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Abstract7

In this study, the applicability of Bayesian operational modal analysis (BAY-8 OMA) to an operating onshore concrete-steel hybrid wind turbine tower is9 investigated. The results of the identification then provide reliable parameters10 for the structural health monitoring (SHM) of the tower.11

In the context of wind turbines, typical assumptions of linear time-invariant12 OMA methods are violated, so the validity of the identification uncertainties of13 BAYOMA is not necessarily given. In addition, closely spaced modes occur, for14 which the mode shape in particular is subject to high uncertainty. It can be15 stated, that the main part of the mode shape uncertainty corresponds to the16 alignment of these in the mode subspace.17

Due of these challenges, mode shapes are generally not taken into account18 when monitoring wind turbine towers. In order to include the mode shape in19 SHM scheme, the second-order modal assurance criterion (S2MAC) is applied20 in this study. This metric is able to eliminate the alignment uncertainty by21 comparing the mode shape with a mode subspace.22
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Besides mode shapes, the reliability of natural frequencies and damping can23 also be better quantified by knowing the identification uncertainty. This finally24 enables a well-founded selection of suitable monitoring parameters for the25 future application of SHM for wind turbines.26

Keywords: BAYOMA, wind turbine tower, structural health monitoring,27

uncertainty quantification, closely spaced modes28

1. Introduction29

Wind energy already accounts for the largest share of renewable electricity30 generation in the European Union (EU). In 2018, wind energy accounted for31 18.4% of the electricity generation capacity in the EU, with an installed capacity32 of 170 Gigawatt (GW) onshore and 19 GW offshore [1]. As in many engineer-33 ing disciplines, efficient operation and maintenance also play a major role in34 the field of wind turbines. Consequently, there is a great motivation to im-35 plement effective monitoring strategies in order to reduce maintenance costs36 and increase safety at the same time [2]. In the field of civil engineering, the37 associated monitoring concept is referred to as Structural Health Monitoring38 (SHM). In this context, a distinction is generally made between model-based39 SHM and data-based SHM. Data-based SHM is currently considered the pre-40 dominant approach [3]. To apply data-based methods, a suitable measurement41 concept is crucial. A global monitoring approach is often used due to a more42
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economic measurement concept compared to local approaches. Here, a small43 number of sensors is used to determine information about the condition of44 the whole structure in terms of structural dynamics. Based on the measured45 system response data, monitoring parameters (MP) are extracted using feature46 extraction techniques. From these parameters, a subset of parameters is deter-47 mined that can distinguish between a damaged and an undamaged state of the48 structure [4]. In this context, operational modal analysis (OMA) methods are49 commonly used to identify modal parameters as MPs. Typically, the result of50 the identification of modal parameters includes natural frequencies, damping51 and mode shapes and does not require measurements of the excitation forces.52 In the recent years, OMA methods, like Bayesian Operational Modal Analy-53

sis (BAYOMA) [5], were developed to not only identify the modal parameters54 but also their uncertainties.55

Various OMA methods have been successfully used in recent years for mon-56 itoring the supppot structures of wind turbines. In particular, the covariance-57 based Stochastic Subspace Identification (SSI) [6, 7, 8], the poly-reference58

Least Squares Complex Frequency (pLSCF) [7, 8] and the Frequency Domain59

Decomposition (FDD) [9, 10] are to be mentioned here. The aim of this work is60 to investigate the suitability of the relatively recent method BAYOMA for mon-61 itoring of an existing hybrid tower of an onshore wind turbine. Challenges in62 this specific application include the identification of closely spaced modes, har-63 monic excitation, a short evaluation time relative to the oscillation period, high64 damping, and non-stationarity due to environmental and operational conditions65
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(EOC).66

