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Abstract

In this thesis, the e�ects of intense laser pulses on molecular dynamics are

studied at the example of the helium hydride molecular ion HeH
+
. It serves as

a benchmark system for asymmetric molecules because it has features such

as an asymmetric mass distribution, a permanent dipole moment and a rich

structure of electronic levels while still being relatively simple and easy to

model. In order to carry out numerical simulations in high accuracy, we �rst

develop a reduced-dimensional model system for HeH
+

that still reproduces

crucial real-world data. This quantum-mechanical non-Born-Oppenheimer

model is then used in time-dependent Schrödinger-equation calculations to

study various e�ects:

The ionization (electron removal) and subsequent dissociation of HeH
+

are studied in laser �elds of 800 nm and 400 nm. Enhanced ionization at a

certain internuclear distance as well as excitation of vibrational motion—if

possible—have signi�cant e�ects on the molecular dynamics and the ionization

probability.

Breaking the molecule into He+H
+

(ground-state dissociation) or He
++H

++e−
(ionization) are two prototypical, very simple chemical reactions. By means

of collinearly polarized two-color �elds which have a spatial asymmetry, we

show that it is possible to switch from one fragmentation channel to the other

one just using the relative two-color delay as a control knob.

Finally, molecular dynamics depends on the choice of isotopologue, i. e.

the nuclear masses. The reduced mass of the nuclei has an obvious and very

important e�ect on the time scale of vibrational motion and the available

HeH
+

isotopologues allow to study this. However, also the mass distribution

within the molecule in�uences the dynamics, especially in molecular ions

where the dipole moment depends on the nuclear center of mass.

The quantum-mechanical non-Born-Oppenheimer calculations are sup-

ported by a multi-level Born-Oppenheimer model and by classical-trajectory

calculations where appropriate. We compare some of our results to mea-

surement data and suggest feasible experimental parameters for other of our

�ndings where there are no measured results yet.

Keywords: molecular dynamics, time-dependent Schrödinger equation, strong-�eld physics
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Atomic units

The shortest unit of time in the multiverse is

the New York Second, de�ned as the period of

time between the tra�c lights turning green

and the cab behind you honking.

Terry Pratchett, Lords and Ladies, 1992

Throughout this thesis, atomic units (a.u.) are used except otherwise noted.

Atomic units are de�ned by treating the reduced Planck constant ℏ, the ele-

mentary charge e, the electron rest mass me and 4��0 (where �0 is the vacuum

permittivity) as unity. Note that the electron charge is −1 in atomic units.

Important derived units are the length unit a0 = 4��0ℏ2/(mee2) ≈ 5.3 × 10−11m
(Bohr radius), the energy unit Eh = mee4/(4��0ℏ)2 ≈ 4.4 × 10−18 J ≈ 27.2 eV
(Hartree) and the time unit ℏ/Eh ≈ 2.4 × 10−17 s = 24 as (as = attoseconds).

The conversion factors from atomic units to other unit systems are ℏ/a0 for

momentum, Eh/a0 for force and Eh/(ea0) for electric �eld strength. In atomic

units, the speed of light has the value of the inverse �ne-structure constant,

c = e2/(4��0ℏ�) = 1/� ≈ 137.
Note that we give some properties in SI units for convenience. This applies to

the laser intensity (W/cm2
), laser wavelength (nm or �m) and times (typically

fs). We will always explicitly specify the units if other than atomic units are

used.



In the bottom-left corner, you can see the time evolution of the HeH
+

electron-

nuclear wave function (v = 5 initial state) in an 800 nm seven-cycle laser pulse

with 3 × 1014W/cm2
peak intensity. Flip the book pages from front to back in

order to see the time evolution as a “movie”. See the explanation of �gure 2.2

(page 18) for details about the plot.



1 Introduction

The fundamental laws necessary for the

mathematical treatment of large parts of

physics and the whole of chemistry are thus

fully known, and the di�culty lies only in the

fact that application of these laws leads to

equations that are too complex to be solved.

Paul Dirac, 1929

1.1 �antum mechanics and limitations

Leaving relativistic and gravitational e�ects aside, most physical systems

can be fully described by specifying a Hamilton operator H and an initial

state  (t0) whose time evolution is then determined by the time-dependent

Schrödinger equation (TDSE)

i
d
dt
 (t) = H (t).

Results of measurements are given as probabilities to �nd a certain value, e. g.

the probability for a self-adjoint operator A with (non-degenerate) eigenvalue

�i and eigenstate Λi the probability w to �nd this value when measuring  is

w(�i , A,  ) = | ⟨Λi | ⟩ |2

and the expectation value for the measurement is ⟨ |A| ⟩.

In this thesis, we investigate the dynamics of molecules (especially the

HeH
+

molecular ion) in strong laser �elds. Within the general approximations

used here (see section 1.5), we can easily write down the full Hamiltonian

explicitly—and we do that in appendix A—but it contains three spatial degrees

of freedom per particle (nucleus or electron), i. e. 12 degrees of freedom for

the two nuclei and two electrons of HeH
+
. Even though HeH

+
is one of



1 Introduction

the simplest molecules that exist, it is practically impossible to calculate its

dynamics without further signi�cant approximations
1
.

This is true for basically all quantum systems. Even though we know the

fundamental laws, we cannot directly deduce predictions such as binding

strengths of atoms or molecules, ionization rates or dynamically competing

processes et cetera. We need models and approximations on the theoretical

side and measurements that isolate speci�c e�ects on the experimental side

in order to understand the mechanisms and processes in complex quantum

systems. Light-matter interaction is one example how we can study dynamics

in such quantum systems and it has been a useful tool for about two centuries,

from absorption spectroscopy [1] and the photoelectric e�ect [2, 3] through

development of the �rst laser [4] which in turn opened up new �elds like

photonics [5] and—important for us—strong-�eld and attosecond physics [6].

In the next section we will illuminate what strong-�eld physics is and how

we can apply it to learn something about molecules.

1.2 Molecules and strong-field physics

Molecules are quantum systems that consist of multiple (at least two) atoms

which are bound to each other due to their electron con�guration, i. e. taking

them apart would increase the total energy of the system.

We consider the �eld of molecular strong-�eld dynamics from two di�erent

perspectives: Coming from the fundamental theoretical-physics foundations,

it seems obvious to �rst consider atoms as compound entities of a nucleus

(neutrons and protons) and electrons and then—as the next complex objects—

study molecules. In a hydrogen atom, the “binding force”
2

of a classical electron

in a distance of 1 a0 ≈ 5.3 × 10−11m (Bohr radius) from a proton is 8.2 × 10−8 N
which is the same as the force that an electric �eld of 5.1 × 1011 V/m exerts on

the electron. This �eld strength occurs in a linearly polarized continuous-wave

laser with 3.5 × 1016W/cm2
intensity. Using laser intensities of roughly this

magnitude justi�es the name strong-�eld physics
3

[7]. Shorter and stronger

1
In a numerical grid-based representation with only ten grid points per degree of freedom (we

use 102 to 104) and only one byte per grid point (we use double-precision complex numbers,

i. e. 16 bytes per grid point), the wave function occupies 1012 B = 1TB of computer memory.

2
We use quotation marks here because a classical electron cannot stably orbit a nucleus. What

we calculate is the force due to the −1/r potential (in atomic units) of the proton.

3
Note that the “binding force” scales with the distance from the nucleus like 1/r2 (and is

2



1.2 Molecules and strong-�eld physics

laser pulses allow to access length and time scales that go down to the atomic

level [8]. Many non-linear e�ects take place during strong-�eld interaction

such as above-threshold ionization [9], non-sequential double ionization [10]

and high-harmonic generation [11], just to name a few. The latter has led to

the �eld of attosecond-pulse generation [12] which in turn allowed to study

even shorter time scales. Many of these e�ects can be described e�ciently by

models and simulations that do not require to solve the TDSE for the whole

system. Selected prevalent examples are the PPT/ADK
4

ionization rate [13–

15], the strong-�eld approximation [16–18] and the three-step model of high-

harmonic generation [19, 20]. The electron motion follows the electric-�eld

oscillations which can go down to the attosecond (10−18 s) time scale.

Since molecular bonds are created by interacting electrons shielding the

positively charged nuclei from each other, the attosecond electron dynamics is

also particularly important for the understanding of the formation, dynamics

and breaking of molecular bonds. Additionally, molecules have more degrees

of freedom with di�erent time scales
5
: Vibrational motion of the nuclei (pe-

riod for H2: 7.7 fs) and rotation of the molecule (period for H2 with angular

momentum corresponding to quantum number J = 0, 1,…: 270 fs/
√
J (J + 1))

[21, p. 364]. The di�erent time scales re�ect the hierarchy of energy spac-

ings: electronic > vibrational > rotational. Femtochemistry [22, 23] utilizes

the di�erent time scales in pump-probe experiments where femtosecond co-

herent nuclear dynamics is initiated and probed, respectively, by much faster

electronic processes induced by laser pulses. Even though the time scales of

di�erent degrees of freedom usually di�er by large factors, often they cannot

be treated independently [24]. Examples are interactions of the freed elec-

tron with the moving nuclei (e. g. in the generation of photoelectrons [25] or

high harmonics [26, 27]) and charge-resonance-enhanced ionization (CREI),

a strong modulation of the ionization yield depending on the internuclear

distance [28, 29].

partially shielded in larger atoms) and that the laser �eld does not need to reach exactly the

strength of the Coulomb force in order to have a signi�cant e�ect on the electron. Thus in

practice, laser intensities are usually smaller. What is strong depends on the target system.

4
Named after A. M. Perelomov, V. S. Popov and M. V. Terent’ev and M. V. Ammosov, N. B. De-

lone and V. P. Krainov, respectively.

5
As energy eigenstates, both vibrational and rotational quantum levels are stationary and

thus have no period. Time scales are calculated for corresponding classical systems and

usually agree with quantum wave-packet motion.

3



1 Introduction

The name femtochemistry indicates the second perspective on molecular

strong-�eld physics: chemistry. From a physicist’s point of view, chemistry is

the physics of valence electrons. Thus, understanding and controlling elec-

tron movement is key for understanding and steering chemical reactions or

shifting chemical equilibria [30]. Ubiquitous redox reactions are based on

electron transfer [31, 32] but charge transfer in molecules is an active �eld

of research far beyond that, see [33] for a review. The chemical reactions we

consider in this thesis are probably the simplest kind of reactions—breakup

of a diatomic molecule. However, there are still di�erent possible outcomes:

Dissociation, that is, fragmentation without electron removal; ionization, here

de�ned as removal of one electron (followed by fragmentation); double ion-
ization, that is, removal of both electrons (followed by fragmentation); see

�gure 1.1. The combined dynamics of nuclei and electrons determine the

dominating fragmentation channel.

HeH
+ + nℏ! →

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

He(n1) + H
+

He
+(n1) + H(n2)

He
+(n1) + H

+ + e−

He
2+ + H(n2) + e−

He
2+ + H

+ + 2e−

Figure 1.1: Possible fragmentation channels for HeH
+
. The �rst two correspond

to dissociation, the next two to single ionization and the last one to double

ionization. n1 and n2 indicate possible excitation states of the reaction products.

