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Abstract: Natural plant fibers represent a sustainable alternative to conventional fiber reinforce-
ment materials in cementitious materials due to their suitable mechanical properties, cost-effective
availability and principle carbon neutrality. Due to its high tensile strength and stiffness as well as
its worldwide distribution along with rapid growth, bamboo offers itself in particular as a plant
fiber source. In experimental studies on concrete beams reinforced with plant fibers, a positive
influence of the fibers on the flexural behavior was observed. However, the load-bearing effect of the
fibers was limited by the poor bond, which can be attributed, among other things, to the swelling
behavior of the fibers. In addition, the plant fibers degrade in the alkaline environment of many
cementitious building materials. In order to improve the bond and to limit the alkalinity and to
increase the durability, the use of ultra-high performance concrete (UHPC) offers itself. Since no tests
have been carried out, investigations on the flexural behavior of UHPC with bamboo fibers were
carried out at the Institute of Concrete Construction of Leibniz University Hannover. The test results
show a significantly improved load-bearing behavior of the fibers and the enormous potential of the
combination of UHPC and bamboo fibers.

Keywords: bamboo fibers; ultra-high performance concrete; plant fiber-reinforced concrete; four-point
bending test; post-crack behavior; performance

1. Introduction

Cementitious building materials such as concrete and mortar have become indis-
pensable in modern construction due to their availability, cost-effective production, free
formability, durability and compressive strengths of more than 200 N/mm2 [1]. In addition
to their advantages, however, concretes also have some structural disadvantages. For
example, the tensile strength is often less than 1/10 to 1/20 of the compressive strength.
Moreover, with their brittle failure, concretes exhibit unfavorable fracture behavior. To
compensate the low tensile strength and achieve a higher load-bearing capacity, ductility
and toughness, concretes are usually used in combination with building materials with a
high tensile strength, which can absorb tensile stresses and bridge cracks.

In addition to the reinforced concrete construction method, in which concrete com-
ponents are reinforced by steel reinforcement bars, fiber concretes are also increasingly
being used. In this case, fibers are added to the concrete during the production process,
which prevent or delay the development of microcracks in the hardened state and improve
the post-crack behavior of the cracked concrete [2–6]. Due to the high tensile strength and
stiffness as well as the corrosion protection provided by the alkaline environment of the
concrete, fibers made of steel have been predominantly used for this purpose. However,
other man-made fibers made of glass, carbon or polymers are also used in the construction
industry [3,7,8]. Yet, man-made fibers have some disadvantages. For example, their pro-
duction is energy intensive, releases comparatively high amounts of greenhouse gases, and
is associated with high consumption of non-renewable resources [9,10]. In addition, their
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availability is limited in many regions of the world. For instance, of the 54 African countries,
only two are able to produce steel in significant quantities for their own economies [11,12].
The remaining African nations, as well as many nations in Southeast Asia and South
America, rely on imported steel with highly volatile prices and have to compete for this
important construction material on the world market [12,13]. The other man-made fibers
made of glass, carbon or polymers are often not a real alternative, as they are even more
limited in availability and usually their cost exceeds that of steel [14,15]. Accordingly, there
is a need, especially in these regions of the world, for local reinforcement alternatives that
are as cost-effective and environmentally friendly as possible to enable the construction
and expansion of a safe and sustainable modern building structure.

Plant fibers offer a natural alternative to man-made fibers. Although the use of plant
fibers in polymer materials has already become established [16,17], plant fibers have so
far only very rarely been used in concretes. Although some investigations have been
carried out regarding the mechanical properties of plant fiber reinforced concretes and
mortars, the results of the investigations were often insufficient for practical implementation
(e.g., [7,18,19]). In addition, normal-strength concretes reinforced with plant fibers exhibit
some problems that have not yet been solved, such as insufficient bonding between fibers
and concrete and insufficient durability. The use of ultra-high performance concrete (UHPC)
represents a promising approach to solving these problems. For this purpose, experimental
investigations on bamboo fiber-reinforced UHPC have been carried out at the Institute of
Concrete Construction (IfMa) of Leibniz University Hannover, which will be reported on
in the following. This is preceded by an analysis of possible plant fiber types for use in
concrete and a compilation and analysis of the investigations already carried out on with
plant fibers reinforced normal-strength concretes.

2. State of Research
2.1. Plant Fibers

Plant fibers are natural composite materials with a polylaminar cell structure. The
individual cell walls are composed of different proportions of hemicellulose, lignins and
cellulose [20–22]. The cellulose molecules which are arranged in chains form the basis
of the fibers and largely determine the tensile properties of the plant fibers [23]. Besides
the cellulose content, the angle of inclination of the cellulose chains to the longitudinal
fiber axis, the microfibril angle (MFA), is also relevant. The tensile strength and stiffness of
the fibers decrease with increasing MFA, whereas the elongation at break increases with
increasing MFA [21,23,24].

