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a b s t r a c t 

Visualization-based approaches have recently been used in conjunction with signature-based techniques 

to detect variants of malware files. Indeed, it is sufficient to modify some byte of executable files to 

modify the signature and, thus, to elude a signature-based detector. In this paper, we design a GAN-based 

architecture that allows an attacker to generate variants of a malware in which the malware patterns 

found by visualization-based approaches are hidden, thus producing a new version of the malware that 

is not detected by both signature-based and visualization-based techniques. The experiments carried out 

on a well-known malware dataset show a success rate of 100% in generating new variants of malware 

files that are not detected from the state-of-the-art visualization-based technique. 

© 2022 The Author(s). Published by Elsevier Ltd. 
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. Introduction 

Malware detection has always been a hot topic and one of the 

ain interests of cybersecurity experts. In recent years, the num- 

er of cyber attacks and, more importantly, the severity of these 

ttacks have increased. Cyber criminals have become more ruth- 

ess than ever, with ransomware being one of the most dangerous 

hreats on the current scene. In 2021, for example, the Irish Health 

ervice Executive fell victim to a ransomware attack that forced the 

rganization to shut down all of its IT systems ( Mixon, 2021 ). In

ddition, a recent report by Claroty (2021) declares a 41% increase 

n industrial control systems (ICS) vulnerabilities discovered in the 

rst half of 2021 compared to the previous six months. Some ex- 

mples of exploitation of such vulnerabilities are the Brenntag and 

he Colonial Pipeline attacks, in which the two companies paid 

4.4 million (75 bitcoin) to restore data stolen by a ransomware 

 Washington et al., 2022 ). These events show that there is no limit

o what cyber attackers can do and malicious attacks can pose a 

hreat not only to the security of systems, but also to their safety. 

Malware detection techniques can be based on static or dy- 

amic analysis. Currently, there is no consensus on which is the 

est technique. The static analysis of software does not involve the 

ctual execution of the program. Static analysis can provide infor- 
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ation such as opcode sequences (extracted by disassembling the 

inary file) and control flow graphs. 

Dynamic analysis requires the program to be executed, often 

n a virtual environment. The dynamic analysis of code can help 

s learn whether APIs are being called, whether system calls are 

eing made, whether instructions are being traced, whether reg- 

stry changes are being made, or whether memory is being writ- 

en ( Damodaran et al., 2017 ). 

Both static and dynamic analyses can fail because attackers 

ave found different approaches to evade detection. For example, 

tatic malware analysis, which analyses the executable file, can 

e bypassed by well-disguised malware ( Dube et al., 2012; Gibert 

t al., 2021 ). In dynamic analysis, on the other hand, a malware 

ould bypass detection by simply changing its behaviour ( García 

nd DeCastro-García, 2021; Han et al., 2019 ). All these circum- 

tances have led to the need to find new effective approaches to 

alware detection. These aspects are discussed in more detail in 

ection 2.1 . 

The field of computer science has become increasingly focused 

n machine learning, since machine-learning-based systems can be 

sed in a wide range of applications, such as product recommen- 

ations, image recognition, natural language processing, clustering, 

nd so on. Researchers have proposed the use of machine learning 

or malware classification and detection. One of the most promis- 

ng approaches is visualization-based malware detection proposed 

y Nataraj et al. (2011) . This approach converts binary files into im- 

ges and assigns a label to each image depending on whether it is 

rom malware or not. These images are used as a training set for a 
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under attack. 
lassification problem, and the generated prediction model is used 

o decide whether a file should be considered as malware or not. 

An analysis of the performance of several visualization-based 

echniques in malware detection is provided by Prajapati and 

tamp (2021) . Their analyses find that the best accuracy was about 

.86 by using Multilayer Perceptron Neural Networks, about 0.90 

sing Convolutional Neural Networks and Recurrent Neural Net- 

orks, and about 0.92 by using transfer learning models (namely 

estNet152 and VGG-19) ( Prajapati and Stamp, 2021 ). A more re- 

ent study presented by Pinhero et al. (2021) proposes various 

ne-tuned Convolutional Neural Networks for visualization-based 

alware detection, and the measured accuracies are higher than 

.94. The high performance of visualization-based approaches in 

etecting malware highlights that designing a technique that can 

ypass their control opens up new attack threats. 

In this work, we investigate this possibility and propose a new 

echnique based on Generative Adversarial Networks to modify a 

alware so that it is not detected by the techniques designed by 

inhero et al. (2021) . For the experimental evaluations, we develop 

 framework that implements our technique, we collect a large 

ataset of malware and goodware (i.e., benign software), and we 

how how a malware can be modified so that it is not detected 

et preserving its malicious execution. 

To highlight the significance of our contribution, we observe 

hat the visualization-based technique can be used (1) alone or 

2) together with another technique, say T (for example, T could 

e a signature-based technique). In the first case, our research is 

ery relevant because an undetected malware is generated. Con- 

erning the second case, we have two possibilities: (2a) T is able 

o detect a malware M. In this case, the visualization-based ap- 

roach is not necessary. In the second case (2b), T does not detect 

but the visualization-based approach does it. In this case, our 

echnique can allow an attacker to modify the malware in such a 

ay that the visualization-based approach is no longer able to de- 

ect it. Thus, in all cases (i.e., 1, 2a, and 2b), the visualization-based 

pproach does not give an effective contribution in malware detec- 

ion. 