1.3 The helium hydride molecular ion

HeH
+

is one of the simplest molecules that exist and the �rst one that formed

after Big Bang nucleosynthesis [34] but it has not been directly detected in

interstellar space until 2016 (measurement, published 2019) [35]. Due to the

strong binding potential of the helium core, it can be thought of as a helium

atom that has a proton attached to it [36]. At the equilibrium internuclear

4



1.4 Open questions and outline

distance of 1.46 a.u. it has a vertical ionization potential
6

of 44.4 eV, the disso-

ciation energy from the vibrational ground state is 1.8 eV
HeH

+
is a particularly interesting benchmark molecule because it is very sim-

ple and has a strong asymmetry—both regarding the mass and the charge dis-

tribution. There are numerous studies on H
+
2 and H2 which serve as archetypes

of symmetric diatomic molecules. However, many relevant molecules are not

symmetric and HeH
+

may provide insights into their properties. Another

inviting property of HeH
+

is that the mass distribution within the molecule

depends strongly on the isotopologue. One measure for this is the ratio of

nuclear masses of helium and hydrogen—short: mass ratio—which varies from

4:1 for the common
4
He

1
H
+

down to 1:1 for
3
HeT

+
. Therefore, mass e�ects

can be assumed to be very pronounced compared to larger (heavier) molecules

where the mass ratio often cannot be varied on such a broad range.

Since its �rst detection in a laboratory in 1925 [37], HeH
+

has been subject to

various experimental and theoretical studies, e. g. spectroscopy in the infrared

regime [38] and photoionization and -dissociation in the ultraviolet regime

[39–42]. The strong-�eld dynamics of HeH
+

in infrared or optical laser pulses

has only been studied in recent years by a few groups [43–52].

1.4 Open questions and outline

In this thesis, we aim to answer a few questions on strong-�eld e�ects in

molecules with the example of HeH
+
.

1. How are nuclear and electronic motion connected, speci�cally for the

competing ionization and dissociation in visible and near-infrared laser

�elds?

We will shed light on this question in chapter 2 which in parts is based

on the following publication.

Philipp Wustelt et al. “Heteronuclear Limit of Strong-Field Ionization:

Fragmentation of HeH+ by Intense Ultrashort Laser Pulses”. In: Phys.
Rev. Lett. 121 (7 2018), p. 073203. doi: 10.1103/PhysRevLett.121.073203

6
“Vertical” refers to Born-Oppenheimer potential-energy curves like �gure 2.1 where vertical

transitions between electronic states do not change the internuclear distance.

5

https://doi.org/10.1103/PhysRevLett.121.073203
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2. Can we steer the molecule into one of the two fragmentation channels

ionization and dissociation by tuning a suitable laser pulse?

This question is the center of chapter 3 where two-color pulses are

utilized. Some of the results have been published before in

Florian Oppermann et al. “Dissociation and ionization of HeH
+

in sub-

cycle-controlled intense two-color �elds”. In: Journal of Physics B:
Atomic, Molecular and Optical Physics 53.17 (2020). doi: 10.1088/1361-

6455/ab9a93.

3. What is the e�ect of the choice of isotopologue on strong-�eld ionization

and dissociation? What e�ects are due to the reduced mass of the nuclei,

what e�ect does the mass distribution have?

The e�ect of the reduced mass is already discussed in chapters 2 and 3

but we disentangle the mass ratio of the nuclei from the reduced mass in

chapter 4 and study its isolated e�ect. The following publication covers

some of the results from this chapter.

Florian Oppermann, Saurabh Mhatre, Stefanie Gräfe, and Manfred Lein.

“Mass-ratio dependent strong-�eld dissociation of arti�cial helium hy-

dride isotopologues”. In: Journal of Physics B: Atomic, Molecular and
Optical Physics (2023), accepted. arXiv: 2301.04500

Before we start investigating the �rst question, the next section gives an

overview of the approximations that are used throughout this thesis. Note

that some technical details as well as a recap of the Born-Oppenheimer ap-

proximation can be found in the appendix from page 85 onwards.

1.5 Approximations

In the following chapters of this thesis, we will carry out simulations for several

settings using di�erent models. We describe the common set of approximations,

their justi�cations and their limitations in this section.

The �rst class of approximations are quite general and are applicable in

most studies of strong-�eld physics:

1. No relativistic e�ects. We ignore all e�ects that come from relativistic

motion of the molecule or single electrons. This allows us to use standard

6

https://doi.org/10.1088/1361-6455/ab9a93
https://doi.org/10.1088/1361-6455/ab9a93
https://arxiv.org/abs/2301.04500


1.5 Approximations

non-relativistic Hamiltonian operators like H = p2/(2m) + V (x) for a

single-particle system. As a justi�cation, we can compare typical energy

scales in the relativistic energy formula E2 = p2/(2m) + m2c4 where

c is the speed of light. For an electron, the rest mass corresponds to

E0 = mc2 ≈ 511 keV, whereas the largest kinetic energies involved

are typically reached during quiver motion in the laser �eld. Here,

the ponderomotive energy (in atomic units) is given by Up = E2/(4!2)
where E is the electric �eld strength and! is the laser frequency / photon

energy. For a �eld of 1015W/cm2
intensity and 1200 nm wavelength,

Up = 134 eV is less than 0.1 % of the rest-mass energy E0.

Note that this approximation also excludes relativistic corrections that

contribute to �ne-structure splitting of energy eigenstates like spin-

orbit coupling as well as more fundamental relativistic treatment like

quantum electrodynamics.

2. No fundamental forces beyond electrodynamics. Although it is

possible to induce nuclear fusion by very strong laser light [55, 56], we

ignore the treatment of the strong interaction that would be necessary

to cover those dynamics. For e�ects of the strong interaction force to

be relevant, nuclei of two atoms would need to approach each other

to at most a few fm = 10−15m [57]. At this distance, the energy stored

in the Coulomb repulsion of just two protons is 1.44MeV which again

exceeds the occurring energies of a few to a few dozens of electronvolts

by many orders of magnitude.

3. Classical treatment of the laser light. The correct theory to describe

coherent light �elds and their interaction with matter is quantum optics.

Excitations of the quantized �eld are called photons and give rise to

product (and possibly entangled) states of light and matter. Quantum

optics explains e�ects such as spontaneous and stimulated emission

which are essential for the theory of the laser.
7

Interestingly, resonant

transitions and Rabi oscillations which correspond to absorption and

emission of single photons can be described correctly in semi-classical

7
Spontaneous emission cannot be explained with classical electrical �elds. However, Albert

Einstein correctly predicted both spontaneous and stimulated emission based on Planck’s

idea of quantized light already in 1916 [58, 59], well before quantum optics existed as a

closed theory.

7
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models with classical electric �elds, even though the theory has no

concept of a photon or quantized light [60]. This fact together with the

huge number of photons in our laser pulses
8

justi�es to include the laser

interaction classically via an external time-dependent potential in the

Hamiltonian.

4. Dipole approximation for the laser light. Classical, i. e. non-quan-

tized, light is described by solutions to Maxwell’s equations [61]. In

the absence of matter, the solutions are (superpositions of) propagating

electric and magnetic vector �elds that are orthogonal to each other and

to the propagation direction n. In Coulomb gauge, they are de�ned by a

vector potential A(r, t) via E = )tA and B = ∇ × A = n × E/c. Then, the

dipole approximation A(r, t) = A(t) results in a spatially homogeneous

electric �eld E(t) and a vanishing magnetic �eld B = 0. It is justi�ed for

laser pulses whose wavelength is much larger than the length scales of

typical dynamics and if the Lorentz force v × B is much smaller than the

force from the electric �eld qr ⋅ E. The ratio of the quiver radius
9

and

the laser wavelength � is given by E0�/(2�c)2. For a �eld of 1015W/cm2

and 1200 nmwavelength, this ratio is 0.5 %. Since |B| = |E|/c, the Lorentz

force is small as long as the occurring velocities are much smaller than

the speed of light which we have discussed at item 1.

For these reasons, we apply the dipole approximation throughout this

thesis. It should be mentioned that although it is common practice to

use the dipole approximation [62], non-dipole e�ects are important in

some strong-�eld settings [50, 63].

In addition to these general approximations we make further simpli�cations

which are more speci�c to the actual system we consider, the HeH
+

molecular

ion.

5. Single-active-electron (SAE) approximation. For the reasons out-

lined in section 1.1, it is very hard to simulate all electronic degrees

of freedom of atoms and molecules with many electrons. We brie�y

discuss three common ways to handle this problem: First, one can use

8
A 1mJ laser pulse at 800 nm wavelength contains 4 × 1015 photons.

9
The quiver motion is typically calculated for a classical electron in a linearly polarized

continuous-wave laser �eld E(t) = E0 cos(!t)ex . The quiver radius E0/!2
is the amplitude

of the oscillating motion of the electron.

8



1.5 Approximations

density-functional theory (DFT) [64, 65] which works with electron

densities instead of correlated electron wave functions. This reduces

the dimensionality dramatically (from 3N to 3 if we ignore the spin)

but for the price that the relevant functionals are not exactly known.

Second, one can keep (at least some of) the electronic degrees of free-

dom but restrict the size of speci�c dimensions by limiting the basis

set to suitable states. This allows to treat the electrons fully correlated

while keeping the computational cost manageable
10

but it needs a lot

of knowledge about the system in order to choose the basis states e�-

ciently. Examples for this are the restricted- or generalized-active-space

con�guration-interaction methods [66, 67]. Third (and actually a special

case of the second method), one can simply assume that all but one

electron show little dynamics during the light-matter interaction and

can thus be ignored. This frees computational resources to treat the

remaining single active electron with high accuracy and with a large

basis set (e. g. on a �ne spatial grid). SAE simulations have a long and

successful history in strong-�eld physics [68, 69]. Of course, most tar-

gets have more electrons and multi-electron e�ects can play a signi�cant

role [70–72] and the limitations of the SAE approximation are obvious

if a second electron is excited or even removed (double ionization).

One reason for the success of the SAE approximation lies in the jump

of the excitation and ionization energies for the second electron once

the �rst one is removed. Removing the �rst electron from a helium

atom requires 24.6 eV, removing the second one from the ionized atom

is much harder and requires 54.4 eV [73]. In our case this huge energy

di�erence justi�es the assumption that the second electron of the HeH
+

molecular ion is tightly bound, mostly to the helium core
11

.

In order to set up the SAE Hamiltonian, we need to decide what the

e�ective potential for the active electron should look like. Usually this

potential is chosen and scaled such that important properties like the

ionization potential reproduce the exact values. We discuss this issue

10
Although it still can become infeasible very easily as shown in section 1.1.

11
Of course, in the real atom both electrons are bound equally strong because they are indis-

tinguishable. The full wave function in the SAE approximation has to be thought of as the

(anti-)symmetrized product of one electron in the ground state and one electron described

by the simulated wave function.
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1 Introduction

for our HeH
+

model in the beginning of chapter 2 and in appendix B.

6. Reduced dimensionality. In order to use computational resources

even more e�ciently, we neglect the spatial dimensions perpendicu-

lar to the molecular axis and treat the molecule as a one-dimensional

system. This means that both the nuclei and the single active electron

can only move along the molecular axis which itself is �xed. Reduced-

dimensionality models have a long history in strong-�eld simulations

and the softened Coulomb potential (x2 + a)−1/2 has proved useful be-

cause it has the 1/|x | Coulomb tail and at the same time allows the wave

function to cross the origin
12

[24, 76]. As a consequence of the reduced

dimensionality, there are no rotational excitations of the molecule or

angular-momentum levels of the electron. Since our photon energies

are larger than the energy spacings of rotational eigenstates and linearly

polarized light leaves the angular momentum of the electron unchanged

[77], we accept both limitations. However, our model also lacks the

atomic l quantum number due to the reduced dimensionality such that

the number of electronic states that can be populated is decreased.

