 
extremes. Several studies have been conducted using CMIP6 climate 
model data to assess future temperature and precipitation changes and 
the reliability of climate predictions in sub-regions of the Mediterranean 
region and Morocco (Bouramdane, 2022; Majdi et al., 2022; Hamed 
et al., 2022). Their results indicated that GCMs from CMIP6 exhibited a 
noteworthy enhancement in their performance, specifically in simu
lating the climate over the region, resulting in a reduction in uncertainty 
when compared to their CMIP5 counterparts. Nevertheless, there is still 
a need for research focusing on the potential impact of climate change 
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on hydrologic processes. Testing and evaluating the uncertainty of 
CMIP6 when predicting streamflow can provide additional information 
to stockholders and decision-makers. 

In the context of hydrological modelling, a wide range of models 
have been embraced by researchers, including SWAT (e.g., (Milewski 
et al., 2019)), GR2M (e.g., (El Khalki et al., 2021)), GR4J (e.g., (Tram
blay et al., 2013)), GUO-5P (e.g., (Pulido-Velazquez et al., 2021)), 
2CAFDYM (e.g., (Acharki, 2020)) and HEC-HMS (e.g., (Candela et al., 
2016)). Among these models, the Soil and Water Assessment Tool 
(Arnold et al., 1998), which is a conceptual model with a semi- 
distributed physical base, has been widely applied around the world 
(Aghsaei et al., 2020; Awotwi et al., 2021; Bal et al., 2021; Brouziyne 
et al., 2018; Gebrechorkos et al., 2020; Guo et al., 2020; Lee et al., 2019; 
Choto and Fetene, 2019; Nilawar and Waikar, 2019; Quansah et al., 
2021; Saade et al., 2021; Nyatuame et al., 2020). Generally, this model 
has demonstrated his efficiency in hydrological assessments (Aghsaei 
et al., 2020; Awotwi et al., 2021). Furthermore, SWAT allows for long- 
term climate change implications on water (e.g., (Gemechu et al., 

2021)), sediment (e.g., (Choto and Fetene, 2019)), and nutrient loads (e. 
g., (Mehan et al., 2019)) in catchments with varying topography, land 
use, soils, and management conditions. 

Several studies were conducted across the Mediterranean region to 
examine climate and LULC change’s impact on watershed hydrology 
under different climate models and scenarios using different hydrolog
ical models (Choukri et al., 2020; Moçayd et al., 2020; López-Ballesteros 
et al., 2020; Mami et al., 2021; Marchane et al., 2017; Martínez-Salvador 
et al., 2021; Milewski et al., 2019; Saade et al., 2021; Tramblay et al., 
2018; Pulido-Velazquez et al., 2021). López-Ballesteros et al. (2020) 
have combined the SWAT model with IAHRIS software and five GCMs 
from ISI-MIP5 to assess climate change impact on the hydrological 
regime of Aracthos River (North-western Greece). This study indicates a 
reduction in streamflow by 20%. Using sixteen regional climate models 
from EURO-CORDEX and SWAT hydrological model, Martínez-Salvador 
et al. (2021) reported reductions from 46.3% to 55.8% in future 
streamflow of two semi-arid catchments in Spain. They also imply that 
one of the most likely outcomes of climate change will be the occurrence 

Fig. 1. a) Location map of the Loukkos basin in Morocco. b) Digital Elevation Model, hydrographic network, location of meteorological and hydrological stations of 
the Loukkos basin. 
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of more intense and long-lasting droughts over time. Saade et al. (2021) 
investigated climate change impact, using REMO 2009 and SWAT 
model, on the El Kalb river’s streamflow (Lebanon) and indicated that 
streamflow will reduce by 23% to 45%. They concluded that, during 
2061–2080 and under RCP 8.5, mean annual temperatures are antici
pated to rise 2.75 ◦C and mean annual precipitation to fall 40.6%, 
reducing streamflow from 5.47 m3/s to 2.98 m3/s (45.5% decrease). 
Similarly, Mami et al. (2021) evaluated hydrological response to climate 
change projections in Algeria (Tafna basin). Their results were analyzed 
using a combination of eight GCMs, two RCMs from CORDEX-Africa 
(RCA4 and CCLM4-8–17), under RCPs 4.5 and 8.5, and the SWAT 
model. For the projected period 2020–2099, they predict a decrease in 
surface flow (from 20% to 48%) and river discharge (between 42% and 
54%), as a consequence of reduced precipitation. In Morocco, like other 
countries around the Mediterranean, climate change has a direct impact 
on water resources, with a considerable declining trend in surface water 
resources. Although various research on climate change have been 
conducted in Morocco (Driouech, 2010; Driouech et al., 2020; Filahi 
et al., 2017; Marchane et al., 2017; Tramblay et al., 2013) only limited 
studies have investigated multiple RCMs and/or GCMs dataset (Moçayd 
et al., 2020; Milewski et al., 2019; El Khalki et al., 2021; Babaousmail 
et al., 2022). No studies, so far, have used GCMs of CMIP6 to assess 
possible future climate change on hydrologic processes. 

The Loukkos basin, located in northwestern Morocco, has been 
identified as one of Morocco’s most important agricultural and wettest 
basins. It is also well-known for its role in economic and social devel
opment. In addition, its surface water resources reached approximately 
3.4 billion m3/year (UNECE, 2021). It is, indeed, a water-rich water
shed, with an average annual runoff of 1 km3/year (Moçayd et al., 
2020). However, the basin’s water availability has reduced considerably 
during the last several decades (Moçayd et al., 2020; Acharki, 2020; 
Meddi and Eslamian, 2021). This, combined with the increasing popu
lation and expanding agricultural development activities, could lead to 
devastating water shortages in the future. Acharki (2020) assessed 
climate change impact on water resources in the upstream Loukkos 
basin (Loukkos perimeter) based on the 2CAFDYM model and reported 
that future annual surface water will drop by 9.2 to 25.5% from 2021 to 
2050. However, in this previous work, measured streamflow was not 
taken into account for calibration and validation. In addition, it only 
employed one climate model using A1B scenario. Furthermore, the 
LULC map used as the input model had a spatial resolution of 30 m and 
was limited to six classes. Hence, it is essential to analyze multiple 
climate models and to evaluate future climate change impacts on 
streamflow for Loukkos basin. This study aims to provide more robust 
and reliable information of climate change’s impact on streamflow in 
the Loukkos basin, a Mediterranean coastal watershed. This information 
will aid stakeholders in the water resource sector in making well- 
informed decisions regarding optimal adaptation strategies. Climate 
change’s impact on Loukkos streamflow has specific implications for 
different stakeholders. For instance, Loukkos agricultural stakeholders 
require information regarding water availability changes and their 
impact on crop yields and irrigation practices. To make informed 
choices, these stakeholders need guidance on how to adapt, including 
transitioning to crops that require less water or adopting more efficient 
irrigation practices. Similarly, Loukkos’ water resource managers are 
vital stakeholders who need guidance on managing water resources in a 
sustainable and equitable manner, considering the projected changes in 
water availability and the likelihood of water shortages. Additionally, 
this information can be beneficial for other socio-economic sectors that 
are affected by climate variability. Hence, this study’s results will enable 
local and regional actors to better understand how streamflow will 
change in Loukkos basin under various climate change scenarios. As well 
as act as a reference for building future adaptation approaches for 
improved water management and development planning. 

Given the aforementioned context, the main objectives of this study 
are to: (i) calibrate and validate a SWAT model for ten hydrological 

stations at monthly time steps and evaluate model performance; (ii) 
assess future climate changes using five RCMs from Euro-CORDEX, four 
GCMs of CMIP6 and their ensemble mean, under two RCPs and SSPs and 
three periods compared to the baseline period 1981–2020; (iii) quantify 
hydrological processes using a SWAT model for future climate scenarios; 
and (iv) investigate possible effects of climate changes on future 
streamflow in three periods: near (2021–2040), mid (2041–2070), and 
far (2071–2100) futures. 