Depending on the plant species, the individual fibers usually have a length of a few
millimeters to a few centimeters and are grouped in fiber bundles, which can comprise less
than 10 to well over 100 fibers [20]. Despite the higher tensile strength of single fibers [21,23],
fiber bundles are predominantly used in concretes and mortars. Reasons for this are the
difficult mechanical separation of the single fibers, their small diameter of only about
20 µm and the low bending stiffness [20,21,23]. Due to the different composition, geometry
and structure of the fiber (-bundles), the plant fibers also exhibit deviating mechanical
properties. Table 1 provides an overview of the typical properties of selected natural plant
fiber bundles. It can be seen that coir has a very low tensile strength, whereas Sisal and
Bamboo have a tensile strength similar to reinforcement steel and Flax and Hemp have a
tensile strength comparable to high strength steel.

With regard to a globally sustainable application of plant fibers in concretes, many
other factors are relevant in addition to the mechanical properties. Besides the use of
pesticides, fungicides and fertilizers during cultivation, local availability—especially in the
so-called developing countries—is also important. Hemp and flax fibers have very good
mechanical properties, but their cultivation area is limited to the temperate climate zone,
which is suboptimal for global application [20]. So-called developing countries are mainly
found in tropical and subtropical climatic regions, where coconut palms and bamboo
(Figure 1) are the most widely grown natural fiber plants [20,25–27]. The cultivation
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of coconut palms in coastal regions is associated with lower freshwater requirements
due to their high saltwater tolerance [20,28], but the coir obtained from coconuts has
comparatively low mechanical properties in comparison to the other plant fibers (Table 1).
Bamboo offers many advantages as a plant fiber source due to its early harvest maturity
after 3 to 5 years [29,30], simple harvesting and processing, vegetative reproduction via
rhizomes [31], protection of the soil from erosion [32], and positive influence on the water
table [12]. Combined with high tensile strength and high stiffness, bamboo fibers therefore
offer themselves as a natural reinforcement material in concretes.
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Figure 1. Native regions (dark green) and (possible) cultivation areas (light green) of bamboo
according to [25,27,31,39,40].

Table 1. Typical properties of various selected plant fiber bundles [20,33–38].

Fiber Cellulose [%] Relevant MFA [◦] Tensile Strength [N/mm2] Module of Elasticity [N/mm2]

Flax 70 7 1000 60,000

Hemp 65 4 700 50,000

Sisal 65 17 450 40,000

Coir 35 45 150 5000

Bamboo 60 8 400 35,000

2.2. Plant Fiber Reinforced Cement Based Composites

The flexural strength and toughness of plant fiber reinforced concretes (PFRC) have
already been investigated in several studies. Ali et al. [41] investigated the flexural be-
havior of normal strength concrete reinforced with coir under variation of the aspect
ratio (λf = lf/df) and dosage of the fibers compared to an unreinforced concrete (OC) in
four-point bending tests. The flexural tensile strength as well as the post-crack behavior
increased steadily with an increasing aspect ratio of the fibers and were maximum for
coir with dimensions lf/df = 75/0.25 mm. At 3.0% dosage of the fibers by weight of ce-
ment (wt% o.c.) (~12.7 kg/m3), the maximum flexural tensile strength fcflm,max (= stress
according to theory of elasticity at the lower edge of the beams when the maximum load
Fmax was reached) increased by 5% from 4.3 N/mm2 (Fmax = 11.3 kN) to 4.5 N/mm2

(Fmax = 11.8 kN). Regardless of the aspect ratio and the dosage of fibers, fiber pullout and
thus failure occurred in the bond between the fibers and the cementitious matrix. Although
this mode of failure is targeted to ensure ductile behavior [7,42], it also reveals that the
tensile strength of the fibers is not fully utilized. Similar results were also obtained in the
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studies by Pereira et al. [43], Ramli and Dawood [44], Hwang et al. [45], as well as Baruah
and Talukdar [46].

In order to achieve a higher utilization of the tensile strength of the fibers, the aspect
ratio of the fibers can be increased and thus a better bond can be achieved. However,
with increasing slenderness, the fibers have a negative effect on the workability of the
fresh concrete [7,47]. It should also be taken into account, that plant fibers absorb a
part of the mixing water due to their hydrophilic behavior and thus further reduce the
workability. In the investigations by Ali et al. [41], this led to a decrease in the flowability
and compactability of the fresh concrete despite an increase in the water/cement ratio. It
can be assumed that a further increase in the aspect ratio will further limit these, and thus
the mechanical properties of the PFRC will be equally negatively affected.

Since an improvement of the bond by hooked-ends or profiling is (almost) impossible
for plant fibers [48], the bond of plant fibers used in polymers is often improved by alkaline
pretreatment of the fibers [36,49,50]. Similar positive effects on bonding have also been
observed in studies of cementitious materials. In studies by Momoh et al. [51], alkaline
pretreatment of oil palm broom fibers increased the mean transferable bond stress by 16%
from 0.56 N/mm2 to 0.65 N/mm2 after 28 days. Yan et al. [17] investigated the flexural
behavior of beams made of normal-strength concrete (with a compressive strength of
22.4 N/mm2) and reinforced with 1.0 wt% o.c. (~3.1 kg/m3) coir (lf/df = 50/0.25 mm)
using four-point bending tests. When untreated coirs were used, the maximum flexural
tensile strength fcflm,max already increased by 14.2% from 9.8 N/mm2 (Fmax = 5.4 kN) to
11.2 N/mm2 (Fmax = 6.2 kN) compared to beams without fibers (OC), and when fibers
with an alkaline pretreatment were used, it increased by another 6% to 11.9 N/mm2