Note that we do not question that spacetime is 1 + 3 dimensional. If we

did that, we should use the respective solutions to Poisson’s equation

for the potential of a charge distribution �, ΔV (x) = 4��(x), i. e. Cx
(1D) or ln(C/r) (2D) for a point charge. Obviously, these potentials have

very di�erent properties than the 1/r Coulomb potential that we want

to approximate.

7. Aligned molecules in the laser �eld. Connected to the previous

approximation, we assume the laser polarization axis to coincide with

the molecular axis. Although this initial alignment cannot be guaranteed

in an experimental setup where the molecules are randomly oriented,

the coincidence measurements we compare our simulations with can

be selected a posteriori for aligned or oriented molecules [78]. Also,

the dissociation and ionization dynamics of HeH
+

is strongest if the

molecule is aligned with the laser �eld and the molecule tends to align

12
The Hamilton operator with Coulomb potential, p2/2 + 1/|x |, is not self-adjoint and can only

be de�ned as the orthogonal sum of the respective operators on the positive and negative

half-axes [74, 75]. A hand-waving explanation is that in two or more dimensions, the

particle can go around the singularity.

10



1.5 Approximations

during the laser pulse if it has enough time [79, 80]. Even though we

cannot model the alignment step, we still cover the important dynamics

in the aligned state with our approximation.

Now that we have de�ned the playground and the region of validity for our

studies, we turn on the lasers and shed light on the �rst of our questions in

the next chapter.

11





2 HeH+ in monochromatic 400nm and
800nm fields

Flash before my eyes

Now it’s time to die

Burning in my brain

I can feel the �ame.

“Ride the Lightning” (Metallica), 1984

Parts of the content of this chapter have been published in [49].

In this chapter, we look at the dynamics of the aligned HeH
+

molecular

ion in monochromatic, linearly polarized laser pulses with 400 nm or 800 nm
wavelength. This “�ash” of the laser can cause the target to ionize and/or

dissociate, so depending on the exact parameters, the molecule is determined

to “die” as soon as it feels the light. For the TDSE simulations, we employ our

one-dimensional single-active-electron non-Born-Oppenheimer model that is

described �rst before we come to physics.

2.1 Non-Born-Oppenheimer TDSE model

To derive the TDSE, we start with lab coordinates r⃗ for the electron and R⃗He, R⃗H

for the helium and hydrogen nuclei, respectively. We call the corresponding

momentum operators (derivatives) p⃗e , P⃗He and P⃗H, respectively. In length

gauge, these three particles with masses 1, mHe and mH and charges −1, ZHe

and ZH in an external electric �eld E⃗(t) are described by the Hamiltonian

Hlab(t) =
p⃗2e
2
+

P⃗2
He

2mHe

+
P⃗2

H

2mH

+ Vion (
|||R⃗He − R⃗H

|||) + VHe (
|||r⃗ − R⃗He

|||) + VH (
|||r⃗ − R⃗H

|||)

− (−r⃗ + ZHeR⃗He + ZHR⃗H) ⋅ E⃗(t).

(2.1)



2 HeH+ in monochromatic 400nm and 800nm �elds

Here, Vion is the potential energy when the active electron is removed, i. e. the

ground-state Born-Oppenheimer potential-energy curve of HeH
2+

, and VHe,

VH model the interaction between the electron and the helium or hydrogen

nucleus, respectively. The inactive electron is assumed to be located at the

helium core, i. e. it is included in mHe and ZHe = ZH = 1.
We now perform a coordinate change into center-of-mass (c.o.m.) coordi-

nates and coordinates relative to the nuclear center of mass,

R⃗c.o.m.
∶=

mHeR⃗He +mHR⃗H + r⃗
M + 1

,

x⃗ ∶= r⃗ −
mHeR⃗He +mHR⃗H

M
,

R⃗ ∶= R⃗He − R⃗H.

M = mHe + mH is the total nuclear mass (including the inactive electron).

Taking into account that the corresponding momenta P⃗c.o.m., p⃗, P⃗ transform as

derivatives, we obtain

p⃗e = p⃗ +
1

M + 1
P⃗c.o.m.,

P⃗He = −
mHe

M
p⃗ +

mHe

M + 1
P⃗c.o.m. + P⃗ ,

P⃗H = −
mH

M
p⃗ +

mH

M + 1
P⃗c.o.m. − P⃗ .

Inserting the new coordinates and momenta into (2.1) yields

Hlab(t) =
P⃗2

c.o.m.

2(M + 1)
+ (1 − ZHe − ZH) R⃗c.o.m. ⋅ E⃗(t)

+
p⃗2

2�e
+
P⃗2

2�
+ Vion (|R⃗|) + VHe (

||||
x⃗ −

mH

M
R⃗
||||)
+ VH (

||||
x⃗ +

mHe

M
R⃗
||||)

+(
M + ZHe + ZH

M + 1
x⃗ +

ZHmHe − ZHemH

M
R⃗) ⋅ E⃗(t),

where we have introduced the reduced masses �e = M/(M + 1) for the electron

and � = m1m2/M for the nuclei. As expected, the �rst line describing the

center-of-mass motion of the charged molecule in the external �eld decouples

from the other degrees of freedom and we can neglect it for our purposes.
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2.1 Non-Born-Oppenheimer TDSE model

If we now reduce the dimensionality for x⃗ and R⃗ by projecting both on the

molecular axis, we end up with the main TDSE that we will use throughout

this thesis:

i
dΨ(x, R; t)

dt
= (H0 + (�x + �R)E(t))Ψ(x, R; t) (2.2)

with the �eld-free Hamiltonian

H0 =
p2

2�e
+
P2

2�
−

ZH√
(x + mHe

M R)
2 + �1(R)

−
ZHe√

(x − mH

M R)
2 + �2(R)

+ Vion(R).

(2.3)

Here, we have used � = (M + Z1 + Z2)/(M + 1), � = (Z1m2 − Z2m1)/M and the

explicit form of the softened Coulomb potential for VH, VHe. The parameter

functions �j(R) are tuned for each internuclear distance such that the two

lowest Born-Oppenheimer potential energy curves (shown in �gure 2.1) are

reproduced exactly (cf. appendix B). Note that we only use positive values for R.

This means that the helium core is located at the positive position x = (mH/M)R
and that the hydrogen core is located on the left at x = −(mHe/M)R.

In velocity gauge, the coupling terms are transformed into instantaneous

momentum shifts by the vector potential A(t) = − ∫ t E(t′)dt′,

H (t) =
(p + �A(t))2

2�e
+
(P + �A(t))2

2�
+ V (x, R) = T + V ,

where V (x, R) collects the x- and R-dependent terms in (2.3). The gauge

transform is given by

Ψlen.(x, R; t) = Ψvel.(x, R; t) eiA(t)(�x+�R).

The spatial wave function is represented on a x-R grid with Nx = 2048
grid points in x direction (step size Δx = 0.2 a.u., symmetric around 0) and

NR = 2048 grid points in R direction (step size ΔR = 0.05 a.u., starting at

0.05 a.u.). Momentum operators act as derivatives and they are implemented

using fast Fourier transforms [85]. Time evolution uses the split-operator

method [86] where the short-time propagator reads

U (t, t + Δt) ≈ e−iH (t)Δt ≈ e−iTΔt/2e−iVΔte−iTΔt/2 + (Δt3).

When the wave function approaches the grid boundary in x direction, it

is absorbed by a complex monomial potential of fourth order which starts at

15
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Figure 2.1: Lowest two Born-Oppenheimer potential-energy curves of HeH
+

and

lowest curve of HeH
2+

. Arrows and numbers indicate the vertical excitation

energy and ionization potential at equilibrium distance and asymptotically for

separated nuclei, respectively. Data from [81–84], see appendix B for details.
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2.2 Fragmentation pathways

179 a.u. distance from the nuclear center of mass
1
. The absorbed part is from

then on propagated without electron-nuclei interaction. At the end of the

time evolution, the norm squared of the absorbed part is the ionization yield

and the kinetic-energy release (KER) of the ionization channel is calculated

by projecting the absorbed wave function onto nuclear continuum energy

eigenstates of HeH
2+

.

The electric laser �eld is given by

E(t) = E0f (t) cos(!t + '),

where the envelope f with 0 ≤ f (t) ≤ 1 is either a sin2 function or a Gaussian,

' is the carrier-envelope phase (CEP) and ! is the carrier frequency of the

laser. Since we use atomic units, ! is also the photon energy. When the laser

pulse duration T is speci�ed, it means the full width at half maximum (FWHM)

of the intensity, i. e. E(0)2 = 2E(T )2 if the pulse is centered around t = 0.

2.2 Fragmentation pathways

Our model system has three possible outcomes of an interaction with a laser

pulse: 1. The molecule stays bound; either in the initial vibrational state or

in any superposition of vibrational states. 2. The molecule breaks into two

fragments, He + H
+

or He
+

+ H, and the active electron stays bound to one of

the fragments, possibly in an excited state. 3. The molecule is further ionized

to HeH
2+

, i. e. the active electron leaves the molecule. Due to the repulsive 1/R
potential of HeH

2+
, ionization is always followed by rather fast dissociation

(“Coulomb explosion”).

Of course, the real HeH
+

has even more pathways: Double ionization comes

to mind (which our single-active-electron model cannot describe) and at in-

tensities high enough to remove both electrons from the molecule (and if the

gas density is high enough), the broad �eld of plasma physics unfurls which

is beyond the scope of this work.

Figure 2.2 shows an example result of a TDSE calculation which propagates

the vibrational state v = 5, v being the vibrational quantum number, in a 35 fs
laser pulse at 800 nm wavelength. Most of the pathways described previously

1
The complex absorbing potential (CAP) has the form VCAP(x) = −i�(|x | − x0)4 for |x | > x0
with a strength parameter � that is chosen depending on relevant electron momenta [87].

A typical value is � = 10 a.u. The o�set x0 = 179 a.u. is the start of the CAP.

17
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Figure 2.2: Spatial probability density |Ψ(x, R)|2 after time evolution of the v = 5 initial

state in a 35 fs laser pulse at 800 nm and 5 × 1013W/cm2
peak intensity.
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calculated from our TDSE model. Asymptotic electronic states are sketched on

the right; they alternate between states localized at the helium atom and states

localized at the hydrogen atom.
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2.3 Kinetic-energy release

can be seen in four features of the plot: 1. The initial state is still mostly

unchanged due to the relatively small intensity of the laser pulse. It is located

at low internuclear distance R at the bottom center of the plot and the �ve

nodes of the v = 5 state are visible along the R direction upon close inspection.

2. The probability along the line x/R = m1/M ≈ 1/5 corresponds to the electron

being located at the helium side while the molecule dissociates. The absence

of nodes along the x direction indicates population of the electronic ground

state, i. e. dissociation into He + H
+

without electronic excitation, cf. �gure 2.3,

lowest curve. 3. With the same argument, the corresponding but smaller

feature along the line x/R = −m2/M ≈ −4/5 belongs to dissociation in the �rst

excited electronic state into He
+

+ H. 4. The structured “cloud” at 20 a.u. ≤ R ≤
45 a.u. can be attributed to Rydberg states, i. e. electronically excited states

where the electron is only weakly bound and strongly delocalized. Since this

Rydberg wave packet is too delocalized to contribute to the molecular bond,

the molecule dissociates similarly fast as if it had been ionized. In section 2.5,

we investigate the connection between ionization and Rydberg states. Note

that ionization is not visible here because freed electrons move towards the

absorbing boundary fast enough that they have left the main grid at the end of

the time evolution. The e�ect of the absorbing boundary is not visible because

�gure 2.2 shows only a zoom into the details and does not cover the whole

grid.