Methods and materials 

Study area 

The Loukkos basin (Fig. 1) is located in northwestern Morocco. It is 
one of Morocco’s most important agricultural basins and has an area of 
about 3,761.5 km2. In the west, the basin has flat plains with a relatively 
attenuated topography (less than 100 m). In the east, the terrain is 
mountainous with an altitude reaching 1677 m and an average altitude 
of 266 m. Geologically, the Loukkos basin is part of the Rif chain, which 
is located at the Apennine-Maghrebian Belt’s western extremity. It is 
also characterized by a succession of Upper Cretaceous marl and shale, 
partially detached from Lower Cretaceous rocks (Martín-Martín et al., 
2020). Globally, this basin has Mediterranean weather features, with a 
wet season (November to April) and a dry season (May to October). The 
average annual precipitation recorded at eight weather stations (Fig. 1) 
is 655.4 mm (73% fall in winter and autumn). The average annual 
minimum temperature is 13.1 ◦C and the average annual maximum 
temperature is 23.6 ◦C over the last four decades. The study area has a 
decreasing precipitation gradient from west to east, which reflects the 
continentality effect. According to a study by Moçayd et al. (2020), 
annual precipitation can approach 1,400 mm in some years leading to 
large interannual variability in runoff. The largest superficial water 
resource in the Loukkos basin is Oued Loukkos, which drains a portion of 
western slopes of Rif mountains and runs into the Atlantic Ocean. Its 
hydrographic network is mainly separated into three sub-basins: Louk
kos, which drains an area of 2,100 km2; Ouarour, which drains 620 km2 

in central part; and Makhazine, which drains an area of 880 km2 in 
northern part (Pravema, 2012). The main dams are: (1) Oued El 
Makhazine dam, one of the Loukkos’ most important affluents, which 
has a capacity of around 726 Mm3 (Moçayd et al., 2020; Tramblay et al., 
2013). It became operational in 1979 with four purposes: (i) hydro
electric power generation, (ii) water supply to urban areas, (iii) irriga
tion of more than 30,393 ha, and (iv) flood-control (Tramblay et al., 
2013). (2) Dar Khrofa dam has a capacity of 480 Mm3. 

It serves to regulate water flows of approximately 140 Mm3 per year 
and to irrigate about 21,000 hectares of agricultural land. (3) Loukkos 
Guard dam, located on the river’s last stretch, maintains the necessary 
water level for good pumping conditions for agriculture purposes by 
preventing seawater intrusion (Pravema, 2012). 

Data and sources 

The climate change’s impact on streamflow in Loukkos basin was 
simulated with the Soil and Water Assessment Tool version 2012 
(SWAT; Arnold et al. (1998)), which requires a diversity of information 
related to meteorology, land use, soil, and agriculture. Although we used 
the SWAT 2012 version in our study, it is worth noting that a newer 
version of SWAT (SWAT+) has recently become available (Bieger et al., 
2017). SWAT + can depict spatial representations more efficiently, and 
it also comprises modular codes specifically designed to support non- 
expert users in developing and utilizing the software for future pur
poses (Arnold et al., 2018). However, it is still being determined from 
the literature research whether this difference significantly impacts the 
accuracy of streamflow simulations. Given the suitability of SWAT 2012 
in many regions (Taia et al., 2023; Echogdali et al., 2022; Erraioui et al., 
2023), we believe that SWAT 2012 was sufficient and met our analysis 
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needs. SWAT input data used in this research, including variable type, 
source and spatial resolution are listed in Table 1 and described in the 
following subsections. The methodological approach adopted in this 
research is illustrated in Fig. 2. 

Meteorological and hydrological data 
a. Historical meteorological and hydrological data 
Observed daily precipitation data acquired from Loukkos Hydraulic 

Basin Agency (ABHL) and Loukkos Regional Agricultural Development 
Office (ORMVAL) were used for the baseline period of 1981–2020. Only 
stations with years of continuous records were evaluated among the 
thirteen available weather stations. A total of eight weather stations 
located within the basin were considered (Fig. 1). Due to lack of or 
inability to access data for other weather variables, daily data for min
imum and maximum air temperature were obtained from the National 
Centers for Environmental Prediction Climate Forecast System Rean
alysis (NCEP/CSFR) for the period 1981–2014, and the Prediction of 
Worldwide Energy Resource dataset from the National Aeronautics and 
Space Administration (NASA–POWER) until 2020. CSFR and NASA–
POWER were chosen because of their high spatial resolution and the 
availability of meteorological variables that could be exploited over the 
long-term. Several studies (e.g., Bui et al. (2021) have found that CFSR 
data performs well in hydro-meteorological simulations around the 
world. In Morocco, Lagrini et al. (2020) used 927 stations of CSFR 
against 26 meteorological stations and proposed their utility for climate 
change projections. In Brazil, Monteiro et al. (2018) compared 
NASA–POWER data to observed data from 302 weather stations. Their 
results proved that NASA–POWER data performed better at greater 
latitudes and altitudes. They also suggest that these data might be used 
as a reliable source of climatic data for agricultural activities at regional 
and national scales. 

Daily streamflow data were obtained from gaging reports provided 
by Loukkos Hydraulic Basin Agency for the period of 1981–2015. Ten 
hydrological stations were chosen to adequately represent the study 
basin, as illustrated in Fig. 1. To calibrate and validate the SWAT 
reservoir simulation, observed daily inflows from reservoir water 

Table 1 
Description of SWAT input data sources and their spatial resolution.  

Inputs 
variables 

Description Spatial 
resolution 

Source 

DEM Shuttle Radar 
Topography Mission 
(SRTM) (2011) 

30 m × 30 
m 

United States 
Geological Survey 
(USGS) 

Land use Sentinel-2 data 
classified for land use 
(2020) 

10 m × 10 
m 

This current study 

Soil data Food and Agriculture   
Organization 

(FAO) Soil map 
1:1,000,000 FAO  

Meteorological 
data 

Precipitation daily 
data (mm) 

Station 
point data 

Loukkos Hydraulic 
Basin Agency (ABHL) 
and Loukkos Regional 
Agricultural 
Development Office 
(ORMVAL)  

Daily data of 
minimum 
temperature (◦C) and 
maximum 
temperature (◦C) 

Station 
point data 

Climate Forecast 
System 

Reanalysis (CFSR) 
and 
NASA–POWER    

Climate    
projection Daily data of 

precipitation (mm), 
minimum 
temperature (◦C) and 
maximum 
temperature (◦C) 

∼12.5 km  

See Table 2 Euro-CORDEX   
(EUR–11) and 

CMIP6    
Hydrological data Daily average flow 

(m3/s) 
Station 
point data 

ABHL  

Fig. 2. Flow chart of methodology.  

S. Acharki et al.                                                                                                                                                                                                                                 



Climate Services 30 (2023) 100388

6

balance provided by ABHL were also used. 
b. Projected meteorological data 
Daily climate projections of precipitation, minimum and maximum 

temperature were obtained from eleven climate models: (i) five Regional 
Climate Models (RCMs) of the EURO-CORDEX initiative with a resolu
tion of 0.11? × 0.11? (∼ 12.5 km × 12.5 km); (ii) four General Circu
lation Models (GCMs) of CMIP6 with varying resolution; (iii) an 
ensemble mean simulation of five RCMs and (iv) an ensemble mean 
simulation of four GCMs. These models were downloaded from the 
website of the Earth System Grid Federation (ESGF) (https://cordex. 
org/data-access/esgf/; https://esgf-node.llnl.gov/search/cmip6/). 
Table 2 describes RCM and GCM models selected and used. These 
climate models were selected based on several criteria, including their 
ability to accurately simulate precipitation and temperature in the 
Mediterranean region, as demonstrated in various studies (eg. 
(Babaousmail et al., 2022)). Furthermore, they were chosen based on 
their spatial resolution (Bourdeau-Goulet and Hassanzadeh, 2021), their 

application in several other hydrological studies (Awotwi et al., 2021; 
Gemechu et al., 2021; Lee et al., 2019; Quansah et al., 2021; Raju and 
Kumar, 2020) and their performance in research conducted for north 
African and Mediterranean regions (Brouziyne et al., 2020; Moçayd 
et al., 2020; Mami et al., 2021; Martínez-Salvador et al., 2021; Moucha 
et al., 2021; Peres et al., 2020; Saade et al., 2021; Tramblay et al., 2018; 
Tuel et al., 2021). The CMIP6 global climate models were chosen due to 
their most recent climate projections, while the EURO-CORDEX regional 
climate models were selected due to their higher-resolution climate 
data. 

