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Abstract

The energy of ultra-dilute quantum many-body systems is known to exhibit a universal
dependence on the gas parameter x = nad

0 , with n the density, d the dimensionality of
the space (d = 1, 2, 3) and a0 the s -wave scattering length. The universal regime typi-
cally extends up to x ≈ 0.001, while at larger values specific details of the interaction
start to be relevant and different model potentials lead to different results. Dipolar sys-
tems are peculiar in this regard since the anisotropy of the interaction makes a0 depend
on the polarization angle α, so different combinations of n and α can lead to the same
value of the gas parameter x. In this work we analyze the scaling properties of dipolar
bosons in two dimensions as a function of the density and polarization dependent scat-
tering length up to very large gas parameter values. Using Quantum Monte Carlo (QMC)
methods we study the energy and the main structural and coherence properties of the
ground state of a gas of dipolar bosons by varying the density and scattering length for a
fixed gas parameter. We find that the dipolar interaction shows relevant scaling laws up
to unusually large values of x that hold almost to the boundaries in the phase diagram
where a transition to a stripe phase takes place.
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Ultra-dilute systems have recently gained renewed interest since the existence of liquid-
like droplets of Bose mixtures was predicted [1], resulting in equilibrium densities orders of
magnitude lower than what is found in other systems such as Helium [2,3]. In the context of
Bose-Bose mixtures, the formation of this liquid state results from the delicate balance between
the overall attractive mean-field energy arising from the competition between interspecies at-
traction and intraspecies repulsion, and a repulsive contribution caused by quantum fluctu-
ations, which stabilizes the system. Bose-Bose self-bound droplets have been both described
theoretically [1,4,5] and observed experimentally [6,7]

Ultradilute droplets have also been achieved in single-component dipolar systems. They
result from the competition of the repulsion induced by a contact interaction term, and the
dipole-dipole interaction (DDI) [8, 9]. Dipolar droplets have also been predicted recently in
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dipolar mixtures [10, 11]. More complex systems featuring spin-orbit interactions have also
been reported to be able to form ultralow density droplets that can even show a striped pat-
tern [12].

In general, quantum systems at zero temperature and very low densities are known to
follow universal equations of state [13–18]. In all cases, the leading terms are given by the
mean-field (MF) prediction, where the energy per particle ε(x) is a function of the gas parame-
ter x = nad

0 , with n the density, d the dimensionality of the space, and a0 the s-wave scattering
length of the interatomic interaction. Within the lowest order Born approximation, the only
relevant parameter in a pseudo-potential expansion of the interaction is a0, while additional
quantities like the s-wave effective range or other parameters from higher order partial waves
do not contribute significantly. In the common case of central interactions, the scaling in x
starts to break down as the gas parameter exceeds a critical value xc ≈ 0.001. Below that
value, all interaction sharing the same s-wave scattering length follow the MF + Beyond Mean
Field prediction.

Within mean-field theory, the energy per particle is linear with the density, ε= gn/2, with
the coefficient of proportionality given by the coupling constant g, which defines the strength
of the short-range interaction between bosons modeled by a pseudopotential, VSR(r) = gδ(r).
In three dimensions, the relation between the coupling constant and the s-wave scattering
length is linear, g3D = 4πħh2a0/m, where m is the particle mass, resulting in a linear depen-
dence of ε on the gas parameter x , ε/(ħh2/ma2

0) = 2πx . The situation is significantly more
complicated in the two-dimensional case where ε is fully defined by the density n, as experi-
mentally shown for 2D Bose gases in Refs. [19,20].