(Fmax = 6.6 kN). The use of the fibers further prevented brittle failure of the bending beams
and a certain post-crack tensile strength was observed after cracking. Figure 2 shows the
load-deflection curves of the bending tests by Yan et al. [17]. Of particular note is the
initial course of the curves, which can be attributed to slippage, settlements, etc., of the
test facility. However, since this course makes it difficult to evaluate the post-crack tensile
strength of the beams, the load F at a deflection δ of 0.4 mm (= F0.4) and at a deflection
δ of 3.4 mm (= F3.4) is used in each case after the maximum load Fmax has been reached.
These then correspond approximately to the evaluation points according to EN 14651 [52]
at a deflection of 0.5 mm and 3.5 mm or equivalent crack widths of 0.5 mm and 4.0 mm.
For the bending beams reinforced with coir (PFRC), F0.4 = 2.0 kN shows that 33.0% of the
maximum load Fmax (6.2 kN) can still be absorbed. With alkalized coir (alkalized PFRC),
the load F0.4 with 2.7 kN corresponds to 41.5% of the maximum load Fmax and could thus
be increased by 34.9% compared to the untreated coir. For the load F3.4, it can be seen that
the loads of the two test series converge and are approximately equal. The load F3.4 for
the beams with untreated coir (PFRC) still corresponds to 20.0% (F3.4 = 1.2 kN) and for
the beams with alkaline pretreated coir (alkalized PFRC) to 20.2% (F3.4 = 1.3 kN) of the
respective maximum load Fmax. Consequently, the difference is only 7.9%.

Similar results were obtained by Ozerkan et al. [53] and Zhou et al. [54]. In the
studies by Zhou et al. [54], although bond failure of the fibers still occurred primarily when
alkalized fibers were used, fiber breakage was also observed.

When plant fibers are used in concretes, another problem arises in addition to the com-
paratively poor bond: the degradation in an alkaline environment. Although the cellulose
fibers, which are decisive for the tensile strength, are relatively alkali-resistant compared to
the other fiber components, prolonged exposure to an alkaline environment, as prevails in
conventional concretes and mortars, leads to embrittlement and slow degradation of the
cellulose fibers [18,21,55] as well as to a decrease in the transferable bond stress [51].

Degradation of plant fibers can be prevented by, inter alia, reducing the alkalinity of
the concrete. John et al. [56], for instance, studied coir that had been embedded in a cement
mortar with low alkalinity (pH = 10.3) for 12 years. No significant change in the chemical
composition and structure of the fibers was observed. One way to limit alkalinity is to
use pozzolans. Moreover, the reaction of the silica contained in the pozzolans with the
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calcium hydroxide crystals (CH crystals)—present especially in the contact zone between
the hydrated cement and the aggregates or fibers—to calcium silicate hydrate (CSH) phases
improves the bond between the cementitious matrix and the fibers [1,57].
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Ahmad et al. [58] used a concrete mix with a microsilica content of 52.5 kg/m3 in
their investigations (three-point bending tests) to determine the flexural strength of with
coir reinforced concrete (with a compressive strength of 49 N/mm2). Different dosages
of fibers (0.5 wt% o.c. (~2.6 kg/m3) to 2.0 wt% o.c. (~10.5 kg/m3)) and different dimen-
sions (lf/df = 25/0.32 mm, 50/0.32 mm and 75/0.32 mm) were used. Both the maximum
flexural tensile strength fcflm,max and the load that can be applied after cracking tended to
increase with an increasing aspect ratio of the fibers λf. At a dosage of fibers of 1.5 wt%
o.c. (~7.9 kg/m3) with dimensions of the fibers of lf/df = 75/0.32 mm, the maximum
flexural tensile strength fcflm,max increased by 6% from 6.35 N/mm2 (Fmax = 10.3 kN) to
6.61 N/mm2 (Fmax = 11.0 kN) compared to an unreinforced concrete (OC). In the post-
cracking stage, the load F0.4 with 1.2 kN was 10.5% of the maximum load Fmax and the load
F3.4 with 0.9 kN was 7.9% of the maximum load Fmax. A further increase in the dosage of
fibers up to 2.0 wt.% o.c. (~10.5 kg/m3) improved the post-crack behavior and increased
the load F0.4 by 119% to 2.5 kN and F3.4 by 108% to 1.8 kN, but at the same time resulted in
a poorer workability of the fresh concrete as well as a reduction in the maximum flexural
strength fcflm,max by 11% to 5.87 N/mm2 and of the maximum load Fmax by 11% to 9.9 kN
(see Figure 3).
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Despite the long fiber length of 75 mm and the improved contact zone due to the use
of pozzolans, the investigations of Ahmad et al. [58] still showed a bond failure of the fibers
and in part poorer mechanical properties of the PFRC, so that it can be concluded that
the fibers are not properly utilized. A further increase in fiber length would likely further
limit the workability of the fresh concrete and thus the load-bearing behavior of the PFRC.
Although the workability could be improved by increasing the water percentage [41], this
generally decreases the mechanical properties of the concrete [59]. In addition, plant fibers
absorb some of the mixing water due to their hygroscopic properties, which leads to an
increase in the volume of the fibers (primary swelling) during concreting. After the concrete
hardens, the fibers dry, which leads to a reduction in the volume of the fibers and thus
to a weakening of the bond between the concrete and the fibers [47,60–62]. This effect
can also be caused by secondary swelling or drying of the plant fibers in the hardened
concrete due to fluctuating pore moisture [18,31,63]. In order to reduce the swelling of
natural fibers in concrete, a reduction in the water/cement ratio with a simultaneous
optimization of the contact zone between fiber and concrete (improved bond) as well as
a higher impermeability of the concrete should be aimed for. Ultra-high performance
concrete (UHPC) represents a material optimized in this respect.