A multi-model ensemble using a simple mean approach was also 
utilized to deal with the uncertainty induced by different GCMs as 
indicated by Babaousmail et al. (2022). According to Tebaldi and Knutti 
(2007), multi-model ensemble average gives more dependable and 
robust estimates than any individual model. Furthermore, Bourdeau- 
Goulet and Hassanzadeh (2021) and cited references, have suggested 
that an ensemble of simulations per climate model is advised to 

Table 2 
List of selected GCMs and RCMs.  

Model 
Type 

Name Variant Institution Spatial 
Resolution 

Reference 

RCM ALADIN63_v2 (CNRM-CM5) r1i1p1 Météo-France/Centre National de Recherches 
Météorologiques 

0.11◦ × 0.11◦ (Daniel et al., 2018) 

RCM HIRHAM5_v3 (NCC- 
NorESM1 -M) 

r1i1p1 Danish Meteorological Institute 0.11◦ × 0.11◦ (Christensen et al., 2007) 

RCM RACMO22E_v2 (CNRM- 
CM5) 

r1i1p1 Royal Netherlands Meteorological Institute 0.11◦ × 0.11◦ (van Meijgaard et al., 2012; van Meijgaard 
et al., 2008) 

RCM RCA4 (NCC-NorESM1-M) r1i1p1 Swedish Meteorological and Hydrological Institute 0.11◦ × 0.11◦ (Samuelsson et al., 2015; Strandberg et al., 
2014) 

RCM WRF381P_v1 (CM5A-MR) r1i1p1 Institut Pierre–Simon Laplace 0.11◦ × 0.11◦ (Skamarock et al., 2008) 
GCM EC-Earth3-veg r1i1p1f1 EC–EARTH consortium 0.7◦ × 0.7◦ (Döscher et al., YYYY) 
GCM GFDL-ESM4 r1i1p1f1 NOAA Geophysical Fluid Dynamics Laboratory 1◦ × 1.25◦ (Dunne et al., 2020; Guo et al., 2018) 
GCM IPSL-CM6A-LR r1i1p1f1 Institut Pierre–Simon Laplace, France 1.26◦ × 2.5◦ (Boucher et al., 2018; Boucher et al., 2020) 
GCM MPI-ESM-1–2-HR r1i1p1f1 Max Planck Institute for Meteorology, Germany 0.93◦ × 0.93◦ (Müller et al., 2018; von Storch et al., 2017)  

Fig. 3. Annual cycle of a) minimum temperature, b) maximum temperature and c) precipitation over Loukkos basin.  
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represent GCMs ”forced response” for CMIP5 and CMIP6. In this present 
study, we considered three future periods: near (2021–2040), mid 
(2041–2070), and far (2071–2100) futures. RCPs 4.5 and 8.5 for EURO- 
CORDEX models and SSPs 2–4.5 and 5–8.5 for CMIP6 models have been 
considered. It should be noted that the end-of-century forcing of 4.5 and 
8.5 W/m2 is consistent across both the SSPs and RCPs used in this 
research. Nonetheless, considerable differences persist between SSP 
5–8.5 and RCP 8.5. The former assumes approximately 20% higher CO2 
emissions throughout the 21st century. Moreover, SSP 2–4.5 applies a 
higher starting point for CO2 emissions than RCP 4.5 but ultimately 
results in lower emissions with a more gradual decline by the end of the 
century (Bourdeau-Goulet and Hassanzadeh, 2021). Detailed informa
tion of RCPs and SSPs scenarios can be found in (O’Neill et al., 2017; van 
Vuuren et al., 2011). 

In addition, GCMs and also RCMs climate projections often have 
considerable biases due to systematic model errors such as discretization 
and spatial averaging within grid cells (Martínez-Salvador et al., 2021; 
Teutschbein and Seibert, 2012). When climate change effects are 
incorporated, such as in hydrological effect studies, similar biases may 
be increased. Therefore, bias correction of GCMs/RCM data is recom
mended (Awotwi et al., 2021; Brouziyne et al., 2020; Lee et al., 2019; 
Luo et al., 2018; Teutschbein and Seibert, 2012). In this study, future 
precipitation and temperature were bias-corrected using the distribution 
mapping method of the CMhyd (Climate Model data for hydrologic 
modeling) tool (Rathjens et al., 2016). This non-parametric empirical 
method corrects the distribution function of simulated climate data 
using a Gamma transfer function based on the probability distribution of 
observed values. It was chosen because of its proven effectiveness in 
precipitation data analysis (Lee et al., 2019; Teutschbein and Seibert, 
2012) and its application in various climate settings in previous hy
drological studies (Awotwi et al., 2021; Fang et al., 2015; Gemechu 
et al., 2021; Lee et al., 2019). More details and advantages of this 

method have been described in (Fang et al., 2015; Teutschbein and 
Seibert, 2012). 

Fig. 3 illustrates the average monthly variation in observed and 
simulated precipitation, as well as minimum and maximum tempera
tures, using RCM (1981–2005) and GCM (1981–2014) models. It was 
concluded that Aladin63, RACMO22E and WRF381P show almost 
identical patterns with a slight difference in March (16 mm, with rela
tive difference of 30.7%) and December (-14 mm, with relative differ
ence of − 11.6%). Earth3Veg and IPSLCM6A also appear to be similar to 
precipitation observed, especially between April (-0.4%) and November 
(-5.3%). For minimum temperature, although there is a general agree
ment in annual amplitudes between simulations and observations, there 
are some differences in monthly amplitudes (from − 0.79 (-5.1%: Jun- 
Ensemble mean GCMs) to 1.00  ◦C (6.7%: Octobre-Aladin63 and HIR
HAM5). Additionally, for maximum temperature, we notice that the 
difference is more noticeable than that of minimum temperature. The 
simulated maximum temperature difference ranging from − 4.7 to 8.8 
◦C, respectively in November with RACMO22E and WRF381P and in 
January with RACMO22E. 

Based on mean changes in annual and seasonal precipitation, mini
mum and maximum temperatures, as shown in Fig. A.12, it was 
concluded that almost all models show a decrease in precipitation (with 
change from − 79.8% to 20.7%), which is more pronounced under RCP 
8.5/SSP5-8.5 than RCP 4.5/SSP2-4.5. Overall, annual and seasonal 
precipitation decreases in 2071–2100 are greater than in 2021–2040 
and 2041–2071. These results are in agreement with previous studies 
(Moçayd et al., 2020; El Khalki et al., 2021; Tuel et al., 2021) over 
Morocco. It can be seen that summer precipitation will change sub
stantially more than winter precipitation, and the spring decline will be 
more pronounced than the winter decline. Mostly, all models predict a 
considerable increase in minimum and maximum temperatures, both 
annually and seasonally, except in summer for HIRHAM5 and RCA4. 

Fig. 4. (a) Slope classes, (b) sub-basins distribution, (c) soil types, and (d) land use/land cover map of Loukkos basin.  
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Nevertheless, under all scenarios, the strongest increase is expected in 
2071–2100 by reaching 7.9  ◦C (SON-IPSLCM6A) and 8.4  ◦C (MAM- 
GFDLESM4) respectively for minimum and maximum temperatures. 
However, it is crucial to remember that these projections may contain 
uncertainties and that the egregious values obtained should be inter
preted with caution for future use. 

