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Searches for continuous gravitational waves target nearly monochromatic gravitational wave emission
from, e.g., nonaxisymmetric fast-spinning neutron stars. Broad surveys often require us to explicitly search
for a very large number of different waveforms, easily exceeding ∼1017 templates. In such cases, for
practical reasons, only the top, say ∼1010, results are saved and followed up through a hierarchy of stages.
Most of these candidates are not completely independent of neighboring ones, but arise due to some
common cause: a fluctuation, a signal, or a disturbance. By judiciously clustering together candidates
stemming from the same root cause, the subsequent follow-ups become more effective. A number of
clustering algorithms have been employed in past searches based on iteratively finding symmetric and
compact overdensities around candidates with high detection statistic values. The new clustering method
presented in this paper is a significant improvement over previous methods: it is agnostic about the shape of
the overdensities, is very efficient and it is effective: at a very high detection efficiency, it has a noise
rejection of 99.99%, is capable of clustering two orders of magnitude more candidates than attainable
before and, at fixed sensitivity it enables more than a factor of 30 faster follow-ups. We also demonstrate
how to optimally choose the clustering parameters.
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I. INTRODUCTION

Continuous gravitational waves are long-lasting signals
that may come from fast-spinning nonaxisymmetric neu-
tron stars, unstable r-modes [1,2], the fast inspiral of dark-
matter objects [3,4] or emission from clouds of axionlike
particles around black holes [5,6]. Unlike the short-lived
signals stemming from the mergers of compact binary
objects [7–13], continuous gravitational wave have thus far
eluded any detection, due to their strength being orders of
magnitudes smaller than that of binary merger signals. The
detection of continuous gravitational waves will open a
new field of gravitational wave astronomy, may probe the
fundamental nature of gravity [14,15] and unlock unprec-
edented information on neutron star interiors [16–18].
For these reasons researchers tirelessly search for continu-
ous gravitational wave signals [19]. Broad surveys using

months of data pose phenomenal challenges. We present
here a new efficient method to identify the most promising
candidates from broad parameter-space continuous waves
surveys.
Independently of the emission mechanism, continuous

gravitationalwaves are expected to be nearlymonochromatic
signals at the source, that due to the relative motion with
respect to the source, appear to us on Earth to be frequency-
and amplitude- modulated. Searches employ template para-
metrized by signal frequency, frequency derivatives, and
source position, with ∼1017 template waveforms for obser-
vations lasting months. For template banks that are this big,
typically only the top results are saved—say the∼1010 results
with the highest detection statistic values. Even though at this
stage most of the results are not statistically significant, they
are referred to as “candidates.”
The candidates are followed up with a series of searches

at increasing sensitivity. The signal-to-noise ratio of a
signal increases from one stage to the next in a well-
defined way, whereas noise does not, and this allows us to
weed out noise candidates in the follow-ups [20–22]. Each
follow-up search considers not only the candidates’ param-
eters but a parameter-space region around each candidate.
So if every candidate were to be followed up independently,
the points in parameter space around nearby candidates
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would be searched more than once, resulting in a waste of
computing resources and aggravating an already challenging
problem. The core idea of clustering is to avoid this by
identifying candidates likely due to the same root cause,
bundling (clustering) them and considering them as a single
entity in follow-up studies. Clustering is hence an important
step in the postprocessing of the results because it organizes
and reduces the ∼1010 candidates to a more useful and
manageable set of ≈ independent ∼106 candidates.
Each cluster is represented by the parameters of the

so-called seed candidate and by a containment region. The
latter measures how far from the seed associated with a
signal, the true signal parameters are. In follow-up studies
the entire containment region around each seed is surveyed.
The containment region is the same for all seeds and it is
determined statistically, such that it holds for a very large
fraction (> 99%) of signals, across the parameter space.
It has also been observed that a threshold on the

minimum number of candidates in a cluster is effective
at discarding noise-clusters. With a fixed computing budget
for follow-ups, fewer candidates means that freed-up
computational capacity can be used on additional, lower
significance candidates which translates in deeper and more
sensitive searches.
The most compute-intensive continuous waves searches