The low-frequency system dynamics are challenging, because the measure-67 ment chain must be designed and calibrated for the low-frequency range [11].68 In addition, this makes the identification of the modal parameters much more69 uncertain [12]. The Identification of a wind turbine tower is further complicated70 by the fact that the damping of the fore-aft mode (FA) at higher rotor speeds71 is greater than that of the side-to-side mode (SS) [9]. If the evaluation time is72 extended beyond the commonly used 10 minutes to improve the identification73 accuracy, there is a risk that the identification will become less reliable due74 to the instationarities caused by varying EOCs. This problem can be solved75 using time-varying systems, like time-varying autoregressive moving average76 models (TV ARMA) [13]. However, linear OMA methods are commonly used77 for vibration-based monitoring, which assume a time-invariant system under78 white noise excitation. These identification procedures were found to be ro-79 bust even when the assumption of time invariance was violated, as found by80 Brownjohn et al. [14], who applied BAYOMA to offshore lighthouses. Another81 challenge is the harmonic excitation, which can lead to distortion of the natural82 frequencies [6]. Possible approaches in the context of monitoring wind turbine83 towers for example do not consider the identified natural frequencies in the84 range of higher harmonics of the rotor [15], or use cluster analysis to separate85 natural frequencies from harmonics [16].86

In tower structures, it is common to deal with closely spaced modes which are87 challenging to identify, especially regarding the mode shapes. Au et al. [12]88
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show that the largest uncertainty in the case of closely spaced modes occurs89 for the identification of the mode shapes. This uncertainty can be divided90 into two parts. The first part is the uncertainty of the mode subspace (MSS)91 spanned by the dominant vibration shapes. This uncertainty is similar to the92 uncertainty of mode shapes in the well-separated case, which depends mainly93 on the noise of the measurement chain. Hence, in case of low-noise data, the94 MSS can be identified very reliably. The second part of the uncertainty of the95 mode shape is the alignment of the mode in the MSS. The uncertainty of the96 alignment identification increases significantly with the increase in closeness97 of the frequencies [17]. Therefore, an extension of the well-known modal98 assurance criterion (MAC) in form of the subspace of order 2 MAC (S2MAC)99 [18] was developed, which compares a mode shape with a subspace. This100 metric can provide in case of closely spaced modes less uncertain results than101 the classical MAC, because it eliminates uncertainty in the alignment. This102 allows detection of system changes for symmetrical tower structures based on103 mode shapes [19, 17].104

In this study, BAYOMA is used as it identifies their uncertainties in addition to105 the modal parameters, and gives good results in the context of closely spaced106 bending modes of tower structures [14, 17]. The aim of this study is to investi-107 gate the applicability of BAYOMA with the associated identification uncertainties108 on a hybrid tower of an onshore wind turbine under operating conditions in109 order to obtain meaningful monitoring parameters for structural health moni-110 toring. The structure of the work is as follows: Section 2 introduces the theory111
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used in the following chapters. Section 3 describes the wind turbine tower112 under investigation and its dynamics are analysed in more detail, taking the113 identification uncertainty into account. Finally, in Section 4, the study is sum-114 marised and an outlook is given.115

2. Theory116

This section explains shortly BAYOMA and the metrics for comparing mode117 shapes of closely spaced modes. In addition, the mode tracking of the modes118 of a wind turbine tower under operation is presented.119

2.1. Bayesian operational modal analysis120

In this study, the natural frequencies and mode shapes are identified with the121 frequency domain method BAYOMA [5, 20]. The basis of BAYOMA is the122 discrete Fourier transform (DFT) of a Gaussian distributed signal. Assuming123 a long measurement time and a high sampling rate, a DFT of the individual124 frequency base point is statistically independent of all other base points and125 also Gaussian distributed [21]. By assuming an equally distributed prior of the126 modal parameters, the likelihood becomes proportional to the posterior.127