Spatial data 
a. DEM data: 
A digital Elevation Model (DEM) of the Shuttle Radar Topography 

Mission (SRTM) with 30 m resolution was obtained from Earth Explorer 
portal (https:/earthexplorer.usgs.gov) of the United States Geological 
Survey (USGS). In order to generate a DEM raster, four images were 
mosaicked, reprojected into the WGS84/UTM Zone 30 system, and lastly 
clipping to Loukkos basin. Each pixel in this DEM raster provides a 
precise altitude value ranging from 0 to 1,677 m. Subsequently, this 
DEM was used to delineate the watershed, generate elevation, and 
calculate the watershed slope. The DEM and slope of Loukkos basin are 
illustrated in Figs. 1-b and 4-a, -a, respectively. 

b. Soil data: 
Soil data (1:50000) utilized in this study is the Harmonized world 

soil database v1.2 (YYYY), which was obtained from the United Nations’ 
Food and Agriculture Organization. Furthermore, data based on soil 
qualities, including texture, soil water content, hydrological soil group, 
soil depth, bulk density, and organic carbon content, was adjusted to the 
needed format. Soil codes were adapted and incorporated into the SWAT 
2012 database. The soil types were classified into three classes (Fig. 4-c). 
The Chromic Luvisol are the most dominant soils dominant soils in 
Loukkos basin. They occupy 58.0% of the basin total area followed by 
32.2% for Calcic Kastanozem, and 9.8% for Eutric Fluvisols. 

c. Land use/land cover: 
Land use/Land cover information was generated using a Random 

forest (RF) (Breiman, 2001) supervised classification, based on Sentinel- 
2 satellite data for 2020, to generate the following land cover classes: 
water, built-up, bare soil, grassland, agricultural land, greenhouse 
agriculture, rice, trees and fruit trees, wetland plants, and forest. We 
note that image correction and classification steps used in this study 
were performed following the methodology of Acharki (2022). 36 
Sentinel-2 images used were downloaded via Copernicus Open Access 
Hub (Copernicus, 2021) provided by European Space Agency (ESA) 
based on their availability and cloud absence. Then, a pre-processing 
step was applied to eliminate atmospheric effects. Used images were 
also mosaiced and projected from WGS84/UTM Zone 29 (EPSG: 32629) 
projection system to WGS84/UTM Zone 30 (EPSG: 32630) system. For 
image classification, ground truth data were randomly and manually 
selected. They were based on field knowledge, photos taken during field 
trip inventory and completed by high resolution satellite images from 
Google Earth (Acharki et al., 2020; Acharki et al., 2022). Therefore, 
2,563 training samples for ground truth data were generated. These 
ground truth data were randomly partitioned into two parts: The 
initialization of RF classification model was assigned to 70% of the 
dataset, while the 30% remaining was used for model validation and 
performance evaluation. At polygon level, the allocation was done to 
have an independent set of pixels between training and validation steps. 
In order to assess classification accuracy, kappa coefficient was used and 
overall accuracy was determined using a confusion matrix, which is a 
widely used approach for determining classification accuracy (Foody, 
2002). The software QGIS (QGIS Development Team, 2021), Orfeo 
ToolBox (OTB) (OTB, 2018) and R language programming (R Core 
Team, 2020) were used. The overall accuracy was 98.4%, with a kappa 
index of 0.98, thus indicating that classification LULC was more accu
rate. The most frequent land use in Loukkos basin is forest, which covers 
about 29.8% of the total area, followed by trees/fruit trees and agri
cultural land that cover comparable areas (Fig. 4-d). 

SWAT model 

Model setup and simulation 
The Soil Water Assessment Tool (SWAT) developed by Arnold et al. 

(1998), is a continuous, spatially, daily time-step and semi-distributed 
hydrological model (Abbaspour, 2015; Arnold et al., 1998; Neitsch 
et al., 2011). It was originally designed to assess the impact of climate 
and land management practices on watershed hydrology in large, 
complex watersheds over extended periods (Arnold et al., 1998). 
Although being developed and calibrated in a distinct climatic zone, the 
model has been successfully utilized in various regions around the 
world, including the Mediterranean (Martínez-Salvador et al., 2021; 
Taia et al., 2023; Echogdali et al., 2022; Erraioui et al., 2023; Saade 
et al., 2021). In addition, extensive testing and calibration have been 
conducted to ensure the model’s reliability in predicting water stress 
and vegetation response under various conditions. Previous research has 
applied SWAT to assess the implications of climate change scenarios and 
examine adaptive management practices to mitigate climate change- 
induced impacts (Martínez-Salvador et al., 2021; Saade et al., 2021; 
Gemechu et al., 2021). Nevertheless, it is critical to consider that the 
model’s accuracy and ability to simulate future scenarios are contingent 
on the availability and input data quality, such as climate projections, 
land management practices, and assumptions concerning how hydro
logical processes may respond to climate change. SWAT simulates 
various parameters such as streamflow, sediment loss transport, and 
nutrient flow on a watershed scale. Besides, each watershed is separated 
into sub-basins, which are further subdivided into Hydrologic Response 
Units (HRUs), thus allowing a high level of spatial detail simulation. The 
SWAT model includes various components, such as hydrology, weather 
conditions and land management, which are described in detail by 
Neitsch et al. (2011). The water balance equation below (Neitsch et al., 
2011) is used to simulate streamflow in SWAT. 

SWt = SWo +
∑t

i=1
(Rday − Qsurf − ETa − Wseep − Qgw)i (1)  

where SWt is the final soil water content at time t, SWo is initial soil 
water content, Rday is daily precipitation, Qsurf is surface runoff, ETa is 
daily actual evapotranspiration, Wseep is percolation amount and Qgw is 
daily amount of return flow. All variables are expressed in mm/day. 
SWAT output can be saved in different time steps (daily, monthly, or 
yearly), although basic water balance runs on a daily time step. In this 
study, a monthly time step was evaluated. To estimate evapotranspira
tion three methods are offered in SWAT: Hargreaves (Hargreaves and 
Samani, 1985), Priestley-Taylor (Priestley and Taylor, 1972), and Pen
man–Monteith (Monteith, 1965). Hargreaves method was selected in 
this study due to its recommendation by the FAO when observed 
meteorological data are unavailable and its application in previous 
Moroccan watersheds (Brouziyne et al., 2020; Choukri et al., 2020; 
Erraioui et al., 2021; Taia et al., 2021; Tramblay et al., 2018; Taia et al., 
2023). 

Subsequently, the Loukkos basin was divided into 94 sub-basins 
following watershed delineation step (Fig. 4-b). A total of 1200 HRUs 
were created by combining slope classes (Fig. 4 soil map (Fig. 4 and a 
land use/land cover map (Fig. 4-d). 

Sensitivity analysis, calibration and validation 
SWAT model’s simulation capabilities were evaluated through cali

bration, validation, sensitivity, and uncertainty analysis, which was 
conducted using SWAT-CUP (Calibration Uncertainties Program) soft
ware with the SUFI-2 (Sequential Uncertainty Fitting Version 2) algo
rithm (Abbaspour, 2015). SUFI-2 was chosen because of its robustness in 
achieving optimization and quantifying the uncertainty (Mehan et al., 
2019; Taia et al., 2021), and has been used in previous studies that have 
simulated hydrological responses (Gemechu et al., 2021; Choto and 
Fetene, 2019; López-Ballesteros et al., 2020; Mehan et al., 2019; Bal 
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et al., 2021). Sensitivity analysis is crucial to reduce parameters number 
that needs to be changed in SWAT (Abbaspour, 2015; Martínez-Salvador 
et al., 2021). In this research, the sensitivity analysis was carried out on 
the most commonly modified parameters in literature during streamflow 
calibration Arnold et al. (2012). Thus, ten parameters were chosen for 
the model calibration (see Table 4). The curve number (CN2) and soil 
available water capacity (SOL_AWC) are the most influential parameters 
followed by soil evaporation coefficient (ESCO) and underground- 
related parameters (GW REVAP and GWQMN). SWAT model was cali
brated from 1981–1997, with an initial three-year warm-up period. This 
warm-up period allows the model to run efficiently, and simulation re
sults from this time period were not included in the analysis. It was 
further validated from 1997–2015, except for St. Dar khorfa and St. Sidi 
Ayad Soussi where observed streamflow was unavailable after 2003 and 
2013, respectively. 