2.3. Ultra-High Performance Fiber-Reinforced Concrete

Ultra-high performance concretes are characterized by their high compressive strength
of about 150 to 200 N/mm2 [1]. This high load-bearing capacity is achieved by minimizing
microstructural disturbances and increasing the packing density, which is achieved in
particular by a grain size distribution optimized up to the fine grain range, a strong
reduction in the water/cement ratio to 0.25 to 0.15 and the use of inert and reactive
additives [59,64]. Due to the high silica content as well as the high relative surface area and
the associated high reactivity, micro- or nanosilica are commonly used here. The high mass
fraction of pozzolans, often up to 30 wt.% o.c., leads to a transformation of the entire free
calcium hydroxide and thus to a reduction in the alkalinity to a pH value below 10 [65].

A pH value of 10 can lead to depassivation of the steel surface in the case of steel
reinforcement [65]. However, due to the optimized microstructure and the resulting high
impermeability, transport processes are almost completely suppressed in UHPC, so that
even with a minimum concrete cover, no water necessary for steel corrosion reaches the
reinforcement and thus a high durability is achieved [1,66–68].

As a result of the reduced requirements for concrete cover and the high performance
of UHPC (especially very high compressive strength and durability), extremely thin-walled
and thus resource-optimized components and structures can be built with UHPC [69,70], so
that they have a higher sustainability than those made of normal strength concretes [71–74].

However, a disadvantage of UHPC is its brittle failure under compressive loading. For
this reason, micro steel fibers are almost always added to UHPC, which has a enormous
influence on the ductility of the ultra-high performance steel fiber-reinforced concrete
(UHPFRC) [69,75]. Due to the use of high contents of pozzolans, the low water/cement
ratio and the optimized packing density, UHPC has a significantly improved contact zone
compared to normal strength concretes. As a result, even with straight, smooth, high-
strength steel fibers without hooked-ends or profiling and an aspect ratio λ f of 60 to 100,
no further measures are necessary to ensure a sufficient bond between the fibers and
the surrounding cementitious matrix [7]. Additional anchoring by using hooked-ends or
profiling would be more likely to lead to fiber breakage and thus to detrimental brittle
failure of the concrete element [42,76].

However, the steel fibers not only increase the ductility under compressive loading,
but also the toughness under tensile loading due to a high post-crack tensile strength. The
high post-crack tensile strength of the UHPFRC can, among other things, lead to a reduction
in the required reinforcing steel reinforcement bars. However, it should also be noted at
this point that micro steel fibers negatively affect the sustainability of the UHPFRC [72].
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This could be remedied, for example, by the use of plant fibers. However, as far as the
authors are aware, no studies have yet been carried out on the use of plant fibers in UHPC.

2.4. Summary and Conclusions of the State of Research

The use of natural plant fibers can improve the load-bearing behavior of cementitious
materials both in the non-cracked and cracked state, e.g., by increasing the flexural strength
and toughness (post-crack tensile strength). However, the positive influence of the fibers
on the load-bearing behavior is limited when normal-strength concrete is used due to the
comparatively poor bond and the swelling capacity of the fibers. In addition, the high
alkalinity of the concrete with a pH ≥ 12 attacks the plant fibers, causing them to become
brittle and degrade over time.

These disadvantages could most likely be minimized or even completely avoided by
using UHPC. Due to the low alkalinity and the high impermeability of UHPC, sufficient
durability of the plant fibers could be ensured, and due to the very good bond, the integra-
tion and thus the load-bearing capacity of the fibers in the concrete could be significantly
improved. At the same time, the fibers could in turn further improve the ductility and
toughness of the otherwise brittle material as well as the sustainability of the UHPC. As a
natural plant fiber source, bamboo is particularly promising. It is locally and inexpensively
available in many regions of the world (see Figure 1), grows very rapidly [77], and has
promising mechanical properties (see Table 1). Since no studies on ultra-high performance
plant fiber-reinforced concrete (UHPPFRC) are available so far, first experimental investiga-
tions on the flexural behavior of bamboo fiber-reinforced UHPC have been carried out at
the Institute of Concrete Construction (IfMa) of Leibniz University Hannover, which will
be reported below.