The likelihood of the DFT is therefore a multivariate Gaussian distribution. The128 related covariance matrix is the excpected power spectral density matrix of m129 dominating modes. In case of several closely spaced modes in a considered130 frequency range, the variables to be identified increase significantly due to the131 number of mode shapes. To reduce numerical complexity, the mode subspace132
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(MSS) is first identified and then the alignment of the modes in the subspace133 as well as the associated natural frequencies and damping are identified. The134 MSS, noted as Ψ, is a subspace spanned by the m dominating vibration shapes135 in the considered frequency range. Assuming real mode shapes, these are136 formed from the m largest eigenvectors of the summed real spectral matrix137 in the considered frequency range. Instead of the entire mode shape, the138 identification only needs to determine the angles β of the transformation matrix139

T corresponding to the orientation of the mode within the mode subspace. For140

m = 2, this can be defined as141

Φ = Ψ1,2T(β1, β2) = Ψ1,2
cos(β1) cos(β2)sin(β1) sin(β2)

 . (1)
This provides the expected value E of the theoretical power spectral density142 matrix of two dominating modes143

Ek(Θ) = Ψ1,2THk(Ψ1,2T)T + SeΨΨT , (2)
where Hk is a diagonal matrix containing the two theoretical power spectral144 densities of equivalent one-mass oscillators for the frequency support point k.145 The optimisation parameters Θ are the natural frequencies, modal damping,146 modal force, the angles of the transformation matrix as well as the model error147

Se. The identification of the most probable values of Θ for a specified frequency148
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range is preformed by minimising the negative log likelihood function L(Θ)149

L(Θ) = ncNf lnπ + Nf∑
k=1 ln∣∣Ek(Θ)∣∣ + Nf∑

k=1 F∗
kEk(Θ)−1Fk, (3)

where Nf is the number of considered frequency points and F is the DFT of150 the measured signal. The covariance matrix of the Gaussian approximation of151 the posterior distribution is calculated with the inverse Hessian matrix of the152 negative log likelihood function at the most probable values. In a subsequent153 step, the MSS can be adjusted using a Newton iteration [20].154

2.2. Metrics for mode shapes155

For almost rotationally symmetric tower structures, closely spaced modes oc-156 cur for the bending modes. For such structures, previous investigations have157 shown that the mode shapes have much higher associated identification uncer-158 tainty than in the case of well-separated modes [12, 19]. Most of the uncertainty159 is in the alignment of the mode shape in the MSS, so the widely used Modal As-160 surance Criterion (MAC) [22] to compare two mode shapes φj and φk, defined161 as162 MACj,k = |φH
j φk|2

φH
j φjφH

k φk
, (4)

becomes very uncertain as well. This is visualised by the identification un-163 certainty of an exemplary closely spaced mode shape using a Monte Carlo164 simulation in Figure 1A, where the scatter is evident. Moreover, no Gaussian165 distribution can be assumed when the MAC values approach one. The assump-166
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Figure 1: Histograms with normal distribution fits and the standard deviation σ of the MAC,
αMAC , S2MAC, αS2MAC and the directional angle γ of one exemplary mode shape of a closelyspaced bending mode pair, normalised according to the probability density functions (pdf). Thedetermination is performed using the covariance matrix of the mode shape and the MonteCarlo method with 3000 samples.
tion of a beta distribution is better suited to modelling the MAC distribution167 [17].168

To eliminate the alignment uncertainty, the subspace of order 2 Modal Assur-169 ance Criterion (S2MAC) was developed [18]. The S2MAC calculates the best170 MAC between the mode shape φi and the MSS spanned by two vibration shapes171 vectors ψj and ψk. In the case of normalised real mode shapes of length one,172 the S2MAC is defined as173

S2MACi,jk = (φT
i ψj)2 − 2(φT

i ψj)(ψT
j ψk)(φT

i ψk) + (φT
i ψk)21 − (ψT

j ψk)2 . (5)
Figure 1C shows that the scattering is significantly reduced compared to the174 regular MAC and the distribution is closer to a Gaussian distribution. However,175 a slight skewness of the distribution is still present. The MAC and S2MAC176 are relatively insensitive to small changes of the mode shape relative to the177 reference shapes. Since both metrics represents a squared scalar product of178
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vectors normalised to one, the angles αMAC and αS2MAC can be derived179