To calibrate the model at each hydrological station, the parameters 
associated to the upstream sub-basins of each hydrological station were 
altered individually. Then, before moving on to the next station, optimal 
parameters were validated and their values were set. This was done by 
varying only parameters in intermediate sub-basins. This approach, in 
comparison to single calibration, increases the parameter freedom de
gree (Erraioui et al., 2021), although it takes more time and requires 
more simulations. Thus, each station undergoes three to five iterations 
of 600 simulations for calibration and one iteration of 600 simulations 
for validation. The following statistical metrics were used to assess the 
model’s performance: Nash–Sutcliffe efficiency (NSE) coefficient (Nash 
and Sutcliffe, 1970), and percent bias (PBIAS) (Gupta et al., 1999). The 
NSE coefficient refers to the simulation’s correlation with observations 
and is widely used to evaluate the prediction performance of hydrologic 
models (Quansah et al., 2021; Gemechu et al., 2021). When NSE value is 
greater than 0.36, the model calibration results are regarded as 
”acceptable”, and when it is greater than 0.75, it is considered ”very 
good” (Moriasi et al., 2007). The PBIAS measures the average tendency 
of simulated data to differ from their recorded counterparts. When 
PBIAS’s absolute value is less than 25%, it indicates satisfactory simu
lation performance (Moriasi et al., 2007). It is important to note that 
calibrating the SWAT model to the current situation in the Loukkos basin 
(as in other regions) does not necessarily guarantee accurate predictions 
of future conditions with increased irrigation and severe water stress. 
This is due to the potential for future changes in climate, land use, water 
management practices, and population growth to significantly alter the 
basin’s hydrological processes, which may not be accounted for in the 
calibrated model. As a result, inaccuracies in model projections are 
conceivable. 

Furthermore, any investigation with a calibrated model must include 
an uncertainty analysis in the result (Abbaspour et al., 2007). Therefore, 
it is necessary to implement uncertainty analysis to gain more confi
dence in numerical modeling. In SUFI2, uncertainty in parameters, 
expressed as ranges (uniform distributions), accounts for all sources of 
uncertainties such as uncertainty in driving variables (precipitation or 
temperature), conceptualization of model, parameters, or measured 

streamflow. Propagation of uncertainties in the parameters leads to 
uncertainty in model outputs, which are expressed as the 95% proba
bility distributions (Abbaspour, 2015). Thus, the fit quantification be
tween simulated and observed, expressed in 95PPU, can be performed 
using two statistical indices: p-factor and r-factor. The p-factor is the 
proportion of observed data associated by 95% prediction uncertainty 
(95PPU) and is estimated using Latin hypercube sampling at 2.5% and 
97.5% levels of output variable’s cumulative distribution. Simulta
neously, the r-factor indicates relative thickness of 95PPU band. Ac
cording to Abbaspour (2015), good calibration results for discharge 
simulation should be >0.70 for p-factor and around 1 for r-factor, while 
in a low-quality data it may be sufficient to consider a p-factor above 0.5. 

r − factor =

1
n

∑n

ti=1

(
YM

ti ,97.5% − YM
ti ,2.5%

)

σobs
(2)  

NSE = 1 −

∑n

i=1
(Oi − Pi)

2

∑n

i=1

(
Oi − Oavg

)2
(3)  

PBIAS =

∑n

i=1
(Oi − Pi)100

∑n

i=1
Oi

(4)  

where, n is the total number of observations or simulations. i is the 
number of values. YM

ti ,97.5% and YM
ti ,2.5% are the upper and lower bound

aries of the 95PPU. σobs is the standard deviation of the observed 
streamflow data. Oi is observed streamflow values. Pi is simulated 
streamflow values. Oavg is average observed streamflow. Pavg is average 
simulated streamflow. 

Observed and simulated streamflow hydrographs, as well as statis
tical performance of calibration and validation are summarized in 
Figs. A.13 and A.14. The quantitative assessment of model efficiency 
indicates good simulation (NSE >0.77 and PBIAS within  ± 10%) on a 
monthly basis. Furthermore, according to the criteria of Abbaspour 
(2015), the 95PPU correctly predicted >70% of monthly data for most 
stations, demonstrating that the calibrated monthly streamflow model 
accurately recreated monthly streamflow in Loukkos basin. 

Results and discussion 

Historical streamflow analysis 

To assess climate models’ capacity to reproduce historical stream
flow regimes, the 11 climate models (RCMs and GCMs) were forced as 
inputs to SWAT calibrated model. 

Performance of models 
The correlation between observed streamflow and historical 

Table 4 
Sensitive parameter calibration and fitted values for Loukkos basin.  

Parameter Description p-value t-stat Fitted value Rank    

r__CN2.mgt SCS runoff curve number II 0.00 19.68 11.24 1    
r__SOL_AWC().sol Available water capacity (mm H2O mm soil− 1) 0.00 − 5.02 0.012 2    
v__ESCO.hru Soil evaporation compensation factor 0.012 2.612 49.45 3    
v__GW REVAP.gw Groundwater “revap” coefficient 0.02 − 2.45 0.02 4    
v__GWQMN.gw Threshold depth of water in the shallow aquifer required for return flow to occur (mm H2O) 0.04 − 2.09 874.46 5    
v__CH N2.rte Manning’s “n” value for the main channel 0.16 − 1.40 3.94 6    
v__OV N.hru Manning’s “n” value for overland flow 0.267 − 1.12 − 0.43 7    
v__REVAPMN.gw Threshold depth of water in the shallow aquifer for “revap” to occur (mm H2O) 0.28 1.08 − 0.35 8    
v__CH K2.rte Effective hydraulic conductivity in main channel alluvium (mm h− 1) 0.69 0.39 0.96 9    
r__HRU SLP.hru Average slope steepness (mm− 1) 0.89 0.14 0.16 10    

Note: “v__” and “r__” mean a replacement, and a relative change to the initial parameter values, respectively. Rank is based on p-value and t-stat Abbaspour (2011). 
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streamflow provided from RCM/GCM models, shown in Fig. 5-a, in
dicates that the best correlations were found on a monthly basis. 
Whereas, on an annual basis, negative correlations between − 0.01 and 
− 0.17 for Aladin63, HIRHAM5, and RC4 were reported. Overall, 
EnsembleGCMs presented better correlations. The findings also imply 
that individual RCM models have a lower correlation than the GCMs 
model. The upgraded version of CMIP6 could be linked to GCMs’ 
improved performance (Ayugi et al., 2021; Kamruzzaman et al., 2021; 
Zhu et al., 2021). It can also be noticed that the highest correlations 
(reaching 0.73) appeared in Mrissa station, which is located in the ba
sin’s downstream part and typically receives greater streamflow owing 
to the contribution of various upstream areas. Upstream stations, on the 
other hand, may have a lower correlation due to the influence of local 
factors like topography, land use, and soil conditions. Furthermore, 
PBIAS findings indicated good results (low PBIAS values) for the ma
jority of stations, indicating that the model is accurately simulating the 
observed data (Fig. 5-b). Except for Sahel station, where most models 
significantly underestimate observed streamflow (<− 29). This under
estimation is also noticeable in reference simulations based on observed 
climatic data. These findings suggest that uncertainties are more related 
to model calibration rather than climate models. Therefore, enhancing 

model calibration may lead to more accurate streamflow predictions. In 
comparison to other models, EnsembleGCMs, EnsembleRCMs, and 
GFDLESM4 significantly underestimate streamflow. Despite being the 
best correlated with the reference model, the ensemble means GCMs/ 
RCMs could not reduce bias compared to individual models. This con
trasts previous studies, which indicated that ensemble models reduced 
bias and uncertainty in predicting streamflow (Giménez et al., 2018; 
Maharjan et al., 2021). It is worth noting that this issue can be solved by 
employing another averaging multi-model ensemble approach, such as 
weighting. 