The remainder of the paper is arranged as follows. In Section 2 , 

e discuss Malware detection and introduce the concept of Gen- 

rative Adversarial Networks on which our strategy is based. 

ection 3 discusses related work. In Section 4 , we present the ar- 

hitecture of our technique. Section 5 shows how our approach 

as implemented in the specific scenario of visualization-based 

alware detection systems. Section 6 presents the experiments 

arried out and a discussion on the validity of our proposal. Finally, 

e conclude this study and propose future directions in Section 7 . 

. Preliminaries 

In this section, we provide the background about two topics 

hat are widely discussed in our paper, which are malware detec- 

ion and GANs. 

.1. Malware detection 

Malware analysis is a necessary step towards malware detec- 

ion since it helps identifying the defining features of a malware 

 Tahir, 2018 ). Information such as byte code, opcode, API calls, 

le data, and registry data can be used to understand the pur- 

ose of a file and allow its classification as malware or benign file 

 Aboaoja et al., 2022a ). There are three types of malware analysis: 

• Static Analysis : this type of procedure consists in analyzing the 

file without executing it. Hence, only static information can be 

extracted, for example metadata (e.g. file name, type, and size), 

file headers, strings, MD5 checksums and hashes ( N-able, 2021 ). 
2 
• Dynamic Analysis : dynamic or behavioral analysis is performed 

by executing the software in a controlled environment (e.g., vir- 

tual machines). Once the software is running, function calls and 

control flows are monitored as well as the instructions and pa- 

rameters of functions. This type of analysis is more time and 

resource consuming since the environment used for the analy- 

sis needs to be purposely designed. 

• Hybrid Analysis : it is simply a combination of the two tech- 

niques discussed above. Firstly, the executable is examined 

through static analysis (e.g. by checking the malware signature). 

Secondly, it is run in a virtual environment to check its behav- 

ior. 

Malware detection is the process of discovery and identification 

f malicious activity performed by an executable file under investi- 

ation. There are many malware detection techniques but none of 

hem can be considered 100% effective and undefeatable. Regard- 

ess, the three main approaches to malware detection are: 

• Signature-based malware detection : each software has a se- 

quence of bits called signature which constitute its digital foot- 

print. Signature based detection uses these signatures to iden- 

tify malware. For instance, signatures can be generated using 

frequency vectors ( Wael et al., 2018; 2017 ) or values of opcodes 

( Khodamoradi et al., 2015 ). This type of malware detection is 

commonly used by antivirus software to extract the signature 

of the examined file and compare it with the signatures stored 

in a database of known threats. 

• Behavior-based malware detection : the file under investiga- 

tion is executed in a controlled environment (i.e. a sandbox) 

and its behavior is monitored. The behavior observed is then 

analyzed by the detection system in order to identify malicious 

activity. Examples of actions considered as potentially mali- 

cious are: any attempt to discover a sandbox environment; in- 

stalling rootkits; deleting, altering, or adding system files; mod- 

ifying other executable programs; downloading and installing 

unknown software; modifying the boot record or other initial- 

ization files to alter boot-up. 

• Heuristic-based malware detection : this method of detection 

is carried out by generating generic rules that investigate data 

extracted (via dynamic or static analysis). The generated rules 

can be developed automatically using machine learning tech- 

niques, the YARA tool and other tools or manually based on the 

experience and knowledge of expert analysts ( Aboaoja et al., 

2022b ). 

Malware authors constantly look for ways to make malware 

etection fail its task. Some examples of such techniques are 

 Aboaoja et al., 2022b ): 

• evasion techniques : evasive malware are able to figure out 

whether they are being executed in a real machine or in a 

controlled environment. Hence, they can change their behavior 

based on this evaluation. One possible technique is the timing- 

based method in which a malware can go through extended 

sleep, schedule its own execution (e.g., on a specific date and 

time) or use stalling code. Furthermore, some evasive malware 

are able to perform their actions only after a set of user inter- 

actions occur; 

• obfuscation techniques : the purpose is to modify or conceal the 

original code to make the executable difficult to analyze yet 

maintaining the functionality of the code; 

• zero-day attacks : these attacks are hard to detect as they are 

carried out by malware which exploits vulnerabilities that are 

unknown by malware detector or to the vendor of the System 
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Fig. 1. Architecture of a GAN. 
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.2. Generative adversarial networks 

A Generative Adversarial Network (GAN) is a model category 

hat specializes in complex tasks and can be applied to cybersecu- 

ity, privacy, modelling, simulation and natural language process- 

ng. A further benefit of Generative Adversarial Networks is that 

hey can overcome the difficulty of training machine learning mod- 

ls without data. The GANs are capable of generating artificial ad- 

ersarial samples to support training. 

The concept of GAN was first introduced by 

oodfellow et al. (2014) as a framework consisting of two 

odels: a generative model G and a discriminative model D . The 

urpose of the former is to determine an estimated probability 

istribution that matches an input real data distribution ( Cai et al., 

021 ); the latter is used to evaluate the probability that a sample 

omes from the real data distribution or from the distribution of 

he generative model. 

In the original framework of GAN, the models used for the gen- 

rator and discriminator are multilayer perceptrons. These neural 

etworks are trained as follows: 

• The training procedure of the generative model aims to maxi- 

mize the probability of fooling the discriminative model, which 

is equivalent to minimizing the probability that the discrimina- 

tor performs its task correctly; 

• Training the discriminative model aims to maximize the proba- 

bility of distinguishing real data from generated samples. 