In our simulation, the di�erent fragmentation channels can be analyzed

individually by projecting the �nal wave function onto di�erent states, namely

the bound vibrational states or the electronic states at a given internuclear

distance. The latter yields the vibrational wave function  n(R) of the Born-

Oppenheimer product wave function  n(R)�n(x ; R); cf. (A.2), appendix A.

2.3 Kinetic-energy release

One important observable—that is also experimentally available—is the kinetic-

energy release (KER). It is de�ned as the total kinetic energy of the nuclei in

the center-of-mass (c.o.m.) frame, i. e.

EKER =
P2

2�
, (2.4)

where P is the relative momentum of the two nuclei and � is the reduced mass.

Momentum conservation dictates that P1,c.o.m. = −P2,c.o.m., i. e. the nuclear
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Figure 2.4: Kinetic-energy release in di�erent channels after time evolution of the

v = 6 initial state in a 35 fs laser pulse at 800 nm and 1014W/cm2
peak intensity.

momenta cancel each other in the center-of-mass frame and the relative mo-

mentum can be calculated from any of the two momenta, |P1,c.o.m.| = |P2,c.o.m.| =
|P |/2.

The total dissociation KER spectrum after illumination of the v = 6 ini-

tial state with a 35 fs laser pulse at 800 nm and 1014W/cm2
peak intensity,

shown as the violet curve in �gure 2.4, has a few distinct peaks and a broad

underlying structure. Total means that the signal contains the contributions

from all bound electronic states. It is calculated by �rst projecting out the

bound vibrational states from the �nal wave function, followed by a Fourier

transform and integration over the electron momentum. This gives a nuclear-

momentum distribution |Ψ(P )|2 which can then be transformed according to

(2.4) to produce the KER spectrum. If we do the R-dependent projections

onto electronic eigenstates mentioned in the previous section, it becomes

clear that the ground-state contribution (green curve) consists of a series of

exponentially falling peaks with a regular photon-energy spacing (1.55 eV,

indicated by vertical lines). These are above-threshold-dissociation (ATD) peaks

which have also been calculated by Ursrey et al. [44]. It is an e�ect similar to
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tical arrow indicates instantaneous ionization from the potential minimum. The

dashed horizontal lines show the amount of potential energy that is converted

into KER during the dissociation process that follows the ionization. Above

the ground-state curve, above-threshold-dissociation energies are indicated by

horizontal grey lines. They correspond to absorption of one to four 800 nm
photons, starting in the v = 6 state.

above-threshold ionization (ATI) in the sense that more photons are absorbed

than necessary to reach the continuum. In our case, a single 800 nm photon is

enough to excite the v = 6 state into the dissociation continuum with excess

(kinetic) energy 1.3 eV. Absorption of additional photons increase the kinetic

energy of the fragments by ! for each photon. ATD is possible and nicely visi-

ble here because there is a large energy gap to the �rst electronically excited

state, cf. �gure 2.5.

We can understand the KER spectra for the cases of electronically excited

states and ionization by inspecting the Born-Oppenheimer potential-energy

curves in �gure 2.5. When a localized wave packet at some internuclear

distance Rion is instantaneously excited or ionized, it is vertically transferred

to a di�erent potential surface on which it will accelerate according to the

gradient of the potential
2
. If the wave packet starts with zero initial velocity

2
Obviously, this explanation uses both the Born-Oppenheimer approximation and a classical

picture but it works well enough as we will see.
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Figure 2.6: Population of electronic states at the end of the time evolution. n = 1 is

the electronic ground state. Initial state and laser parameters as in �gure 2.4.

and is assumed to be undisturbed by the laser �eld for the rest of its propagation,

the �nal kinetic energy is directly given by the change in potential energy:

EKER = V (Rion) − V (∞). From the dissociative nature of practically all excited-

state potential-energy curves as well as the HeH
2+

potential we can infer the

following qualitative statement:

In the kinetic-energy-release spectrum of electronically excited or ion-

ized states, low kinetic energies correspond to excitation or ionization

at large internuclear distance and vice versa.

Going back to �gure 2.4, we see that the main KER peak position of the

�rst excited state is very similar to the �rst ATD peak in the ground state but

slightly shifted to higher energy. The most likely pathway for this signal is

that a dissociative wave packet moves on the ground-state potential curve

and is partly excited to the �rst excited state only when the dissociative

potential curve is almost �at at R ≳ 3 a.u. We will see that indeed nuclear

motion followed by electronic excitation is an important mechanism in the

fragmentation of HeH
+
. Instead of a very small remaining deceleration on

the ground-state curve the excited wave packet then experiences a small

acceleration which �ts the small shift of the maximum to higher energy.

Additionally, we note that neither the ground state nor the �rst excited

state can explain the broad spectral distribution that is centered at roughly
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2.4 Frozen-nuclei ionization and enhancement

4.3 eV. Further projections onto excited states do not reveal a single state that

carries this speci�c KER distribution. Instead, many excited electronic states

are populated and together they form the cloud in �gure 2.2 and the broad

spectrum with large KER in �gure 2.4. This can be seen in �gure 2.6. We

discuss those nearly-ionized states in section 2.5.

2.4 Frozen-nuclei ionization and enhancement

Going one step back, we �rst investigate how ionization works when the

nuclei do not move. The frozen-nuclei approximation is employed frequently

in strong-�eld studies of molecules if the dynamics happen much faster than

the time scale of nuclear motion [28, 88]. It is implemented by removing

the kinetic-energy term for the nuclei in (2.3) or, equivalently, by setting the

reduced nuclear mass � to in�nity. This means that one still can use vibrational

states with a certain nuclear distribution as initial states (as opposed to �xed-
nuclei calculations which is often understood to mean that R is �xed at one

value) but components at di�erent nuclear coordinates do not mix and the

TDSE can in principle
3

be solved independently for each R.

In order to calculate the internuclear-distance dependent ionization probabil-

ity, we use the Born-Oppenheimer electronic ground state �1(x ; R) (normalized

for each R) as the initial state, cf. appendix A. Then, the R-dependent ioniza-

tion probability can be calculated from the wave function at the end of the

time evolution using

Pion(R) = 1 − ∫ |Ψ(x, R; tend)|2 dx.

We use a short (3 optical cycles total duration) laser pulse with 8 × 1014W/cm2

peak intensity and varying wavelength. The intensity is chosen so that the

maximum yield in �gure 2.7 is close to 1. The carrier-envelope phase '
is de�ned so that for ' = 0 the electric-�eld maximum coincides with the

maximum of the envelope. The electric �eld at this time points in the direction

from hydrogen to helium.

We validate our one-dimensional model by comparing it to results from other

calculations. Dehghanian et al. [45] have implemented a �xed-nuclei TDSE

3
In practice, we use the same program code as for the non-frozen case—except for the nuclear

kinetic term—and solve the TDSE for all R simultaneously.
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2.4 Frozen-nuclei ionization and enhancement
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Figure 2.8: Ionization yield for �xed nuclei at internuclear distance R in a 3-cycle laser

pulse with 8 × 1014W/cm2
peak intensity and varying wavelength. Results are

normalized for each wavelength.

model for HeH
+

which covers the whole correlated two-electron dynamics. In

�gure 2.7, we compare �xed-nuclei ionization probabilities from our model

(left) with results from Dehghanian, Bandrauk and Lagmago Kamta [45, 89, 90].

Both calculations are in very good qualitative agreement that the ionization

probability is greatly enhanced with a peak around internuclear distance

3 a.u. to 4 a.u. compared to the equilibrium distance of 1.46 a.u. Note that this

enhanced-ionization region is mostly outside the range where the low-lying

vibrational states are located (represented by the vibrational ground state, blue

dotted curve in �gure 2.7).

The CEP shift of � corresponds to a sign change in the electric �eld or,

equivalently, to a change of the orientation of the molecule. While in our

results, the ' = � curve has its peak at higher R, the overall trend that ' = 0
ionizes easier is still mostly reproduced. We will discuss the orientation-

dependent ionization and dissociation in more detail in chapter 3.

One important result of [45] is that the enhancement region of the ionization

probability does not depend on the wavelength of the laser pulse. We can

con�rm this for our model system as is shown in �gure 2.8. For both ' = 0 and

' = � , the main peak of the ionization probability stays between 3 and 4 a.u. if
we vary the wavelength from the near-ultraviolet to the near-infrared. Notably,

for ' = � a second peak appears for large wavelengths. Since Dehghanian et

al. present results only for 200, 400 and 800 nm, it is not possible to make a
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internuclear distance R is plotted with circles at 3 and 6 a.u.; the polar angle is

the CEP '.

comparison in this infrared regime.

The CEP dependence is shown in higher resolution in �gure 2.9. The inter-

nuclear distance (plotted as radial coordinate) of the peak depends weakly on

the CEP. More interesting is the CEP dependence of the ionization probability

at the peak. For 400 nm, it is not maximal at ' = 0 or ' = � (which would

be intuitive because the maximal �eld strength during the laser pulse is then

maximized) but rather at a phase around ' = 3�/8 with a clear minimum

around ' = 11�/8.
Figure 2.10 compares the time-dependent populations of the electronic

ground state and the �rst excited state for the �xed internuclear distance

R = 3.5 a.u. and two choices of the CEP
4
. We see that the positive electric-�eld

peak transfers population from the ground state into the excited state. In panel

(a), this excited population is then e�ciently ionized by the following negative

electric-�eld peak. For the opposite CEP, panel (b), the main population

transfer into the excited state occurs after the peak of the envelope. Therefore,

this population cannot be ionized as e�ciently and the total ionization yield

is lower.

4
The idea to explain the CEP-dependent ionization probability via the time-dependent popula-

tion of electronic states was �rst presented by Bruno Schulz and Alejandro Saenz (personal

communication, 6 Dec 2018).
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Figure 2.10: Instantaneous population of electronic states during a 3-cycle 400 nm
laser pulse with 8 × 1014W/cm2

peak intensity (same as left panel of �gure 2.9).

Results are shown for �xed internuclear distance R = 3.5 a.u. and the two values

of the CEP 3�/8 and 11�/8 which maximize and minize the ionization yield,

respectively. The electric �eld (thin solid black line) in these two cases di�ers in

the temporal order of positive and negative peaks.

The ionization probability of HeH
+

depends not only on the orientation

of the molecule in the laser �eld but for very short pulses also on their

exact temporal structure.