Weighted multi-model averaging, which assigns different weights to 
each model based on its ability to represent the observed climate, can 
provide a more accurate representation of climate projections. Besides, 
several studies (e.g, (Hong et al., 2022)) have shown that weighted 
multi-model ensembles have potential and can lead to more reliable 
climate projections and better-informed decision-making. Therefore, we 
recommend that this approach be used in future research as an alter
native to the simple averaging approach. 

Streamflow’s regime variations 
Variations in the streamflow regime were depicted using flow 

Fig. 5. Statistical parameters (Pear
son correlation (a) and PBIAS coeffi
cient (b)) to evaluate streamflow 
provided from RCM/GCM models 
(Historical period 1981–2005/ 
1981–2014) and measured data 
(Reference) at different hydrological 
stations. The colored symbols repre
sent the eleven RCM/GCM models 
and the reference data for each sta
tion. The sub-panel titles indicate the 
statistical parameters used for 
monthly and annual calculations, 
specifically the Pearson correlation 
and PBIAS coefficient. Note that the 
dashed lines between − 25 and 25 
signify satisfactory simulation 
performance.   

S. Acharki et al.                                                                                                                                                                                                                                 



Climate Services 30 (2023) 100388

11

Fig. 6. Exceedance probabilities of the monthly observed streamflow and historical climate models at different hydrological stations.  

Fig. 7. Avreage annual and seasonal streamflow for 2021–2040, 2041–2070, and 2071–2100 for different RCM and GCM models.  
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duration curves and log10 normal probability to highlight the visibility 
of low values in climate model data. The flow duration curves in Fig. 6 
reveal that almost all RCM and GCM models overestimate medium and 
low values, whereas these models underestimate high values. However, 
extreme streamflows predicted from models tend to be slightly lower 
than those reported at all stations. These significant underestimations 
are predominantly observed in EnsembleGCMs and EnsembleRCMs and 
they could be linked to the multi-model ensemble approach used in this 
research, which utilizes a single mean method. 

Furthermore, the multi-model ensemble’s mean is found to be sub
stantially biased, mainly for medium and low values, with a significant 
overestimation of their exceedance probabilities. It could also be seen 
from Fig. 6 that individual RCM/GCM models adjust streamflow 
exceedances rather effectively, except for low flows, where they signif
icantly overestimate the flow with a probability greater than 0.75. The 
accurately recreating challenge of the low streamflow component is a 
problem that all models face. As suggested by Fang et al. (2015), this 
might be a systematic problem with the calibrated hydrologic model. 

Climate change impacts on streamflow 

Pojected annual and seasonal average streamflow 
Fig. 7 summarizes the simulated mean annual and seasonal stream

flow of each climate model (RCMs and GCMs) over three periods (near, 
mid and far futures) and under RCP 4.5/SSP2-4.5 and RCP 8.5/SSP5-8.5 
scenarios. Under RCP 4.5/SSP2-4.5, the projected mean annual 
streamflow is expected to range from 1.1 m3/s to 9.8 m3/s during the 
period 2021–2100. These projections are slightly higher than the overall 
estimates for the RCP 8.5/SSP5-8.5 scenario, which indicate a stream
flow range of 0.2 m3/s to 8.43 m3/s. This is in agreement with precipi
tation disparities between the two scenarios. A yearly comparison also 
reveals that RCAMO22E produces the highest streamflow values, fol
lowed by Aladin63. WRF381P and HIRHAM5, however, obtained the 
lowest values under RCP 4.5/SSP2-4.5 and RCP 8.5/SSP5-8.5, 

respectively. Furthermore, it can be seen that, across all models, there is 
a general trend of higher streamflow during winter (DJF) and lower 
streamflow during summer (JJA), reflecting the average seasonal pre
cipitation distribution. 

Overall, Fig. 7 shows the potential variability and uncertainty in 
streamflow projections under different climate scenarios and among 
different models. Which could lead to different outcomes depending on 
which model is used. Since each climate model has its own strengths and 
weaknesses, as well as unique climate scenarios, it is not surprising to 
obtain varying streamflow projections. Thus, it is important to consider 
a range of potential outcomes and formulate contingency plans for each 
scenario, especially when making decisions related to water manage
ment, infrastructure planning, and other climate-sensitive sectors. 
Nonetheless, the ensemble mean RCMs and ensemble mean GCMs tend 
to produce similar outcomes in most cases, indicating that the ensemble 
means can help mitigate the effects of model uncertainty and provide 
more reliable projections. 

Relative spatio-temporal change in average annual and seasonal streamflow 
a. Relative temporal change 
Relative changes in annual and seasonal streamflow for all models 

across three periods and under two scenarios are presented in Fig. 8. It 
reveals that mean annual basin streamflow is projected to decrease in 
the future by 82% of models, with a lesser decline in 2021–2040 and a 
higher reduction in 2071–2100 under RCP 4.5/SSP2-4.5 and RCP 8.5/ 
SSP5-8.5 scenarios. According to the findings, climate change is ex
pected to have significant implications for streamflow regimes in the 
Loukkos Basin. In general, the anticipated annual streamflow changes 
are within − 81.3% to 24.3% (-92.1% to 26.1%) in 2021–2040, − 83.7% 
to 18.8% (-95.2% to 25.8%) in 2041–2070, and − 75.4% to 46.1% 
(-96.3% to − 6.5%) in 2071–2100, respectively under RCP 4.5/SSP2-4.5 
(RCP 8.5/SSP5-8.5). Interestingly, for 2021–2040 and under RCP 4.5/ 
SSP2-4.5, MPIESM1 and GFDLESM4 show a moderate decrease in 
annual streamflow (<30%), while RCA4, Earth3Veg, and HIRHAM5 

Fig. 8. Temporal relative change in mean annual streamflow for Loukkos basin.  
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depict a slight annual streamflow decline (<10%). WRF381P, in 
contrast, demonstrated a significant annual streamflow reduction 
(>60%). On the other hand, RACMO22E and Aladin63 revealed a 
considerable increase in annual streamflow. This predicted increment 
might be explained by an increase in annual precipitation, particularly 
during winter (DJF). It is notable that, for 2070–2100 and under RCP 
8.5/SSP5-8.5, annual streamflow decreased slightly and moderately in 
RACMO22E and Aladin63, respectively. Moreover, Earth3Veg, 
MPIESM1, and RCA4 exhibited a high decline in annual streamflow 
(<60%), whereas GFDLESM4, WRF381P, IPSLCM6A, and HIRHAM5 
showed a significant yearly streamflow decline (>60%). Overall future 
periods, ensemble mean RCMs indicate reductions by 32.3% (58.8%), 
whereas ensemble mean GCMs reveal declines by 45.9% (52.6%) under 
RCP 4.5/SSP2-4.5 (RCP 8.5/SSP5-8.5). Similar results were reported by 
El Khalki et al. (2021), who concluded that, using five RCMs and GR2M 
models, discharge of Oued El Abid basin will decrease sharply from 57.4 
to 86.6 in 2031–2060 and 2061–2090. Moreover, Moçayd et al. (2020) 
and Tramblay et al. (2013) found largely similar results, indicating that 
under RCP P4.5 and RCP 8.5, the average annual streamflow will 
significantly decrease from 20% to 60% and from 30% to 57% in 
Makhazine dam catchment and Loukkos basin, respectively. 

However, our annual relative changes are slightly higher than those 
found in other Mediterranean watersheds, particularly in Aracthos River 
basin-Greece (almost − 20%) (López-Ballesteros et al., 2020), El Kalb 
River-Lebanon (-23% to − 45%) (Saade et al., 2021), and Tafna 
watershed-Algeria (-20% to − 48%) (Mami et al., 2021). As indicated in 
the results, different emission scenarios resulted in a wide range of 

Table 3 
Previous studies about climate change impacts on water resources in Mediter
ranean region.  