In two dimensions, the dependence of the system properties on the s-wave scattering length
a0 occurs due to a quantum mechanical symmetry breaking. This is known as a quantum
anomaly [21, 22]. In the context of ultracold gases with short range interactions, this quan-
tum anomaly manifests itself through the symmetry breaking of the scale invariance present
in the classical field treatment of the problem. Therefore, the quantum anomaly phenomenon
generates deviations from the predictions established from the classical field results. Among
these, the modification of the frequency of the breathing mode in two dimensions has been
both predicted theoretically for Bosons [23, 24] and Fermions [22, 25] and observed experi-
mentally in fermionic systems [26, 27]. Also, the change in the power-law exponents associ-
ated with long-range phase correlations in the system has been recently observed [28]. Still
the dependence of the coupling constant g2D on a0 is extremely weak and comes through the
logarithm of the gas parameter, g2D = 4ħh2/(m| ln x |) [15,29], with further perturbative terms
introducing recursive contributions of the form ln | ln x | [30–35]. A similar perturbative struc-
ture appears in the thermal effects associated with the Berezinskii-Kosterlitz-Thouless (BKT)
phase transition [36,37]. However, in the latter case, the recursive term ln | ln x | does not play
a major role in typical experimental conditions, since its contribution is always smaller than
that of a dimensionless experimental parameter [36]. In fact, the weak dependence of the
beyond mean field corrective terms limits the validity of the MF theory to exponentially small
values of x . Indeed, it was shown in Ref. [38] that it is necessary to reach values as small as
x ∼ 10−100 to see that the influence of the beyond mean field corrections is in general negli-
gible. As long as the energy is concerned, though, a cancellation of the logarithmic corrective
terms leads to very small deviations from the MF prediction below x ∼ 10−3.

The inclusion of dipolar physics brings a whole new degree of theoretical sophistication
to a proper description of the equation of state ε. This is because, while technically speaking
the dipolar interaction is short-ranged, its extension is large compared to other typical short-
range potentials. On top of that, the dipole-dipole interaction (DDI) depends not only on the
distance but also on the relative orientation of the constituents, introducing additional degrees
of freedom in the Hamiltonian. In the specific case of polarized two-dimensional dipoles, the
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energy per particle was shown in Ref. [39] to follow the universal prediction up to the critical
value xc . Due to the anisotropy of the interaction, however, the s-wave scattering length of
polarized dipoles in 2D depends on the polarization angle α as a0(α)/ad ≈ e2γ(1 − 3λ2/2),
with λ = sin(α), γ = 0.577 . . . the Euler’s constant, and ad = mCdd/4πħh2 the dipolar unit of
length [39]. The DDI potential

Vdd(r) =
Cdd

4π

�

1− 3λ2 cos2 θ

r3

�

, (1)

describes dipoles moving in the XY plane while being oriented externally by a polarization field
contained in the XZ plane. It is important to remark that increasing the tilting angle beyond
a critical value αc ' 0.615 makes the system collapse. This is because for α > αc the DDI
becomes negative for values of θ around zero, while the quantum pressure is not enough to
overcome it.

The dependence of a0 on the polarization angle implies that the same value of the gas
parameter x = na2

0 can be achieved in many different ways by properly adjusting n and α.
In particular, increasing α leads to a reduction of the repulsion of the DDI, thus implying
that n must be increased to keep x constant. In Ref. [39] the authors showed that different
combinations leading to the same x yield the same ε(x), even for low values of x that are
larger than xc . In this way, the equation of state of bosonic dipoles in two dimensions seem
to follow a universal dipolar curve. Universal properties of dipolar bosons in two dimensions
have also been discussed in Ref. [40].

In this work we explore this universality among dipoles featuring different orientations
up to the large gas parameter values way above xc . We aim to characterize the degree of
universality not only in the energy per particle, but also in other observables directly related
to the structure of the system and its coherence properties. This is done by performing diffusion
Monte Carlo (DMC) simulations of N dipolar bosons moving in a box with periodic boundary
conditions contained in the XY plane. The system is described by the many-body Hamiltonian

H = −
ħh2

2m

N
∑

j=1

∇2
j +

∑

i< j

Vdd(ri j) , (2)

with m the mass and ri j the relative position vector. While DMC produces statistically exact
energies, its convergence properties benefit from the use of a variational guiding wave function
Φ0(r1, r2, . . . , rN ) to drive the dynamics in imaginary time. In this work we buildΨ0 as a Jastrow
pair-product form

Φ0(r1, r2, . . . , rN ) =
∏

i< j

f (ri j) , (3)

with f (r) the solution of the zero-energy two body problem, matched with a phononic tail
at a distance rm that is variationally optimized, as described in [39]. As we wish to compare
different dipolar systems that have the same gas parameter x and different tilting angles, sim-
ulations are performed for different values of the density n as α changes such that x remains
constant. We find that N = 100 particles are enough for all the gas parameter values explored
but x = 350, where N = 200 has been used. We have checked that our results remain essen-
tially unchanged when keeping n constant while increasing N and the box size L. We further
elaborate on their dependency on the finite size of the system below.

