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Abstract
We discuss a teleparallel version of Newton–Cartan gravity. This theory arises
as a formal large-speed-of-light limit of the teleparallel equivalent of general
relativity (TEGR). Thus, it provides a geometric formulation of the Newtonian
limit of TEGR, similar to standard Newton–Cartan gravity being the Newto-
nian limit of general relativity. We show how by a certain gauge-fixing the
standard formulation of Newtonian gravity can be recovered.

Keywords: Newton–Cartan gravity, teleparallel gravity, Newtonian limit,
Galilei geometry, teleparallel equivalent of general relativity

(Some figures may appear in colour only in the online journal)

1. Introduction

Any viable theory of gravity has to reproduce Newtonian gravity in the slow-velocity, weak-
gravity Newtonian limit. For standard general relativity (GR), this Newtonian limit is tradi-
tionally exhibited by linearising the Einstein equations around a Minkowski spacetime back-
ground and imposing small velocities of matter, employing a suitable choice of coordinates
(see, e.g., the textbook accounts [1, chapter 18], [2, section 5.1]).

However, there exists also a geometric, coordinate-free formulation of this limiting process:
standard Newtonian gravity may be reformulated in geometric terms as so-called Newton–
Cartan gravity, which features a Galilei-relativistic spacetime geometry and describes New-
tonian gravity by a curved connection, similar to GR. Newton–Cartan gravity can be shown
to arise as the Newtonian limit of GR. It was originally developed by Cartan in 1923 [3, 4]
and independently by Friedrichs in 1926 (published in 1928) [5]. Important further contribu-
tions to Newton–Cartan gravity were made by Trautman in the 1960s [6, 7], by Künzle in the
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1970s [8, 9], and by Ehlers in a 1981 article [10, 11] on the precise relation between GR and
Newton–Cartan gravity. An elementary textbook account of Newton–Cartan gravity is given
in a book on foundational issues of GR by Malament [12, chapter 4], to which we also refer
for further historical references.

In this article, we answer the question what the corresponding geometric description of the
Newtonian limit looks like for the teleparallel equivalent of general relativity (TEGR) [13].
Teleparallel gravity [14] is a class of gravitational theories in which the geometric framework
for the description of gravity is modified compared to that of standard GR: in addition to the
spacetime metric, one considers as basic ingredient a connection that is metric but, differently
to the Levi-Civita connection, torsionful and flat. This framework allows for a dynamically
equivalent formulation of GR, namely the above-mentioned TEGR, and modified teleparallel
theories of gravity have recently gained a lot of interest in the context of classical modified
gravity or effective descriptions of quantum gravity [14–17].

The geometry of Galilei manifolds, which underlies Newton–Cartan gravity, admits a
‘gauge-theoretic’ description in terms of the Bargmann group (i.e. the centrally extended
inhomogeneous Galilei group), which was initially discovered in the 1980s in the context of
massive matter coupling [18, 19]. Over the last decade, interest in Galilei geometries has sig-
nificantly increased due to novel applications in condensed matter physics as well as in ‘non-
relativistic’ string theory and related applications in quantum gravity [20–24]. In this context,
the gauge-theoretic perspective has been further developed [25, 26]. It is this perspective on
the geometry of Galilei manifolds in which a teleparallel formulation of Newton–Cartan grav-
ity arises very naturally, which turns out to give the sought-for geometric description of the
Newtonian limit of TEGR.

For the consideration of modifications of GR, there are some typical physical motivations,
such as the problem of quantisation, observational issues in cosmology or astrophysics, or
the prediction of singularities. Of those motivations, none applies to Newtonian gravity—for
example, Newton–Cartan gravity coupled to a matter field can be rigorously quantised [27].
Therefore, one might argue that on physical grounds, the investigation of geometrically modi-
fied descriptions of Newtonian gravity just by itself does not seem necessary. Notwithstanding
this argument, our investigation of a ‘teleparallelised’ version of Newton–Cartan gravity that
gives the geometric description of the Newtonian limit of teleparallel gravity is still of funda-
mental importance on a both conceptual and theoretical level: the description of a physically
interesting limit of an inherently geometric theory ought to be given in a geometric fashion.

A teleparallel formulation of Newton–Cartan gravity was also constructed by Read and Teh
in [28]. Their approach is different from ours in two important aspects. First, in [28] the the-
ory is constructed only in a restricted, ‘gauge-fixed’ situation; in the present paper, we develop
instead a completely general teleparallel description of Newton–Cartan gravity, without intro-
ducing arbitrary assumptions on the connection or the frame. (In fact, the formalism of [28]
may be shown to arise as a special case of ours.) Second, [28] does not analyse the Newtonian
limit of TEGR, but instead shows that its teleparallel formulation of Newton–Cartan gravity
can be obtained from higher-dimensional TEGR by null reduction, i.e. quotienting along a
lightlike symmetry [19, 29].

The structure of this paper is as follows. First, we quickly introduce notation and conven-
tions used throughout the article in section 1.1. In section 2, we introduce the geometric frame-
work for our formulation of teleparallel Newton–Cartan gravity (starting with a review of the
geometry of Galilei manifolds), and formulate the theory. Section 3 shows that this theory is
the Newtonian c→∞ limit of TEGR; in section 4 we discuss how to recover the standard
formulation of Newtonian gravity from teleparallel Newton–Cartan gravity. We conclude and
discuss possible directions for future research in section 5.
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1.1. Notation and conventions

1.1.1. Lie groups and algebras. For a Lie group denoted by a Latin capital letter (or by
several letters), the corresponding Lie algebra will be denoted by the corresponding lowercase
Fraktur letter, e.g. g= Lie(G).

The semidirect product of Lie groups H and N with respect to a homomorphism ρ : H→
Aut(N) will be denoted by

H⋉ρ N. (1.1)

Similarly, the semidirect sum of Lie algebras h and nwith respect to a homomorphism ρ̃ : h→
Der(n) will be denoted by

As a vector space, this is of course just the direct sum of h and n, but we want to take account
of the nontrivial Lie bracket structure in the notation. In the case of both semidirect products
and sums, if the homomorphism is clear from context we will omit it from the notation.

1.1.2. The Galilei and Bargmann groups. When we speak of the Galilei group without fur-
ther qualification, we will mean the orthochronous homogeneous Galilei group, which is a
semidirect product

Gal=O(3)⋉R3 (1.3)

whose parts are interpreted as spatial (improper) rotations and Galilei boosts, respectively,
where the homomorphism for the semidirect product is the defining representation of O(3).1

The inhomogeneous (orthochronous) Galilei group is the semidirect product

IGal=Gal⋉R4 (1.4)

of homogeneous transformations and spacetime translations, where the homomorphism
Gal→ Aut(R4) is given by

(R,k)(s,y) = (s,Ry+ sk) (1.5a)

for (R,k) ∈Gal and (s,y) ∈ R×R3 = R4. We can thus viewGal as a subgroup ofGL(4), with
the element (R,k) ∈Gal corresponding to the matrix(

1 0
k R

)
. (1.5b)

The Bargmann group, whose Lie algebra is the essentially unique one-dimensional central
extension of the inhomogeneous Galilei algebra, is given as

Barg=Gal⋉ (R4 ×U(1)), (1.6)

where the homomorphism Gal→ Aut(R4 ×U(1)) is given by

(R,k)(s,y,eiφ) = (s,Ry+ sk,ei(φ+k·Ry+ 1
2 |k|

2s)). (1.7)

1 Note that the restriction to the orthochronous Galilei group is not essential at all; including time reversal would just
introduce the necessity to define the notion of Galilei manifolds in section 2 in terms of a time metric instead of a
clock one-form, which automatically introduces a choice of time orientation (and time-orientability).
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Note that our sign conventions for the inhomogeneous Galilei group and the Bargmann group
are different from those used in [26].

1.1.3. Forms on principal bundles. Forms living on the total space of a principal bundle will
be denoted by boldface letters; their local representatives on the base manifold, i.e. pullbacks
along local sections of the bundle, will be denoted by the corresponding non-boldface letters
(the local section being understood from context). For example, if ω ∈ Ω1(P,g) is a connec-
tion form on a principal G-bundle P

π−→M, then for a local section σ ∈ Γ(U,P) on U⊂M the
corresponding local connection form is ω = σ∗ω ∈ Ω1(U,g).

Given a representation η : G→GL(V), the space of η-tensorial k-forms on the total space
P of a principal G-bundle will be denoted by Ωk

η(P,V) or, if the representation is clear from
context, by Ωk

G(P,V).

1.1.4. Index notation. Unless otherwise specified, spacetime manifolds will be assumed as
four-dimensional and denoted byM. The Einstein summation convention will be used through-
out the article. Lowercase Greek letters will be used as coordinate indices on spacetime; for
example, the coordinate component decomposition of a vector field reads X= Xµ∂µ.