have been carried out since the mid 2000s using idle cycles
donated by the general public, through the volunteer
distributed computing project Einstein@Home1 [23–25].
The massive computational power that we can harvest
today amounts to several Pflops, sustained 24 × 7, and
enables us to investigate over 1019 waveforms.
For this reason clustering procedures have been in use

for a long time: One of the first nontrivial clustering
procedures is box-clustering [26,27], which dates back
to nearly a decade ago. More recently a more flexible
adaptive clustering technique has been used [28] which
however does not converge fast enough when used on many
data points. This is a significant drawback, as wewant to set
lower thresholds, which means considering more candi-
dates in the follow-ups. Attempts to use machine-learning
for clustering have been successful for directed searches,
but not for all-sky searches [29,30].
We present here the new density clustering algorithm,

able to process orders of magnitude more candidates than
previous clustering strategies at comparable, if not lower,
computing cost. We show how to choose the clustering
parameters, and demonstrate its performance on real data.
We concentrate on clustering results from very large
template banks—with over 1016 points—and hence refer
to the Einstein@Home results, but this method can also be
employed in less challenging environments.
The paper is organized as follows: In Sec. II we describe

the input data; in Sec. III the method itself; in Sec. IV the

choice of the clustering parameters; in Sec. V the imple-
mentation; in Sec. VI the method is compared with adaptive
clustering under realistic conditions, i.e., by applying it to
the data of the Stage 0 results of the Einstein@Home all-
sky search for continuous gravitational waves in Advanced
LIGO data of the second observation run (O2) [22,31].

II. INPUT DATA TO CLUSTERING

Clustering works on a set of candidates, i.e., selected
results from a search. A candidate is described by the values
of the template that produced the detection statistic result,
and the detection statistic result. For an all-sky search
including up to second-order spin-down parameters, a
generic candidate i is of the form

ðfi; _fi; f̈i; αi; δi; χiÞ; ð1Þ
where f indicates the signal-template frequency, α, δ the
source sky position and χ the value of the detection statistic
used for the original candidate ranking.
We illustrate clustering for these 5 dimensions; fewer or

more dimensions are treated analogously.
Since continuous waves are modulated by the Earth’s

rotation and orbit around the Sun, the sky grids are set up in
sky coordinates projected on the ecliptic plane,xecl, yecl.
Therefore for clustering we convert for the candidates
ðαi; δiÞ → ðxecli; yecliÞ—see Eqs. (14) and (15) in [28] for
the conversion between ðα; δÞ → ðxecl; yeclÞ.
The sky grids are approximately uniform hexagonal

grids on the ecliptic plane and are defined by the hexagon
edge length d:

dðmskyÞ ¼
1

f

ffiffiffiffiffiffiffiffiffimsky
p
πτE

; ð2Þ

with τE ≃ 0.021 s being half of the light travel-time across
the Earth and msky a constant which controls the resolution
of the sky grid [22]. From Eq. (2) it is clear that the sky-grid
density increases with frequency f.

III. DENSITY CLUSTERING

We bin the parameter space in equally spaced cells of size

δb ¼ ðδf; δ _f; δf̈; δxecl; δyeclÞ ð3Þ
in each dimension. The δf; δ _f; δf̈ are each an integer
multiple of the search grid spacing. The sky grid has a
hexagonal tiling, so the square tiling of the bins above does
not match it. The bins are usually chosen to be large enough
that this does not matter and the square covering greatly
simplifies the binning and the identification of neighboring
bins. The bin size is always a multiple of the hexagon side,
so the bins shrink with increasing frequency as the sky-grid
pixels, keeping the average number of candidates per bin
the same.1www.einsteinathome.org/.
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We only consider candidates with detection statistic
values above a threshold ΓL. In each bin j we count the
number of candidates Nocc;j with parameters in that bin.
Bins with Nocc;j ≤ Nocc;min are discarded.Nocc;min is one of
the clustering parameters and its optimal value depends on
the search setup and on the bin size.
Among the surviving bins, we cluster together nearby

ones, to create a cluster. The basic notion of vicinity is
controlled by two parameters: Nj and Nc. A bin ba is a
neighbor of bin bc if the distances kj in integer bin spacings

ba − bc ¼ ðk1δf; k2δ _f; k3δf̈; k4δxecl; k5δyeclÞ ð4Þ
satisfy the following conditions:

�
kj ≤ Nj with j ¼ 1;…;MP

M
j¼1 k

j ≤ Nc;
ð5Þ

where M is the number of dimensions. The first condition
sets the maximum distance in every dimension, whereas the
second condition sets an overall maximum distance. With
M ¼ 3, Nc ¼ 1 means that the two nearby bins have to
share a face, Nc ¼ 2 that they have to share an edge and
Nc ¼ 3 that they have to share a vertex. Default values are
Nj ¼ 1, equal for all j, and Nc ¼ M.
Among the clusters from the previous step, we remove

the ones with too few bins: Nbins ≤ Nbins;min.
For each remaining cluster a representative candidate

becomes the seed. The seed is by default the candidate with
the highest detection statistic value (the loudest) of all
candidates in the cluster. In noisier data it may make sense
to look at the loudest candidate in the bin with the most
candidates (densest bin) or the loudest candidate in the bin
with the highest average over all detection statistic values of
the candidates within that bin (loudest bin).
Finally all clusters with a seed with detection statistic

value smaller than ΓS are discarded. The process is
illustrated in Fig. 1 for two dimensional, higher dimensions
follow analogously.
An additional parameter can be used to mitigate binning

effects: an overdensity of candidates may not be perfectly
contained within one bin, but may extend across bin
boundaries. For faint signals with just enough candidates

to surpass the occupancy threshold Nocc;min, this effect can
make the difference between recovering a signal or not.
Boundary effects can be partly mitigated by smoothing
over bins, e.g., adding bin counts over neighboring bins or
adding bin counts weighted with a Gaussian kernel. The
overall impact of using smoothing procedures should be
evaluated within the general framework of choosing the
optimal clustering parameters, as described in the next
section, but we will not explicitly consider it here.

IV. CHOOSING THE PARAMETERS OF THE
CLUSTERING PROCEDURE

A number of parameters define the density clustering
algorithm, and they are summarized in Table I. We choose
the parameter values such that at fixed computational cost
for the follow-up of the resulting seeds, the sensitivity of
the clustering procedure is maximized. Below we describe
how this optimization, yielding the values of the clustering
parameters of Table I, is carried out.
The sensitivity of the clustering procedure is measured

by the gravitational wave signal amplitude h90%0 at which
the detection efficiency ϵ of the clustering procedure is
90%, for signals with parameters in the search range. h90%0

depends on the signal frequency like the amplitude spectral
density of the noise

ffiffiffiffiffiffiffiffiffiffiffi
ShðfÞ

p
, so we maximize the quantity

D90% ¼ ffiffiffiffiffiffiffiffiffiffiffi
ShðfÞ

p
=h90%0 ðfÞ, instead, that does not depend on

frequency. D is also known as the sensitivity depth [27].
Since there is noway to predict the detection efficiency of

the clustering procedure, we measure it with a Monte Carlo.
We add fake signals from our target population to the real
data, with amplitudes corresponding to a given value of D.
For each signal we perform the same search as the actual
search, we cluster the results and produce seeds. If one of the
seeds comes from the added signal, we consider the signal
detected by the clustering procedure. The fraction of
detected signals to total signals gives the detection efficiency
at that sensitivity depth: ϵðDÞ. D90% is then

ϵðD90%Þ ¼ 90%: ð6Þ
For each clustering setup we estimate
(i) D90%

(ii) the containment region (see Sec. I).

TABLE I. Parameters of density clustering in the order that they are employed.