The generator network can be represented as in Fig. 1 , where 

 is a vector of latent variables, while x is a vector of observed

ariables. Typically, each element of x depends on each element of 

 . 

Let G be a differentiable function and let θg be the parameters 

f the multilayer perceptron of the generative model. These param- 

ters can be learned by gradient descent. p g represents the distri- 

ution of the generator over the data. Then, a noise prior proba- 

ility distribution is defined for the input noise variables, namely 

p z (z) . The mapping to the data space is denoted by G (z; θg ) . Let

p data (x ) be the real data distribution. 

The mapping of the multilayer perceptron used for the discrimi- 

ator is D (x ; θd ) and the output is a single scalar ( Goodfellow et al.,

014 ). D (x ) is the probability that the sample is real. 

.2.1. Binary cross entropy 

A binary classification model ( Wikipedia Foundation, 2022 ) is 

 machine learning model that is tasked with classifying the ele- 

ents of a set into two classes. This type of models needs to pre-

ict the label ˆ y for a given sample. Assuming that the actual label 

or a single sample x is y , the binary cross entropy function, often

sed as a loss function for binary classifiers, is defined as follows: 

 ( ̂  y , y ) = y log ˆ y + (1 − y ) log (1 − ˆ y ) 

In the case of GANs, the discriminator behaves similarly to a 

inary classifier. Suppose that the label for a single data point x , 

hich comes from the real data distribution p (x ) , is y = 1 . The
data 

3 
abel predicted by the discriminator is denoted by ˆ y = D (x ) . The

oss function for a sample from the real data distribution is then: 

 

(
D (x ) , 1 

)
= log 

(
D (x ) 

)

An assumption is that the label for a single data point G (z) 

oming from the generator’s data distribution p g (z) is y = 0 . The

rediction for the generated data can be written as ˆ y = D (G (z)) .

he loss function for an adverse sample is then: 

 

(
D 

(
G (z) 

)
, 0 

)
= log 

(
1 − D 

(
G (z) 

))

The goal of the discriminator is to distinguish between true and 

alse samples (i.e., to classify the samples correctly). This goal im- 

lies that log (D (x )) and log (1 − D (G (z)))) are maximized, so that 

he loss function takes a practically infinite value when the predic- 

ions are incorrect. This is equivalent to: 

ax { log 
(
D (x ) 

)
+ log 

(
1 − D (G (z)) 

)} 
The generator is trained to outsmart the discriminator. With 

eference to the notation used so far, this means that the goal of 

he generator is to obtain D (G (z)) = 1 . The implication is that the

oal of the generator, which is opposite to that of the discrimina- 

or, is 

in { log 
(
D (x ) 

)
+ log 

(
1 − D (G (z)) 

)} 

.2.2. Value function in GANs 

The formulation used so far was written considering only one 

ata point from the distributions. To consider the whole data 

et, the formulation needs to be changed. The required change is 

o consider the expected value for each quantity in the formula. 

hereupon, the cost functions J (D ) and J (G ) , which apply to the dis- 

riminator and generator, respectively, can be defined as follows: 

 

(D ) = − 1 
2 
E x ∼p data (x ) [ log D (x )] − 1 

2 
E z∼p z (z) [ log D (1 − D (G (z)))] 

J (G ) = −J (D ) 

Finally, we can say that a GAN performs a mini-max two-player 

ame ( Goodfellow et al., 2014 ) between its two models to obtain 

ffective generation of realistic data. This game can be formally 

epresented by the following value function : 

in 

G 
max 

D 
V (D, G ) = E x ∼p data (x ) [ log D (x )] + E z∼p z (z) 

[ log D (1 − D (G (z)))] 

The training algorithm for GANs was described by 

oodfellow et al. (2014) . In the training algorithm, the au- 

hors proposed that the discriminator should be updated more 

requently than the generator. Therefore, the discriminator is 

pdated k times every time the generator is updated. 

Thus, for each training iteration, a mini-batch of m noise sam- 

les is obtained from the noise prior p g (z) for each of the k steps.

hen, a mini-batch of m samples of training data is obtained from 

he data generating distribution p data (x ) . The discriminator is used 

o make predictions for these mini-batches and its weights are up- 

ated by ascending its stochastic gradient. After the k steps re- 

uired to update the discriminator, a mini-sample is taken from 
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he noise prior p g (z) , the generator is applied to the mini-sample

amples, and the gradient descent is used to update the generator. 

. Related work 

In this section, we survey visualization-based techniques for 

alware detection. The visualization-based approach for malware 

etection was proposed by Nataraj et al. (2011) . In the proposed 

echnique, each executable malware is read in its binary form as 

 vector of 8-bit unsigned integers. This vector is then organized 

nto a 2-D array that can be visualized as a grayscale image. Since 

xecutable files vary in size, only the width of the image is fixed, 

hile the height can vary. The obtained images were then used to 

lassify the samples analyzed as belonging to a specific malware 

amily. 

Since this proposal, this topic has been the subject of many 

esearch works. For instance, IMCFN (Image-based Malware Clas- 

ification using Fine-tuned Convolutional Neural Network Archi- 

ecture) is the framework that implements the method proposed 

y Vasan et al. (2020a) . This method converts the raw malware 

inaries into color images that are used by the fine-tuned CNN 

rchitecture to detect and identify malware families. In another 

aper, after assessing that both researchers and malware authors 

ave proved that malware scanners are limited and easily evaded 

y simple obfuscation techniques, Vasan et al. (2020b) propose a 

ovel ensemble convolutional neural network for image based de- 

ection of both packed and unpacked malware (IMCEC). 