We start the discussion of the results by first addressing the energy per particle of the sys-
tem, since this is the driving quantity characterizing universality among different quantum
systems at zero temperature. In these systems, universality takes place when the energy per
particle, expressed in scattering length units, becomes a function of the gas parameter x = na2

0
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Figure 1: Ratio of the bulk DMC energy per particle, in units of the scattering length
a0(α) to E(α = 0, x), for different values of the gas parameter x . The maximum
tilting angle used for x = 350 is α= 0.58.

only. In the present case where we compare the same (dipolar) interaction at different polar-
ization angles α, universality implies that all ratios E(α)/E0(α) with E0(α) = ħh2/ma2

0(α),
must collapse to the same curve ε(x). Figure 1 shows the bulk DMC energies per particle in
dimensionless form for several values of the gas parameter x and polarization angle α. We
report the ratio of the energy (in units of E0(α) = ħh2/ma2

0(α)) to the energy at α = 0 (in
units E0(0) = ħh2/ma2

0(0)), so that all curves in the figure start at one. Notice that the maxi-
mum tilting angle explored for x = 350 is α = 0.58, as for larger values the ground state of
the system lays in the stripe phase [41]. A perfect universal behaviour would correspond to
E/E(α = 0) = 1 for all polarization angles where the system is still in the gas phase. Surpris-
ingly, and as it can be observed from the figure, the universal behavior holds for all α ® 0.4,
while at larger angles slight deviations less or equal than 5% can only be seen at anomalously
large values of x ¦ 100, which lays orders of magnitude above xc . In this sense, the energy for
any value of α can be well approximated with an error no larger than 5% when its value at any
other single α (for instance α= 0) is known. This scaling property allows for the computation
of a single curve that can be property rescaled and used as an input to alternative mean-field
models. We have found that a good fit to the DMC energies is given by the expression

εfull = E/N =

�

ħh2

ma2
0(α)

�

exp
�

A(ln(x) + C)l + B
�

, (4)

where A = 0.920, B = −7.917, C = 8.0, and l = 1.117 Furthermore and in agreement with
Ref [39], in the universality regime of gas parameter values x ® 10−3, the energy of the dipolar
gas can also be well approximated by the mean-field prediction

εMF = EMF/N =

�

ħh2

2ma2
0(α)

�

4πx
|ln(x)|

. (5)

We show in Fig. (2) a comparison between the DMC energies and the values obtained
using the expressions in Eqs. (4) and (5). As it can be seen from the Figure, the mean-field
prediction of Eq. (5) closely reproduces the DMC energies for x ® 10−3, fairly close to the
limit of validity of the universal equation of state. Beyond that point, the mean field functional
drastically deviates from the DMC energies as well as from the prediction of Eq. (4).

It is also interesting to discuss the behavior of the energy expressed in dipole units so that
the energy scale is set to E0 = ħh2/ma2

d for all polarization angles. Since the scattering length
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Figure 2: DMC energies per particle (symbols), εfull (dashed line) and εMF (solid
line), all in scattering length units, divided by εfull as a function of the gas parameter.
Here, ε denotes an energy per particle.

decreases with increasing α due to the anisotropy of the DDI, one readily notices from the
curves in Fig. 1 that the energy increases for increasing α, at least for α® 0.4. This may seem
to be a counteractive effect, as by increasing α the interaction becomes less repulsive almost
everywhere. However, the density has to be increased when the scattering length is reduced
in order to keep the gas parameter constant. In this way, the net increase in the energy is the
result of two competing effects.