2.5 Ionization and frustrated ionization

In sections 2.2 and 2.3, we have exposed HeH
+

to moderate intensities which—

albeit able to fragment the molecule via vibrational dissociation—do not pro-

duce signi�cant amounts of ionization yield. We consider the opposite extreme

for a moment. Figure 2.11 shows the ionization KER spectrum (i. e. the kinetic-

energy release for the part of the wave function that has been absorbed at

large x values because the electron has left the molecule) for di�erent ini-

tial states and the two peak intensities 5 × 1014W/cm2
and 5 × 1015W/cm2

.
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Higher-excited initial states are easier to ionize: At the lower peak intensity,

the ionization yields for the initial states v = 5, 7, 9 are 40.2 %, 86.5 % and 93.8 %,

respectively. The v = 9 state is ionized quickly for both intensities—resulting

in similar KER spectra—whereas the lower states v = 5 and v = 7 only show a

single KER peak at the lower intensity but show both more yield (more than

97 %) and more structure at the higher intensity.
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Figure 2.11: Ionization KER spectrum of HeH
+

starting in di�erent initial states us-

ing a 35 fs laser pulse at 800 nm wavelength. Left: moderate peak intensity

(5 × 1014W/cm2
). Right: high peak intensity (5 × 1015W/cm2

).

The structure in the KER spectrum is a direct image of the initial spatial

probability distribution: If the laser �eld is quick and strong enough to ionize

the molecule quasi-instantaneously before any vibrational motion takes place,

the whole initial wave function is lifted vertically onto the HeH
2+

curve and

is mapped to the KER axis (cf. �gure 2.5). Due to the monotonic shape of

the HeH
2+

potential (approximately 1/R), this mapping can be inverted, i. e.

one can reconstruct a spatial distribution at the time of ionization from the

ionization KER spectrum (re�ection principle [91–93]). This has been done

in �gure 2.12 where the overall shape of the initial wave function could be

reproduced from the KER. Quick oscillations at small internuclear distance (=

high ionization potential and high KER) can only be resolved with very short (3

optical cycles total duration) and very intense (1016W/cm2
peak intensity) laser
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Figure 2.12: Reconstructed wave function by inverting EKER = 1/Rion for two di�erent

laser pulses (blue and red curve) together with the actual initial v = 10 state.

pulses. We see that the peak positions do not match exactly. This corresponds

to an energy o�set which may occur if the instantaneous kinetic energy is

used as the KER at some time after the laser pulse and the wave packet gains

a bit more energy afterwards.

In �gure 2.2 we have already seen that the laser pulse produces states where

the electron is bound but delocalised and the molecule rapidly dissociates. The

KER of this dissociation channel is similar to the ionization KER because both

processes actually start with ionization which immediately launches Coulomb

explosion on the 1/R potential curve of HeH
2+

. However, the freed electron

can be recaptured in an excited state. Nubbemeyer et al. [94] have shown that

this happens upon recollision of the photoelectron with the ionized molecule

(or atom in their case) and they dubbed this process frustrated tunnel ionization
(FTI). Even though the Rydberg states have a small ionization potential (binding

energy), their population increases with increasing intensity of the laser pulse.

The KER of frustrated tunnel ionization has been measured by the same group

during double-ionization experiments on H2 [95]. They observed the same

general e�ect—FTI at similar KER as in ionization—as in our HeH
+

simulations.

As a summary of the e�ects discussed above (ATD, FTI and ionization KER),

�gure 2.13 shows the KER spectrum in linear scale for both dissociation and
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Figure 2.13: Kinetic-energy release for the dissociation and the ionization channel

after a 35 fs laser pulse at 800 nm wavelength and 5 × 1014W/cm2
peak intensity.

Results for vibrational states v = 0… 4 are incoherently summed up using the

weights from table 2.1. The photon-energy spacing ! between ATD peaks is

indicated by an arrow. The plot is split in two: The �rst set of peaks uses the

left vertical axis. Everything right of the vertical dashed line (KER > !) is scaled

and uses the right vertical axis. Additionally, the ionization spectrum has been

scaled down.
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ionization. Here, we assume a mixture of vibrational states as the initial states

and sum the results incoherently using the weights from table 2.1 on page 37

which resemble the experimental distribution of initial states, cf. section 2.9.

Due to the mixture of initial states, we see not only one ATD peak with

KER < ! but one for each vibrational state
5
. There is another set of peaks

shifted up in energy by one photon energy. Note that in the right part of the

plot the vertical axis is scaled.

The position of the broad peak in the dissociation signal at large KER

agrees with the position of the ionization KER. This is the FTI signal described

above which is composed of many excited electronic states, cf. �gure 2.6.

Depending on the electronic state and the internuclear distance where the

electron has been recaptured, the KER can be reduced compared to the case

where no recapturing occurs. Therefore, the FTI peak is broader towards

smaller energies.

2.6 Application of the HeH+ model to H+
2

Before we come to more unique features of HeH
+
, we apply our TDSE model

to probably the most prominent benchmark molecule in strong-�eld physics:

the dihydrogen cation H
+
2 . In some aspects H

+
2 is very similar to our model

system. It is a diatomic molecule, it has one active electron (but in H
+
2 this is

no approximation) and it carries a permanent charge. Due to its symmetry,

however, the structure of the electronic spectrum is quite di�erent. While in

HeH
+

the electron is localized at the helium and hydrogen side in the ground

and the excited state, respectively, the two lowest electronic states of H
+
2 are

anti-symmetric and symmetric states, respectively, with equal probability

on both sides. For this reason, the two lowest Born-Oppenheimer potential-

energy curves shown in �gure 2.14 are asymptotically degenerate in contrast

to the HeH
+

case where there is a relatively large energy gap between the two

curves.

Our TDSE model (2.3) can be used for H
+
2 by setting �1(R) = �2(R) and

optimizing this function so that the Born-Oppenheimer ground-state-energy

curve matches the correct one, similar to appendix B. Feuerstein and Thumm

[97] use a similar potential but they introduce a second parameter which

5
Except for the ground state: Two photons are necessary to excite v = 0 into the continuum

(only one for the other states). The peak is at 0.046 a.u. but it is not visible in linear scale.
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Figure 2.14: Two lowest Born-Oppenheimer potential-energy curves of H
+
2 and the

potential curve 1/R of the ionized system H
2+
2 . The excited-state energies in

the model (red dotted curve) cannot reproduce the exact values (green dashed

curve) exactly. Data points from [96].

allows them to also better reproduce the �rst excited state. Figure 2.14 displays

the mismatch of excited-state energies that our model produces.

The comparison of H
+
2 KER spectra is shown in �gure 2.15. Due to the

slightly di�erent potentials no exact agreement can be expected. We can,

however, see that the main features from Feuerstein and Thumm are also

visible in our results: Two dissociation peaks at low KER around 1 eV and

2 eV and one broad ionization KER signal which peaks around 6 eV. One

obvious di�erence is the contribution to the dissociation KER spectrum which

has similar energy as the ionization signal. Of course, this is the already

known frustrated tunnel ionization, i. e. bound but highly excited electronic

states which dissociate quickly. It is completely absent in the right plots

because in Feuerstein and Thumm’s calculation, the absorbing boundary in

the electron coordinate starts already at 25 a.u. distance from the nuclear

center of mass. Therefore, practically the whole FTI signal is absorbed and

counts as additional ionization in their calculation. We see that increasing

computational capabilities—here in form of larger grid sizes—can sometimes

uncover physical e�ects without changing the model signi�cantly.

Note that the low-energy dissociation signal in our model is dominated by
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2.7 Strong-�eld experiments on HeH+

the ground state whereas it is likely (they do not explicitly analyse it) that one

of the peaks in Feuerstein and Thumm’s spectrum corresponds to the excited

state. This can be caused by the distorted shape of the excited-state potential-

energy curve which is above the exact values in the relevant transition region,

i. e. resonant transitions are only possible at larger internuclear distance.

Since our model has lost the ability to exactly reproduce not only one but

two electronic states due to the symmetry requirement �1 = �2, it is not likely

to produce relevant results for H
+
2 where more advanced models are available

[98–101]. Instead, we will now return to HeH
+
.

2.7 Strong-field experiments on HeH+

Before going to the next results, we have a brief look at the experimental setup

that has been used to produce some of the data. The collaboration with the

experimental group of Prof. Gerhard Paulus in Jena was part of the QUTIF

programme
6
. The measurements have been carried out mainly by Philipp

Wustelt and are described in much more detail in his PhD thesis [78] and the

publications [49, 102, 103].

Figure 2.16 shows schematically the experimental setup. The starting point is

the ion source where hot HeH
+

molecular ions are formed in a duoplasmatron

from a mixture of helium and hydrogen gas. Actually, many di�erent ions and

molecules are created in the source. Therefore, the accelerated ion beam needs

to be �ltered with respect to the charge state and the mass-to-charge ratio

using a Wien �lter before it is shaped with einzel lenses and de�ector plates. In

the interaction region, the ion beam crosses the focus of the laser pulse. We do

not study the details of the laser system here. Instead, the pulse parameters are

given for each experimental result that we discuss. It is, however, important

to point out that there is a phase meter in the beam line (not shown) which

measures the carrier-envelope-phase for every single laser shot and allows

for phase tagging instead of phase stabilization [102]. In the detector region,

fragments with di�erent mass-to-charge ratio are separated by electric �eld

and coincidence measurements of the time of �ight and the position on the

detector screen of all charged fragments are done for every single shot. In

principle, this allows to capture the whole 3D momentum for all involved

6
QUTIF stands for Quantum Dynamics in Tailored Intense Fields and was a priority pro-

gramme (2015–2022) funded by the German Research Foundation DFG.
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Figure 2.15: Kinetic-energy release of H
+
2 after a 25 fs pulse with 800 nm wavelength.

Left: Calculation with our model at 2 × 1014W/cm2
peak intensity. Shown are

the ionization channel as well as the total dissociation spectrum (including FTI)

and the spectrum of the dissociating part in the electronic ground state. Right:

Calculations from Feuerstein and Thumm [97, �g. 4] at four peak intensities.

Solid lines: dissociation; dashed lines: ionization.
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Figure 2.16: Schematic view of the experimental setup. Translated �g 3.1 from [78].

particles.

Experimental di�culties are mostly induced by the low event rate of 0.01Hz
to 10Hz which is due to the low particle density of the ion beam (≈ 105 cm−3

,

similar to the background gas at 10−10mbar) [78]. Long measurement times

which require good stability of all components are the consequence and one

reason why there are not many strong-�eld experiments on HeH
+
.

2.8 Focal-volume / intensity averaging

In our simulations, we always consider a single molecule in an exactly de�ned

laser pulse. In reality, however, the ion beam as well as the laser beam has a

certain shape and extent. Depending on the position within the laser-beam

pro�le, the peak intensity varies by orders of magnitude and the measurement

collects results from all targets within the focal volume. Therefore, focal-

volume—or intensity—averaging has to be applied to simulation results in

order to make them comparable to experimental measurement data.

In a Gaussian laser beam, the intensity depends on the radial distance r
from the laser propagation axis as

I (r , z) = I0(
w0
w(z))

2

exp(
−2r2

w(z)2)
, w(z) = w0

√

1 +(
z
zR

)

2

where z is the distance in propagation direction from the focal point, w(z)
is the waist radius at distance z, w0 = w(0) and zR = �w2

0 /� is the Rayleigh
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length.

If an ion beam and a laser beam are crossed vertically, the relevant (involved)

focal volume depends on the relative size of both: If the ion beam is very thin

compared to w(z), the focal volume can be approximated by a line and focal-

volume averaging is a one-dimensional integral. If the ion beam radius is large

compared to w(z) but much smaller than the Rayleigh length zR, then w(z) is

approximately constant along the ion beam and a two-dimensional integral

over a cut through the beam pro�le provides the focal-volume average. If,

however, the target extends over a large region relative to the laser-beam sizes

w0 and zR, the full three-dimensional intensity pro�le of the laser �eld has to

be taken into account.