Recently, the use of the visualization-based approach has 

een proposed for Android malware as well. Bijitha and 

ath (2022) have proposed a comprehensive study on the topic 

n which they analyze the effectiveness of different techniques. 

eremias et al. (2022) consider the problem of malware android 

pplications being present in official app stores and propose a new 

ulti-view image-based Android malware detection system (that 

ses Deep Learning), implemented in three steps. Firstly, apps are 

valuated according to several feature sets in a multi-view setting. 

econdly, extracted feature sets are converted to an image format 

hile maintaining the main components of the data distribution, 

seful to perform the classification task. Thirdly, built images are 

ointly represented in a single shot, each in a predefined image 

hannel, enabling the application of deep learning architectures. 

imilarly, Yadav et al. (2022) have proposed a Deep Learning-based 

wo-stage framework that detects Android malware and classifies 

ariants using image-based malware representations of the An- 

roid DEX files. Mercaldo and Santone (2020) have also proposed 

he use of the visualization-based approach to perform malware 

etection in mobile environment and to identify the malware fam- 

ly for a malware and the variant inside the family. 

Some research proposals have discussed the possibility of using 

ANs to perform attacks on malware detection systems (as done 

n our paper). 

Lin et al. (2018) propose a framework called IDSGAN that can 

erform blackbox attacks against a machine learning based intru- 

ion detection system of unknown structure. IDSGAN’s generative 

odel takes malicious traffic records and generates new adversar- 

al patterns that can be used to evade detection. For this purpose, 

nly some parts of the original traffic samples can be modified, 

amely the nonfunctional ones. The discriminator performs traffic 

ample classification and learns to mimic the behavior of the at- 

acked intrusion detection system. 

Hu and Tan (2017) propose a GAN-based framework to generate 

dversarial patterns that are able to evade detection by a machine 

earning based detection model with unknown parameters, namely 

 ML based blackbox detection system. The proposed algorithm is 

alled MalGAN and can be considered offensive, which means that 

he authors take the perspective of an attacker. The only thing the 
4 
ttacker knows about the detection system to attack is the type 

f features it uses. However, the attacker can submit samples to 

he Blackbox Detector and retrieves the result of the analysis per- 

ormed. MalGAN consists of a sample generator, namely the gen- 

rative part of GAN, and a Substitute Detector, the discriminative 

odel of GAN. These two elements are trained to allow bypassing 

he actual detector. Kawai et al. (2019) identify and address some 

ssues of the MalGAN architecture and propose a new framework 

o improve MalGAN. 

Concerning the accuracy of visualization-based tech- 

iques, several studies have been carried out. Prajapati and 

tamp (2021) compared a wide variety of deep learning tech- 

iques, including multilayer perceptrons (MLP), convolutional 

eural networks (CNN), long short-term memory (LSTM), and 

ated recurrent units (GRU). The best accuracy measured is about 

.92. 

A higher accuracy is measured for the technique proposed by 

inhero et al. (2021) (called Pinhero in the following). Therein, 

hree types of conversions from binary file to images are defined. 

ach executable file is read in its binary form. Then the binary con- 

ents are read in groups of 8 bits each, byte by byte, and mapped

o a decimal value in the range [0,255]. The resulting decimal val- 

es are stored in a 1-D vector. Depending on the type of image, 

he conversion is completed as follows: 

• For grayscale images , each pair of consecutive values of the vec- 

tor is used to identify the corresponding pixel value in a color 

map. Each identified value is used to create a 1-D pixel array. 

The image width is 512px, while the height is variable as it de- 

pends on the file size; 

• For RGB images , each pair of consecutive values of the vector is 

used to identify three corresponding pixel values in 3 different 

color maps (one for each channel, namely red, green and blue). 

Each identified value is then used to create a 1-D pixel array; 

• For Markov images , a frequency table is created by considering 

the frequency of occurrence of byte b i followed by b i +1 and b i 
followed by b k where 0 ≤ k ≤ 255 . Then, the probability that b i 
is followed by b i +1 is calculated. This quantity is given as transi- 

tion probability matrix T M[ i ][ j] , where MP is the maximum like-

lihood calculated from the transition probability matrix. Finally, 

the image is created, where each pixel is calculated according 

to the following equation: 

 = 

(
T M[ i ][ j] ∗

(
255 

MP 

))
mod 256 

heir study showed that the best results were obtained for 

56x256 Markov images. 

In our study, we show that the Pinhero technique is not infal- 

ible and that it is possible to generate malware that are not de- 

ected from this technique. Moreover, we design a system to gen- 

rate such malware and experimentally show that our proposal is 

ffective. 

Overview of the proposal Visualization-based malware detec- 

ion systems can be used alone or together with other tech- 

iques to improve the overall accuracy in detecting malware. The 

oal of our study is to obfuscate a malware in such a way that 

isualization-based approaches are unable to correctly classify such 

 malware. In this section, we present the architecture of the sys- 

em designed for this purpose, which consists of a Substitute De- 

ector , a Generator , in addition to a Blackbox Detector . 

In this architecture, the Blackbox Detector models the 

isualization-based system to be attacked and can be viewed as ex- 

ernal anti-virus software that accepts executable files as input and 

rovides a binary classification into benign or malicious file as out- 

ut. Since it is based on visualization, the internal structure of the 
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Fig. 2. Blackbox Detector. 