Frame indices labelling a local frame of vector fields, i.e. a local section of the linear frame
bundle F(M) or a reduction thereof, will be uppercase Latin letters. These will also be used
to denote the frame components of tensor fields; for example, the frame decomposition of a
vector field reads X= XAeA, where the local frame is (eA) and the frame components of X are
given by XA = eA(X) = eAµX

µ in terms of the dual frame (eA). Put differently, denoting by

E= F(M)×GL(4) R4 (1.8)

the vector bundle associated to the linear frame bundle F(M) via the fundamental representa-
tion of GL(4), this means that we freely use the canonical solder form of E to identify E with
the tangent bundle TM, while always representing elements of E with respect to chosen local
frames; and analogously for the corresponding tensor bundles.

If we reduce the structure group of the linear frame bundle to the Galilei group (for details
see section 2.1), and therefore understand R4 as the space on which the Galilei group acts
according to (1.5), we will often decompose frame indices according to

(A) = (t,a), (1.9a)

using t as a ‘temporal’ index and lowercase Latin letters as ‘spatial’ indices running from 1 to
3. For example, a frame of local vector fields would then be decomposed as

(eA) = (et,ea), (1.9b)

or an element of R4 as

y= (yA) = (yt,ya). (1.9c)

If the relevant group is the Lorentz group instead, the temporal index will be denoted by 0
instead of t.

1.1.5. Linear connections. Given a linear connection ∇ on a manifold M, for its coordinate
connection coefficients Γρ

µν the first lower index will be the ‘form index’/differentiation index,
i.e.

(∇XY)
ρ = Xµ(∂µY

ρ +Γρ
µνY

ν). (1.10)

4



Class. Quantum Grav. 40 (2023) 105008 P K Schwartz

In particular, the coordinate expression for the torsion is

Tρµν = 2Γρ
[µν] = Γρ

µν −Γρ
νµ . (1.11)

Similarly, if we have a ‘teleparallel’ connection∇ and a ‘non-teleparallel’ connection ∇̃ (e.g.
the Levi-Civita connection in standard Lorentzian GR), for the components of their difference
tensor we will use the convention

Kρ
µν = Γρ

µν − Γ̃ρ
µν . (1.12)

Note that in some literature on teleparallel gravity, in particular in the review [14], the oppos-
ite convention is used for the lower indices of the connection coefficients, with the second
one being the form index. Therefore, in [14] the index positioning on the contortion (1.12) is
different to ours as well, even though the definition looks identical.

We use the same convention for the coordinate components of local connection forms with
respect to local frames: the form index comes before the frame indices, i.e. for a local frame
(eA) the local connection form is given by

∇eB = ωAB⊗ eA with ω
A
B = ωAµB dx

µ. (1.13)

Given a linear connection as a covariant derivative operator ∇ on TM, when extending it
to higher-degree tensor bundles over M via a Leibniz rule, we will not always employ the
identification of the tangent bundle TM with the associated vector bundle E from (1.8) via the
canonical solder form. We will extend∇ to tensor bundles of the form (TM)⊗r⊗ (T∗M)⊗s⊗
E⊗p⊗ (E∗)⊗q in two different ways: one denoted (again) by∇, acting only on tensor powers of
TM or its dual, not acting on the E factors; and another one denoted byD, acting on all factors.
In index notation, this means that covariant differentiation with ∇ ‘acts only on spacetime
indices’, while covariant differentiation with D ‘acts on both spacetime and frame indices’.
For example, this means that for a tensor field

X= XρA
σB ∂ρ ⊗ dxσ ⊗ eA⊗ eB ∈ Γ(TM⊗T∗M⊗E⊗E∗) (1.14a)

we have

∇µX
ρA
σB = ∂µX

ρA
σB+Γρ

µνX
νA
σB−Γν

µσX
ρA
νB , (1.14b)

but

DµX
ρA
σB = ∂µX

ρA
σB+Γρ

µνX
νA
σB−Γν

µσX
ρA
νB+ωAµCX

ρC
σB−ωCµBX

ρA
σC . (1.14c)

2. Bargmann structures and teleparallel Galilei connections

In this section we will introduce the geometric framework for our teleparallel version of
Newton–Cartan gravity, and formulate the theory.

In section 2.1, we review the geometric framework of Galilei manifolds, which underlies
usual Newton–Cartan gravity aswell as its teleparallel variant.We present the classical descrip-
tion of the geometry as given by Künzle [9] and Ehlers [10, 11] and reviewed by Malament
[12, chapter 4], but at some points provide a modernised perspective based on some aspects
of the recent paper [26].

In section 2.2, we give a global, principal-bundle-based formulation of the ‘Bargmann
spacetime’ framework by Geracie et al [26], which makes explicit in which sense the
Bargmann group underlies the geometry of Galilei manifolds as a local symmetry group. Of
course, this global description is in some sense implicit in the local description from [26];
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however, an explicitly global formulation makes the invariant nature of the involved objects
stand out more clearly.

Finally, in section 2.3 we employ the previously introduced framework to ‘teleparallelise’
Newton–Cartan gravity.

2.1. Galilei manifolds

A Galilei manifold is a four-dimensional manifold M with a nowhere vanishing clock 1-form
τ ∈ Ω1(M) and a symmetric contravariant 2-tensor h of signature (3,0,1)—i.e. positive def-
inite/negative definite/degenerate on subbundles of T∗M of rank 3/0/1 respectively—, called
the space metric, whose degenerate direction is spanned by τ , i.e.

τµh
µν = 0. (2.1)

The kernel of τ at any point are the spacelike vectors at this point, on which h defines a
positive definite scalar product. The integral of τ along any curve is interpreted as the time
elapsed along the curve. In the following, we will mostly assume that dτ = 0, such that the
time between two events is independent of the worldline between them chosen to measure it,
i.e. we have an absolute notion of time. This also implies that the distribution of spacelike
vectors is integrable, i.e. we have hypersurfaces of simultaneity/leaves of ‘space’, on each of
which h defines a Riemannian metric. The assumption dτ = 0 of absolute time is made in
standard Newton–Cartan gravity. Note however that by Frobenius’ theorem the integrability
of the distribution kerτ , i.e. the existence of an absolute notion of simultaneity, is equivalent to
the weaker condition τ ∧ dτ = 0. Newton–Cartan gravity in themore general context of a clock
form satisfying only this integrability condition is referred to as twistless torsional Newton–
Cartan gravity [22, 23]. In this article, we will however only be considering the teleparallel
formulation of standard Newton–Cartan gravity, assuming absolute time.

A Galilei frame is a local frame (et = v,ea) of vector fields on M such that

τ(v) = 1, hµν = δabeµa e
ν
b . (2.2)

A choice of Galilei frame (or, indeed, of a temporal reference vector field v alone) gives us a
projector onto space along v, namely

Pµ
ν = δµν − vµτν , (2.3a)

and defines a v-dependent ‘inverse’ of h, whose components we denote by hµν (always under-
standing the implicit v-dependence), by

hµνv
ν = 0, hµνh

νρ = Pρ
µ . (2.3b)

In terms of the vector fields of the frame and the covector fields of its dual frame, which we
denote by (et = τ,ea), these objects may be expressed as

Pµ
ν = eµa e

a
ν , hµν = δabe

a
µe

b
ν . (2.4)

In the context of Galilei manifolds, we will use the common convention of ‘raising indices’
by contraction with the space metric hµν , and of ‘lowering’ indices by contraction with hµν if
a temporal reference field v is chosen. Note that due to the degeneracy of h these operations
are not inverses of each other, but first raising and then lowering an index (or vice versa)
corresponds to contracting with the spatial projector Pµ

ν . Similarly, if a local Galilei frame has
been chosen, we will use δab and δab to raise and lower spatial frame indices.

As one easily checks, basis change matrices between Galilei frames (evaluated at a point)
are precisely elements of the homogeneous Galilei group Gal, understood as a subgroup of
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GL(4) according to (1.5). Thus, Galilei frames are local sections of a reduction of the structure
group of the linear frame bundle F(M) fromGL(4) toGal, which we denote by G(M) and call
theGalilei frame bundle of (M, τ,h). Given a four-dimensionalmanifoldM, the specification of
such a reduction is equivalent to the specification of τ and hmakingM into a Galilei manifold,
and therefore we call such a reduction G(M) a Galilei structure on M.

Any change of local Galilei frame, i.e. of local section of G(M),2 has the form

(v,ea)→ (v,ea) · (R,k)−1 (2.5a)

for a local Gal-valued function (R, k), where the dot denotes the right action of Gal on G(M).
Spelled out, this reads

(v,ea)→
(
v− eb(R

−1)bak
a,eb(R

−1)ba
)
, (2.5b)

and we call such a change of frame a local Galilei transformation by (R, k). This defines a left
action on local Galilei frames by the group of local Gal-valued functions.

A Galilei connection on a Galilei manifold is a principal connection ω on the Galilei frame
bundleG(M). The local connection formwith respect to a Galilei frame (v,ea), i.e. the pullback
of the connection form ω on the total space along the frame, is a local one-form ω onM with
values in the homogeneous Galilei Lie algebra gal= so(3) R3. We decompose it as

ω = (ωab,$
a), (2.6)

and following [26], we will sometimes call its so(3)-valued part ωab the spin connection and
its R3-valued part $a the boost connection3.