For all three cases, the volume function V (I0, I )—i. e. the volume where the

intensity is between I and I0—has been calculated by Wang et al. [104]. The

focal-volume averaged spectrum S(I0) of some intensity-dependent probability

P (I ) is given by
7

S(I0) = ∫
V
P(I (x⃗))dN x⃗ = ∫

I0

0
P (I ) [−

)V (I0, I )
)I ] dI . (2.5)

In our case, the ion beam radius of approximately 200 �m is smaller than the

Rayleigh length of roughly 400 �m at 800 nm or 800 �m at 400 nm and larger

than the focus waist size of 10 �m [78]. Therefore, it is most appropriate to

use the 2D formula and (2.5) reduces (up to normalization) to

S2D(I0) ∼ ∫
I0

0

P (I )
I
dI . (2.6)

Whenever we show intensity-averaged results, we use this two-dimensional

focal-volume averaging.

Note that due to the large volume with low intensity, there are many more

targets that interact with low-intensity pulses than targets that experience

the highest intensities. This is re�ected in (2.6) by the 1/I term. For that

reason, often the low or intermediate intensities are more representative for

focal-volume averaged properties than results obtained at the peak intensity.

Some strong-�eld e�ects like harmonic generation rely on the interplay

of macroscopically separated targets within the laser focal volume. In this

case, phase matching is crucial [105, 106] and it is not su�cient to simply sum

7
Compare eq. (1) in [104].
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2.9 Intensity dependence of ionization KER

v 0 1 2 3 4 5 6

HeH
+ 0.55 0.23 0.11 0.07 0.04

HeD
+ 0.436 0.238 0.136 0.0814 0.0513 0.0339 0.0236

Table 2.1: Initial population of vibrational states after preparing the molecules in the

ion source. HeH
+

values reproduced Table I from [107]. HeD
+

calculated by

assuming the same energy distribution.

results from all targets incoherently. For comparison with our experimental

setup, incoherent integration over the focal volume is correct because the low

event rate and the single-shot coincidence measurement setup mean that each

detector signal comes exactly from one target. Even if multiple targets interact

with a single laser pulse they are not in a coherent state.

2.9 Intensity dependence of ionization KER

We continue this chapter with some joint experimental and simulation results

that have been published in [49]. Figure 2.17 shows the kinetic-energy release

of the ionization channel

HeH
+ + n! → He

+ + H
+ + e−

using an 800 nm laser pulse with 35 fs FWHM pulse duration and varying

peak intensity. The simulation results are focal-volume averaged and include

contributions from multiple initial vibrational states with weights according

to Loreau et al. [107] which are given in table 2.1. For each peak intensity, the

results are normalized so that the highest color value in each horizontal line

is 1.

Starting with the highest peak intensity, we see the KER spectrum centered

around 10 eV to 12 eV in �gure 2.17. The corresponding internuclear distance

R at the time of ionization (cf. section 2.3)—printed on the upper axis—is

between 2 a.u. and 3 a.u. We can conclude that the high-intensity pulse ionizes

the molecule mostly at internuclear distances which are relatively close to the

equilibrium distance of 1.46 a.u. Albeit similar to the imaging of the vibrational

wave function seen in �gure 2.12, the longer pulse duration, the focal-volume

averaging and the vibrational averaging prevent us from seeing any vibrational

structure here.
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Figure 2.17: Intensity dependence of ionization KER spectrum after irradiating HeH
+

with a 35 fs laser pulse at 800 nm wavelength. Left: measurement; right: focal-

volume and vibrationally averaged simulation results. Reproduced �g. 6.6 from

[78].

When the intensity is decreased, the KER decreases in several steps. The

�rst step—where the KER goes down from 11.5 eV to 10 eV in the simulation

results—can be attributed to a change of the dominantly ionized vibrational

state: At high intensity, the lowest vibrational state can be ionized and it

dominates the ionization signal due to its 55 % of the population. The �rst

excited state has a vibrational wave function which facilitates more e�cient

ionization at larger internuclear distance (cf. section 2.4) and thus can exceed

the ground-state peak in the KER spectrum if the intensity is small enough

(mind the normalization).

The second jump at lowest intensities (indicated by the arrows), however,

cannot be explained by the vibrational mixture. Instead, the high-lying vi-

brational states of HeH
+

are excited by absorption of a single 800 nm photon

whereby vibrational wave-packet motion up to R = 7 a.u. is initiated. At these

large internuclear distances, ionization is much easier and, thus, also possible

at low intensities.

The vibrational population at the end of the laser pulse can be extracted from

single TDSE calculations; it is plotted in �gure 2.18 for three cases. Especially

at low intensity, a distinct excitation peak around v = 7 is visible which �ts the

800 nm resonanceIn contrast, the states closest to the initial state, v = 1… 4,
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2.9 Intensity dependence of ionization KER

Figure 2.18: Population of vibrational states at the end of the time evolution. The

v = 0 initial state is exposed to a 400 nm (blue) or 800 nm (orange) laser pulse

with peak intensity 3 × 1014W/cm2
, 1 × 1015W/cm2

or 2.5 × 1015W/cm2
(from

left to right). Reproduced �g. 6.9(d) from [78].

are hardly populated. With increasing �eld strength, non-resonant excitation

of neighbouring states takes place.

The same measurements and simulations have been done with slightly

longer (50 fs) 400 nm laser pulses. The results are plotted in �gure 2.19. In

contrast to the 800 nm results, we only see one signi�cant transition to lower

KER when the intensity is decreased. As before, it corresponds to the declining

contribution of the v = 0 state such that the v = 1 KER at about 10 eV
dominates the signal. In the simulation results, it is very clear that the jump

to even lower KER is completely absent.

This is because the 400 nm �eld cannot drive any vibrational transitions

e�ciently since already a single photon has enough energy to dissociate the

molecule. This also shows that the vibrational population of v ≥ 2 in �gure 2.18

does not come from the Lochfraß e�ect. Lochfraß is the initiation of vibrational

wave-packet motion via uneven ionization of an initial state [108]. Indeed, the

ionization probability highly depends on the internuclear distance (similar for

both 800 nm and 400 nm laser pulses) and vibrational excitation via Lochfraß

is possible. However, the comparison between the two results shows that

the direct vibrational excitation has a much stronger e�ect on the ionization

KER. Lochfraß populates mostly the neighbouring state(s) [108], i. e. the small

population of the v = 1 state at 3 × 1014W/cm2
in �gure 2.18 likely can be

attributed to Lochfraß.
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Figure 2.19: Intensity dependence of ionization KER spectrum after irradiating HeH
+

with a 50 fs laser pulse at 400 nm wavelength. Left: measurement; right: focal-

volume and vibrationally averaged simulation results. Reproduced �g. 6.8 (a-b)

from [78].

2.10 Ionization of HeD+

Since vibrational excitation plays an important role for the ionization process,

we will now investigate isotope e�ects which manifest primarily in the vibra-

tional dynamics. The heavier isotopologue HeD
+

has a larger reduced mass

(2442 a.u. compared to 1467 a.u. for HeH
+
) which causes it to move slower and

have di�erent vibrational states. The energies of the bound vibrational states

are deeper inside the potential well and their spacing is smaller than for HeH
+
.

Therefore, it does not make sense to use the same vibrational population

for the initial distribution. Instead, the HeH
+

population is interpolated as a

function of the vibrational energies and evaluated at the HeD
+

eigenenergies.

This produces the values listed for HeD
+

in table 2.1.

Using these weights, we compare the vibrationally averaged ionization KER

spectra for HeH
+

and HeD
+
. We omit the intensity averaging—which can

smear out and obscure e�ects—and show results for two single intensities

1014W/cm2
and 5 × 1014W/cm2

in �gure 2.20 (a) and (b), respectively.

For the smaller intensity, both isotopologues produce very similar KER

spectra. Note, however, that the HeH
+

result has been scaled down by a factor

of 30 in order to be of the same magnitude as the HeD
+

signal! The KER
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Figure 2.20: Ionization KER spectrum for vibrationally averaged HeH
+

and HeD
+

at intensities 1014W/cm2
(a) and 5 × 1014W/cm2

(b) of a 35 fs laser pulse at

800 nm wavelength. In (a), the HeH
+

spectrum has been divided by 30 for better

comparability. The weights for vibrational averaging are given in table 2.1.

The scale on the top translates KER into internuclear distance at the time of

ionization via the approximate 1/R relation of the HeH
2+

BO potential-energy

curve.
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2 HeH+ in monochromatic 400nm and 800nm �elds

spectrum is centered at small KER which correspond to large internuclear

distance at the time of ionization. This is in agreement with our previous

�ndings regarding the KER spectrum at small intensities. Since the 800 nm �eld

can drive vibrational transitions, it is likely that the slower motion of HeD
+

towards the enhanced-ionization region at larger R causes the substantially

reduced probability compared to HeH
+
.

In panel (b) where we increase the intensity to 5 × 1014W/cm2
, both isotopo-

logues have roughly similar yields (no scaling required). Here, it is obvious that

the HeH
+

spectrum is much broader towards smaller KER, again indicating

quicker motion of the nuclei before the ionization process.

We conclude that the ability to reach larger internuclear distances quickly

during the laser pulse in�uences the ionization probability signi�cantly. HeD
+

is heavier and slower and thus less likely to ionize.

2.11 Conclusion

Ionization of HeH
+

is highly dependent on the internuclear distance and

thus nuclear motion and electron removal are strongly linked. In contrast to

symmetric molecules such as H
+
2 , it is possible to directly drive vibrational

transitions in HeH
+

using a near-infrared or infrared �eld which can also ionize

the molecule. In this case, the vibrational and electronic degrees of freedom

must be treated together in order to cover the whole dynamics. If we switch

from 800 nm to 400 nm light, all vibrational transitions are non-resonant and

the dependence of the ionization yield on the nuclear con�guration is mostly

reduced to the mixture of initial vibrational states.

The e�ect of varying the nuclear masses is now quite intuitive: Heavier

isotopologues (larger reduced mass) move slower, therefore the enhancement

e�ect of vibrational excitation on the ionization yield is smaller because the

favoured internuclear distances are reached later during or even after the laser

pulse.

We have seen here that by using a suitable laser pulse—actually just some-

thing that can drive vibrational excitations—we can stimulate both nuclear

motion and (subsequently) ionization. The next logical step is to control

ionization and dissociation independently.
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3 Two-color dissociation vs. ionization
control at 1380nm

Why do two colors, put one next to the other,

sing? Can one really explain this? No. Just as

one can never learn how to paint.

Pablo Picasso

Whereas in the previous chapter we have mostly used simple monochro-

matic laser pulses without any special properties (except for some being very

short), in this chapter we expose HeH
+

to !-2! (two-color) �elds which pro-

vide an easily tunable directional asymmetry. This allows us to exploit the

asymmetry of the molecule and, as a consequence, to steer the fragmentation

process into one or the other fragmentation channel. If not noted otherwise,

all calculations in this chapter start in the vibrational ground state v = 0.
In the following, we �rst describe the exact laser pulse. Then, the main

results using the non-Born-Oppenheimer TDSE model and focal-volume aver-

aging are presented as they have been published in [53], followed by in-depth

analyses of the relevant e�ects and mechanisms.