Next we discuss the structural properties of the system, starting with the pair distribution
function g(r), which is defined as

g(r= r12) =
N(N − 1)

nN

∫

dr3 · · · drN |Ψ(r1, r2, · · · , rN )|
2

∫

dr1 · · · drN |Ψ(r1, r2, · · · , rN )|
2 . (6)

This quantity measures the probability to find two particles at a relative distance given by
the position vector r. Considering the anisotropy present in the system, it is convenient to
perform a partial waves expansion of g(r) in the form

g(r) =
∞
∑

m=0

g2m(r) cos(2mθ ) ,

with (r,θ ) the polar coordinates. Due to the bosonic symmetry, only even order modes con-
tribute to this expansion. In this way, the emergence of anisotropic effects in the structure
of the system is manifested by the presence of non-vanishing g2m(r) terms with m > 1. In
practice, though, we have found that higher order modes produce a negligible contribution
when compared with the first two.

We focus on two main aspects concerning the pair distribution function: the effect of the
anisotropy, and the possible scaling of g(r) for different tilting angles α. Results for g0(r) and
g2(r) are shown in the left and right panels of Fig. (3) for increasing values of the gas param-
eter and polarization angle. In these plots all distances have been scaled by the corresponding
scattering lengths, which is different for different values of α. As it can be seen from the left
upper and middle panels, for x = 0.001 and x = 1 the isotropic modes are equal, regardless
of the value of α. Similarly to the total energy discussed above, the pair correlation functions
follow a universal trend, even for values of the gas parameter x as large as 350, where de-
viations from a common curve are evident only at the largest polarization angle considered,
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Figure 3: Isotropic (left plots) and first anisotropic modes (right plots) of the pair
distribution function for x = 0.001 (top), x = 1 (middle) and x = 350 (bottom) and
for different values of the tilting angle.

α = 0.58. In this sense, the behavior of the isotropic mode of the pair distribution function
shows a universal dipolar behavior that extends far beyond what is found in other quantum
many-body systems [18].

The degree of anisotropy present can be measured by the strength of the g2(r) mode,
which is depicted in the right panels of the same figure. As it can be seen, none of the curves
are equal, not even at the lowest value of x = 0.001. This indicates that pure anisotropic
effects in g(r) do not scale, in contrast to what happens with the isotropic mode. In any case,
it should be noticed that the relative strength of the anisotropic mode to the isotropic one is
always small in the range of x and α values considered, except for the largest ones. In this way
one can conclude that the impact on the anisotropy of the interaction in the spatial structure of
the system only affects significantly the dipolar gas close to the transition to the stripe phase.

From the pair distribution function one can obtain the static structure factor S(k) by direct
Fourier transform

S(k) = 1+ n

∫

dr eikr (g(r)− 1) . (7)

This quantity characterizes spatial ordering in the system, as periodic repetitions in space show
up as peaks in S(k). The dipolar system is known to enter the stripe phase at large densities
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Figure 4: Static Structure factor S(kx , 0) and S(0, ky) computed for x = 350,
α= 0.58, with momenta scaled with the tilting-dependent scattering length a0(α).

and polarization angles. In this respect, the x = 350,α = 0.58 point lays very close to the
transition line [41]. Even though this work is restricted to the study of dipolar gases, the gas
parameters and tilting angles explored reach values large enough such that signs of spatial
ordering along the direction of maximal repulsion of the interaction are visible. This is seen
in Fig. (4), where we show S(kx , 0) and S(0, ky) for the largest values x = 350, α = 0.58.
This quantity has been obtained using the extrapolated estimator, which corrects to first order
the bias caused by the trial wave function in the evaluation of expectation values of operators
Ô that do not commute with the Hamiltonian. The extrapolated estimator is computed as
the ratio 〈Ô〉ext. = 〈Ô〉2DMC/〈Ô〉VMC, where the labels “VMC" and ”DMC" stand for Variational
and Diffusion Monte Carlo, respectively. As it can be seen, S(0, ky), which corresponds to the
direction of maximum repulsion, shows a pronounced peak that is absent in S(kx , 0). This is
the triggering sign of spatial ordering along the Y direction, in what constitutes an anisotropic
gas, a precursor of the supersolid stripe phase. Being S(k) the Fourier transform of g(r), the
scaling properties presented by the static structure factor in terms of x and α are essentially
the same ones presented by the pair distribution function analyzed above.