3. Experimental Investigations
3.1. Test Specimen

The experimental investigations were carried out in accordance with the DAfStb
guideline for “Steel Fiber Reinforced Concrete” [42,78] using unnotched four-point bending
tests. The bending beams had a span of 600 mm and a width and height of 150 mm each.
The fresh concrete was placed in the formwork from one end face and was compacted by
using a vibrator. Immediately after concreting, the bending beams were covered with a foil,
stripped of their formwork after two days and then stored under foil in a climatic chamber
at a room temperature of 20◦C (±2◦C) and a relative humidity of 65% (±5%) until testing.

The ultra-high performance concrete used was the fine-grain mix RU1 of the DFG pri-
ority program SPP 2020 [79–81] with an average axial compressive strength of 160 N/mm2.
Straight bamboo fibers with dimensions lf/df = 30/0.5 mm were added to the UHPC
in a dosage of 0.00 wt% o.c. (0.0 kg/m3), 1.25 wt% o.c. (9.6 kg/m3), and 2.50 wt% o.c.
(19.2 kg/m3). To ensure adequate flowability of the bamboo fiber-reinforced UHPC, the
dosage of superplasticizer was increased by 50% for the ultra-high performance plant
fiber-reinforced concretes. The UHPC mixes used can be found in Table 2 and the fresh
concrete properties of the UHPC mixes, which were determined directly after the mixing
process—within 12 min—can be found in Table 3.

The bamboo fibers used in the studies were mechanically extracted from the culm wall
of a Moso bamboo (latin name: Arundinarieae Arundinariinae Phyllostachys Pubescens).
For this purpose, the internodes of a culm were divided into splits of about 50 mm in width.
After soaking the splits in water, they were cut into slices about 0.6 mm thick, and—due to
the higher tensile strength in the outer half [82]—only the slices obtained from the outer
two-thirds of the splits were further processed. After soaking in water again and cutting
into 3 cm long segments, these were cut into 0.6 cm wide fibers in the final mechanical
processing step and subsequently air dried. The performed steps of fiber extraction are
shown in Table 4 as well as Figure 4.
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Table 2. UHPC mixtures in [kg/m3].

Components UHPC UHPPFRC-F1.25 UHPPFRC-F2.50

CEM I 52.5 R-SR3/NA
(Holcim Sulfo 5R) 786.2 771.8 766.8

Silica fume
(Sika® Silicoll P (uncompacted)) 166.7 163.6 162.6

Quartz powder
(Quarzwerke MILLSIL® W12) 196.1 192.5 191.3

Quartz sand (0/0.5 mm)
(Quarzwerke H33) 959.8 942.2 936.1

Superplasticiser
(BASF MasterGlenium® ACE 394) 24.1 35.1 34.9

Water 185.7 182.3 181.2

Bamboo Fiber (lf/df = 30.0/0.5 mm) 0.0 9.6 19.2

Table 3. Fresh concrete properties of the UHPC mixtures.

Characteristic UHPC UHPPFRC-F1.25 UHPPFRC-F1.25

Temperature of fresh concrete [◦C] 24.0 ± 1.0

Slump-flow measure
(without locking ring) [mm] 735 820 715

Air content [%] 4.1 4.2 4.3

Density [kg/m3] 2270 2257 2240

Table 4. Steps of fiber extraction.

No. Name Description

1 Divide I Divide the bamboo culm into nodes and internodes

2 Split Split internodes into 50 mm wide splits

3 Soaking I Soak splits for 3 days

4 Planing Divide the splits into slices with a hand plane

5 Soaking II Soak slices for 1 day

6 Divide II Cut the slices into segments with tin snips

7 Separation Separate the fibres from the segments with a carpet knife

8 Drying Air-dry the obtained fibres for one week
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The test program included a total of nine bending beams under a variation of the
dosages of fibers (Table 5).

Table 5. Test program.

Series UHPC Mixture Dosage of the Fibers
[wt% o.c.] Number of Specimens

B-F0.00 UHPC 0.00 3

B-F1.25 UHPPFRC-F1.25 1.25 3

B-F2.50 UHPPFRC-F2.50 2.50 3

3.2. Test Setup and Execution

The test setup, the test facility and the measurement technology used (Figure 5) were
based on [42,83]. In order to record the post-crack behavior, the tests were deformation-
controlled according to the underlying guideline. The applied load F and the deflection δ
were continuously measured and recorded. In addition, strain gauges (SG) were applied to
one bending beam of each series (B-F0.00, B-F1.25 and B-F2.50) in the center of the field on
the side faces (both sides) at three height positions. In order to ensure as uniform a surface
as possible in the area of the SG, the bending beams were tested in such a way that the
concreting side represented the top side of the bending beams.
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3.3. Experimental Results

As expected, brittle failure occurred during testing of the bending beams without bamboo
fibers, whereas ductile cracking behavior occurred during the tests with bamboo fibers.
Figure 6 shows the crack pattern of the bending beams after the tests were carried out
comparatively with a 0.00 wt.% o.c., 1.25 wt.% o.c. and 2.50 wt.% o.c. dosage of bamboo fibers.
The crack pattern in all tests was characterized by a main crack with fiber pullout without
a multiple crack formation. Figure 7 shows a close-up of the failure crack of test B-F2.50-2,
which clearly shows the crack-bridging effect of the bamboo fibers across the crack.