Since G(M) is a reduction of the structure group of F(M) to Gal, a Galilei connection is
equivalently given by a covariant derivative operator∇ on the tangent bundle TM whose local
connection form ωA B with respect to a Galilei frame, defined by

∇eB = ωA B⊗ eA (2.7)

and a priori taking values in gl(4), takes values in gal, viewed as a subalgebra of gl(4) accord-
ing to (1.5). This means that ωA B satisfies

ωtA = 0, (2.8a)

δacω
c
b =−δbcω

c
a . (2.8b)

The boost connection $a then arises as the ‘spatio-temporal part’ of ωA B,

$a = ωat . (2.9)

Equivalently to (2.8), a covariant derivative operator∇ is a Galilei connection iff it is compat-
ible with τ and h, i.e. satisfies

∇τ = 0, ∇h= 0. (2.10)

Note that from compatibility with τ = et, it follows that for any tensor field with components
Xµ1...µr+1
ν1...νs satisfying Xµ1...µrt

ν1...νs = 0 we have

DσX
µ1...µrt
ν1...νs = 0. (2.11)

2 We avoid the ambiguous term ‘gauge transformation’ here, since it could mean either such a change of local section
or a (global) fibre-preserving automorphism of the total space.
3 Note that due to the semidirect product nature of Gal, the boost ‘connection’ does not define a connection by itself,
other than the spin connection, which induces a connection on the bundle of orthonormal frames for the distribution
kerτ ⊂ TM of spacelike vectors together with the metric induced by h.
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The Newton–Coriolis form4 of a Galilei connection ω with respect to a local Galilei frame
(v,ea) is the (local) two-form Ω on M with components

Ωµν := 2(∇[µv
κ)hν]κ . (2.12a)

Due to ∇v=∇et =$a⊗ ea, we may also express Ω in terms of the boost connection,

Ωµν = 2$[µ
ahν]κe

κ
a = 2$[µ|a|e

a
ν] , (2.12b)

which may also be written as

Ω=$a ∧ ea. (2.12c)

Using the notation $ ν
µ :=$ a

µ eνa , this may be expressed by the mnemonic that ‘Ω is the
antisymmetric part of the boost connection’,

Ωµν = 2$[µν] . (2.12d)

However, this involves some abuse of notation: since $ a
µ are not the components of a

tensor field on M, the components $ ν
µ do not have an invariant meaning.

A Galilei connection is determined by its torsion T and its Newton–Coriolis form Ω, with
connection coefficients in coordinates given by

Γσ
µν = vσ∂(µτν) +

1
2
hσρ(∂µhνρ + ∂νhµρ − ∂ρhµν)+

1
2
Tσ

µν −Tσ
(µν) + τ(µΩν)

σ. (2.13)

The temporal component of the torsion of a Galilei connection is equal to T tµν = (dτ)µν , i.e. if
we assume absolute time, the temporal torsion vanishes. If conversely Ω is an arbitrary two-
form and T any tensor field with the antisymmetry of a torsion that satisfies Ttµν = (dτ)µν ,
then (2.13) defines a Galilei connection with torsion T and Newton–Coriolis form Ω.

We note that, as for any principal connection on a reduction of the linear frame bundle, the
torsion of a Galilei connection can be written in the following way: the tangent bundle TM is
canonically isomorphic to the associated vector bundle E= G(M)×Gal R4 via the canonical
solder form θ ∈ Ω1(M,E) of E. Taking the exterior covariant derivative of the solder form
with respect to the connection then yields the torsion T ∈ Ω2(M,E)∼=Ω2(M,TM) (‘Cartan’s
first structure equation’):

T= dωθ. (2.14a)

In terms of a local Galilei frame, we have θ = eA⊗ eA, i.e. the components of the canonical
solder form with respect to the frame (viewed as a local frame for E) are given by the dual
frame one-forms. Thus, expressed in components the first structure equation reads

T A = (dωθ)A = deA+ωA B ∧ eB, (2.14b)

or explicitly for Galilei connections and Galilei frames

(T t,T A) = (dτ,dea+ωab ∧ eb+$a ∧ τ). (2.14c)

A Galilei connection on a Galilei manifold with absolute time (dτ = 0) is called Newtonian
iff it is torsion-free and its curvature tensor satisfies symmetry in pairs,

Rµ ρ
ν σ = Rρ µ

σ ν . (2.15a)

4 This name was introduced in [26], after previous authors had either given the form no name or called it just the
‘Coriolis form’.

8
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This is equivalent (which is not at all obvious!) to the Newton–Coriolis form (with respect to
any frame) being closed,

dΩ= 0. (2.15b)

At each point, the curvature tensor of a Newtonian connection has as many linearly inde-
pendent components as that of the Levi-Civita connection of a (pseudo-)Riemannian metric
on a manifold of the same dimension, i.e. 20 in the case of four spacetime dimensions.

We now consider how the objects introduced above transform under local Galilei transform-
ations, i.e. under changes of Galilei frame parameterised by local Gal-valued functions (R, k)
according to (2.5). To keep the formulae easier, we consider the transformation under local
frame rotations and under local Galilei boosts separately. Spelled out, the purely rotational
transformation of the frame with parameter R reads

(v,ea)→
(
v,eb(R

−1)ba
)
, (2.16a)

and those of the dual frame and the connection form are

(τ,ea)→ (τ,Rabe
b), (2.16b)

ωab → Racω
c
d(R

−1)
d
b+Racd(R

−1)
c
b , (2.16c)

$a → Rab$
b, (2.16d)

while for pure boosts with parameter k (which sometimes are called Milne boosts instead of
‘local Galilei boosts’), we have

(v,ea)→ (v− eak
a,ea) , (2.17a)

(τ,ea)→ (τ,ea+ kaτ), (2.17b)

ωab → ωab , (2.17c)

$a →$a− dka−ωabk
b. (2.17d)

2.2. Bargmann structures

Given a Galilei manifold (M, τ,h), we can extend its Galilei frame bundle G(M) to a principal
bundle with structure group the Bargmann group Barg=Gal⋉ (R4 ×U(1)) in the following
way. We denote by

ρ : Gal→ Aut(R4 ×U(1)) (2.18a)

the group homomorphism defining the Bargmann group, given in (1.7); by

ρ̇ : Gal→ Aut(R4 ⊕ u(1)) (2.18b)

the induced representation of Gal by Lie algebra automorphisms, which explicitly takes the
form

ρ̇(R,k)(y
t,ya, iϕ) =

(
yt,Raby

b+ ytka, i(ϕ + 1
2 |k|

2yt+ kaR
a
by
b)
)

(2.18c)

for (R,k) ∈Gal and (yA, iϕ) ∈ R4 ⊕ u(1); and by

ρ̃ : Gal→ Diff(Barg) (2.18d)

the left action of Gal on Barg by multiplication. The associated bundle

B(M) := G(M)×ρ̃ Barg (2.19)

9
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is then a principal Barg-bundle (with action given by right multiplication) that extends G(M)
along the natural inclusion map

γ : G(M)→ B(M),γ(p) = [p,eBarg]. (2.20)

(Here eBarg is the neutral element of Barg and we denoted the element of the Galilei frame
bundle by p instead of our usual notation (eA) in order to avoid confusion with the neutral
element.)

The fundamental observation is now that connections ω̂ on this bundle B(M) are in one-
to-one correspondence with pairs (ω,Θ) of connections ω and ρ̇-tensorial one-forms Θ ∈
Ω1

ρ̇(G(M),R4 ⊕ u(1)) on G(M) via the pullback condition

γ∗ω̂ = (ω,Θ). (2.21a)

Furthermore, in this situation the pullback of the curvature form R̂ of ω̂ is given by the
curvature form R of ω and the exterior covariant derivative of Θ with respect to ω,

γ∗R̂= (R,dωΘ). (2.21b)

This generalises the classical situation of connections on the affine frame bundle of a mani-
fold (see, e.g., [30, section III.3]), and is generally true for ‘semidirect extensions’ of principal
bundles as encountered here. Details and a general discussion of this extension construction
may be found in appendix.

We further decompose

Θ= (θ, ia) (2.22)

with θ ∈ Ω1(G(M),R4) and a ∈ Ω1(G(M)). Due to u(1)⊂ R4 ⊕ u(1) being a ρ̇-invariant sub-
space, we may view the R4-valued part θ as transforming under the quotient representation
Gal→GL((R4 ⊕ u(1))/u(1))∼=GL(4), which is the usual representation (1.5) ofGal onR4.
This means that θ is by itself a tensorial form

θ ∈ Ω1
Gal(G(M),R4), (2.23)

which naturally corresponds to an associated-bundle-valued form

θ ∈ Ω1(M,G(M)×Gal R4) (2.24)

on our Galilei manifold. If this is the canonical solder form of G(M)×Gal R4, then we call
a ∈ Ω1(G(M)) a Bargmann structure on (M, τ,h).5

Summed up, a Bargmann structure on a Galilei manifold (M, τ,h) is a one-form
a ∈ Ω1(G(M)) on the Galilei frame bundle that together with the tensorial form θ ∈
Ω1

Gal(G(M),R4) corresponding to the canonical solder form combines into a ρ̇-tensorial
form (θ, ia) ∈ Ω1

ρ̇(G(M),R4 ⊕ u(1)), which in turn together with a Galilei connection ω ∈
Ω1(G(M),gal) would give a ‘Bargmann connection’ ω̂ on B(M). Note however that we con-
sider the choice of Galilei connection ω not to be part of the choice of Bargmann structure.