In order to clarify the origin of the universality in the energy as a function of the gas
parameter, it is worth mentioning that the pair distribution function can be directly related
to the total energy per particle of the system. In order to show that, we first notice that the
potential energy per particle can be written in the form

〈V 〉
N
=

n
2

∫

dr Vdd(r)g(r) . (8)

As shown in Fig. 3, the anisotropic contributions to the pair distribution function are much
smaller than the isotropic mode, so we can approximate g(r)' g0(r). In dimensionless form,
the potential energy per particle becomes

〈Ṽ 〉
N
= xπe−2γ

∫

d r̃
g0(r̃)

r̃2
, (9)

where r̃ and 〈Ṽ 〉 are expressed in units of a0(α), E0(α) = ħh2/(ma2
0(α)), respectively. As a

result, 〈Ṽ 〉/N depends only on the gas parameter x and on an integral of g0(r̃) = g0(
r

a0(α)
),

which is left almost unchanged for all tilting angles. One thus concludes that, within this ap-
proximation, universality in the pair distribution function induces universality in the potential
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Figure 5: Condensate fraction as a function of the gas parameter (upper plot), and
as a function of α for different gas parameters x = 0.001 (dots), 1 (up-triangles), 5
(down-triangles), and 10 (diamonds) (lower plot). In the upper plot, we provide the
values obtained by Ref. [42], as well as the Bogoliubov prediction, which is plotted
for x < 1.

energy per particle. This is in agreement with the universal properties of dipolar systems dis-
cussed in Ref. [40]. In order to link this result with the universal behaviour of the total energy
per particle, we use of the Hellmann-Feynman theorem, which states that, for a Hamiltonian
of the form Ĥ = Ĥ0 + uĤ1, the ground state energy can be written as

E = E0 +

∫ 1

0

du 〈Ψ(u)|
dĤ
du
|Ψ(u)〉 , (10)

where E0 is the ground state energy of Ĥ0. We now take Ĥ0 and Ĥ1 to be the kinetic and
(dipolar) potential terms of the Hamiltonian, respectively. The case u = 1 corresponds to the
full Hamiltonian considered in this work. With this choice, E0 = 0 as this corresponds to the
ground state energy of a free gas of bosons at zero temperature. In this way one has

E
N
=

1
N

∫ 1

0

du 〈Ψ(u)|V |Ψ(u)〉=
∫

dr Vdd(r)g(r, u) , (11)

or, in scattering length units

Ẽ
N
= xπe−2γ

∫ 1

0

du

∫

d r̃
g0(r̃, u)

r̃2
. (12)
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In this expression, g(r, u) stands for the pair distribution function corresponding to a Hamil-
tonian Ĥ = Ĥ0 + uV , with 0 < u < 1. Our previous analysis has shown that already for u = 1
the contribution of the isotropic term dominates the pair distribution function in the range of
tilting angles and gas parameters considered. By reducing the strength of the dipolar interac-
tion with u < 1, as given in Eq. (12), the impact of the anisotropic modes is reduced as the
potential contribution to the total energy is less relevant the lower u is. Therefore, Eq. (12)
links the universality of the pair distribution function to the universality of the total energy per
particle. It must be remarked, however, that the low contribution of the anisotropic modes of
the pair distribution function, compared to the isotropic one, is key to ensure universality in
the energy, since the anisotropic modes are not universal as seen in Fig. 3. We conclude that
the lack of strong anisotropic contributions in the structure of the system, even at large gas
parameters and tilting angles, leads to universality in the total energy per particle. We further
extend over this argument below.

Next, we discuss the condensate fraction n0 of the system. This quantity is obtained from
the large-distance limit of the off-diagonal one body density matrix

ρ1(r) = N

∫

dr2 · · · drNΨ
∗(r1 + r, r2, · · · , rN )Ψ(r1, r2, · · · , rN )

∫

dr1 · · · drN |Ψ(r1, · · · , rN ) |2
, (13)

as n0 = ρ1(|r| → ∞)/n. The upper plot of Fig. (5) shows n0 for different values of the
gas parameter x and tilting angle α. Remarkably, the condensate fraction remains essentially
constant at fixed x . We find an almost perfect scaling behaviour up to the largest value x = 10
explored, which stays largely away from the diluteness regime. As expected, the value of n0
decreases with increasing x , as the enhancement of quantum fluctuations at larger densities
favors the depletion of the condensate. In order to discern whether the dependence of the
condensate fraction of x is universal or not, we also to compare our results to the Bogoliubov
prediction nB

0 = 1− 1/|lnx |. As it can be seen, the Bogoliubov prediction is recovered only in
the weakly interacting regime corresponding to x ® 0.001, while significant deviations appear
as x increases. Still and as mentioned above, the condensate fraction has the same value
for fixed x and different α, thus showing a clear scaling behavior as the previous quantities
analyzed. For large x the DMC prediction is significantly larger than the values obtained in
the Bogoliubov model, as expected.