3.1 Tailored fields

We have already seen in section 2.4 that for short laser pulses the direction of

the main electric-�eld maximum (pointing from helium to hydrogen or vice

versa) can have a huge e�ect on the ionization probability. More generally,

the asymmetric HeH
+

molecule is obviously sensitive to the asymmetry of the

laser pulse.

Long monochromatic laser pulses are relatively symmetric; only by de-

creasing the pulse duration the carrier-envelope-phase (CEP) dependence and

asymmetry of the laser pulse come into play. However, there are more ways to

shape laser pulses. One of the easiest implementations of tailored �elds—and



3 Two-color dissociation vs. ionization control at 1380nm

the method that we will employ—are collinearly polarized two-color pulses.

They have been used for several decades for controlling the breakup of atoms

and molecules in strong laser �elds [109–111] and for studying electron tra-

jectories [112–118].

He

H

φ = 0                                      φ = π

Figure 3.1: Examples of two-color laserpulses with 1380 nm fundamental wavelength

and 690 nm second harmonic with intensity ratio 5:1 and 10 cycles sin2 envelope.

' is the CEP of the second harmonic. In the left panel (' = 0), the positive

electric-�eld maxima are increased by the second harmonic. This electric-�eld

direction points from hydrogen to helium. In the right panel (' = � ), the

orientation is essentially reversed. Positive electric �elds point from hydrogen

to helium.

Explicitly, the laser pulse is polarized along the molecular axis and its electric

�eld strength is given by E(t) = E!(t) + E2!(t ; ') where

E!(t) = E0! sin
2(�t/� ) cos(!(t − � /2)),

E2!(t ; ') = E02! sin
2(�t/� ) cos(2!(t − � /2) + ').

(3.1)

Here, � is the full duration of the laser pulse
1

and E(t) = 0 for t < 0 and

for t > � . The relation to the full width at half maximum (FWHM) T of the

intensity envelope reads

T = � (1 −
2
�
arcsin (2−1/4)) ≈ 0.36� .

1
Later, we will use laser pulses where E! and E2! have di�erent pulse durations. They are

de�ned analogously.
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3.2 Non-Born-Oppenheimer and focal-volume-averaged results

All intensity values in this chapter refer to the peak intensity of the funda-

mental pulse alone. Note that we use the CEP ' of the 2! �eld for controlling

the relative phase of the two colors. Another option would be to introduce

a variable delay between the two pulses—this is easier to implement experi-

mentally. For pulses that are long enough and for small delays (± one optical

cycle), the resulting electric �elds are similar in both cases and we resort to the

relative-phase control because it has the advantage that it produces exactly

periodic results.

Figure 3.1 shows example �elds for two opposite choices of '. It can be seen

that although the second �eld is much weaker (intensity ratio 5:1), E(t) has a

signi�cant directional asymmetry. The nonlinearity of strong-�eld processes

ampli�es this asymmetry even further.

The CEP-controlled three-cycle pulses used in section 2.4 feature a particular

time dependence in the time-asymmetric cases ' ≠ n� , n ∈ ℤ (in the sense

that a certain temporal order of a strong and a weak �eld maximum occurs,

depending on '). Due to the longer duration and the smaller slope of the

envelope, this e�ect is much weaker in our two-color �eld (3.1). The cases of

CEP ' and CEP −' di�er mostly in the slope of the rising vs. falling edge of

individual half-cycles. The main e�ect, however, is the change of preferred

direction from positive to negative. The preferred direction takes extreme

values at ' = 0 and ' = � and is symmetric around these values. We can thus

expect our observables—e. g. ionization or dissociation yields—to be symmetric

around ' = 0, too.

3.2 Non-Born-Oppenheimer and
focal-volume-averaged results

We use the non-Born-Oppenheimer model as described in section 2.1 and start

by presenting results that aim at being comparable to measurement data. To

this end, we consider two-color �elds with parameters that are supposed to

be experimentally feasible: 50 fs FWHM pulse duration for the fundamental

1380 nm �eld and a slightly longer 60 fs pulse using the second harmonic at

690 nm. Also, we use focal-volume averaging (FVA) as described in section 2.8.

Figure 3.2 shows the probabilities for ionization and for dissociation into the

ground state as a function of the relative phase '.

Both the ionization yield and the dissociation yield show a 2�-periodic
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3 Two-color dissociation vs. ionization control at 1380nm
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Figure 3.2: Intensity averaged (intensity between 1014W/cm2
to 1015W/cm2

) ioniza-

tion (solid) and dissociation (dash-dotted) yields for HeH
+

(thick lines, left axis)

and HeD
+

(thin lines, right axis) after irradiation of the v = 0 state with a two-

color laser pulse with 50 fs (1380 nm wavelength) and 60 fs (690 nm wavelength)

pulse duration and 5:1 intensity ratio. Reproduced �g. 3 from [53].

behaviour which is symmetric around ' = 0 (and ' = � ) in agreement with

the considerations from the previous section. The ionization yield has its

maximum at ' = 0 and the minimum at ' = � ; it is the other way round for

the dissociation yield.

Remarkably, the ratio of ionization to dissociation probability drops from

6.3 at ' = 0 to 0.74 at ' = � , i. e. dissociation becomes even more probable

than ionization.

By changing the relative phase or the delay in a collinear two-color �eld,

the dominant fragmentation channel can be switched from ionization

to dissociation and vice versa.

The HeD
+

isotopologue di�ers from HeH
+

in various ways: 1. The reduced

mass � is larger and thus there are more vibrational states and they have smaller

transition energies. 2. As a consequence, the vibrational ground state has a

slightly lower energy and thus the energy required to reach the dissociation

threshold is higher.3. Since the mass ratio determines the center-of-mass, the

dipole moment (vibrational coupling to the electric �eld) is smaller.
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3.2 Non-Born-Oppenheimer and focal-volume-averaged results
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Figure 3.3: Results for same laser parameters as in �gure 3.2 (including focal-volume

averaging). (a) Probabilities for ionization (solid line) and dissociation into the

ground state (dash-dotted line) (same as in Fig. 3.2). (b) KER spectrum for

ionization, normalized for every value of '. (c) KER spectrum for dissociation.

Reproduced �g. 7 from [53].

However, the most important similarity is that all isotopologues have the

same electronic structure, Born-Oppenheimer potential-energy curves etc.

From these considerations it can be understood that the dissociation yield

is much lower (almost negligible) for HeD
+

than for HeH
+

(note the di�erent

scale on the left and right axis). However, just as in the previous chapter we

can observe that ionization does not occur independently from the nuclear

motion (otherwise the ionization probability of HeD
+

should be similar to that

of HeH
+
). Instead, we see the ionization yield reduced by roughly a factor of

5. Also, the relative amplitude of the ' dependence is larger and the minimum

around ' = � is broader.

Figure 3.3 shows the kinetic-energy release in the ionization (panel (b))

and dissociation channel (panel (c)), respectively. Since they are separated

in energy, a single KER axis is used which covers both plots (with di�erent

scale, though). Note, however, that the ionization KER is normalized for every

value of ' (i. e. divided by the corresponding ionization yield, solid curve
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3 Two-color dissociation vs. ionization control at 1380nm

in panel (a)) and that the dissociation KER is shown on a logarithmic scale.

This allows us to see the above-threshold-dissociation peaks (cf. section 2.3)

which are spaced by photon energies of the fundamental �eld (0.033 a.u.).
The ionization KER ≈ 1/Rion tells us that for most ', ionization takes place

at 2 a.u. < Rion < 3 a.u. In contrast to that, the region around ' = � that is

ampli�ed by the normalization reveals an additional structure at lower KER

which indicates ionization from larger internuclear distance, i. e. after some

nuclear motion took place.

Before going into the details of the ionization and dissociation processes,

we can already conclude:

1. Nuclear motion (the vibrational degree of freedom) is important for the

ionization process.

2. The ' dependence does not only shift probability between the fragmen-

tation channels while keeping the sum constant. Instead, both processes

(ionization and dissociation) depend on ' individually as can be seen

from the large di�erence of the absolute amplitudes in the HeD
+

case.

While the focal-volume averaged results are useful for prediction of and

comparison to measurements (which to our knowledge have not been carried

out yet), they can obscure the mechanisms. It is important to know that

the described e�ects “survive” focal-volume averaging but we will see in the

following that they are also visible at single-intensity calculations which will

make interpretations easier.

3.3 Two-color ionization in detail

Figure 3.4 shows the same quantities as �gure 3.2 but for a shorter laser

pulse (both colors 16.7 fs FWHM duration, i. e. 10 cycles of the fundamental

�eld total sin2 duration) and for a single peak intensity 5 × 1014W/cm2
. The

overall results are very similar, although some di�erences in magnitude and

relative height of ionization versus dissociation signal can be seen. Notably,

the contrast in the ionization yield—comparing ' = 0 to ' = �—is much

larger without intensity averaging. It is also visible that a 10-cycle pulse is

short enough that the assumptions from section 3.1 about the symmetry of

'-dependent observables start to break down. At these laser parameters, the

HeD
+

results are decreased even further (by more than a factor of 10 relative
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Figure 3.4: Same as �gure 3.2 but di�erent laser parameters: single intensity

5 × 1014W/cm2
, pulse duration 16.7 fs for both colors. Reproduced �g. 4 from

[53].

to the HeH
+

results) and the HeD
+

ionization yield has a broad and almost �at

region around ' = � with two minima slightly o�set from the center.

The maximum (minimum) of the ionization probability at ' = 0 (' = � ) is

in agreement with our previous results from section 2.4: At ' = 0, the second

harmonic increases the positive electric-�eld maxima which correspond to the

electric-�eld vector pointing from hydrogen to helium, i. e. during ionization,

the electron travels from the helium site over the attractive hydrogen potential

to the continuum. This is easier than tunneling through the whole barrier on

the other side and thus ionization is preferred in this direction. At ' = � the

electric �eld in the preferred direction is suppressed.

In order to investigate this mechanism, we compare results from two-color

calculations with monochromatic laser pulses which are modi�ed so that

they match the central positive electric-�eld maximum of the two-color pulse.

The green dashed curves in �gure 3.5 use the same wavelength 1380 nm as

the fundamental color in the two-color pulse but have increased intensity so

that the maximal �eld strength is equal. Because there is no DC component

(the vector potential vanishes after the pulse, A(∞) = − ∫ ∞ E(t)dt = 0), the

second harmonic does not only increase the height of positive electric-�eld
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3 Two-color dissociation vs. ionization control at 1380nm

maxima (for ' = 0) but also makes them shorter whereas the negative parts

become slightly longer than half the fundamental period such that the integral

is zero. Therefore, the positive half-cycles of the green curve do not match the

two-color �eld exactly and a second monochromatic �eld (red dotted curve) is

constructed as a 10-cycle pulse with increased intensity and reduced wave-

length which makes the positive half-cycles agree very well. The wavelength

is chosen so that the total duration (zero to zero) of the central half-cycle

agrees with the two-color �eld.

Note that at ' = �/2, the positive half-cycles last exactly half the funda-

mental period, i. e. all monochromatic pulses coincide and their ionization

yields intersect therefore in �gure 3.5(c). It is not useful to match the width for

' > �/2 because then the positive half-cycle deviates from the cosine shape

and develops a double-peak structure towards ' = � . In order to account

for the pulse duration, we introduce a third monochromatic �eld with the

same intensity and wavelength as the red dotted curve but with the same

total pulse duration as the two-color �eld, i. e. slightly more than 10 optical

cycles of the chosen wavelength. While it restores the correct pulse duration,

it destroys the matching of the side peaks whose height is now larger than

that of the corresponding peak of the two-color pulse (not shown). Obviously,

there is a tradeo� when trying to mimic features of a two-color pulse using

monochromatic light.

