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ABSTRACT

In the automotive industry, the design, modeling, and planning of
multi-robot cells are manual error-prone, and time-expensive tasks.
A recent work investigated, using reactive synthesis, approaches
to automate robot task planning, and execution. In this paper, we
present a tool that realizes a model-at-runtime approach. The tool
is integrated with a robot simulation tool, to automate efficient
multi-robot choreography planning, and execution. We illustrate
the tool using a multi-robot spot welding cell, inspired from an
industrial case. Given a virtual model of the production cell, and
user constraints definition, the tool can derive a specification for
the reactive synthesis. The tool integrates the synthesized
controller with the production cell execution, and in real time,
optimizes the strategies by considering the uncertainties. The
system can select among several correct, and safe actions, the
optimal action using AI-based planning techniques, such as the
Monte Carlo Tree Search (MCTS) algorithm. We showcase our tool,
illustrate its implementation architecture, including how it can
support robot experts for automated planning and execution of
production cells.

CCS CONCEPTS

• Software and its engineering → Formal language

definitions; • Theory of computation → Automated

reasoning; • Computing methodologies → Robotic planning;
Planning under uncertainty.
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1 INTRODUCTION

Designing, and planning production cells, like multi-robot spot
welding cells, is time-expensive, and error-prone, due to the high
complexity of production processes, and requirements. Usually, the
key performance indicator of a robot cell performance is its cycle
time. Some performance criteria, such as energy consumption, robot
path length, robot velocity in the workspace, define nonfunctional
requirements. In most cases, robot trajectories must be optimized
for minimal cycle time. Moreover, during the planning phase, the
designed system usually does not consider unexpected events, such
as robot damages, process interruptions, that can occur during
system operation. Considering a car production line, which consists
of multiple multi-robot cells, and changes that can occur during the
planning phase, such as robot workspace constraints, workpiece
changes, positioner, or device modifications, it is challenging to
plan robot cells, and more challenging when it is done manually.

To address these challenges, researchers recently proposed an
approach for multi-robot task scheduling [21] using Monte Carlo
Tree Search (MCTS) [4, 9], and reactive synthesis [3, 16]
algorithms. Reactive synthesis is defined as an automated process
to produce a correct-by-construction implementation from the
linear temporal logic (LTL)-based system specification [17]. From
the production cell requirements, we showed how to design the
corresponding reactive system using the LTL-based specification
language spectra [12]. spectra is a specification language to
formally describe reactive system requirements, including analysis
and reactive synthesis tools such as a synthesizer that ships a
correct-by-construction (executable) controller. Furthermore, we
illustrated how to integrate the synthesized controller, from the
just-in-time synthesis [13], with the robot cell execution. Indeed,
the synthesized controller can generate correct and safe strategies.
Using the heuristic AI-planning technique MCTS, we can
synthesize among these strategies the efficient strategy
considering the defined optimization criteria.

This paper presents a tool that implements a model-at-runtime
technique, supports robot engineers during the planning of
production cells, and obtains a correct-by-construction reactive
system. The tool is integrated into a software for 3D modeling,
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programming and simulation of production cells. Given a 3D
model of a production cell, and the requirements, the tool can
generate collision-free, and requirements-compliant trajectories of
all robots using planning algorithms. Moreover, it can find,
through simulations of all possible trajectories combinations,
potential collisions that may occur: these collision risks define
additional constraints. The tool simulates all trajectories, and
stores their time for optimization. In fact, the integrated execution
of the production cell with our tool uses these trajectories times
for efficient planning. Using a domain-specific language (DSL), the
tool formalizes the robot cell definition, the requirements, and
constraints including the collision risks. We illustrate our tool
using an industrial case of a spot welding multi-robot cell. In a
nutshell, we describe, using the tool, the multi-robot cell planning
process, and show how to integrate the production cell execution
with the reactive system. By continuous monitoring of the
production cell, the tool can safe control the robots’ choreography
under the supervision of the synthesized controller.

This paper is structured as follows. Section 2 describes the
development process for the planning and execution of a
multi-robot cell. Section 3 explains the tool architecture, and
Sect. 4 introduces a use case by showing some highlights of the
tool usage. Sect. 5 contrasts our technique, and Sect. 6 concludes
this paper.

2 DEVELOPMENT PROCESS OVERVIEW

Figure 1 illustrates the planning and execution process of a multi-
robot cell that consists of the following steps.

Step 1: 3D Modeling & System requirements: This step
consists in modeling the production cell using a 3D modeling
software for robotic systems, and CAD-data of cell components,
such as robots, tools, workpiece, and positioner. We used the
modeling software RobotStudio1, and integrated our tool with the
software. Using the tool, the robot expert can describe the tasks to
be performed including the working points, as well as production
cell requirements, and constraints, such as task dependencies. We
formalize these requirements, and constraints inside a
specification. This is the only manual task activity of our process.