αMAC = arccos(√MAC). (6)
The angle of the MAC is simply the angle between the two mode shapes, for180 the S2MAC it is the smallest angle between the mode shape and the MSS. Due181 to this transformation, αMAC and αS2MAC become Gaussian distributed, which is182 shown in Figure 1B and 1D. In Figure 1B, the αMAC illustrates that the angle183 representation can contain a deviation from the Gaussian distribution close to184 zero, due to the fact that the angles are constrained to be larger than 0. This185 error occurs in the case of large uncertainty and mean values close to 0. In186 the context of wind turbines, this can occur especially with the significantly less187 reliable αMAC.188

The alignment uncertainty can be approximated by the directional angle γ in189 the case of a tower structure and a same sensor setup at all measurement levels190 in both spatial directions analogous to the calculation of the mean phase [23],191 as shown in [17]192

γ = arctan (
−V12
V22

) with USV T = [φx φy], (7)
where USV T is the singular value decomposition, φx are the entries of the193 mode shape in x-direction, and φy are the entries of the mode shape in y-194 direction. V12 and V22 are the corresponding elements of the matrix V . The195 distribution of the direction angle in Figure 1E demonstrates clearly that it196
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can be assumed as Gaussian. It is remarkable that the standard deviation of197 the αMAC and the direction angle are quite similar. This is an indication that198 the alignment uncertainty of the mode in the MSS is well described by the199 directional angle γ in the case of bending modes of tower structures. In this200 study, the uncertainties of the mode shape metrics are determined with a 3000201 sample Monte Carlo simulation, which takes into account the covariance matrix202 of the mode shape identification. The distribution of the mode shape metrics203

αMAC , αS2MAC and γ assumed to be Gaussian despite the possible small error.204

2.3. Mode tracking of closely spaced modes205

In the case of changing modal parameters caused by varying EOCs or mechan-206 ical changes, mode tracking becomes a challenge. Here, the identified natural207 frequencies and mode shapes are compared with reference frequencies or ref-208 erence shapes. As demonstrated in the previous chapter, an assignment of the209 mode shapes in the presence of closely spaced modes is associated with great210 uncertainties. In case of support structures of wind turbines, this is further211 complicated, because the mode alignment changes along with a changing na-212 celle positions. A typical approach for this application is to rotate the reference213 mode shape depending on the nacelle position [16]. Subsequently, the rotated214 reference mode shape can be compared to the identified mode with the MAC,215 such that it becomes insensitive to the nacelle angle. For this study, a similar216 procedure was used, which is shown in Figure 2. First, the modal parameters217 and the associated uncertainties are identified from the acceleration measure-218 ment data using BAYOMA. Since BAYOMA is a non-parametric identification219
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Acceleration data Modal identification
Tracking bending

mode pairs with S2MAC

Assigning FA SS 

with directional angle

Identification ranges Reference modes SCADA

Inputs

Figure 2: Sequence of identification and mode tracking used to monitor the support structureof a wind turbine.
method, the identification ranges and the number of modes within a frequency220 range are required as prerequisite information. These informations can be221 provided either automatically, according to Brincker et al. [24] or manually. In222 this work, the identification ranges are set manually. This has the advantage223 that only the modes of interest are identified. However, care must be taken to224 ensure that these ranges are sufficiently large to include the full range of vari-225 ability and that a verification of the identification results is carried out. To verify226 that two different modes have been identified, it is required that the maximum227 MAC of the two closely spaced mode shapes does not exceed 0.5 to obtain228 two different modes and that the identified natural frequencies are within the229 identification range.230