B

u

f

t

c

c

u

d

4

i

t

o

B

c

a

s

v

i

s

c

i

a

t

D

4

t

s

s

c

c

a

n

o

n

a

b

m

e

e

e

Fig. 3. Substitute Detector training. 

 

 

t

b

lackbox Detector, shown schematically in Fig. 2 , includes a mod- 

le for converting executables into images and a neural network 

or detection. New executables are submitted to the Blackbox De- 

ector and converted into an image (there are several strategies to 

onvert an executable into an image; Section 3 described the most 

ommonly used approaches). Then, the processed image sample is 

sed as input to a convolutional neural network that makes pre- 

ictions for benign and malicious files. 

.1. Substitute detector 

The Substitute Detector is a model trained to mimic the behav- 

or of the Blackbox Detector, which is useful for the attacker to 

est new malware patterns. This is necessary because the output 

f the Blackbox Detector is only a boolean value (malware or not). 

y a whitebox that works like the Blackbox Detector, the attacker 

an determine to what extent a sample is close to being classified 

s malware or not, and this feedback is useful to generate a new 

ample. 

The Substitute Detector consists of an executable-to-image con- 

ersion module and a neural network used for detection. The train- 

ng of the Substitute Detector is shown schematically in Fig. 3 . A 

et of executable files is used to feed the Blackbox Detector, which 

onverts the binary files into images and returns a binary label 

ndicating whether a file is malware. Then, the same set of files, 

long with the labels assigned by the Blackbox Detector, is sent to 

he Substitute Detector so that it can learn to emulate the Blackbox 

etector in classifying the adversarial samples. 

.2. Generator 

The Generator is a generative network and its main purpose is 

o produce benign or malicious samples that are not correctly clas- 

ified by the Blackbox Detector. The training of the Generator is 

hown schematically in Fig. 4 . 

The Generator has two inputs: the random noise values used to 

reate the generated samples and the executable samples that are 

onverted into images (the process of generating an image from 

n executable is shown in Section 5.4 ). The Generator then creates 

ew samples that are output as images and transmitted to the sec- 

nd stage of the Substitute Detector (i.e., they are the input to the 

eural network). The Substitute Detector classifies the generated 

dversarial images as malware or goodware. The labels generated 

y the Substitute Detector are used along with the gradient infor- 

ation to train the Generator. 

Obviously, the generated noise should be such that the correct 

xecution of the executable file is not compromised. There are sev- 

ral possibilities to modify an executable file yet keeping the usual 

xecution result: 
5 
1. by appending the noise at the end of the executable file, be- 

cause the execution will ignore the bits after the end-of-file 

marker; 

2. by including debug information, which is not useful for the ex- 

ecution; 

3. by including the noise in a commented section of the code; 

4. by including the noise in a section of an always-false test. The 

idea is to inject into the malware an IF statement in which the 

test is always false (e.g., if x = x + 1 ) and the execute sequence

is a (suitably) long block of NOPs (not operations). The sub- 

sequent address references should be shifted to consider the 

space taken by the injected IF: however, in case the IF state- 

ment is injected as the last instruction of the executable file, 

no shift has to be done. Obviously, the block of NOPs is used 

to inject the noise. In a more complex attack, the IF condition 

could be something like if a < 0 , where a is a positive variable.

It is worth noting that to implement these strategies, the at- 

acker runs the compiler in unoptimized mode (i.e., debug mode or 

y setting suitable code generation options). Consequently, the first 
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Fig. 4. Generator training. 
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hree techniques are easy to be detected, and the last one should 

e used in a real attack. In the experiments described in Section 6 ,

e applied the first strategy to show that it is effective even if it is

ess powerful than the others because the noise can injected only 

t the end of the file (in contrast, the other techniques allow for 

he injection into any part of the file). 

.3. Overview of the entire architecture 

In the previous sections, we presented the individual compo- 

ents of the architecture. In this section, we report the com- 

lete framework implementing the proposed methodology, which 

s schematized in Fig. 5 . 

In this figure, we show how Blackbox Detector, Substitute Detec- 

or , and Generator interact with each other when they are trained 

n parallel to be time efficient. Indeed, in the serialized version of 

he approach so far described, first we train the substitute detec- 

or and, then, we start the training of the Generator. However, this 

ethodology requires more time than the parallel modality that is 

escribed in the following. 

When the parallel training is used, the input of the system can 

e (i) either a sample extracted by the dataset of benign and mal- 

are executable files (as shown in Fig. 3 ) or (ii) a sample produced

y the Generator . In the latter case, the produced sample is an 

mage, which is both sent to the Substitute Detector (as shown in 

ig. 4 ) and converted into an exe file and sent to the Blackbox De-

ector . Now, if the label predicted by the Substitute Detector is equal 

o the label assigned by the Blackbox Detector , then the Generator 

pdates the weights, else the Generator does not use this sample 

or its training. In contrast, the training of the Substitute Detector 

ccurs in all the cases. 