Parameter Function

Input threshold ΓL Discards candidates with detection statistic ≤ ΓL. Filters input candidates
Bin sizes δb Binning
Smoothing Smooth histogram or not
Occupancy threshold Nocc;min Discard bins with Nocc ≤ Nocc;min candidates
Neighbor criterion, Nj and Nc Defines what a neighbor is
Cluster-size threshold Nbins Discard clusters with Nbins ≤ Nbins;min bins
Seed criterion Loudest candidate in cluster, loudest in most-populated bin

or in bin with highest average detection statistic
Output threshold ΓS Discards cluster whose seed has detection statistic ≤ ΓS. Reduces false alarms
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(iii) the false alarm rate. This is done by running the
clustering on a subset on the search results, at
different frequencies. Since we operate in the regime
of very rare signals, we take this as a measure of
the false alarm.

For each clustering setup, from the number of expected
seeds, the containment region and the timing model of our
software [32], we estimate the computing cost of the first
follow-up stage. This is illustrated in Fig. 2 for the results of
the Stage-0 Einstein@Home search [22]. We can now
identify the clustering setup that yields the highest D90%,
within the computing budget.
In principle one could optimize the follow-up search

setup for each clustering setup. This would, however, be
extremely expensive, and experience has shown that a setup
choice guided by the sensitivity gain with respect to the
previous stage, at accessible computing cost, lands a choice
not significantly far from optimum. So we assume here that
the follow-up setup is fixed.

V. IMPLEMENTATION

In the previous section we have described how the
optimal combination of clustering parameters is identified.
As we have seen, this requires a Monte Carlo in order to
measure the false alarm and 90% detection-efficiency
signal-amplitude D90%, for every clustering setup.
For each setup we cluster ≳2000 result files correspond-

ing to data with different fake signals—this is to determine
D90%. We cluster ≳500 search result files with no fake
signals, in order to estimate the false alarm. These oper-
ations can be quite time-consuming, so we describe here
how to reduce the computing cost of this step.
Einstein@Home search results typically come in files

that cover a 50 mHz range of template frequencies, with
size varying between a few MB to few GB, due to the
different sky resolutions in the range 50–600 Hz. Each
clustering instance uses as input one of these 50 mHz

FIG. 1. Schematic illustration of the main steps of density clustering.

FIG. 2. Performance comparison between the previous cluster-
ing method, adaptive clustering, and density clustering. Each
point represents a different clustering setup, used on the results of
the Einstein@Home search [22]. To avoid excessive clutter we do
not show all considered setups, but rather only those with runtime
close to the smallest runtime at each D90%. The color encodes the
ΓS threshold parameter value which illustrates the need to
consider more candidates to achieve better sensitivities. The
arrow indicates the density clustering setup chosen for the follow-
up analysis reported in [22], which was the optimal for the
clustering procedure at the time, under the constraint of maxi-
mum 1 ATLAS-day computing time for the first-stage follow-up.
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results files. Since the time to cluster is⋘ the time it takes
to load such a file, it is faster to load a results file, keep it in
memory, and test different clustering setups.
Further savings are obtained by reusing intermediate

results:
(i) we compute a histogram for a choice of ΓL and δb,

and reuse it to produce the bin counts for different
values of Nocc;min

(ii) similarly, for a choice of ΓL, δb and Nocc;min from
the bin counts we produce different clusters for
different values of Nbins;min

(iii) for each cluster different seeds are produced, based
on different seed-selection criteria, e.g., the loudest
cluster candidate, the loudest in the densest bin, the
loudest in the bin with the highest average detection
statistic (we call this the “loudest bin”).

(iv) finally, each seed, and with it the whole cluster, may
be discarded depending on the value of ΓS.