To conclude the numerical analysis, and considering all simulations have been performed
with a fixed number of particles, we analyze how finite size effects influence our results. We
report in the top panel of Fig. 6 the ratio of the energy of the dipolar gas at fixed N to the
corresponding value extrapolated to the thermodynamic limit (N →∞), denoted by Eext, for
x = 100 and α= 0. We also show the fit from where the extrapolated value is obtained, which
corresponds to a function of the type f (N) = Eext + C/

p
N . This is consistent with finite size

calculations performed in Ref. [43] for a system of non-tilted dipoles in two dimensions. Larger
tilting angles produce similar results. In much the same way and in order to characterize the
influence of finite size effects in other static properties, we report on the bottom panel of the
same figure the pair distribution function for N = 100 and N = 300, also at x = 100 and α= 0.
In all cases, the box size L is chosen such that the density is kept constant while changing N .
As can be seen, finite size corrections for both quantities are small and below 0.75% already
at N = 100, thus confirming that the universality conditions described above hold also in the
thermodynamic limit.

After analyzing universality in the energetic and structural properties of the purely dipolar
system, it is interesting to discuss what the effect of adding a short range isotropic interaction
is. This is a relevant issue, as in actual experiments on dipolar systems this term is usually
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Figure 6: (Top) ratio of the DMC energies to the extrapolated N → ∞ value for
x = 100 andα= 0. The solid line corresponds to a fit of the form f (N) = Eext+C/

p
N

from where the extrapolated value is obtained. (Bottom) Pair distribution function
at x = 100 and α= 0 for N = 100 and N = 300 particles at the same density.

present. When it is included, the Hamiltonian becomes

H = −
ħh2

2m

N
∑

j=1

∇2
j +

∑

i< j

Vdd(ri j) + Vsr(ri j) = −
ħh2

2m

N
∑

j=1

∇2
j +

∑

i< j

Vf ul l(ri j) , (14)

where Vf ul l(r) stands for the total potential acting on the atoms. In order to explore how
the inclusion of this short range term affects universality, we have chosen a model interaction
of the form Vsr(ri j) =

�

σ/ri j

�6
. At this point, we have calculated the scattering length of

the Hamiltonian in Eq. (14) from the large distance asymptotic behavior of the zero-energy
solution of the two-body problem as discussed in [44]. This treatment is equivalent to solving
the Scattering T-matrix of the system, and taking its zero-momentum limit. The result is shown
in Fig. 7. As it can be seen, although non-zero, the addition of the short-range term, for
moderate values of σ, does not alter significantly the scattering properties with respect to the
purely dipolar model. In order to confirm that in the many-body case, we have performed
additional simulations corresponding to the Hamiltonian in Eq. (14) with the chosen Vsr(r).
We have set σ = 0.25 in dipolar units, as in this case the presence of Vsr(r) does not modify
appreciably the total scattering length. We have computed the energy per particle and the
pair distribution function at x = 100, and the condensate fraction at x = 5. The results are
shown in Fig. 8, where we report, for x = 100 and different values of the tilting angle, the
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ratio E/E(α= 0) (as in Fig. 1), the g0(r) and g2(r)modes of the pair distribution function (as
in Fig 3), and the condensate fraction (as in the lower panel of Fig 5) for x = 5. As we can see
from the figure, universality still holds in the main static properties of the system. The energy
per particle departs only a few percent from the perfect universal behaviour (corresponding
to E/E(α = 0) = 1), and only at the largest polarization becomes slightly noticeable. The
pair distribution function keeps being dominated by the isotropic mode, which clearly shows
universality. In much the same way, the condensate fraction does not present a noticeable
dependence on the tilting angle. We thus conclude that the presence of a short range repulsive
potential does not alter significantly the universality present in the 2D dipolar gas when the
DDI interaction is considered alone.