In a further part of the verification, the S2MAC is used to check whether231 the identified mode matches the previously determined reference MSS. This232 has the advantage that the alignment of the mode shape in the mode subspace,233 which is the main uncertainty of the mode shape for closely spaced modes, does234 not influence the bending mode pair tracking process. In addition, the influence235 of the nacelle position on the bending mode pair tracking can be eliminated,236

12



Figure 3: Sensor setup on the steel-concrete hybrid tower of a wind turbine. MP2 is alignedin 10° North and MP1 in 100° East.
which is advantageous in case of non-synchronous aggregated Supervisory237

Control And Data Acquisition (SCADA). The assignment of an identified mode238 to a bending mode pair is done when the S2MAC is greater than 0.8. Lower239 values of S2MAC are considered to be misidentifications.240

However, for the distinction of the modes according to FA and SS within a241 bending mode pair, the nacelle position is required. This is achieved by classi-242 fying the mode whose directional angle γ is closest to the nacelle position as243 the FA-mode. The other mode is correspondingly assigned as the SS-mode.244

3. Investigated hybrid concrete steel tower of a wind turbine245

In this study, a hybrid concrete and steel tower of an 3.4 MW onshore wind246 turbine is investigated, which is shown in Figure 3. The first 57 m of the 122 m247 high tower consist of prestressed segmented concrete rings. The upper part is248 composed of steel tubes. The rated rotor speed of 14 rpm is reached at a wind249
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speed of about 10 m/s. For the wind turbine under investigation, the main wind250 direction is West. This section first briefly describes the measurement setup.251 Subsequently, the dynamics of the tower is investigated on the basis of the first252 and fourth bending mode pairs.253

3.1. Measurement setup254

A measuring system is installed in an existing wind turbine. Because of lim-255 ited accessibility, the five measuring levels coincide with the platforms of the256 towers. On each level, three Integrated Electronics Piezo-Electric (IEPE) ac-257 celerometers are installed. Two sensors measure in the radial direction of the258 tower, with a 90° angle to each other (MP1r and MP2r). An additional sensor of259 tangential direction is attached to one measuring point (MP1t) per measuring260 level, as shown in Figure 3. The calibrated IEPE sensors are combined with an261 IEPE supply with a cut-off frequency of 0.0106 Hz, enabling the measurement262 of acceleration signals without distortion down to 0.05 Hz [11]. The measure-263 ment data of all sensors are digitised synchronously with a 24 bit analogue to264 digital converter on Level 1 positioned and stored with a sampling rate of 500265 Hz on a computer. The aim of this experimental setup is to investigate the dy-266 namics of the hybrid tower in operation and to detect possible system changes267 over time. For the evaluation in this work, only the two acceleration sensors268 of MP1 from each measurement level are used. For a detailed study of the269 dynamics of the tower presented in the next section, measurement data sets270 from middle of October 2021 to end of September 2022 are used, assuming271 enough EOC variation during this period.272
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Mode pair f0 FA f0 SS identification range identification rate1 0.309 Hz 0.297 Hz 0.24 Hz - 0.36 Hz 61.9%2 1.445 Hz 1.475 Hz 1.25 Hz - 1.7 Hz 40.9%3 3.144 Hz 3.036 Hz 2.8 Hz - 3.35 Hz 54.5%4 3.602 Hz 3.788 Hz 3.35 Hz - 4.2 Hz 78.5%
Table 1: Median of the natural frequencies f0, identification range and identification rate of thestudied bending mode pairs for the selected EOC’s in the period from middle of October 2021to end of September 2022.
3.2. Dynamic of the tower273

To use BAYOMA, the identification ranges must be defined a-priori, as de-274 scribed in Section 2.3. In the frequency range up to 5 Hz, four bending mode275 pairs occur. The identification ranges for these mode pairs are listed in Table 1.276 The mode shapes of these modes are shown in Figure 4. The bending modes