Given a Bargmann structure a, the tensorial formΘ= (θ, ia) ∈ Ω1
ρ̇(G(M),R4 ⊕ u(1)) cor-

responds to an associated-bundle-valued form Θ ∈ Ω1(M,G(M)×ρ̇ (R4 ⊕ u(1))). The local
representative of this form with respect to a local Galilei frame σ = (eA) defined on an open
set U⊂M, i.e. the pullback

(τ,ea, ia) = σ∗Θ ∈ Ω1(U,R4 ⊕ u(1)) (2.25a)

5 Note that in [19], the term ‘Bargmann structure’ was used differently, namely for the structure of a five-dimensional
Lorentzian manifold with a null isometry from which a Galilei manifold may be obtained by null reduction; see also
[29].
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along the frame, using which we can locally express Θ as

Θ= [σ,(τ,ea, ia)] ∈ Ω1
(
U,G(M)×ρ̇ (R4 ⊕ u(1))

)
, (2.25b)

is what in [26] was called an extended coframe. (Note that since θ corresponds to the canonical
solder form, its components with respect to the local frame σ = (eA) = (v,ea) are given by the
dual frame (τ,ea).)

Under local Galilei transformations, i.e. changes of local Galilei frame, the extended
coframe transforms according to the representation ρ̇. Using the explicit form (2.18c) of ρ̇,
we see that this means that while the dual frame (τ,ea) transforms as in (2.16), (2.17), the
one-form a locally representing the Bargmann structure is invariant under local rotations, and
under local boosts with parameter k transforms as

a→ a+ kae
a+

1
2
|k|2τ. (2.26)

We now consider the exterior covariant derivative dωΘ of the form Θ, locally represented
by the extended coframe, with respect to a Galilei connection ω. According to (2.21b), it
corresponds to the R4 ⊕ u(1)-valued part of the curvature of the ‘Bargmann connection’ ω̂ on
B(M) given by ω and Θ. Since the R4-valued part of Θ corresponds to the canonical solder
form of G(M)×Gal R4, according to Cartan’s first structure equation (2.14) the R4-valued part
of dωΘ corresponds to the torsion of ω. Following [26], we will call dωΘ the connection’s
extended torsionwith respect to the Bargmann structure, and denote its local components with
respect to a local frame σ = (eA) by

(T A, if) := σ∗(dωΘ). (2.27)

Its u(1)-valued part f, which of course does not define an invariant geometric object on its
own, we call the mass torsion following [26]. From the explicit form (2.18c) of ρ̇, we obtain
the induced Lie algebra representation ρ̇ ′ : gal→ Der(R4 ⊕ u(1)) as

ρ̇ ′
(X,k)(y

A, iϕ) =
(
((X,k)y)A, ikay

a
)

(2.28)

for (X,k) ∈ gal= so(3) R3 and (yA, iϕ) ∈ R4 ⊕ u(1). Therefore, the local components of
the extended torsion are6

(T A, if) = σ∗(dωΘ)

= d(eA, ia)+ ρ̇ ′
(ω,ϖ) ∧ (eA, ia)

= (deA+ωA B ∧ eB, i(da+$a ∧ ea)), (2.30a)

and the mass torsion is given by

f = da+$a ∧ ea. (2.30b)

In terms of the mass torsion f and the u(1) component a of the extended coframe that locally
represents the Bargmann structure, we can write the Newton–Coriolis form of the connection
as

Ω=$a ∧ ea = f − da, (2.31)

6 Under local Galilei transformations, the extended torsion of course again transforms according to ρ̇, i.e. under local
rotations the mass torsion is invariant, and under local Galilei boosts with parameter k it transforms as

f → f + kaT A +
1

2
|k|2dτ. (2.29)

However, we will not need this in our subsequent discussion.
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i.e. given a choice of Bargmann structure,Ω is determined by (and determines) themass torsion
f. Since the freedom in the choice of a Galilei connection lies precisely in the torsion and the
Newton–Coriolis form, we thus see that on a Galilei manifold with a Bargmann structure,
a Galilei connection is uniquely characterised by its extended torsion. In particular, if we
have absolute time (i.e. dτ = 0), which we will from now on assume for all Galilei manifolds
unless otherwise stated, for each Bargmann structure there is a unique Galilei connection with
vanishing extended torsion. Since its Newton–Coriolis form is closed (it is even exact!), this
unique extended-torsion-free connection is Newtonian.

Note that we have a U(1) gauge freedom for Bargmann structures, corresponding to the
U(1) direction in the Bargmann group: given a Bargmann structure a on (M, τ,h) and any
U(1)-valued function eiχ onM, we may act with it (actively!) on a and obtain a new Bargmann
structure7

a→ a+π∗(dχ), (2.32a)

which on M is locally represented by

a→ a+ dχ. (2.32b)

Note that with respect to two Bargmann structures which are related to each other by such
a U(1) gauge transformation, a Galilei connection has the same extended torsion, since f =
da+Ω= d(a+ dχ)+Ω.

2.3. Teleparallel Galilei connections

In Lorentzian (or more generally pseudo-Riemannian) geometry, any metric connection is
uniquely determined by its (arbitrarily specifiable) torsion. Therefore, the difference tensor
between an arbitrary metric connection∇ and the torsion-free Levi-Civita connection may be
expressed purely in terms of the torsion of ∇. This allows for a reformulation of the Einstein
equation, which is usually formulated in terms of the Levi-Civita connection, in terms of a flat
torsionful connection∇ and its torsion, giving rise to TEGR, the TEGR.

Differently to that, in the classical setting of Newton–Cartan gravity, such a reformulation
is not possible, since Galilei connections on a Galilei manifold are not uniquely determined
by their torsion: according to (2.13), we also need to specify the Newton–Coriolis form Ω.
Since Ω depends on the choice of timelike Galilei frame vector field v, there is no naturally
given unique connection ∇̃ the difference to which of a general connection∇ we could use to
reformulate Newton–Cartan gravity.

However, this is remedied by the introduction of a Bargmann structure. As we have seen
above, on a Galilei manifold with absolute time with a chosen Bargmann structure, there is
a unique Galilei connection with vanishing extended torsion. This allows us to reformulate
Newton–Cartan gravity in a teleparallel way, which we will explain in the following.

Given a Galilei manifold (M, τ,h) with absolute time (i.e. dτ = 0) with a Bargmann struc-
ture a, we define the Newton–Cartan contortion of a Galilei connection ω to be the tensor
field

7 From the global point of view, this transformation arises as follows. From eiχ, we obtain a gauge transformation fχ

of the principal Barg-bundle B(M)
π̂→M, i.e. a fibre-preserving principal bundle automorphism fχ : B(M)→ B(M),

as fχ(p) := p · (1,0,0,eiχ◦π̂). Given a connection ω̂ on B(M), we may act on it with the gauge transformation fχ,
giving the new connection f∗χω̂ = ω̂+(0,0,0, iπ̂∗(dχ)). For the case of ω̂ given by a Galilei connection ω and a
Bargmann structure a, this gives rise to (2.32).
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Kρ
µν :=

(3)

Kρ
µν + τ (µ fν)

ρ (2.33a)

with

(3)

Kρ
µν :=

1
2
Tρµν −T ρ

(µν) , (2.33b)

where (T A, if) are the local components of the extended torsion of ω with respect to any local
Galilei frame. Comparing this to the general form of the coordinate connection coefficients of
a Galilei connection (2.13), we see that Kρ

µν is the difference tensor between our connection
ω and the unique extended-torsion-free connection ω̃, i.e.

Kρ
µν = Γρ

µν − Γ̃ρ
µν . (2.34)

Note that this also implies that despite being defined in terms of objects depending on the
choice of local Galilei frame in (2.33), the Newton–Cartan contortion is in fact independent
of the choice of frame8.

Using the notion of Newton–Cartan contortion, we can now formulate teleparallel Newton–
Cartan gravity in terms of the following axioms:

2.3.1. Axioms for teleparallel Newton–Cartan gravity

(i) Spacetime is a Galilei manifold (M, τ,h) with absolute time, endowed with a Bargmann
structure and a flat Galilei connection ω,

(ii) Ideal clocks measure time as defined by τ , and ideal rods measure spatial lengths as
defined by the metric induced by h on spacelike vectors,

(iii) Free test particles move on timelike curves γ solving

(∇γ̇ γ̇)
ρ = Kρ

µν γ̇
µγ̇ν , (2.35)

(iv) The field equation

−DσK
σ
AB+DAK

µ
µB−Kµ

σBT
σ
µA+Kµ

µσK
σ
AB−Kµ

AσK
σ
µB = 4πGρτAτB (2.36)

holds, where ρ is the mass density.