The load-deflection curves of the individual test series up to a deflection δ of 0.10 mm
can be seen in Figure 8. Here, the dotted lines of each color represent the individual results
and the solid lines represent the average load of the test series at a given deflection. It
can be seen that the curves of the bending beams without bamboo fibers (B-F0.00) show
a linear progression until reaching the maximum load Fmax of 19.5 kN on average and
fail brittly after a minimum load drop (elastic limit). The curves of the fiber-reinforced
bending beams show a higher maximum load Fmax compared to those of the plain bending
beams. Thus, the average ultimate load Fmax of the test series B-F1.25 with 26.8 kN exceeds
that of the unreinforced bending beams by 37.1% and that of the test series B-F2.50 with
25.6 kN exceeds that of the unreinforced bending beams by 31.3%. In the case of B-F2.50,
however, the mean value of the test series is strongly reduced by the low load-bearing
capacity of one bending beam, which, at 19.0 kN, has a maximum load similar to that of
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the unreinforced beams. The lower load-bearing capacity of this beam could therefore
be due to an unexpected and undesirable absence of fibers in the cracked cross-section.
Neglecting this beam, the mean value of the maximum load corresponds to Fmax = 28.9 kN,
which is 48.2% more than for the flexural beams without fiber reinforcement. As with the
unreinforced beams, the curves of the fiber-reinforced flexural beams are largely linear
until the maximum load is reached. In some cases, however, there is a brief drop in stiffness
and an increase in deflection in the upper 1/3 of the load (cf. I in Figure 8). In some cases,
there is also a significant drop in stiffness before the maximum load is reached (cf. II in
Figure 8).
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The curves of the strain ε (mean values) measured by the SG and the curves of the
load F both as a function of the deflection δ of the bending beams with the applied strain
gauges of the test series B-F0.00, B-F1.25 and B-F2.50 are shown in Figure 9. For the bending
beam without fiber reinforcement (B-F0.00), the measured strain near the bottom and top
edges (SGb and SGt) increases linearly up to |0.065‰| up to the maximum load, while
the strain in the beam center (SGm) remains constant at 0‰. The strain curves of the
specimen with a dosage of fibers of 1.25 wt% o.c. (B-F1.25) show a similar course until
cracking (cf. cross in Figure 9), where the maximum measured strain of 0.084‰ (mean
value) before reaching the elastic limit exceeds the maximum strain value for the bending
beam without fiber reinforcement by 29.2%. Although the load curve of the beam without
fiber reinforcement ends with the crack formation (Fcrack = Fmax = 19.1 kN), the curve of
the specimen with a dosage of fibers of 1.25 wt.% o.c. (B-F1.25) increases over the crack
formation (Fcrack = 21.5 kN) to a maximum load of Fmax = 24.2 kN (cf. triangle in Figure 9).
With the crack formation, there is also an elongation in the center of the beam (SGm). The
strain curve of the upper strain gauge SGt continues to increase linearly in this region and
is approximately 0.130‰ at the time of maximum load. For the strain curve of SGb, only
the data up to Fcrack are available, since the SG near the bottom edges failed with the crack
formation. The strain curves of the bending beam with a dosage of fibers of 2.50 wt.% o.c.
(B-F2.50) show a comparable linear or constant course as the other beams in the uncracked
stage up to a strain of approx. 0.075‰ (mean value). However, with further increasing
deflection, there are strong deviations from this curve progression. As the load-deflection
curve flattens, there is also a reduced increase in compression strain near the top of the
beam (SGt) and a reduced increase in strain near the bottom of the beam (SGb), while there
is an increase in strain in the beam center (SGm). Thereby, the strain rate in the lower layer
decreases more than the compression strain rate at the upper edge, which can be explained
by the rise of the neutral axis in the cracked sections. With the crack formation at a strain
of 0.116‰ (Fcrack = 27.8 kN), there is a further flattening of the SGb curve, whereas the
strain in the middle center SGm increases slightly. The maximum strain of SGb of 0.125‰,
which is reached at a maximum load of Fmax = 29.4 kN, exceeds that of the bending beam
without fiber reinforcement by 89.1% (Figure 9).
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Figure 9. Load-deflection curves (Load F) and mean values of strain ε measured with strain gauges
in upper (SGt), middle (SGm), and lower (SGb) positions of bending beams with a dosage of 0.00 wt%
o.c. (B-F0.00), 1.25 wt% o.c. (B-F1.25), and 2.50 wt% o.c. (B-F2.50) bamboo fibers up to a deflection of
δ = 0.1 mm.