Reference Streamgaging 
period 

Water resources Change 
(%)  

(Choukri et al., 2020) 1980–2010 Water availability: − 9.9 to 
− 33.3  

(Moçayd et al., 2020) 1971–2017 Runoff: − 20.0 to − 60.0  
(López-Ballesteros et al., 

2020) 
1980–1999 Streamflow: − 20.0  

(Mami et al., 2021) 1981–2010 Surface flow: − 20.0 to 
− 48.0  

River discharge: − 42.0 to 
− 54.0    

(Marchane et al., 2017) 1989–2009 Surface runoff: − 19.0 to 
− 63.0  

(Martínez-Salvador et al., 
2021) 

1993–2018 Streamflow: − 46.3 to 
− 52.4   

2003–2018 and − 46.6 to − 55.8  
(Milewski et al., 2019) 1979–2007 Runoff: 13.8  
(Saade et al., 2021) 2003–2015 − 23 to − 45  
(Tramblay et al., 2013) 1984–2010 Surface runoff: − 30 to 

− 57  
(El Khalki et al., 2021) 1985–2014 Runoff: − 57.4 to − 86.6  
(Acharki, 2020) - Surface water: − 0.75 to 

− 33.65  
(Candela et al., 2016) 1984–2008 Runoff: − 49.5  
(Driouech, 2010) 1956–2000 − 20.0 to − 30.0   

Fig. 9. Spatial relative change in mean annual streamflow in 2021–2040, 2041–2070, and 2071–2100 under RCP 4.5/SSP2-4.5 and RCP 8.5/SSP5-8.5 scenarios as 
compared to 1981–2020. 
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future projections. It can be observed in Fig. 8 that for all models, the 
projected changes indicate a more pronounced decrease/increase under 
RCP 8.5/SSP5-8.5 than under RCP4.5/SSP2-4.5. This is consistent with 
previous studies (El Khalki et al., 2021; Moçayd et al., 2020; Martínez- 
Salvador et al., 2021; Nilawar and Waikar, 2019; López-Ballesteros 
et al., 2020; Saade et al., 2021; Tramblay et al., 2013), which are 
illustrated in Table 3. This difference between scenarios could be 
because RCP 8.5/SSP5-8.5 is a very high baseline scenario without 
mitigation. In contrast, RCP 4.5/SSP2-4.5 is an intermediate emission 
stabilization scenario with mitigation. 

Similarly to annual, the future mean seasonal streamflow is projected 
to decrease in all seasons except autumn (SON). Among the models, 55% 
and 27% indicate an increase under RCP 4.5/SSP2-4.5 and RCP 8.5/ 
SSP5-8.5 scenarios, respectively. For instance, the projected changes 
in autumn streamflow range from − 93.9% (IPSLCM6A/2071–2100) to 
116.0% (RCA4/2041–2070) among different models. While some 
models show a decline, others exhibit an upward trend. However, it 
should be noted that such changes in streamflow have the potential to 
cause droughts or flooding events. 

From Fig. 8, it is concluded that the decrease in mean seasonal 
streamflow is most during summer (JJA) and will reach − 99.8% (HIR
HAM5/2021–2040 and IPSLCM6A/2071–2100). These summer 
streamflow reductions may seem large in percentage, but they are 
actually a departure from very small baseflow values. These findings are 
in line with those of a previous study (López-Ballesteros et al., 2020), 
which found that the greatest reductions in streamflow occur in summer, 
followed by autumn. They also indicated that the decline will be less 
noticeable in winter and spring. In contrast, the study of El Khalki et al. 
(2021) revealed that the relative change reduces in winter and spring. It 

should be highlighted that even minor reductions in streamflow during 
other seasons can have significant implications for water availability 
and management in water-stressed regions. Hence, sustainable water 
management strategies need to consider the magnitude and timing of 
projected streamflow changes. For Ensemble mean RCMs (Ensemble 
mean GCMs), average spring streamflow is expected to decrease by 
58.0% (48.1%), 62.0% (77.2%), and 81.8% (87.4%) under RCP 8.5/ 
SSP5-8.5 scenario for near, mid, and far futures, respectively. As ex
pected, when compared to RCP 8.5/SSP5-8.5, these shifts are clearly less 
negative under RCP 4.5/SSP2-4.5, with differences ranging from 
− 48.1% (Ensemble mean RCMs-2071–2100) to − 8.2% (Ensemble mean 
GCMs-2041–2070). Overall season, the magnitude of reduction is 
greater in RCP 8.5/SSP5-8.5 scenario than in RCP 4.5/SSP2-4.5 
scenario. 

In anticipation of the significant reduction in streamflow that is 
likely to occur by the end of this century, Morocco is implementing 
various measures. These include constructing 50 new dams by 2050 
with the aim of increasing storage capacity to 32 billion m3 and pro
moting water efficiency by modernizing irrigation systems. The adop
tion of innovative techniques like precision agriculture, remote sensing, 
and artificial intelligence is also expected to enhance irrigation effi
ciency and water management. Nonetheless, further research is required 
to understand the role of dams in water management and their potential 
impact on future irrigation practices, particularly in light of the chal
lenges posed by climate change. 

b. Relative spatial change 
Projected relative spatial change in annual and seasonal streamflow 

at different periods and scenarios are provided in Figs. 9 and 10, 
respectively. From Fig. 9, it can be seen that relative future change in 

Fig. 10. Spatial relative change in seasonal streamflow in three periods for Aladin63 and Earth3Veg under RCP 4.5/SSP2-4.5 and RCP 8.5/SSP5-8.5 scenarios.  
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annual streamflow differs by RCM and GCM models. 
Aladin63 and RACMO22E indicate annual streamflow gains with 

relative changes ranging between 0%-60% in almost all periods and 
scenarios. This information can aid decision-makers in making informed 
choices regarding water allocation, storage infrastructure, and irrigation 
practices. However, these gains are expected to decrease from 
2021–2040 to 2041–2070 and then increase from 2041–2070 to 
2071–2100, highlighting the need for long-term planning. Decision- 
makers can use this information to anticipate future changes in water 
availability and make proactive decisions. When compared to Aladin63, 
RACMO22E displays more positive variations. Furthermore, central, 
northwest, and south sub-basins are the most affected by these gains. 
This information can help decision-makers prioritize water management 
efforts in these regions. Conversely, under the RCP 8.5 scenario during 
2071–2100, annual streamflows would be mostly dropping in most ba
sins, with a 30% decline in the southwest. In contrast, WRF381P’s 
annual streamflow shift differed considerably from the other two RCM 
models, indicating a large reduction of − 60% to − 90% across most of 
basin. The projections also reveal that the largest reductions (<-90%) 
are more likely to occur in the basin’s northern part, where the Dar 

Khrofa dam is located, notably under RCP 4.5 scenario. This information 
is critical for decision-makers responsible for water management in the 
Loukkos basin as they can prioritize their efforts in the northern region 
to protect the Dar Khrofa dam. Building additional water storage facil
ities, such as reservoirs, can help mitigate the impact of reduced 
streamflow during dry periods. They may also consider implementing 
measures to increase water efficiency, such as reducing water losses in 
distribution systems or promoting water-saving technologies, to ensure 
the long-term sustainability of the Loukkos basin’s water resources. 
Although Earth3Veg predicted some increases in streamflow, particu
larly for 2021–2040 under SSP2-4.5 scenario and more frequently for 
western and northern sub-basins, annual streamflow declines over the 
other periods in most sub-basins. For example, southwestern sub-basins 
are projected to see the most declines (-60% to − 90%), notably in 
2071–2100. These sub-basins are renowned for their agricultural land, 
and the projected decrease in streamflow could have severe conse
quences. To address these potential impacts, decision-makers need to 
take action by implementing measures such as promoting the use of 
efficient irrigation technologies, supporting drought-resistant crop 
cultivation, and encouraging farmers to adopt sustainable water 

Fig. 11. Annual streamflow responses to changes in precipitation and temperature, relative to baseline period (1981–2014), over Loukkos basin for different RCM 
and GCM models under RCP 4.5/SSP2-4.5 scenario. 
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management practices. For IPSLCM6A, the annual streamflow will be 
substantially reduced in both scenarios, following a southwest-northeast 
gradient. We estimate that these losses would increase from 2021–2040 
to 2071–2100, and are more significant in the northwest and southwest 
sub-basins, particularly under SSP5-8.5, which represents a variation of 
more than − 90%. 