The theory defined by these axioms will be our subject of study in the rest of this article.
Note that the left-hand side of the field equation (2.36) are just the components R̃AB of the
Ricci tensor of the extended-torsion-free connection ω̃, expressed in terms of the connection
ω, its torsion and the difference tensor between the two connections (i.e. the Newton–Cartan
contortion of ω). Therefore, the above theory really is an equivalent formulation of usual
Newton–Cartan gravity, whose equation of motion and field equation read ∇̃γ̇ γ̇ = 0 and R̃µν =
4πGρτµτν , respectively.

Note that the formulation of teleparallel Newton–Cartan gravity given here is completely
general, i.e. prior to any ‘gauge-fixing’ of either the connection or the frame. This distinguishes
our formulation from that given in [28], where both the field equation and the test particle

8 This may of course also be verified by direct calculation, using the transformation behaviour of the mass torsion and
the local coframe (which enters the definition of Kρ

µν through lowering of indices with hµν ).
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equation of motion were only constructed from those of usual Newton–Cartan gravity in a
gauge-fixed situation.

3. Teleparallel Newton–Cartan gravity from TEGR

In this section, we will show that teleparallel Newton–Cartan gravity as introduced in the
previous section arises as the formal c→∞ limit of TEGR, c being the speed of light, in
direct analogy to standard Newton–Cartan gravity being the formal c→∞ limit of GR.

3.1. Formal expansions of Lorentzian geometry

In the following, we will describe how the formal c→∞ limit of a Lorentzian manifold gives
rise to a Galilei manifold with a Bargmann structure, and how in this limit a Lorentzian metric
connection becomes a Galilei connection. Most of the claims are not immediately obvious, but
all of them may be verified by direct calculation.

In order to perform the formal c→∞ limit, we will expand all objects of Lorentzian geo-
metry as formal power series in the parameter c−1—or, more precisely, formal Laurent series,
since we will need negative orders of c−1. The ‘formal c→∞ limit’ of a quantity expanded as
a power series will then be the term of order O(c0), provided that there are no terms of negative
order in c−1.

Of course, analytically speaking, a ‘Taylor expansion’ in a dimensionful parameter like c
does not make sense (even more so since c is a constant of nature); only for dimensionless
parameters can a meaningful ‘small-parameter approximation’ be made. In physical realisa-
tions of the limit from Lorentzian to Galilei geometry, this means that the corresponding small
parameter has to be chosen as, e.g., the ratio of some typical velocity of the system under con-
sideration to the speed of light. A rigorous discussion of the Newtonian limit from standard
GR to Newton–Cartan gravity in terms of an actual small parameter approaching zero is given
by Ehlers in his article on ‘frame theory’ [10, 11]; a nice discussion on the relationship of
formal Newtonian limits to actual physical slow-velocity approximations may be found in
[31, section II].

In the following, however, we will ignore these issues and just expand in c−1 as a formal
parameter, thus only considering how the Lorentzian theorymay be viewed as a deformation of
its formal ‘Newtonian limit’. Our formal expansion in c−1 to implement the Newtonian limit is
the same as that used in [32, 33] for the geometric description of post-Newtonian expansions
of GR, specialised to the case dτ = 0 of absolute time, but at the same time generalised to
allow for torsionful Lorentzian connections.

To notationally distinguish Lorentzian geometric objects from their Newton–Cartan coun-
terparts, we will mostly denote the Lorentzian objects by an overset ‘L’; for example, the

torsion of a Lorentzian connection will be denoted by
L

T.
We start with a Lorentzian metric g on our spacetime manifoldM, for which we have a local

orthonormal frame/tetrad (EA) with dual frame (EA), such that the metric and inverse metric
can be written as

g= ηABE
A⊗EB, g−1 = ηABEA⊗EB, (3.1)

where ηAB denotes the components of the Minkowski metric in Lorentzian coordinates, i.e.
(ηAB) = diag(−1,1,1,1).We assume that the frame and dual framemay be expanded as formal
power series in c−1 as
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E0
µ = cτµ + c−1aµ +O(c−3), Eaµ = eaµ +O(c−2), (3.2a)

Eµ
0 = c−1vµ +O(c−3), Eµ

a = eµa +O(c−2) (3.2b)

for some nowhere vanishing one-form τ . From these assumptions it follows that τ and h :=
δabea⊗ eb make M into a Galilei manifold. For this Galilei manifold that arises as the formal
c→∞ limit of our Lorentzian manifold, (v,ea) is a local Galilei frame with dual frame (τ,ea).
Let us stress that τ is to be viewed as an ‘input’ for the expansion; it is the object with respect
to which we perform the formal Newtonian limit.

We now consider a local Lorentz boost (ΛA
B) parameterised by the R3-valued boost velo-

city function k as9

Λ0
0 = 1+ c−2 |k|2

2
+O(c−4), (3.3a)

Λa
0 = c−1ka+O(c−3) = δabΛ0

b , (3.3b)

Λa
b = δab + c−2 k

akb
2

+O(c−4). (3.3c)

Transforming the Lorentzian frame (EA) by Λ according to

(EA)→ (ẼA) =
(
EB(Λ

−1)BA
)
, (3.4)

and expanding the new frame analogously to (3.2), we obtain a local Galilei boost of the Galilei
frame (v,ea) with boost velocity parameter k. Furthermore, under this change of frame, the
local one-forms a that arise as the c−1 component of the timelike dual frame one-form E0

transform according to (2.26), thereby defining a Bargmann structure a on (M, τ,h).
This means that as the formal c→∞ limit of the Lorentzian manifold we started with, we

obtain a Galilei manifold with a Bargmann structure. We stress again that the only assumption
that is needed for this result is an expansion of the Lorentzian tetrad and dual tetrad as in (3.2),
with a nowhere vanishing τ .

On the Lorentzian manifold (M, g), we now also consider a metric connection
L
ω which we

assume to have a regular formal c→∞ limit, by which we mean that its coordinate compon-
ents with respect to c-independent coordinates, or equivalently its local connection form with
respect to the frame (v,ea), have regular limits (i.e. no terms of negative order in the expansion
in c−1). This implies that its local connection form with respect to (EA) expands as

L
ω0

0 = 0, (3.5a)

L
ωa0 = c−1$a+O(c−3) = δab

L
ω0

b , (3.5b)

L
ωab = ωab+O(c−2) (3.5c)

for local one-forms ωab, $
a. Under local rotations and boosts of the frame, the (ωab,$

a)
transform as the local connection form of a Galilei connection on (M, τ,h) would, thereby

9 Note that this arises from expanding the standard form Λ = exp(ζaKa) of a boost, written in terms of the rapidity
ζa = artanh(|k|/c) ka

|k| and the boost generators (Ka)A B = δA0 ηaB − δAa η0B.
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in fact defining a Galilei connection ω. Cartan’s first structure equation then implies that the

torsion
L

T of
L
ω expands as

L

T0 = dE0 +
L
ω0

a ∧Ea = cdτ + c−1(da+$a ∧ ea)+O(c−3)

= cdτ + c−1f +O(c−3), (3.6a)

L

Ta = dEa+
L
ωaB ∧EB = dea+$a ∧ τ +ωab ∧ eb+O(c−2)

= T A+O(c−2) (3.6b)

in terms of the extended torsion of ω with respect to the Bargmann structure a obtained from
the expansion of the frame. Assuming dτ = 0, we can further compute the expansion of the
Lorentzian contortion as

L

Kρ
µν =

1
2

L

Tρµν −
L

T
ρ

(µν)

=
1
2

L

Tρµν︸︷︷︸
=Tρµν+O(c−2)

− ηABE
A
(µ

L

TBν)σ ηCDEσ
CE

ρ
D︸ ︷︷ ︸

=hσρ+O(c−2)

=
1
2
Tρµν + τ(µ fν)σh

σρ − hκ(µT
κ
ν)σh

σρ +O(c−2)

= Kρ
µν +O(c−2). (3.7)

Finally, we want to comment on the transformation behaviour of the ‘limiting’ geometric
objects on our Galilei manifold under (active) pushforward of the Lorentzian objects along
diffeomorphisms. Transforming the Lorentzian geometric objects by c-independent diffeo-
morphisms, all limiting objects also transform simply by pushforward. Considering instead
‘pushforward along an infinitesimal c-dependent diffeomorphism’, i.e. the transformation

A→ A− c−2LXA+O(c−4) (3.8)

on natural Lorentzian geometric objects A for some vector field X, the only non-trivial trans-
formation of the limiting Galilei-manifold objects arising from this is the transformation

a→ a−LXτ = a− dτ(X, ·)− d(τ(X)) (3.9)

of the local representative of the Bargmann structure. If the clock form satisfies our assumption
of absolute time, dτ = 0, this amounts to a U(1) gauge transformation of the Bargmann struc-
ture (2.32). This means that under the assumption of absolute time, we obtain all ‘natural sym-
metries’ of the framework of Galilei manifolds with Bargmann structure—diffeomorphisms,
local Galilei transformations, and U(1) gauge transformations of the Bargmann structure—
from the action of ‘c-dependent’ diffeomorphisms and local Lorentz transformations on
Lorentzian objects, i.e. from the ‘natural symmetries’ of the Lorentzian setting. For this to
hold, the assumption of absolute time is crucial: otherwise, the limiting geometric objects
would transform not under the Bargmann algebra, but under a certain Lie algebra expansion
of the Poincaré algebra, and would instead define what has been termed a ‘torsional Newton–
Cartan type II’ (TNC type II) geometry [32, 33].
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3.2. Trace-reversing the field equation of TEGR

The field equation of TEGR is [14]

E−1∂σ(ES
µσ

A )−
L

TσνAS
νµ

σ +
Eµ
A

4
S σν
ρ

L

Tρσν +
L
ω B
ν AS

νµ
B =

8πG
c4

Θ µ
A , (3.10)

where Θ denotes the energy–momentum tensor, E= det(EAµ) is the determinant of the matrix
of dual frame components, and the superpotential is given by

S σµ
ρ =

L

Kσ µ
ρ − 2δ[σρ

L

T|ν| µ]
ν . (3.11)

Note that we have rewritten the equations such as to conform to our notation and conventions
(in particular regarding the index structure of the contortion), and inserted the expression of
the torsion scalar in terms of the superpotential [14, equation (4.160)] into the field equation
[14, equation (4.163)].