The load-deflection curves of the individual tests or series up to a deflection δ of
4.00 mm can be taken from Figure 10. The dotted lines of each color again represent the
individual results and the solid lines again represent the average value of the test series
(cf. Figure 8). In the case of the fiber-reinforced beams, the load F decreases slowly with
increasing deflection after cracking of the cross-section (deflection-softening [84]), and the
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bamboo fibers are able to prevent brittle failure of the UHPC. Here, the load F decreases
faster for the bending beams B-F1.25 with a dosage of fibers of 1.25 wt% o.c. (9.6 kg/m3)
than for the bending beams B-F2.50 with a dosage of fibers of 2.50 wt% o.c. (19.2 kg/m3).
At a post-crack-deflection δ of 0.4 mm, the load F0.4 of test series B-F2.50, 13.6 kN, exceeds
that of test series B F1.25 (11.2 kN) by 21.3%. At a post-crack-deflection of 3.4 mm, F3.4 of
B-F2.50 with 7.1 kN exceeds that of test series B-F1.25 by 60.7% (4.4 kN) (Figure 10). Due to
the crack-bridging effect of the bamboo fibers, 41.9% (B-F1.25), respectively, 53.3% (B-F2.50)
of the maximum load could still be transferred at a post-crack-deflection of 0.4 mm, and
16.3% (B-F1.25), respectively, and 27.3% (B-F2.50) at a further deflection of 3.4 mm after
crack formation. Table 6 gives an overview of the relevant test results.
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Table 6. Overview of the mean value of the decisive test results and the maximum deviation from
the mean values (=value inside the brackets).

Series Maximum Load
Fmax [kN]

Strain When Reaching the Maximum Load
εmax [‰]

Load
F0.4 [kN]

Load
F3.4 [kN]

B-F0.00 19.5 (±4.5) 0.065 - -

B-F1.25 26.8 (±2.6) 0.084 11.3 (±1.2) 4.4 (±0.6)

B-F2.50 25.6 (±6.6) 0.125 13.6 (±4.6) 7.0 (±3.6)

4. Discussion and Comparison of the Results

The use of bamboo fibers in UHPC significantly increased both the maximum load Fmax
and the strain εmax when reaching the maximum load in the experimental investigations. It
can therefore be assumed that the bamboo fibers bridge the microcracks already present in
the uncracked state and thereby delay the formation of the macrocrack (Figures 8 and 9).

The use of bamboo fibers also improved the post-crack behavior of the UPHC and
prevented brittle failure of the bending beams (Figures 6, 7 and 10). Here, both the bending
beams with 1.25 wt% o.c. (9.6 kg/m3) and those with 2.50 wt% o.c. (19.2 kg/m3) bamboo
fibers showed a deflection-softening material behavior (Figure 9). However, in the case of
the B-F2.50 series bending beam applied with strain gauges, a deviation from the otherwise
linear course of the strain curves was observed in the upper third of the maximum load.
The increase in the tensile zone and the drop in stiffness of the bending beams before the
maximum load was achieved (cf. I and II in Figure 8) indicates that a slow opening of the
failure cracks already occurred in the lower beam region, but the bamboo fibers were able
to prevent a sudden rupture of the cross-section. Consequently, it can be concluded for
the post-cracking stage that the bamboo fibers bridge the cracks that occur and allow load
transfer across the crack edges (=crack-bridging effect).
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In order to examine this effect, respectively, and the post-cracking load-bearing capac-
ity further, a comparison of the own tests with the bending beams according to Yan et al. [17]
(Figure 2) and Ahmad et al. [58] (Figure 3) is made below. At this point, however, it should
be pointed out that a comparison is only possible to a very limited extent due to the differ-
ent test execution (three-point bending test vs. four-point bending test) and also concrete
properties (normal-strength concrete vs. UHPC). However, since there are no comparable
tests in the literature so far, the tests according to Yan et al. [17] and Ahmad et al. [58]
are used here. Figure 11 shows the average value of the load-deflection curves after
reaching the maximum load Fmax of the test series B-F1.25 with a dosage of 1.25 wt%
o.c. (9.6 kg/m3) and B-F2.50 with a dosage of 2.50 wt% o.c. (19.2 kg/m3) bamboo fibers
in comparison with the load-deflection curves of the beams tested by Ahmad et al. [58]
and Yan et al. [17] (see Section 2.2). The maximum load of the bamboo fiber-reinforced
bending beams B-F1.25 (26.8 kN) and B-F2.50 (25.6 kN) exceeds that of the 2.0 wt.% o.c.
(~10.5 kg/m3) coir-reinforced bending beams of Ahmad et al. [58] (9.9 kN) and that of the
1.0 wt.% o.c. (~3.1 kg/m3) alkalized coir-reinforced bending beams of Yan et al. [17] (6.6 kN)
significantly. The load after cracking (post-crack behavior) for tests B-F1.25 and B-F2.50
is also higher than those of Ahmad et al. [58] and Yan et al. [17]. Therefore, F0.4 for the
UHPPFRC bending beams is 11.2 kN (B-F1.25) and 13.6 kN (B-F2.50), respectively; whereas,
the considered bending beam of Ahmad et al. [58] with 2.5 kN has only 22.4% or 18.5% of
the post-crack load-bearing capacity of the bamboo fiber-reinforced UHPC bending beams.
The load-deflection curve of the bending beam by Yan et al. [17] shows a similar low test
load of 2.0 kN (18.0% or 14.9%) for F0.4 compared to the UHPPFRC bending beams as that
of Ahmad et al. [58]. As the test progresses, the absorbable load of the bending beam of
Yan et al. [17] drops below that of Ahmad et al. [58] and, at a post-crack-deflection δC of
3.4 mm, equals 1.3 kN, which is 73.5% of the latter; the test load of the UHPPFRC bending
beams, however, remain significantly higher than in the tests with coir-reinforced bending
beams made of normal-strength concrete, at 4.4 kN and 7.0 kN, respectively.
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Figure 11. Load-deflection curves of the bending beams with 1.25 wt.% o.c. (9.6 kg/m3; B-F1.25)
and 2.5 wt.% o.c. (19.2 kg/m3; B-F2.50) bamboo fibers and with 2.0 wt.% o.c. (~10.5 kg/m3) coir of
dimensions lf/df = 75/0.32 mm according to Ahmad et al. [58] and with 1.0 wt.% o.c. (~3.1 kg/m3)
alkalized coir of dimensions lf/df = 50/0.25 mm according to Yan et al. [17].