We note that, for Fig. 10, we chose to focus on one RCM model 
(ALADIN63) and one GCM model (EC-Earth3-veg) as they offered the 
most consistent and reliable projections of streamflow changes across 
the range of climate scenarios and time periods considered. By pre
senting results from these two models, we aim to provide a clear and 
concise picture of potential streamflow changes in the Loukkos water
shed under different climate scenarios, without overwhelming readers 
with a large number of models to consider. 

On the other hand, future seasonal streamflow variation fluctuates 
widely depending on the season, period, climate model and scenario, 
and is anticipated to drop by 2071–2100, as illustrated in Fig. 10. 

Aladin63 indicates an overall increasing shift in winter and spring 
streamflow for most of Loukkos basins, with a few exceptions, such as 
the north and center sub-basins, where negative changes were found in 
spring. Summer streamflow reveals a mixed change, with most sub- 
basins likely to follow a decrease, while the northwest and southwest 
sub-basins, are likely to project an increment, except in 2071–2100 
under RCP 8.5. Similarly, there is a mixed change in autumn streamflow. 
With a few exceptions, it appears to be declining in 2021–2040, while 
rising in 2041–2070 and 2071–2100 in most sub-basins. In summary, 
Aladin63’s spatial distributions of seasonal streamflow change differ 
from Earth3Veg’s. Overall, Earth3Veg model shows a general drop over 
most sub-basins between winter and summer and a substantial increase 
in autumn under both scenarios, with a few exceptions. From Fig. 10, it 
can be observed that more negative spatial variation is expected in 
summer than in winter and spring. 

Fig. A.12. Annual and seasonal variations in precipitation, minimum and maximum temperatures for different RCM and GCM models RCP 4.5/SSP2-4.5 and RCP 
8.5/SSP5-8.5 scenarios. 
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Sensitivity of streamflow to precipitation and temperature changes 
Streamflow change responses to future precipitation and tempera

ture change are presented in Figs. 11 and A.15. Overall, changes in 
streamflow are primarily influenced by changes in precipitation. Similar 
findings have been reported by Ndhlovu and Woyessa (2021) and Yin 
et al. (2018). Temperature variations, on the other hand, appear to have 
little impact on streamflow. Fig. 11 shows also that Aladin63, RAC
MO22E, RCA4, and HIRHAM5 models predict the most significant 
changes. 

The WRF381P and IPSLCM6A models anticipated mainly negative 
changes in streamflow due to their underestimation of projected pre
cipitation relative to the reference period. More negative precipitation 
and warmer temperatures are predicted under RCP 8.5/SSP5-8.5 sce
nario (Fig. A.15), resulting in negative changes in streamflow. 
Compared to RCM models, the GCM models predicted only minor in
creases in streamflow. This indicates that the RCM models anticipate a 
positive change in flow rates. This could be explained by precipitation 

drop magnitude derived from ensemble means GCMs compared to 
ensemble means RCMs under both scenarios. 

Conclusion 

Climate services are crucial in providing decision-makers with the 
information they need to implement successful policies and strategies 
for climate change adaptation and water resource management. In this 
study, we investigated climate change impacts on future streamflow 
using SWAT model, for the first time, in Loukkos basin (northwestern 
Morocco). To set up SWAT model’s input data, five regional climate 
models (EURO-CORDEX), four global climate models (CMIP6), and their 
ensemble mean were bias-corrected using distribution mapping. Me
dium and high representative concentration pathways (RCPs and SSPs) 
were considered for near (2021–2040), mid (2041–2070), and far 
(2071–2100) futures and compared to baseline period 1981–2020. In 
addition, land use/land cover map was generated using Random Forest 

Fig. A.13. Comparison of monthly observed and simulated streamflow during calibration and validation at different gauging stations, on Loukkos basin.  
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algorithm. Using SUFI-2 algorithm in SWAT-CUP, SWAT model was 
further calibrated and validated at ten hydrological stations. The main 
conclusions are summarized as follows: 

(1) SWAT model’s calibration and validation revealed good perfor
mance (NSE >0.77 and PBIAS within ±10%) in streamflow 
simulations on a monthly basis.  

(2) When compared to individual models (GCMs/RCMs), using a 
simple mean approach for multi-ensemble models may not result 
in a significant reduction in bias. This emphasizes the significance 
of thoroughly selecting appropriate models to achieve accurate 
predictions. Therefore, it may be more beneficial for future 
research to use a weighted multi-ensemble approach that takes 
into account the performance of individual models.  

(3) For most models, there was an increase in the annual minimum 
and maximum temperatures, with an increment of 0.9–6.5 ◦C and 

0.6–6.8 ◦C, respectively. In addition, climate change will also 
have an impact on precipitation. Overall, annual precipitation is 
expected to drop from 79.8% to 1.9%, while it is expected to rise 
from 3.4% to 20.7% for some RCM models such as Aladin63 and 
RACMO22E.  

(4) For most models, there was an increase in the annual minimum 
and maximum temperatures, with an increment of 0.9–6.5 ◦C and 
0.6–6.8 ◦C, respectively. In addition, climate change will have 
also an (4) Based on correlation analyses, changes in precipita
tion have a greater impact on streamflow response compared to 
increases in air temperature. Besides, the uncertainties in 
streamflow modeling at some stations, such as Sahel, may be 
more related to the model calibration rather than the climate 
models themselves. Nonetheless, further research is needed to 
improve understanding and to confirm these findings, and 

Fig. A.14. Comparison of monthly observed and simulated streamflow during calibration and validation at different gauging stations, on Loukkos basin. (continued).  
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explore the factors that affect streamflow response and un
certainties in more detail.  

(5) Projected streamflow indicates a rise or decrease, depending on 
the RCM/GCM model. For instance, 82% of models showed a 
reduction in annual streamflow. Under RCP 8.5/SSP5-8.5, the 
magnitude of change varied between − 92.1% to 26.1% and 
− 96.3% to − 6.5% in 2021–2040 and 2071–2100, respectively. 
This thus indicates that the change is expected to be gradually 
aggravated in the far-future (2071–2100). Moreover, seasonal 
streamflow obviously varies from one model to another 
depending on the season, future period, and scenario. With this 
information, decision-makers can prioritize water management 
efforts and plan for the long-term sustainability of water re
sources in the Loukkos basin. They can take proactive measures 
such as constructing additional water storage facilities, promot
ing the use of water-efficient technologies, supporting drought- 
resistant crop cultivation, and adopting sustainable water 

management practices to ensure the availability of water re
sources in the future. 

Therefore, the study’s findings underscore the importance of climate 
services, as policymakers need to consider projected changes in 
streamflow and precipitation patterns to develop sustainable water 
resource management policies and adaptation measures in the Loukkos 
basin, particularly in irrigated areas. In summary, the study’s method
ology and findings can also be extended to other regions facing similar 
challenges, demonstrating the value of climate services in informing 
decision-making and policy development at both the local and global 
scales. Climate services, through harnessing cutting-edge climate 
research and technology, can help society adapt to climate change’s 
impacts and build resilience for a sustainable future. Ultimately, further 
investigations on other hydrological process components and their 
future evolution are suggested. 

Fig. A.15. Annual streamflow responses to changes in precipitation and temperature, relative to baseline period (1981–2014), over Loukkos basin for different RCM 
and GCM models under RCP 8.5/SSP5-8.5 scenario. 
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Planton, Y., Polcher, J., Rio, C., Rochetin, N., Rousset, C., Sepulchre, P., Sima, A., 
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