In order to consistently take the c→∞ Newtonian limit of the field equation, we have to
consider it in trace-reversed form10. The trace of (3.10), obtained by contraction with EAµ, is

E−1EAµ∂σ(ES
µσ

A )+
L
ω B
ν AS

νA
B =

8πG
c4

Θ. (3.12)

Rewriting EAµ∂σ(ES
µσ

A ) = ∂σ(ES Aσ
A )−ES µσ

A ∂σEAµ, applying the identities S Aσ
A = 2

L

Tνσν

(which directly follows from the definition of S) and ∂σEAµ =
L

Γκ
σµE

A
κ −

L
ω A
σ BE

B
µ, and using the

antisymmetry S µσ
A = S [µσ]

A , the trace equation takes the form

2E−1∂σ(E
L

Tνσν)+
1
2
S σν
ρ

L

Tρσν =
8πG
c4

Θ. (3.13)

Now trace-reversing the field equation, i.e. considering (3.10)− 1
2E

µ
A (3.13), we obtain

E−1∂σ
(
ES µσ

A

)
−E−1Eµ

A∂σ

(
E

L

Tνσν
)
−

L

TσνAS
νµ

σ +
L
ω B
ν AS

νµ
B =

8πG
c4

(
Θ µ
A − 1

2ΘEµ
A

)
. (3.14)

We will now further rewrite this equation, in order to express it purely in terms of the
teleparallel connection, the torsion, and the contortion. Denoting the Lorentzian Levi-Civita

connection by
L

∇̃, we have

E−1∂σ(E
L

Tνσν) =
L

∇̃σ

L

Tνσν =
L

∇σ

L

Tνσν −
L

Kσ
σλ︸ ︷︷ ︸

=
L
Tσσλ

L

Tνλν , (3.15)

implying

E−1Eµ
A∂σ(E

L

Tνσν) =
L

∇σ(E
µ
A

L

Tνσν)−
L

Tνσν
L

∇σE
µ
A︸ ︷︷ ︸

=
L
ω B

σ AE
µ
B

+Eµ
A

L

Tσλσ
L

Tνλν , (3.16)

10 If we did not trace-reverse the equation, we would end up with a formal c−1 expansion not allowing us to easily
extract meaningful information about the limit: inserting the expansions of the geometric objects as introduced above
into the field equation, the only order at which the expanded equation would make a statement would be identically
satisfied; the limit field equations proper would appear at the next order, which would no longer be contained in
the expanded equation since the termination of the expansion of the geometric objects introduces unspecified terms
into the equation.I.e. to obtain the leading-order equations for the expanded geometric objects from the original field
equation, one would have to expand the objects to higher order than appear in the final equations. This is prevented
by considering the trace-reversed equation instead.
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and

E−1∂σ(ES
µσ

A ) =
∂νE
E︸︷︷︸
=

L

Γ̃σ
σν

S µν
A + ∂σS

µσ
A

=
L

∇̃σS
µσ

A −
L

Γ̃µ
σν S νσ

A︸ ︷︷ ︸
=S [νσ]

A

=
L

∇̃σS
µσ

A

=
L

∇σS
µσ

A −
L

Kµ
σνS

νσ
A −

L

Kσ
σνS

µν
A

=
L

∇σS
µσ

A − 1
2

L

TµσνS
νσ

A +
L

TσνσS
µν

A , (3.17)

where we used
L

K
µ
[σν] =

1
2

L

Tµσν and
L

Kσ
σν =−

L

Tσνσ . Introducing the abbreviation

S̃ µσ
A := S µσ

A −Eµ
A

L

Tνσν , (3.18)

we can use (3.16) and (3.17) to rewrite the trace-reversed field equation (3.14) as

L

∇σS̃
µσ

A − 1
2

L

TµσνS
νσ

A +
L

Tσνσ S̃
µν

A −
L

TσνAS
νµ

σ − L
ω B
σ AS̃

µσ
B =

8πG
c4

(
Θ µ
A − 1

2ΘEµ
A

)
. (3.19)

Using
L

∇σ S̃
µσ

A − L
ω B
σ AS̃

µσ
B =

L

Dσ S̃
µσ

A , lowering the index µ, inserting the identity

S̃Aµσ =−
L

Kσ
µA−Eσ

A

L

Tνµν =−
L

Kσ
µA+Eσ

A

L

Kν
νµ as well as the definition of S, and contracting

with Eµ
B , this equation can be shown to be equivalent to

−
L

Dσ

L

Kσ
AB+

L

DA
L

K
µ
µB−

L

K
µ
σB

L

TσµA+
L

Kµ
µσ

L

Kσ
AB−

L

K
µ
Aσ

L

Kσ
µB =

8πG
c4

(
ΘAB− 1

2ΘηAB
)
. (3.20)

Note that we could have arrived at this result more directly, or at least anticipated it before-

hand: the left-hand side of (3.20) is simply the component
L

R̃BA of the Ricci tensor of the Lorent-
zian Levi-Civita connection expressed in terms of the teleparallel connection, its torsion, and
the contortion, such that the equation is simply the trace-reversed Einstein equation. However,
we wanted to keep the argumentation ‘as teleparallel as possible’ and therefore have presen-
ted the calculation leading to (3.20) with as little reference to the Levi-Civita connection as
possible.

3.3. Taking the limit

We are now going to expand the field equation (3.20) in c−1, and thus have to expand the
trace-reversed energy–momentum tensor appearing on its right-hand side. First working in the
Lorentzian setting without any c-expansion, wemay decompose the energy–momentum tensor
with respect to any unit future-directed timelike vector field ξ as

Θµν = ξµξνw− c2ξ(µΠν) +Σµν , (3.21)
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where w, Π and Σ are the energy density, the momentum density and the momentum flux
density (stress tensor) with respect to ξ. Choosing ξµ = Eµ

0 from our tetrad, which implies
ξµ =−E0

µ, and expanding the energy density in this frame as

w= ρc2 +w(0) +O(c−2) (3.22)

with ρ being the (rest) mass density, while taking momentum density and momentum flux
density to be of order c0, we obtain the expansion

Θµν = c4ρτµτν + c2w(0)τµτν + c22ρτ(µaν) + c22τ(µΠν) +O(c0) (3.23)

for the energy–momentum tensor, where we have used the expansion (3.2) of the tetrad11.
Contracting this expansion again with that of the tetrad components (3.2), we obtain the trace
Θ=−c2ρ+O(c0). Thus, the trace-reversed energy–momentum tensor is

Θµν − 1
2ΘEAµE

B
νηAB =Θµν − 1

2Θ(−c2τµτν +O(c0))

= 1
2c

4ρτµτν +O(c2), (3.24)

and the expansion of the right-hand side of the trace-reversed TEGR field equation (3.20) is
4πGρτAτB+O(c−2). Thus, expanding the objects on the left-hand side as well, we see that in
the c→∞ limit, the TEGR field equation goes over to the field equation (2.36) of teleparallel
Newton–Cartan gravity.

Regarding curvature, one easily checks that the components of the curvature form of any
Lorentzian connection expanded as in (3.5) take the form

L

Ra0 = c−1(d$a+ωab ∧$b)+O(c−3) = c−1Rat+O(c−3), (3.25a)

L

Rab = dωab +ωac ∧ωcb+O(c−2) = Rab+O(c−2), (3.25b)

L

R0
0 = O(c−4), (3.25c)

L

R0
a = c−1δabR

b
t+O(c−3) (3.25d)

in terms of the curvature form of the limiting Galilei connection. Therefore, if
L
ω is flat, then

also the limiting Galilei connection ω will be flat.
Finally, it is clear that the TEGR test particle equation of motion

(∇γ̇ γ̇)
ρ =

L

Kρ
µν γ̇

µγ̇ν (3.26)

goes over to its teleparallel Newton–Cartan equivalent (2.35) in the c→∞ limit. Thus, we
have shown that the formal c→∞ limit of TEGR with respect to a closed clock one-form τ
is teleparallel Newton–Cartan gravity as introduced in section 2.