. Implementation 

As presented in Section 1 , we deploy our system to mitigate 

he state-of-the-art in visualization-based malware detection, that 

s the Pinhero technique. In this section, we describe the imple- 

entation of the proposed system, which uses Python and the ar- 

ificial intelligence software library Tensorflow. The project code is 

vailable at Code Repository (2022) . 
6

.1. Dataset 

The dataset used in our experiments consists of both mal- 

are and goodware. The malware samples are from the MalImg 

ataset ( Nataraj et al., 2020; Nataraj et al., 2011 ). As for good- 

are, no datasets and no direct reliable sources of safe software 

ere found. Therefore, we collected .exe files both by web scrap- 

ng on different platforms ( DriverPack Solution, 2022; Filehippo, 

022; Major Geeks, 2022; Portable Freeware, 2022; Softonic, 2022 ) 

nd by using executables of two virtual machines right after in- 

talling the 32-bit version of Windows 8 and 10, respectively. To 

nsure that the collected .exe files are not malware, we scanned 

ach file with VirusTotal software, as done by Pinhero et al. (2021) . 

n total, we collected about 20 0 0 samples, which are available at 

epository (2022) . 

.2. Blackbox detector 

As no implementation of the Pinhero technique is publicly avail- 

ble, we implemented the Blackbox Detector using the method de- 

ned by Pinhero et al. (2021) . More specifically, we implemented 

he M11 model, which performed best when trained with the 

ame parameters. As defined in that paper, the convolutional neu- 

al network used for classifying the processed images is VGG3 with 

ropout and batch normalization from the VGG (Visual Geome- 

ry Group) architecture. VGG is an object recognition architecture 

ased on CNN but deeper than most conventional CNN architec- 

ures, as its fully connected layers can count up to 138M parame- 

ers. The VGG acronym is usually followed by a number indicating 

he number of layers used in the network. Both the model used by 

inhero et al. (2021) and that used in our project have VGG3 as a 

aseline. 

The strategy used by Pinhero et al. (2021) to convert a binary 

le to an image is schematized in Fig. 6 . First, a 256x256 matrix C
f random values between 0 and 255, said color map is generated. 

hen, the content of the executable binary is read byte by byte, 

nd for each pair of consecutive elements of the binary data array, 

espectively of decimal value x and y , an element of the color map

s identified as C[ x ][ y ] . This element is then stored in a 1-D pixel

rray that is used to create a grayscale image. 
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Fig. 5. Proposed architecture. 

Fig. 6. Input of the Blackbox Detector: from binary data to grayscale image with 

color map. 
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We trained the model with the dataset described in 

ection 5.1 and measured the obtained loss, accuracy, and F- 

core, which are commonly used to verify the performance of 

alware classifiers and detectors. The results measured versus 

he number of epochs are reported in Fig. 7 , and show that the

erformances of the Blackbox Detector are comparable to the 

esults presented by Pinhero et al. (2021) . 
7 
.3. Substitute detector 

Similar to the Blackbox Detector, the Substitute Detector is a 

onvolutional neural network designed for binary classification. 

igure 8 shows a representation of its architecture. 

Batch normalization and strided convolutions are also used in 

ddition to ReLU layers. Dense layers are used later in the dense 

art of the network. The decision for the number of neurons in the 

ense part was dictated by the results obtained after trying differ- 

nt combinations. The model is sequential. The first layer is a resiz- 

ng layer to handle inputs of different sizes. The input size chosen 

s (256, 256) and the interpolation strategy is ”bilinear”. Note that 

he Substitute Detector does not use a color map to process the 

nput images, since it is assumed that the conversion algorithm is 

n aspect hidden to the attacker. 

The process of generating an image from an executable file is 

hown in Fig. 9 . The file is read as a 1-D binary bit string vector.

he string is split into 8-bit vectors and converted to decimal val- 

es, resulting in a single 1-D pixel array vector. Each entry corre- 

ponds to a pixel value from 0 to 255. The resulting 1-D pixel array 

s reshaped to a 2-D matrix and displayed as a grayscale image. As 

one by Pinhero et al. (2021) , the width of the image is 512 pixels

nd the height is variable as it depends directly on the file size. 

After resizing, the input is processed by the convolutional lay- 

rs. Finally, the dense part of the network further processes the 

utputs of the previous layers and finally, only one neuron is used 

n the last layer to make the final prediction. 

The ground truth labels used in calculating the losses are the 

abels resulting from the predictions of the Blackbox Detector for 

oth adversarial malware and goodware files. 
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Fig. 7. Results of the Blackbox Detector training. 

Fig. 8. Substitute Detector architecture. 
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We trained the model of the Substitute Detector and mea- 

ured the obtained loss, accuracy, and F-score versus the num- 

er of epochs. The results of this training are reported in Fig. 10 ,

nd show that, after few epochs, the predictions of the Substitute 

etector are almost the same as those of the Blackbox Detector, 

hich is the desired goal. 

.4. Generator 

Using the Generator, an attacker can create variants of the same 

alware, one or more of which can bypass the existing detection 

ystem. As done by Kawai et al. (2019) , a single input sample is

onsidered at a time until the generated malware pattern is classi- 

ed as benign. The structure of the Generator is shown in Fig. 11 . 

The Generator has two inputs: the input noise and the original 

alware sample. The input noise is of the form [batch_size, 100], 

hile the malware sample is converted to a grayscale image (the 

rocess of generating an image from an executable file is shown in 

ig. 9 ). To simplify the presentation, the input sizes are not shown 

nd only one example is shown in the figure. However, the real 

ystem was trained with data batches containing 64 samples each. 
8 
lso, the representation was designed to highlight the processing 

ections by grouping the relevant layers. The architecture used for 

he Generator is complex for two reasons: first, the generated sam- 

les are very large and adding features to the input noise is not 

traightforward. Secondly, the use of simple upsampling layers has 

eant that convolutional layers have also had to be incorporated 

nto the network. 