Step 2: Trajectories generation & Collision analysis: Based
on the robot cell 3D model, and the requirements, the tool uses an
iterative A* algorithm with decreasing step size to generate, for all
robots, collisions-free trajectories. The A* algorithm, proposed
in [7], addresses the challenge of finding a path with minimal cost
using a heuristic cost function based on domain-/problem-specific
information. The step size permits to build a grid-layout based
environment from the Euclidean space. The tool checks the
reachability of each robot, finds the working points each robot can
reach, and thus the tasks each robot can perform. Then, the tool
simulates all pairs of trajectories to find trajectory combinations
having a risk of collision, and store robot movement times for later
use. Using the additional derived requirements, such as robot
constraints due to robot working range, and collision constraints,
the tool updates the formal robot cell specification.

Step 3: Reactive specification & Synthesis: In this step, we
generate the reactive specification, namely, the spectra

1https://new.abb.com/products/robotics/robotstudio

specification, from the formal robot cell specification that was
generated in the previous step. spectra includes tools to analyse
specifications. It can check if the spectra specification is
realizable, and generate, in that case, a controller strategy,
otherwise, it can compute a counter-strategy that shows how at
least one guarantee of the spectra specification can be violated.
Moreover, spectra can check if the environment is
well-separated [8, 11], that means, that the system cannot force the
environment to violate its assumptions. If an implementation of
the spectra specification, also known as strategy, cannot be found,
the robot expert must update the requirements, or 3D robot cell
model, by restarting from the first step. If a strategy is found, it can
be used for the production cell operation, as described in the next
step.

Step 4: Optimized & integrated strategy execution: The
controller strategy can be executed using a standalone Java
application. We extended the spectra controller executor to
optimize the system output. In fact, given an environment state,
the extended controller executor must select the optimal action
among multiple system outputs. The spectra selection strategy
does neither consider the robot movement times recorded in the
first step, nor the robot interruption model if it exists. Using a Java
application, we integrated the controller executor with the
heuristic search technique Monte Carlo Tree Search (MCTS), and
with the production cell execution. MCTS showed good
performance in AI and game tree domains [5, 6, 14, 19], and it can
find optimal strategies through look-ahead simulations. Figure 2
illustrates how the spectra controller is integrated with the
production cell execution, and how the controller execution is
tuned in real time with an AI-based optimizer. The controller
execution proactively reacts to unexpected environment events,
and the controller can always (re)schedule, within the allocated
time, optimal task sequences. Indeed, once the production cell
state, i.e., robots’ and tasks’ status, is captured, and passed to the
controller, the controller executor outputs a set of possible actions,
guaranteed by the reactive specification. Instead of the spectra
selection strategy of the controller output, we use the MCTS-based
selection strategy that includes domain-knowledge to find the best
action. The chosen output updates the internal controller status,
and is transformed to robot specific function calls that execute the
corresponding trajectories generated in Step 2.

3 TOOL OVERVIEW

Figure 3 depicts the overall architecture of our tool. It shows the
components of the tool including the produced artifacts. We
extended the 3D modeling and simulation software RobotStudio to
support the robot experts during the production cell design. The
extension collects relevant information on the robot cell, like
robots, workpiece, positioners, robot devices, as well as
requirements that the user defines, such as robot constraints, task
dependencies. The tool automatic formalizes the requirements
inside a DSL-based requirement specification. Based on the robot
cell CAD-data, the tool computes cost-efficient collision-free
trajectories of each robot with respect to the requirements, and
generates robot programs, and configurations accordingly. The
simulation of trajectories computes the movement time model,

https://new.abb.com/products/robotics/robotstudio
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Figure 1: The multi-robot cell planning and execution process
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Figure 2: The integrated strategy execution architecture

tasks each robot can perform, and identifies collision-prone
trajectories’ pairs, and the requirement specification model is
updated accordingly. We implemented an eclipse plugin to
automatic transform this DSL-based specification to a spectra
specification, to obtain a controller through the reactive
synthesis [3, 16]. The robot cell execution is integrated with the
controller strategy using a Java application based on Spring Boot2.
Spring Boot is a java-based framework to create standalone based
applications, and micro services. The Java application uses the
movement times, and the environment model, i.e., robot
interruptions model, to enhance the controller execution. The

2https://spring.io/projects/spring-boot

application is hosted on a PC on the same local area network
(LAN) where the robot cell is deployed. It interacts with the robot
cell through HTTP using REST APIs34to get robot cell state, and
trigger the execution of trajectories and programs.

4 CASE STUDY

Let us consider the spot welding multi-robot cell illustrated in Fig. 4.
The robot cell consists of 2 robots R0 and R1, located at their base
location 0 and 5, respectively. On a positioner, a car body must be
weld on 8 locations: 1 to 4, and 6 to 9. The welding process requires
that the robots weld the corners first, namely, 2, and 7.

Once the robot expert defines the production cell, and inputs the
tasks, including the dependencies, the extension produces robot
trajectories, and necessary configurations of robots R0 and R1. The
extension identifies the tasks each robot can perform according
to its reach specification, and via simulations of trajectory pairs,
detects possible collisions. For example, R0 can only perform the
tasks at welding points 1, 2, 3, 4, and 6. A collision is detected
when R0 moves to location 6, while R1 moves to location 1. These
constraints, including the requirements, are formally defined in the
specification as illustrated in Lst. 1.