4. Recovering Newtonian gravity

As for usual Newton–Cartan gravity, the standard formulation of Newtonian gravity can be
recovered from teleparallel Newton–Cartan gravity, as we will show now.

11 Note that the mass density ρ is invariant under changes of frame.
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4.1. The field equation

The tt-component of the teleparallel Newton–Cartan field equation (2.36), i.e. the equation for
A= B= t, can be rewritten as

−DσK
σ
tt−DtT

µ
tµ −KabtT

b
at+TaabK

b
tt−KatbK

b
at = 4πGρ, (4.1)

where we used that T t = 0 and therefore Ktµν = 0. In the following, we are going to show how
to recover from this the standard formulation of the Newtonian field equation.

As a first step, we ‘gauge-fix’ the connection ω to vanishing purely spatial torsion, i.e. we
assume

Tabc = 0. (4.2)

Here we put the term ‘gauge-fix’ in quotation marks since we do not use it to refer to the
fixing of any gauge redundancy in the proper sense (e.g. in a Hamiltonian analysis). Instead,
we only use it to mean that we add (4.2) as an additional assumption on the connection ω,
which is compatible with the field equations and does not introduce any further restrictions.
That the choice of vanishing purely spatial torsion is always possible follows from the purely
spatial components (A= a, B= b) of the field equation (2.36): this part of the equation reads
R̃ab = 0 in terms of the Ricci tensor of the extended-torsion-free connection ω̃. This means
that the spatial leaves are Ricci-flat as Riemannian manifolds (with the spatial metric induced
by h); since they are three-dimensional, this implies that they are flat. Therefore, by choosing
the spatial connection ωab to be the Levi-Civita connection ω̃ab of the spatial leaves, we may
indeed satisfy (4.2) as well as flatness of ω.

Let us stress here again that this ‘gauge-fixing’ assumption of vanishing purely spatial tor-
sion is, differently to the situation considered in [28], not part of the formulation of the theory,
but only added afterwards for the recovery of standard Newtonian gravity. Note also that it
is more general than the torsion constraint from [28], where the total spatial torsion Taµν is
assumed to vanish (i.e. including its mixed spatio-temporal components Tatb).

12

Now we are going to rewrite (4.1). From

Kσ
(AB) =

(3)

Kσ
(AB) + τ(A f

σ
B) =−T σ

(AB) + τ(A f
σ

B) (4.3)

we obtain

DσK
σ
tt =−DσT

σ
tt +Dσ f

σ
t

=$ a
σ T σ

at +Da f
a
t

=−$ a
b T b

a t−Da f
a
t , (4.4)

where at the second equality sign we used Ttµν = 0 for the first and (2.11) for the second term.
Furthermore, from

DAT
µ
Bµ = ∂AT

µ
Bµ −ω C

A BT
µ
Cµ (4.5)

we obtain

DtT
µ
tµ = ∂tT

µ
tµ −$ c

t T
µ
cµ =−∂tT

a
at , (4.6)

12 In [28], this torsion constraint is not even emphasised as an assumption, but instead it is stated that ‘for a flat
connection, the Bianchi identities imply that [the spatial torsion vanishes]’. This clearly is not true at all; one can
easily give examples of flat metric torsionful connections in, for example, the two-dimensional Euclidean plane.
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where we used our ‘gauge assumption’ Tabc = 0. A direct calculation further shows that

−KabtTbat−KatbK
b
at =−TabtT(ab)t+

1
4
f abfab . (4.7)

Using (4.4), (4.6), (4.7) and (again) vanishing of the purely spatial torsion, we can rewrite the
tt-component (4.1) of the field equation as

Da f
a
t+$ a

b T b
a t+ ∂tT

a
at−Tabt T(ab)t+

1
4
f abfab = 4πGρ. (4.8)

From now on, we are going to assume the ‘absolute rotation’ condition introduced by
Trautman [6, 7]. This is an additional curvature condition that has to be assumed in usual
Newton–Cartan gravity in order to recover Newtonian gravity in the usual sense, taking the
form

R̃µν
ρσ = 0. (4.9)

Without assuming this, Newton–Cartan gravity actually describes a slightly generalised ver-
sion of Newtonian gravity, in which the vorticity of rigid timelike flows need not be spa-
tially constant. If in a Newton–Cartan spacetime there is one rigid timelike vector field with
spatially variable vorticity, then actually all rigid timelike vector fields have spatially non-
constant vorticity, and in this sense in such a spacetime no absolute notion of rotation exists.
In the ‘recovered’ Newtonian equations this leads to non-eliminable Coriolis force terms. If
one however assumes the absolute rotation condition (4.9), rigid non-rotating frames exist, and
in those one recovers Newtonian gravity proper13. Note that (4.9) also implies R̃at = 0, i.e. the
at-component of the field equation (2.36).

Assuming absolute rotation, we now choose the timelike frame field v= et to be rigid and
non-rotating. In usual Newton–Cartan gravity, i.e. in terms of the extended-torsion-free con-
nection, this means that the frame field satisfies Lvh= 0 or equivalently ∇̃(µvν) = 0 (rigid-
ness), as well as ∇̃[µvν] = 0 (it is non-rotating). Expressed in terms of our ‘teleparallel’
Newton–Cartan connection ∇, this means14

$(ab) = T(ab)t , (4.10a)

$[ab] =
1
2
fab . (4.10b)

The second of these equations is equivalent to (da)ab = 0, i.e. 0= (da)|Σ = d(a|Σ) on any
spatial leafΣ (where a is the frame representative of the Bargmann structure). Thus, we locally
have a|Σ = du for some function u on Σ; choosing u smoothly between leaves, we thus have
a= du+φτ for functions u,φ. In particular, we have

da= dφ ∧ τ. (4.11)

Obviously, this conversely implies (da)ab = 0, i.e. (4.10b). The (locally defined, frame-
dependent) function φ defined by (4.11) will play the rôle of the Newtonian potential, and
is defined up to addition of a time-dependent spatially constant function15.

13 The interpretation of the additional curvature condition (4.9) in terms of rotation was, as far as I (the author) know,
not given by Trautman, at least not explicitly. To my knowledge, it first appears in explicit form in Ehlers’ 1981 article
on frame theory [10, 11].
14 This may be verified by direct computation, using the rigidness and non-rotation conditions in terms of ∇̃ and the
explicit form of the Newton–Cartan contortion (2.33).
15 Note that this is precisely the same as for usual Newton–Cartan gravity: there, the Newtonian potential in the
reconstruction of Newtonian gravity in a rigid non-rotating frame is defined by Ω̃ =−dϕ ∧ τ .
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From now on working in a rigid non-rotating frame in the sense introduced above, we have
f = da+Ω= dφ ∧ τ +Ω, in particular implying

fat = ∂aφ+ 2$[at] = ∂aφ+��$at−$ta . (4.12)

Thus, we can rewrite

Da f
a
t = ∂a f

a
t+ω a

a b f
b
t−$ b

a f ab︸ ︷︷ ︸
(4.10b)
= 2ϖ[ab]ϖ[ab]

= ∂a∂
aφ+ω a

a b∂
bφ︸ ︷︷ ︸

=DaDaϕ

−∂a$
a

t −ω a
a b$

b
t − 2$[ab]$[ab] . (4.13)

For any one-form α, we have the general identity

(dα)µν = 2∂[µαν] = 2∇[µαν] +Tρµναρ , (4.14)

giving in particular

(dα)at = 2D[aαt] +TBatαB

= 2∂[aαt] −$ b
a αb+ω b

t aαb+Tbatαb . (4.15)

Applied to the one-form $a, we obtain

(d$a)at = 2∂[a$
a
t] −$ b

a $ a
b︸ ︷︷ ︸

=ϖabϖba

+ω b
t a$

a
b +Tbat$

a
b . (4.16)

Flatness of the connection implies 0= d$a+ωab ∧$b, which combined with the previous
equation leads to

0= (d$a)at+(ωab ∧$b)at

= ∂a$
a
t − ∂t$

a
a︸︷︷︸

(4.10a)
= T aat

−$ab$ba+����ω b
t a$

a
b +Tbat$

a
b +ω a

a b$
b
t −����ω a

t b$
b
a . (4.17)

Combining (4.13) and (4.17), several terms cancel out and we arrive at

Da f
a
t+ ∂tT

a
at = DaD

aφ − 2$[ab]$[ab] −$ab$ba︸ ︷︷ ︸
=−ϖabϖab

+Tbat$
a
b . (4.18)

Inserting this, we can rewrite the tt-component (4.8) of the field equation as

DaD
aφ−$ab$ab+$(ba)2T

(ab)
t−TabtT(ab)t+

1
4
f abfab = 4πGρ, (4.19)

which using the conditions (4.10) on the frame reduces to

DaD
aφ = 4πGρ, (4.20)

the Newtonian field equation. Note that due to our choice of vanishing purely spatial torsion,
the induced spatial connection is the Levi-Civita connection of the induced spatial metric, such
that the expression DaDaφ is the spatial metric Laplace operator acting on φ.
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4.2. The test particle equation of motion

Of course, to warrant the claim that we can recover Newtonian gravity, we not only have to
show that we have a field φ satisfying the Newtonian field equation, but also that test particles
couple to it in the correct way. We will now show how the test particle equation of motion may
be reduced to its usual Newtonian counterpart.