The input noise is fed into a dense layer of [128 ∗16 ∗1] neurons.

he output of this layer is the input to a batch normalization layer, 

ollowed by a leaky ReLU. The batch normalization layers are used 

o make the network more stable and overall faster. They take the 

nputs and perform recentering and rescaling. After these initial 

ayers, a reshaping layer is used to reshape the input into the form 

16,128,1). 

Then, batches of upsampling, 2D convolutions, batch normal- 

zation, and leaky ReLU layers are alternated with different kernel 

izes. Finally, a Conv2dTranspose layer is used as the last layer for 

he noise processing section. After this layer, the output values are 

n the range [-1, 1]. These values are obtained when the function 

anh is used as the activation for the last Conv2D transpose layer. 

hese values are normalized in the range [0, 255] and the output is 
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Fig. 9. Input of the Substitute Detector and Generator: from binary data to grayscale image. 

Fig. 10. Results of the Substitute Detector testing. 
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oncatenated with the malware sample, which is the other input to 

he network. The loss for the Generator is calculated based on the 

redictions made by the Substitute Detector for new samples. The 

oss function chosen for the combined model is the binary cross 

ntropy. 

Finally, without changing the architecture and input layer, the 

enerator can be trained to work with samples of similar size that 

re conveniently filled with random padding to match the input 

ize. 

. Experimental results 

In this section, we describe and discuss the experiments car- 

ied out to validate our study. The hardware used to perform the 

xperiments consists of a cluster of 7 servers, each with CPU Intel 

5-2620v4, 16 cores, 128 GB RAM, and 4 GTX 1080Ti GPUs. 
9 
.1. Training the GAN 

The training of the proposed GAN was performed on both a 

ataset of about 200 benign samples and 1500 malware samples. 

t was found that training with a larger dataset leads to greater 

ariability in the results obtained, but also requires a longer train- 

ng time. Considering that the main goal is to generate one mal- 

are, using a smaller dataset is more favorable for an attacker, 

ince a larger number of benign and malicious samples would also 

ncrease the number of requests to the Blackbox Detector to ob- 

ain labels, which could lead to security warnings in the case of 

eal systems. This aspect is discussed in more detail in Section 6.4 . 

Figure 12 shows some of the generated patterns across different 

raining epochs for a malicious sample from the MalImg dataset. 

y comparing the first and second subfigures, it is evident the 

oise introduced at the end of the file (which is missing in the first 
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Fig. 11. Generator architecture. 

Fig. 12. Generated adversarial samples over training epochs for malware sample ‘01d6c9a6ddc21416be5f7edd04b0dac5‘. 

10 
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Fig. 13. Success ratio versus epochs for different noise percentages. 

Table 1 

Tested hyperparameters. 

Hyperparameters Tested Values 

img_width 128 256 512 

batch_size 32 128 64 

epochs 25 50 100 

Substitute Detector learning rate 1e-4 1e-3 2e-3 

GAN 

Generator learning rate 1e-4 1e-3 1e-3 
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ubfigure and has a size of 30%). Observe that the first part of all

ubfigures is not modified by the generator, as the binary content 

f the sample must be preserved in order for the executable to re- 

ain as such. The noise is initially random and epoch after epoch 

roduces the pattern that eludes the visualization-based approach. 

.2. Hyperparameters 

Training GANs can be challenging, so the choice of hyperpa- 

ameters was based mainly on empirical assessments. Several ex- 

eriments were conducted by varying the hyperparameters and, as 

one by Prajapati and Stamp (2021) , we report in Table 1 the most

nteresting settings. The initial attempts to train the framework 

ere performed with a learning rate of 1e-4 for both the Generator 

nd Substitute Detector. These values resulted in slow convergence 

nd in some cases the GAN did not converge at all. The next step 

as to increase the learning rate. The third column shows the cho- 

en values. In this case, it was observed that the Generator outper- 

ormed the Substitute Detector rather quickly, leading to instability 

n the training. Finally, the values in the last column were used. 

.3. Validation 

To validate our approach, we applied our proposal to the set 

f malware files not used in the training phase to generate a new 

ariant of the malware that is not detected by the Pinhero tech- 

ique. We measured the ratio of malware files for which at least 

 variant has been generated versus the number of epochs. We re- 

eated this experiment using three different sizes of input noise : 

0%, 30%, and 40% of the input file. Specifically, the input noise is 

he amount of bits that the Generator creates to be added to the 

le: obviously, the size of the new file is obtained by summing the 

ize of the initial malware and the size of the noise. The results of 

hese experiments are shown in Fig. 13 . We observe and highlight 

hat our proposal was able to generate a new malware variant for 

ll of the malware files given in input. As expected, the larger the 

nput noise size, the faster the generation of the malware variant. 
11 
Now, we consider the time needed to generate malware vari- 

nts: Fig. 14 shows the number of hours needed to perform 100 

pochs of training for the GAN using different file sizes and input 

oise percentages. We observe that less than one hour is sufficient 

or small files (less than 50 kilobytes), whereas 5 h and a half are 

eeded for large files (more than 500 kilobytes) and 40% of input 

oise. The measured times are feasible and acceptable for an attack 

n the considered context. 