The spectra specification encodes the system rules as
guarantees, and describes the environment behavior as
assumptions. We highlight some aspects of the reactive
specification. Listing 2 shows an excerpt of the spectra
specification. It states that each robot eventually completes its
assigned task except if the robot reports failure or is interrupted.
The guarantee defined in Lst. 3 specifies the task constraints of
robot R0, derived from our tool. The corner constraint related to
the corner task 2 is specified in Lst. 4.

3https://developercenter.robotstudio.com/api/rwsApi/
4https://developercenter.robotstudio.com/api/RWS

https://spring.io/projects/spring-boot
https://developercenter.robotstudio.com/api/rwsApi/
https://developercenter.robotstudio.com/api/RWS


MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada
Eric Wete, Joel Greenyer, Daniel Kudenko,

Wolfgang Nejdl, Oliver Flegel, Dennes Eisner

Modeling tool & 
Extension

Formal 
requirements

Stores requirements

Model transformation

Spectra 
specification

RobotStudio

Controller 
strategy

Controller synthesis

Trajectory 
time model

Controller 
strategy

Controller 
executor

Optimizer 
(MCTS)

Environment 
behavior model

Controller integration

Parser/Interpreter

REST client

Java application

. . . . . . . . . . . . .

Trajectories

Web services

Programs/OS

Trajectories

Web services

Programs/OS

Trajectories

Web services

Programs/OS

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

REST

Multi-robot cell

LA
N

Deployment

    Trajectories, programs, configurations

us
es

Figure 3: The overall architecture of our tool

4
3
2 1

6 7
8
9

R0

R1

0

5

Figure 4: Production cell case study

5 RELATEDWORK

Sampling-based approaches, like the PRM or RTT methods
proposed, respectively, in [1, 15], and [2, 10], address the motion
planning problem by building a representation of the environment
to support the planning. There also exist graph-based approaches,
such as A* to obtain optimal paths [18, 20]. However, we propose
an approach that does not only address the motion planning
problem, but also can schedule and execute safe multi-robot tasks
and movements to complete cycles, considering unexpected
environment events. To this end, LTL-based specifications can be
used, and combined with planning based methods. This paper’s
aim is to contribute in this direction by showing the feasibility of
this technique (cf. [21]), and its integration with an industrial case
including the tools used in the industry by the robot engineers.

1 robot cell Models22UC02R08T02R {
2 robots:
3 r0:p0
4 does:
5 t1 t2 t3 t4 t6
6 r1:p5
7 does:
8 t1 t6 t7 t8 t9
9 tasks:
10 t1:p1
11 depends on:
12 t2 t7
13 t2:p2
14 t3:p3
15 depends on:
16 t2
17 t4:p4
18 depends on:
19 t2
20 t6:p6
21 depends on:
22 t2 t7
23 t7:p7
24 t8:p8
25 depends on:
26 t7
27 t9:p9
28 depends on:
29 t7
30 locations:
31 p0 p1 p2 p3 p4 p5 p6 p7 p8 p9
32 collisions:
33 r0:p6, r1:p1
34 }

Listing 1: The multi-robot cell specification of the use case.

6 CONCLUSION

In this paper, we presented a tool for the planning and execution
of multi-robot cells. The tool supports robot engineers to
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1 asm RobotsWillEventuallyCompleteATask:
2 alwEv forall r in Robot. !isDamaged[r] -> (forall t in

Location. (targetLocation[r] = t) -> (( isCompleted[t])
));

Listing 2: An assumption from spectra

1 gar RobotsWorkspace_R0:
2 alw targetLocation [0] in {0, 1, 2, 3, 4, 6};

Listing 3: A workspace guarantee from spectra

1 gar Dependency_for_2{Robot r}:
2 alw (! isCompleted [2]) -> (targetLocation[r] not in {1, 3, 4,

6});

Listing 4: A task dependency guarantee from spectra

automatic produce cost-efficient robot trajectories, and computes,
in real time, safe, and optimal task sequences guaranteed by a
reactive specification. We described the tool-supported
development process, and the tool architecture that includes the
components required to construct the multi-robot system. We
combined our tool with the integrated development environment
of robot engineers to collect requirements, constraints, and
produce robot programs including trajectories, as well as
configurations for each robot. We illustrated how to obtain a
correct-by-construction reactive system from the formal
description of the requirements. Moreover, we highlighted how to
integrate, with a Java application, the synthesized controller, and
the production cell execution. More interesting, our tool can be
used easily used by robot experts, since it does not require prior
knowledge on writing reactive specification. The provided DSL
can easily be used at early stages to check some properties, such as
system realizability, before starting with the 3D modeling. For
example, given the type of robot, or the robot-mounted position in
the production cell, a robot workspace can be approximated. Then,
using the DSL, the robot expert knows beforehand if all tasks can
be done using the chosen robot or cell configuration.

For future development, it would be interesting to suggest to
the robot engineers, in case of unrealizability, hints to produce a
realizable system, for example, by proposing new locations where
robots can be mounted. An investigation could also be to propose,
the optimal robot-mounted positions, as well as robot specifications,
given the description of tasks, and the available robots.
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