With this scheme, testing a single clustering setup costs (on
average, over many setups) just under a second, with more
than half the time spent on the initial histogram and
clustering. In order to reduce memory usage, the candidates
are internally addressed only by an id. For thresholding on
ΓS and for computing the containment region, the actual
seed parameters must be retrieved. This operation accounts
for another 20% of the computing time. The remaining time
is due to fluctuations in these estimates due to varying
number of seeds and the initial overhead.
Given the computing-load profile described above, we

parallelize the work among different independent process-
ors, with each processor working only with a single results
file and several (ΓL; δb)-combinations. Say we have 2500
result files, 1000 (ΓL; δb)-combinations and 1000 combi-
nations of the remaining parameters, each processor ana-
lyzes 100 (ΓL; δb)-combinations, exhausting all 1000
combinations of the remaining parameters. Hence, with
10 processes per result file, 25000 processes are spawned
in total.
Using the large-capacity and fast-loading hdf5 and FITS

file formats, and a HDD-raid configuration results file
server, testing a single (ΓL; δb)-combination and all 1000
combinations of the remaining parameters, takes ≈0.26 h.
Thus one processor exhausting 100 (ΓL; δb)-combinations
takes ≈ a day. On the ATLAS cluster2 using 25000 parallel
processes the full testing of 1000 × 1000 setups is carried
out in a day.

VI. PERFORMANCE ON E@H O2 ALL-SKY

We compare our density clustering with the adaptive
clustering [28] on the results of the Stage-0 Einstein@
Home O2 all-sky search [22].

We characterize the detection efficiency on a set of
∼2900 fake signals from the target source population of the
search: signals with spin-frequencies uniformly distributed;
spin-downs log-uniform distributed and all other parame-
ters distributed uniformly: orientation cos ι ∈ ½−1; 1Þ,
polarization angle ψ ≤ jπ=4j, sky position 0 ≤ α ≤ 2π
and −1 ≤ sin δ ≤ 1. The signal amplitude h0 ranges from
loud to faint signals with ∼1000 signals too faint to be
detectable by either method.
The results of the procedure described in the previous

section in order to identify the optimal density clustering
parameters, are shown in Fig. 2. We compare with the
results for the optimal parameter choice for adaptive
clustering.
The density clustering setup chosen in [22] with a first-

stage follow-up runtime-cost of ≤ 1 ATLAS-day is ≈10%
more sensitive than the adaptive clustering setup at the
same computing cost. In continuous gravitational wave
searches a 10% improvement, solely due to a better search
method, is a big gain.
Perhaps more immediately impressive is the fact that at

fixed sensitivity, density clustering enables follow-ups that
are a factor of ≳30 faster than previous methods.
This gain can be reinvested in deeper follow-ups by

using a lower ΓS, albeit the gain in practice is limited by the
steep increase in computing cost for ΓS ≲ 4. With a
threshold ΓS ¼ −3.7, density clustering is able to process
two orders of magnitude more candidates than with a
threshold ΓS ¼ 4, whereas adaptive clustering could not be
used at all.
The performance of the adaptive clustering was charac-

terized in [28] by the detection efficiency and the noise
rejection NR defined as

NR ≔ 1 −
Nout

Nin
; ð7Þ

where Nin is the number of candidates above the threshold
ΓS and Nout is the number of seeds produced by the
clustering procedure.
With a threshold of ΓS ≥ 4 adaptive clustering and

density clustering achieve similar performance with NR ≥
99% and detection efficiencies above 98%. At lower
thresholds, adaptive clustering does not converge in weeks
of runtime, indicating that the method struggles to identify
over densities due to faint signals. Density clustering,
instead, can probe threshold values as low as −3.7, still
achieving NR ≥ 99.99% and attaining a very respectable
detection efficiency (now at the 85% level) on a set that
includes very faint signals with detection statistic values
∈ ½−3.7; 4�, which are much harder to find.
The density clustering setup chosen in [22] has a binning

of 300 and 290 search bins in frequency and spindown
respectively, and the square lattice on the projected ecliptic
plane with edge lengths of 5 · dðmsky ¼ 0.008Þ. A cluster is

2ATLAS is the super-computer cluster at the MPI for Gravi-
tational Physics in Hannover: https://www.atlas.aei.uni-hannover
.de/.
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formed if there is at least one bin with more than three
candidates. Of all candidates in the cluster the loudest
becomes the seed.