.4. Discussion 

The idea of a machine learning model being retrained to pro- 

ect itself from adversarial attacks is not uncommon. Although the 

ossibility of introducing such a mechanism is not mentioned by 

inhero et al. (2021) , this aspect can be evaluated in our study. The 

lackbox Detector could be retrained to improve its ability to de- 

ect malware created by the Generator based on additional adver- 

arial samples collected. This capability exists only after an attack 

as been detected and the adversarial samples have been identi- 

ed. The detected adversarial samples can then be used for re- 

raining. At this point, however, the attackers could also perform 

he Generator and Substitute Detector training against the newly 

rained Blackbox Detector, as is common with GANs. 

Specifically, there are two main reasons that have prevented us 

rom pursuing this approach: 

1. retraining the Blackbox Detector (i.e., the model implement- 

ing the technique presented by Pinhero et al., 2021 ) and con- 

sequently the Substitute Detector would change the associated 

model. On the one hand, this means that both detectors would 

improve the discrimination of adversarial samples. On the other 

hand, this change could also lead to worse detection of other 

malware families. In practice, this would not allow a fair com- 

parison with the state of the art; 

2. retraining the discriminatory part of the system as a defensive 

countermeasure does not necessarily mean that the attacker 

will eventually be defeated. The attacker could easily continue 

to train the Generator to produce new variants that are not de- 

tected. In this approach, improvements on one side lead to im- 

provements on the other. 

Moreover, adversarial training is not always easy to implement. 

or example, Qiu et al. (2019) addresses the fact that it is unreal- 

stic to include all unknown attack patterns in adversarial train- 

ng, which leads to a limitation of adversarial training. Further- 

ore, it was highlighted by Ding et al. (2019) that the adversar- 

al training can be sensitive to the distribution of the training data 
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Fig. 14. Running time for different file sizes and input noise percentages. 
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Data will be made available on request. 
nd that this type of training suffers from generalization problems 

 Song et al., 2018 ). 

It is important to note that the chosen training strategy is dif- 

erent from a conventional GAN. The first difference is that the 

ubstitute Detector receives malware and benign samples with the 

abels predicted by the Blackbox Detector. The second difference 

s that the combined model (Generator plus Substitute Detector) 

s trained on malicious samples with ground truth labels corre- 

ponding to the benign class to learn how to defeat the Black- 

ox Detector. This difference in training strategy causes the Gen- 

rator to converge to a solution because, once the Generator suc- 

essfully generates a malicious pattern that bypasses detection, the 

redicted labels passed from the Blackbox Detector to the Substi- 

ute Detector are the same ones that would be used to identify 

enign samples. Therefore, the Substitute Detector loses the abil- 

ty to detect malicious patterns. It can be inferred that unless the 

lackbox Detector learns to discriminate malicious samples (e.g., 

y re-training), training will converge to a solution. Note that the 

oss of the Generator decreases over epochs and its accuracy in- 

reases, resulting in most samples being mislabeled by the Substi- 

ute Detector and eventually by the Blackbox Detector. This means 

hat the attack can be considered successful even if only a single 

le escapes detection. 

A major advantage for attackers using this framework is that 

hey have different batches of malware patterns available when 

hey store the generated patterns across different epochs and con- 

ider those that have been mislabeled by the Blackbox Detector. In 

his way, the same malware with its many variants can be used for 

ultiple attacks to avoid detection. As our experiments show, our 

roposal was able to generate at least one new malware variant 

or all malware files included in our publicly available dataset. 

However, the limitation of our proposal is the training time 

ith a larger dataset and larger files. Our experiments have shown 

hat with our settings, one hour is needed to generate an unde- 

ected malicious variant for a small file (less than 50 kilobytes), 

hile five and a half hours are needed for a large file (more than

00 kilobytes). 

Finally, in a real scenario, the Generator tries to cheat the Black- 

ox Detector on every attempt, but the Blackbox Detector should 

e queried to make predictions. It can be assumed that a detec- 

or that provides a public API has a request control system. In this 

ase, the attacker should also avoid being identified as someone 

ho floods requests. There are several ways to accomplish this. It 

ight be possible to time the request so that it does not occur too 

requently. This approach has the disadvantage of being time con- 

uming. But again, it all depends on the scenario and how urgent 

he attackers need to get into the system protected by the Black- 
12 
ox Detector. Another option would be to find a way to mask the 

ttacking machine with different hosts. 

. Conclusion 

Our research aimed to prove that machine learning based mal- 

are detection systems relying on a visualization approach are still 

ot suitable as a standalone malware detection solution. This point 

as proven by implementing a GAN-based malware obfuscation 

ystem. We implemented a framework that has proven successful 

n creating malicious patterns that can evade detection. Moreover, 

he GAN implemented in this system is not a conventional GAN, 

s the Substitute Detector is controlled by the Blackbox Detector. 

he contribution of this work compared to previous GAN-based at- 

ack systems with similar architecture is that the proposed model 

s able to generate samples that can be converted back to the orig- 

nal executables yet preserving the expected file execution. More- 

ver, this study provides the dataset used in the experiments to 

llow reproducibility and to be used in other studies for compar- 

sons. 

Future developments of the system could include solutions to 

mprove training stability. A common proposal in the literature is 

o use the Wasserstein loss function ( Arjovsky et al., 2017 ) to im-

rove the stability of the training to avoid common error modes. 

n addition, training the Blackbox Detector could include using dif- 

erent image conversion techniques and evaluating the impact of 

he different techniques. 
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