Figure 4: Mode shapes of the four bending mode pairs, identified under operation at a nacelleposition of 270◦, and rotated in the dominant direction for comparability.
277 are similar in FA and SS direction, respectively. The slight deviations may re-278 sult from an asymmetric stiffness distribution around the circumference of the279 tower or the unevenly distributed head mass through the rotor and nacelle.280 Figure 5 shows the trend of the natural frequencies over time. As generally281 known, natural frequencies change over time due to EOCs. In addition, there282
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Figure 5: The natural frequencies of the four identified mode pairs plotted over time.
appear to be assignment issues, especially with the second and fourth mode283 pair. A better insight is provided by the Campbell diagram in Figure 6, which284 shows the natural frequencies as a function of rotor speed. The harmonic ex-

Figure 6: Campell diagram with the natural frequencies of the four lowest bending mode pairs.
285 citation has no relevant influence on the identification of the modal parameters286 as the dashed lines of the higher harmonics of the rotor speed do not correlate287
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with the identified natural frequencies. In addition, the assignment problem of288 the fourth bending mode pair mainly occurs in standstill and start-up condi-289 tions. However, the second bending mode pair around 1.5 Hz scatters strongly290 and appears to have different states, depicted in the Campbell diagram. Hence,291 the assignment of the second bending mode pair does not work reliably. A292 cause for this behaviour could not be found, however, interactions with the293 rotor may be an explanation.294

criterion minimum maximum max standard deviationpower in kW 0 - -pitch angle in degree -2 25 2.5nacelle angle in degree - - 0.3
Table 2: Data selection criteria based on 10 minutes aggregated SCADA data.

In the following, this study focuses on the dynamics of the plant in operation.295 In order to exclude uncertainties due to transient time signals caused by the296 start-up and shut-down of the wind turbine as far as possible, only data sets297 are considered where the aggregated 10-minute SCADA data indicate constant298 operation. The selection criteria ensuring this are listed in Table 2. The me-299 dians of the identified natural frequencies, as well as the identification rate for300 the selected data are listed in Table 1. The reason for the relatively low identi-301 fication rates is on the one hand that only completely identified bending mode302 pairs are used. In case of strongly unequal excitation of the pair, it may occur303 that only one mode is identified and the identification of the pair is thus incom-304 plete. In addition, harmonic excitation and other transient effects can disturb305 the identification as in the case of the 2nd bending mode. In general, it is often306
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Figure 7: Power curve, wind speed and wind direction distribution of the investigated windturbine, blue: all data, red: selected data (October 2021-September 2022).
the case that some modes are more difficult to identify when monitoring wind307 turbine towers [16], leading to lower identification rates. Figure 7 shows the308 power curve, the distribution of the wind speed and the wind direction of all309 data as well as the selected data during the almost 12 month period considered310 in this study. As stated before, only data sets belonging to operation conditions311 are used, and data points outside the expected power curve are not taken into312 account. Regarding the wind speeds, data sets below 2.7m/s are consistently313 omitted. Otherwise, the distributions of wind speeds and wind direction remain314 qualitatively the same. To exclude unconclusive identification results, identifi-315 cations were not considered if the determined identification uncertainty of the316 natural frequency and damping was detected as an outlier using a Hampel filter317 [25] with a window length of 144, which corresponds to one measurement day.318