VII. CONCLUSION AND OUTLOOK

We have presented a new, fast, and efficient clustering
method—density clustering—for continuous gravitational
wave search postprocessing.
Density clustering works by identifying overdensities of

candidates in parameter space: clusters are purely build on
candidates’ closeness to each other and the detection statistic
value is nearly irrelevant. This result may be somewhat
surprising because the detection statistic ranks results based
on the likeliness of they originating from a signal. However,
some of our faintest—but still recoverable—signals show
detection statistic values at which there are thousands to
millions of louder candidates purely from noise. Our results
show that in this regime overdensities are a better detection
criterion than the significance given by the detection statistic
value alone, even in Gaussian noise. This is probably due to
the fact that the search is a semicoherent search.
The overdensities are uncovered by binning the param-

eter space and this is performed in one pass instead of the
previously employed slower iterative procedures. The
clustering step is thus largely independent of the number
of input candidates, and this allows to process orders of
magnitude more candidates with comparable computing
resources, probing deeper into the noise.
Until now Einstein@Home searches have returned about

Oð104Þ candidates per work unit (e.g., [22]), which was
more than adequate for what previous clustering algorithms
could process. Density clustering can cluster orders of
magnitude more candidates, which means that more results
can be inspected, allowing to recover fainter signals in
upcoming searches.
The previous clustering method, adaptive clustering,

assumes compact overdensities, whereas signals typically
present X- or Y-shaped overdensities which are hard to
capture (and practically impossible to predict). Density
clustering is agnostic about the shape of the overdensities
and for this reason it is significantly more effective at
identifying even very weak signals.
A different approach of using machine learning for

clustering was developed and applied to the Einstein@
Home O2 all-sky dataset in [29,30]. They cluster in f; _f
and achieve better sensitivity depths at fixed false alarms, but
lack in sky localization to the point of clustering together
candidates from “seemingly unrelated sky positions” [30].
This means that a follow-up would entail searching over
the whole sky, whereas density clustering restricts the sky
position to a patch of ∼9% to 0.01% of the full sky,

depending on the frequency, between ∼20 Hz to 600 Hz,
respectively. Even with the smaller uncertainties in f; _f and
only half the false alarms [30], the computational cost of their
approach is higher by one order of magnitude compared to
density clustering. They propose to generalize to include sky,
and the results will be interesting to see.
Clustering is not a problem unique to gravitational wave

astronomy, and a number of generic clustering methods
exist. For example k-means [33] is a clustering method
widely used in a variety of applications including signal-,
image- and text-processing, health, cybersecurity, machine
learning and big data [34]. It works based on minimizing
the cluster-occupants’ distance to the cluster center.
Limitations of k-means are that the number of clusters
must be known a priori and clusters are assumed to be
roughly spherical and similar size. Density-based cluster-
ing applications exist: for example DBSCAN [35,36]
and its many generalizations, like, e.g., OPTICS [37] or
HDBSCAN [38], identify overdensities generated by a
minimum number of points within a given volume. They
are, however, not suitable for the large number of points
in our results, and they are not as efficient as density
clustering on our data.
A major advantage of our approach is the versatility of the

method. Density clustering can cluster in any combination of
dimensions, so it is easily extendable to, e.g., third/higher
order spindowns ⃛f;… or to the 5 additional orbital param-
eters for searches for neutron stars in binary systems. In these
searches signal-template offsets in orbital parameters can be
to some extent compensated by offsets in frequency- and
derivative(s). This translates into correlations between differ-
ent templates and results in more candidates due to the same
root cause [39], making clustering all the more important.
All-sky binary searches are computationally extremely
expensive and so are the follow-ups. A first test of density
clustering on the results-data from [40] showed promising
results within a few hours of clustering in 6 dimensions
ðf; α; δ; τasc; Pb; aÞ, showcasing the flexibility and ease of
use of the method presented here.
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