In view of the results reported in this work, we conclude that the universality displayed by
the 2D dipolar gas is a direct consequence of the fact that the gas parameter must be increased
to very large values (x ' 400) for the anisotropy of the DDI to have a strong influence in the
structural properties of the system. This is furtherly supported by the fact that one can recover
the properties reported in this work to a high degree of accuracy by replacing the full DDI by
an isotropic potential of the form

Ve f f (r,α) =
Cdd

4π

�

1− 3
2 sin2α

�

r3
, (15)

where the tilting angle becomes simply a parameter that tunes the effective strength of the
interaction. This particular form of the potential makes its scattering length be almost iden-
tical to that of the fully anisotropic DDI interaction [39]. When the many-body Schrödinger
equation for Ve f f (r) is expressed in scattering length units, it becomes independent of the
polarization angle α

−
1
2

N
∑

i=1

∇̃2
i Ψ +

∑

i< j

e−2γ

�

�r̃i j

�

�

3Ψ = ẼΨ , (16)

meaning that, in these units, solving Eq. (16) yields α-independent results. Furthermore, since
Ve f f (r,α = 0) = Vdd(r,α = 0), the properties obtained when solving Eq. (16) are the same
as those obtained when solving the Schrödinger equation for the full Vdd(r,α= 0), written in

Figure 7: Scattering length of the compound system described by the Hamiltonian
in Eq. (14) corresponding to a dipolar system with an additional Van der Waals tail,
as a function of σ and for different polarization angles. Here, σ is given in dipolar
units, with the characteristic length and energy scales given by l = ad , εl = ħh2/ma2

d
respectively.
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Figure 8: Ratio of the bulk DMC energy per particle, in units of the scattering length
a0(α) to E(α= 0, x), for x = 100 (top left panel). Condensate fraction as a function
of the tilting values α for x = 5 (top right panel). Isotropic (bottom left panel)
and first anisotropic modes (bottom right panel) of the pair distribution function for
x = 100. All quantities have been computed for the Hamiltonian of Eq. 14, where a
short range repulsive potential is considered along the DDI.

scattering length units. Thus, one can see from the results in Figs. 1, 3 and 5 that the energy per
particle, the radial distribution function, and the condensate fraction of the system obtained
when the potential Ve f f (r,α) is considered (which correspond to the data for α = 0 in the
Figures) approximate reasonably well the results obtained with the full DDI when α 6= 0. We
believe that the fact that this isotropic approximation is successful, which is a consequence of
universality, is due to the lack of a strong anisotropic influence in the structural properties of
the system.

To summarize, we have studied the scaling of the dipolar interaction as a function of the
polarization angle α and gas parameter x in a system of two-dimensional bosonic dipoles.
We have found that universality is lost already at x ≈ 0.001 where the energy per particle
deviates from the mean-field prediction as expected. Beyond that point, however, all energy
curves collapse to a single one when properly scaled by the tilting-dependent scattering length
a0(α). This behavior holds up to surprisingly large values of x close to the gas-stripe tran-
sition line, like x = 350, and up to large polarization angles near the collapse limit. In this
same region, this scaling property is not only present in the energy, but also on the condensate
fraction for all polarization angles considered (α ∈ [0, 0.6]), and in the most relevant struc-
tural properties like the pair distribution function and the static structure factor. We have also
shown that this behaviour is still present in the system when a short range repulsive potential
is considered along with the DDI, which is typically the case in actual experiments. All this
means that, for any α contained in the region considered, the angular dependence (and thus
the anisotropic features) of the most relevant static properties of dipolar quantum Bose gases
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in two dimensions are entirely contained in the α-dependent s-wave scattering length, which
is well approximated by the expression a0(α)/ad ≈ e2γ(1 − 3λ2/2) with λ = sin(α) and ad
setting the dipolar length scale. From our analysis we finally conclude that the universal be-
havior of the dipolar Bose gas in two dimensions is a consequence of the overall low impact
of the anisotropy on the structural properties of the system up to astonishingly large values of
the gas parameter.
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