18



Figure 8: Top: Natural frequencies of the first and fourth bending mode pairs as a function ofwind speed. Bottom: Coefficient of variation (CoV) in percent of the natural frequencies as afunction of wind speed.
For further investigations, the first and fourth bending mode pairs are selected,319 as the first is the closest and the fourth is the best-separated mode pair. The top320 panel of Figure 8 shows the natural frequencies depending on the wind speed.321 The first bending mode in FA direction has a much stronger dependence on322 wind speed than the mode in SS direction. In addition, the observed scattering323 of the FA direction is significantly higher. Similar observations are made for324 the fourth bending mode pair, although the scattering is smaller. The identifi-325 cation uncertainty of the natural frequencies at the bottom of Figure 8 shows326 that the FA direction is identified with a higher uncertainty than the SS direc-327 tion. The main reason for this difference is the aerodynamic damping [16],328 which leads to a significantly higher damping in the FA direction, as shown329 in Figure 9. A higher damping leads to higher identification uncertainties of330 the frequency. Since the damping of the first FA bending mode increases with331
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Figure 9: Top: Damping of the first and fourth bending mode pairs as a function of windspeed. Bottom: Coefficient of variation (CoV) in percent of the damping as a function of windspeed.
the wind speed, the identification uncertainty of the natural frequency also in-332 creases. For the fourth bending mode pair, the highest damping is determined333 between wind speeds of 4 and 12 m/s, so the corresponding natural frequen-334 cies are determined with the highest uncertainty in this range. In general,335 the identification of the damping is associated with significantly higher uncer-336 tainties than the identification of natural frequencies [20] and this can also be337 confirmed for the data sets used in this study. Regarding the uncertainties of338 the damping identification, in the lower panel of Figure 9 it is noticeable, that339 the damping identification of the SS modes is relatively more uncertain than340 the damping identification of the FA modes. However, the absolute uncertainty341 of the damping of the SS modes is still significantly lower than that of the342 FA modes. In addition, the damping of the fourth bending mode pair can be343
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identified more reliably than the damping of the first mode pair. This is due344 to the length of the 10-minute data sets used. With an increasing number of345 vibration periods in the 10-minute interval, the damping identification becomes346 less uncertain. The uncertainty of the first bending modes in SS direction is347 remarkable, as the uncertainties in identification of the damping are more scat-348 tering at wind speeds below 10 m/s, as opposed to the trends observed for the349 other modes.350

Figure 10: Top: αMAC of the first and fourth bending mode pairs as a function of the nacelleangle. Bottom: Standard deviation of the αMAC for the first and fourth bending mode pairs asa function of wind speed.
In the context of closely spaced modes, the mode shapes are of particular351 interest. The main uncertainty concerns the alignment of the mode shape in352 the mode subspace. In the case of wind turbine towers, the mode shape also353 changes due to the nacelle position. Therefore, in the top panels of Figure 10,354 the αMAC for both pairs of modes is shown as a function of the nacelle position.355 The reference modes have been identified in the main wind direction at a356
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nacelle position of 270°, so at that nacelle position, the αMAC value is close to 0.357 There are few measurement data sets at nacelle positions below 100° and above358 320°, which is due to the wind direction distribution. The deviation between the359 mode pairs depending on the nacelle position that can be observed in Figure360 10 is due to the asymmetric stiffness distribution around the circumference,361 which may result from imperfections in the dry joints between the concrete362 segments or attachments. The uncertainty of the αMAC is shown as a function363 of the wind speed. The fourth pair of bending modes is already well separated,364 so the uncertainty of the αMAC is relatively small, which leads to a standard365 deviation of the direction angle of less than 5◦ for both bending modes. In the366 case of the first bending mode pair, the standard deviation of the αMAC is very367 high at low wind speeds, especially for the SS mode.368

Figure 11: Top: αS2MAC of the first and fourth bending mode pairs as a function of the nacelleangle. Bottom: Standard deviation of the αS2MAC for the first and fourth bending mode pairsas a function of wind speed.
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In contrast, the αS2MAC depicted in Figure 11 changes less depending on the369 nacelle position. In particular, the first bending mode pair appears to have a370 relatively constant αS2MAC regardless of the nacelle position. For the fourth371 bending mode pair, there is a clear dependence of the αS2MAC on the nacelle372 position. This indicates that the mode subspace changes slightly as a function373 of nacelle position, which is presumably due to an asymmetric stiffness distri-374 bution over the circumference. The uncertainties of the αS2MAC in Figure 11375 are much lower than those of the αMAC in Figure 10 for both bending mode376 pairs. This indicates that the αS2MAC successfully eliminates the alignment un-377 certainty. Furthermore, the uncertainty of the αS2MAC of the first bending mode378 pair is significantly lower than that of the fourth one. One reason could be a379 better signal to noise ratio, as has already been shown in [19]. In addition, the380 mode shape of the first bending mode pair has no nodal points at the sen-381 sor points considered, in contrast to the fourth bending mode pair, so that the382 measurement noise has a minor influence.383