In the case of the bending beams reinforced with coir or alkalised coir, it must be
considered that the fibers will most likely degrade over time in the alkaline environment of
the normal-strength concrete and that their performance will thus decrease, especially in
the post-cracking stage. Furthermore, a reduction in the performance due to a reduction in
the bond by secondary swelling of the fibers due to the low impermeability of the normal
strength concrete compared to UHPC has to be considered.

As these effects (most likely) do not occur with the combination of bamboo fibers and
UHPC and a very high performance can be achieved, bamboo fiber-reinforced UHPC has
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an enormous potential with regard to the worldwide production of extremely thin-walled,
resource-saving, environmentally friendly and sustainable components and structures.

5. Conclusions and Suggestions for Future Research

The load-bearing behavior of concretes can be improved by using fibers. Plant fibers
represent a sustainable alternative to synthetic fibers such as steel fibers, which are often
used conventionally. The knowledge gained in this paper are as follows:

1. Bamboo fibers have the potential to become a sustainable alternative to conventional
steel fibers, especially in view of the worldwide distribution and cultivation possibili-
ties, the rapid growth, the simple harvesting and processing, as well as the very good
mechanical properties of bamboo (Table 1 and Figure 1).

2. In experimental investigations already carried out, the use of plant fibers prevented
the brittle failure of concrete subjected to bending stress and achieved ductile behavior.
However, the load-bearing capacity of the plant fiber-reinforced concrete was limited,
in particular, by the poor bond between the fibers. In addition, corrosion in the
alkaline environment of the concrete and the swelling behavior of the fibers pose a
fundamental problem.

3. Ultra-high performance concretes (UHPC) are characterized by, among other things,
low alkalinity, high impermeability, low water/cement ratio, and very good bonding,
and thus could overcome the problems mentioned in point 2 that exist with the
use of plant fibers in cementitious materials. Furthermore, UHPC can be used to
produce very thin-walled and thus resource-optimized and sustainable components
and structures.

4. The use of 1.25 wt.% o.c. (9.6 kg/m3) and 2.50 wt.% o.c. (19.2 kg/m3) bamboo fibers
bridged existing microcracks and delayed macrocrack formation in the experimental
tests conducted on UHPC bending beams. As a result, the maximum load could be
increased by 37.1% and 30.9% (48.2%) from 19.5 kN to 26.8 kN and 25.6 kN (28.9 kN),
respectively (Figure 8).

5. The bamboo fibers were able to prevent the brittle failure of the UHPC and ensure
ductile behavior by the crack-bridging effect. With deflection-softening behavior, the
beams with a dosage of fibers of 1.25 wt.% o.c. (9.6 kg/m3) were capable of 11.3 kN
(42.5% of the maximum load Fmax) at a post-crack deflection of 0.4 mm, and at a
post-crack deflection of 3.4 mm, 4.4 kN (16.4% of Fmax), whereas the bending beams
with a dosage of fibers of 2.50 wt.% o.c. (19.2 kg/m3) could support 13.6 kN (53.3% of
Fmax) and 7.0 kN (27.3% of Fmax), respectively (Figure 10).

6. A comparison of the post-cracking behavior of the own bending tests with those of
the literature, which were carried out on normal-strength concretes reinforced with
(alkalised) coir, clearly shows that a significant improvement of the load-bearing and
deflection behavior in the cracked state can be achieved by a combination of bamboo
fibers and UHPC (Figure 11).

The experimental investigations carried out clearly show the enormous potential of
the combination of bamboo fibers and UHPC, which can for example lead to thin-walled,
material-optimized and thus extremely sustainable structural components. However, the
performed tests are limited to only nine specimens, in which the load-bearing performance
was investigated based on two dosages of bamboo fibers (1.25 wt.% o.c. and 2.50 wt.%
o.c.) in comparison with a plain UHPC. In order to better understand the durability
and the mechanical properties of bamboo fiber-reinforced UHPC, further experimental
investigations need to be carried out, looking at, among other things, the durability of
bamboo fibers in UHPC and the load-bearing behavior under a variation of concrete mix,
aspect ratio and other dosages of fibers. In addition, sustainability can be further improved
by using an ecologically optimized UHPC, a so-called Green Ultra-High Performance
Concrete [85,86].

Furthermore, bamboo has the potential to further improve the mechanical properties
and sustainability of UHPC when used as whole culms or strips and thus as reinforcement
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bar. Test specimens made of UHPC reinforced with bamboo culms as well as bamboo culms
and bamboo fibers have already been produced at the Institute of Concrete Construction
(IfMa) of Leibniz University Hannover and are to be tested soon. This will be reported on
at a later date.
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