We consider the equation of motion (2.35) for a unit timelike vector field ξ, i.e.

ξσ∇σξ
ρ = Kρ

µνξ
µξν , τµξ

µ = 1. (4.21)

Inserting the definition of K, this equation is equivalent to

ξσDσξ
a = (−T a

bt + f ab )ξb+ f at . (4.22)

Now in a rigid, non-rotating frame (4.10) with φ defined by (4.11), we have

−T a
bt = T a

b t
(4.10a)
= $a

b+$ a
b −Tabt . (4.23)

Using this, (4.10b) and (4.12), we can rewrite the equation of motion as follows:

ξσDσξ
a = 2ξb$ a

b +$ a
t −Tabtξ

b− ∂aφ

= ξσ$ a
σ +($ a

b −Tabt)ξ
b− ∂aφ. (4.24)

We now specialise to a frame such that the spacelike frame fields commute with the timelike
one, i.e. [ea,v] = 0. Such a frame may always be constructed by starting with orthonormal
vector fields ea on one spatial leaf and then extending those along the flow of v to vector fields
on spacetime. The above commutation requirement is equivalent to T(eb,v) =∇ebv−∇veb,
or in components to

$ a
b −Tabt = ω a

t b (4.25)

(where we used T t = 0). Thus, in such a frame the equation of motion (4.24) takes the form

ξσDσξ
a = ξσ$ a

σ +ω a
t bξ

b− ∂aφ. (4.26)

Explicitly expressing the left-hand side in terms of components, we obtain

ξσ∂σξ
a+ω a

c bξ
cξb =−∂aφ, (4.27)

which for a flow line γ of ξ becomes16

γ̈a(t)+ω a
c b(γ(t)) γ̇

c(t) γ̇b(t) =−∂aφ(γ(t)). (4.28)

This is the Newtonian equation of motion for a test particle, expressed in a non-Cartesian
orthonormal spatial frame.

5. Conclusion

In this paper, we have shown how the local formulation of the geometry of Galilei spacetimes in
terms of the Bargmann group gives rise to a natural notion of teleparallel Galilei connections,
allowing for a teleparallel formulation of Newton–Cartan gravity that generalises the special
case from [28]. We have shown that this theory is the natural c→∞ limit of TEGR (with
respect to a closed clock form/leading order timelike dual frame field), and explained how to

16 Note that due to τµξµ = 1, the parameter of γ is Newtonian time t as defined by τ .
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recover standardNewtonian gravity from it. Thus, teleparallel Newton–Cartan gravity provides
a geometric description of how TEGR gives rise to Newtonian gravity as its Newtonian limit,
in the same way as usual Newton–Cartan gravity does this for GR.

The work presented here lends itself to several interesting generalisations. First, one may
wonder about a generalisation to the situation of so-called torsional Newton–Cartan gravity
(TNC gravity) [22, 23], i.e. to a non-closed clock form dτ ̸= 0, allowing for non-absolute
time. Note, however, that in order to obtain such a theory as a (formal) limit of TEGR (with
respect to a non-closed τ ), one probably would have to take as the ‘gauged’ algebra that locally
describes the geometry not the Bargmann algebra, but a specific Lie algebra expansion of the
Poincaré algebra. Thismeans that onewould have to consider what has been termed a ‘torsional
Newton–Cartan type II’ (TNC type II) geometry instead of a TNC type I geometry [32, 33].

A second direction for further investigations concerns the formulation of teleparallel
Newton–Cartan gravity in terms of an action principle, instead of the sole consideration of the
equations of motion as done here. Since in particular modified teleparallel theories of gravity
are commonly formulated in terms of an action principle, this would enable the investigation
of the geometric Newtonian limit of modified teleparallel theories of gravity. Note that similar
to the previous point, for developing an action principle one probably needs to consider TNC
type II geometry, since standard Newton–Cartan gravity and TNC type I gravity cannot be
given a variational formulation [32].

One may also seek modifications of the present work describing the Newtonian limit of
theories of gravity based on further different geometries. For example, one could consider
so-called symmetric teleparallel gravity theories, in which the ‘Lorentzian’ connection is flat
and torsion-free but has non-metricity, or analyse even more general metric-affine theories in
which the connection can have some combination of curvature, torsion and non-metricity.

Finally, the formulation of teleparallel Newton–Cartan gravity allows for the investigation
of the post-Newtonian expansion of (modified) teleparallel gravity theories in a geometric,
coordinate-free way, complementing the coordinate approach from [34–36]. Such a geomet-
ric description of the post-Newtonian expansion of standard GR, starting with and going bey-
ond usual Newton–Cartan gravity, has been developed in [31, 37] and widely extended in [32,
33] (although the latter references take a somewhat more ‘field-theoretic’/gauge-theoretic per-
spective on the topic). The development of such a geometric description of the post-Newtonian
expansion of modified (teleparallel) theories of gravity we view as the most interesting direc-
tion for further research, since, to quote the introduction, questions regarding an inherently
geometric theory ought to be answered in a geometric fashion17.
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17 Of course, for practical computations in post-Newtonian theory the standard coordinate approach has some clear
advantages. Nevertheless, from a conceptual point of view a geometric understanding is of fundamental importance,
and it may also offer insights for concrete calculations, e.g. regarding questions of coordinate (in-)dependence of
observed phenomena.
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Appendix. Semidirect extension of principal bundles

Here we will explain the ‘semidirect extension’ construction for principal bundles and con-
nections on them that is used in the main text in the definition of Bargmann structures in
section 2.2.

Let H,N be Lie groups and ρ : H→ Aut(N) a smooth homomorphism. By ρ̇ : H→ Aut(n),
we denote the induced representation of H on n by Lie algebra automorphisms, defined by

ρ̇h := D(ρh)|eN ∈ Aut(n). (A.1)

Let P
π→M be a principal H-bundle. We can extend P to a principal H⋉N-bundle Q

π̂→M as
follows: denoting by ρ̃ : H→ Diff(H⋉N) the natural left action of H on H⋉N by multiplic-
ation, i.e.

ρ̃h2(h1,n) := (h2,eN)(h1,n) = (h2h1,ρh2(n)), (A.2a)

we define Q as the associated bundle

Q := P×ρ̃ (H⋉N). (A.2b)

The natural right action of H⋉N on itself induces a free right action on Q which is trans-
itive on the fibres and compatible with the local trivialisations, thus making Q into a prin-

cipal bundle as desired. We also obtain natural bundle homomorphisms Q
β

⇄
γ
P satisfying

β ◦ γ = idP, namely

γ(p) = [p,(eH,eN)], β([p,(h,n)]) = ph . (A.3)

By construction, with respect to local trivialisations P
γ→ Q looks like the inclusion H ↪→ H⋉

N, such that it really exhibits Q as an extension of P.

Theorem A.1. Let ω̂ ∈ Ω1(Q,h n) be a connection on Q. We decompose its pullback along
γ as γ∗ω̂ = (ω,θ) with ω ∈ Ω1(P,h) and θ ∈ Ω1(P,n). Then ω is a connection and θ is a
ρ̇-tensorial form on P.
Conversely, given a connectionω ∈ Ω1(P,h) and a θ ∈ Ω1

ρ̇(P,n), there is a unique connec-
tion ω̂ ∈ Ω1(Q,h n) such that γ∗ω̂ = (ω,θ).
The curvature form R̂ ∈ Ω2(Q,h n) of ω̂ satisfies

γ∗R̂=
(
R,dωθ+ 1

2 [θ∧θ]
)
, (A.4)

where R ∈ Ω2(p,h) is the curvature form of ω.

Idea of proof. Using the explicit form of the adjoint representation of a semidirect product
group, the Ad-equivariance of ω̂, and the H-equivariance of γ, one can check the properties
needed of ω and θ by direct computation.

For the converse, ω̂ is determined on the image of γ in the ‘N directions’ of TQ, which are
generated by fundamental vector fields, by being a connection, and in the remaining directions
by its pullback γ∗ω̂. Ad-equivariance by N then uniquely determines ω̂ on the whole of Q. A
computation which is quite direct, only somewhat tedious to write down, then shows that the
ω̂ thus defined really is a connection.

The expression for the pullback of the curvature form follows directly by pulling back the
structure equation R̂= dω̂+ 1

2 [ω̂ ∧ ω̂].

As noted in the main text, this construction generalises the classical situation of connections
on the affine frame bundle of a manifold (see, e.g., [30, section III.3]). Note also that in the
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case dimM= dimN, our construction may be seen as a special case of Cartan geometry [38]—
for the application in the main text however, namely the consideration of Barg bundles over
Galilei manifolds, this is not satisfied.
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