The direction angle γ expresses for symmetrical tower structures the align-384 ment of the mode shape in the mode subspace [17] and is shown in Figure385 12. The uncertainty of γ is higher the closer the modes are. As expected, the386 direction angle γ in the top of panel of Figure 12 depends linearly on the na-387 celle position. However, a larger scatter can be observed over the whole trend.388 This is due to the non-synchronous SCADA and the uncertainty of the direction389 angle shown in the bottom panel of Figure 12. The uncertainty is presented390 as a function of the wind speed. Considering this result, it is noticeable that391
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Figure 12: Top: Directional angle γ of the first and fourth bending mode pairs as a function ofthe nacelle angle. Bottom: Standard deviation of the directional angle γ as a function of windspeed.
the uncertainty of the direction angle is similar to the uncertainty of the αMAC392 in Figure 10. This demonstrates clearly that the main uncertainty of the mode393 shapes of bending modes of wind turbine support structures originates from394 the alignment uncertainty within the mode subspace.395

Throughout this investigation, it must be taken into account that the assump-396 tions of BAYOMA, such as white noise as an excitation source and a linear397 time-invariant system, are violated. Therefore, the calculated uncertainties are398 indicative, but do not exactly correspond to the true uncertainties. However,399 for the practical application, it can be stated that BAYOMA can be used to ob-400 tain consistent dynamical identifications of the turbine structure of an onshore401 wind turbine.402

Based on this investigation, it can be concluded that the αMAC of the tower bend-403
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ing mode shapes with their high identification uncertainties independent of the404 nacelle position cannot serve as a reliable monitoring parameter. Instead, the405 identified mode shapes should be compared with a mode subspace using the406

αS2MAC. This eliminates the high alignment uncertainty. As known from other407 studies [16], the more weakly damped SS natural frequencies can be identified408 more reliably than the FA natural frequencies. Nevertheless it is recommend-409 able to also consider both natural frequencies as monitoring parameters, like410 [8, 16, 26].411

4. Summary and Outlook412

In this study, the applicability of BAYOMA to identify closely spaced bending413 modes from a tower of an onshore wind turbine in operation was investigated.414 The identification and the corresponding uncertainties provided plausible re-415 sults despite the presence of harmonic excitation from the rotor. More strongly416 damped natural frequencies are much more uncertain to identify. Conse-417 quently, the less damped natural frequencies in SS direction can clearly be418 more reliably identified than the ones in FA direction. As typical for structures419 exhibiting closely spaced modes, the mode shapes can only be identified with420 high uncertainty, because the alignment of the mode in the mode subspace421 is very uncertain. Therefore, the αMAC as well as the mode alignment angle422 are not suitable as reliable monitoring parameters. This does not apply to the423

αS2MAC, which proved to be a reliable monitoring parameter, as already shown424 in previous studies for tower structures [19, 17].425
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Several future research approaches result from this study. In the onshore hy-426 brid steel and concrete tower investigated, harmonic excitation did not have427 a significant impact, so that the identification of the modal parameters with428 BAYOMA worked well. For a more general statement it is thus necessary to429 investigate how harmonic excitation can affect the modal identification of wind430 turbine support structures constructed exclusively from steel, both onshore431 and offshore. The examination of the modal parameters clearly showed that432 they vary due to EOCs, so that the next step is to normalise the data for a433 reliable SHM-sheme. The uncertainties of the modal parameters indicate het-434 eroscedasticity with respect to the EOC, i.e. a variability in dependence of the435 EOCs. Therefore, heteroscedastic Gaussian processes might be a good method436 for data normalisation to map this variability.437
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