Panels (a) and (b) in �gure 3.5 show parts of the two-color and the matching

monochromatic laser pulses for two values of ' (the matching is done for

every ' separately, here � = 1073 nm in (a) and � = 1098 nm in (b)). The

third monochromatic �eld (with �xed pulse duration) is omitted here since

it is very similar to the red dotted curve on this scale. Panel (c) shows the

comparison of ionization yields for the four laser-pulse shapes
2

where the

violet two-color curve is the same as in �gure 3.4. Obviously, just matching

the peak intensity (green curve) leads to exceedingly high ionization yields.

This is due to the extended duration of the positive half-cycles compared to

the two-color pulse: Reducing the wavelength and thus the optical period (red

dotted curve) decreases the yield even below the two-color level. Adjusting

the pulse duration allows us to reproduce the two-color result quantitatively

at least for ' = 0. Apparently, the intra-cycle temporal asymmetry that is

2
By construction, the matched monochromatic curves are symmetric around ' = � , therefore

only ' ∈ [0, �] is shown.
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3.3 Two-color ionization in detail
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Figure 3.5: (a) and (b): Electric laser �elds for relative phases ' = 0 and ' = �/4 (zoom

into the center of the 10-cycle pulse). The two-color �eld is approximated by

monochromatic laser pulses with matched peak intensity (“match int.”, green

dashed curves) or matched peak intensity and e�ective wavelength (“int.+width”,

red dotted curves). See text for details. (c): Ionization yield calculated in the

non-Born-Oppenheimer model using the two-color laser pulse and the matched

monochromatic pulses. Included is a modi�cation of the red-dotted curve where

the total pulse duration is �xed (“int.+width+dur.”, thin blue line).
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3 Two-color dissociation vs. ionization control at 1380nm

introduced by the second harmonic for larger relative phases prevents us from

mimicking the �eld using a single color.

Similar to section 2.4, we now run simulations with frozen nuclei in our

two-color �elds in order to further investigate the role of nuclear motion in

the ionization process. Panel (c) of �gure 3.6 shows the ionization yields as

a function of the �xed internuclear distance for three values of the relative

phase '. Enhanced ionization is visible for R > 2; in contrast to �gure 2.7, the

larger wavelength and pulse duration can lead to saturation for some R and '.

Weighting the �xed-nuclei yields in panel (c) with the vibrational distributions

of the v = 0 state of HeH
+

or HeD
+
, respectively, leads to the frozen-nuclei

yields in panels (a) and (b).

The comparison of the frozen-nuclei results (thin lines) to those from the

non-BO model (thick lines) in �gure 3.6 (a) and (b) shows that the ionization

yield is dramatically underestimated if the nuclear motion is not included.

The discrepancy is stronger for the lighter isotopologue HeH
+

(note that the

�xed-nuclei yields have been increased by a factor of 10 for better visibility)

than for HeD
+
. This matches our previous �ndings that the nuclei move slower

in the heavier isotopologue and thus neglecting the nuclear motion introduces

smaller errors.

One can also observe that the �xed-nuclei curves in �gure 3.6 (a) and (b)

have minima which are shifted away from ' = � . Although the enhanced

ionization at increased R is much weaker for ' = � than for other values

of ' (especially between R = 3 a.u. and R = 4 a.u., cf. �gure 3.6 (c)), �xed-

nuclei ionization is dominated by the region where the vibrational state is

actually localized, i. e. around the equilibrium distance R ≈ 1.46 a.u. In this

region, the ionization probability is not minimal for ' = � , but for values near

' = 5�/8 and ' = 11�/8. This is similar to our �ndings in section 2.4 about

the CEP-dependent enhanced ionization in very short laser pulses.

We can summerize the results of this section as follows:

Two-color ionization can to some extent be modelled by using a single-

color �eld that mimics the positive electric-�eld half-cycles. Not only

the maximum �eld strength is important but also the exact duration of

the half-cycles.

Ionization cannot be understood without taking nuclear motion into

account.
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Figure 3.6: Ionization probabilities for the same laser parameters as in �gure 3.4. (a)

and (b): Comparison of calculations with (thick lines) and without nuclear

motion (thin lines with circles) for HeH
+

(a) and HeD
+

(b). The �xed-nuclei

ionization yield in panel (a) is increased by a factor 10. The thick lines are the

same as in �gure 3.4. (c): Thick lines: frozen-nuclei ionization probability as

a function of internuclear distance for three values of the two-color phase '.

Thin lines: Probability distributions of the vibrational ground states of HeH
+

and HeD
+
, respectively. Modi�ed �g. 6 from [53].
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3 Two-color dissociation vs. ionization control at 1380nm

3.4 Two-color dissociation in detail

We turn to the dissociation process now. In order to understand the mecha-

nisms that are involved, we apply the Born-Oppenheimer approximation and

compare the non-BO results to results that follow from one- or two-level Born-

Oppenheimer calculations. The derivation of the Born-Oppenheimer model as

well as the numerical time-propagation scheme is described in appendix A.2.

The Hamiltonian for the k-th potential-energy surface Vk(R) reads

Hk(t) =
P2

2�
+ Vk(R) − dk(R)E(t)

and the two-level TDSE including the coupling terms is given by

i
)
)t (

 1(R; t)
 2(R; t))

= (
H1(t) −�d12E(t)

−�d12E(t) H2(t) )(
 1(R; t)
 2(R; t))

.

Here, the dipole transition moments are calculated from the electronic eigen-

states �(x ; R) for frozen nuclei (cf. section 2.4) via

djk(R) = −⟨�j ∣ x ∣ �k⟩(x), dk(R) = −⟨�k ∣ (�x + �R) ∣ �k⟩(x) (3.2)

where � = (M + 2)/(M + 1) and � = (mH −mHe)/M (we will discuss the dipole

transition moments in more detail in chapter 4).

We can estimate the ground-state dipole moment d1(R) roughly with the

following picture: In the ground state, the electron is located mostly at the

helium site, i. e. the molecule consists of a neutral helium atom and a proton.

Since the mass ratio of helium and hydrogen is roughly 4:1, the center of

mass—the origin of our coordinate system—is close to the helium nucleus

and the proton is located at coordinate −0.8R. Therefore, the dipole moment

d1(R) ≈ −0.8R is negative and the nuclei are pushed together (pulled apart) at

positive (negative) electric-�eld values. Assuming that pulling the nuclei apart

is the main driver for dissociation on the electronic ground-state PEC, this can

be an explanation for the maximum of the dissociation yield around ' = � .

However, results from one- and two-level Born-Oppenheimer calculations

shown in �gure 3.7 do not support this explanation: The one-level calculation

(blue curve with triangles) which includes the aforementioned mechanism

shows only very little ' dependence. It is also out of phase, i. e. without a

maximum around ' = � . Nevertheless, the single-level model can explain
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Figure 3.7: Same as �gure 3.4 but showing only dissociation probabilities of HeH
+

and several models: “non-BO” is the non-Born-Oppenheimer dissociation curve

from �gure 3.4, “BO” curves are from one- and two-level Born-Oppenheimer

calculations. Modi�ed �g. 8 from [53].

almost all of the '-independent dissociation yield. Note that the dot-dashed

non-Born-Oppenheimer curve shows only dissociation into the electronic

ground state, too. If we add the �rst excited state to the Born-Oppenheimer

model, thereby creating the two-level system, the ground-state dissociation

signal (orange dotted curve) is greatly increased and adopts roughly the shape

of the non-BO curve with a maximum around ' = � . The change of the

ground-state dissociation yield by adding the second state is much larger than

the actual �nal population of the second state (thin solid orange curve)
3
. As

ionization is stronger for ' = 0 than for ' = � , one can expect that including

ionization in the two-level calculation would give quite good agreement with

the non-BO dissociation results.

The instantaneous Born-Oppenheimer potential-energy curves at maximum

positive (negative) �eld strength are shown in �gure 3.8 for ' = 0 (' = � ).

The right panel corresponds to the electric �eld pointing from helium to

hydrogen. Here, we see that the vibrational wave packet becomes temporarily

3
The second level has a similar ' dependence as the ionization yield in �gure 3.4 which makes

sense since it is mostly populated when the electric �eld is positive and pushes the electron

wave function from the helium potential well towards the hydrogen side.
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Figure 3.8: Field-dressed instantaneous Born-Oppenheimer potential-energy curves

for the two-level system with (solid curves) and without (dashed curves) coupling

between the two lowest states, calculated by diagonalizing the Hamiltonian

operator. The �eld strength corresponds to the maximal positive (negative) �eld

strength of the two-color pulse with relative phase ' = 0 (' = � ). The black

arrow in the left panel indicates the pathway that leads to population of the

excited state. Modi�ed �g. 9 from [53].

unbound because the potential barrier is completely suppressed. This is the

case even without coupling of the two states (dashed curve). If the coupling

is included, it additionally lowers the barrier and thereby extends the time

of barrier suppression. This increases the chance for the wave packet to

escape towards large internuclear distance, i. e. the dissociation probability is

increased compared to the case without coupling. The change to the potential

barrier may look negligible but in section 3.3, �gure 3.5 we have seen how a

subtle change in the duration of positive half-cycles drastically in�uences the

yield. Similarly, an increased period of time with barrier suppression has an

enormous e�ect on the dissociation probability.

If the electric �eld is reversed—the situation of the left panel—, the dressed

potential curves are bent towards each other. This is because the dipole

moment of the excited state, d2(R) ≈ 0.2R (for large R), and that of the ground

state have di�erent signs
4
. By including the coupling term, the crossing turns

into an avoided crossing. The resulting barrier on the lower dressed curved

4
Remember that the ground state corresponds to dissociation into He + H

+
whereas the

�rst excited state dissociates into He
+ + H. The given dipole moments are valid for the

isotopologue
4
HeH

+
with a nuclear mass ratio of roughly 4:1.
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3.5 Photoelectron momentum distribution

can be overcome by a part of the dissociating wave packet, following the black

arrow. This part ends up in the excited state when the laser pulse is over and

contributes to its population.

Even though the excited state is energetically well separated and only

weakly populated, the dissociation process cannot be explained by the

ground-state dynamics alone. The coupling between the two lowest

electronic states facilitates e�cient dissociation depending on the direc-

tion of the electric �eld. These two states are enough to fairly reproduce

the ' dependence of the dissociation yield.

3.5 Photoelectron momentum distribution

Figure 3.9 shows the focal-volume averaged photoelectron momentum dis-

tribution (PMD) after ionization as a function of the two-color phase '. It

is calculated from the ionized part of the wave function, i. e. the absorbed

part at large electron coordinate x , by integrating the modulus squared of the

wave function over the nuclear degree of freedom in momentum space. The

result is a one-dimensional distribution where positive (negative) momenta

correspond to the electron approaching in�nity on the helium (hydrogen) side

of the molecule. Since the very slow electrons have not reached the absorbing

boundary at the end of the time evolution, there is an unphysical minimum

around p = 0.
In classical mechanics, an electron that is liberated at some time ti with

zero velocity and subsequently follows the force of an electric (laser) �eld

without any potential is accelerated and ends up with a momentum that is

de�ned by the vector potential at the time of ionization, p = A(∞) −A(ti). As a

simple model we assume that ionization mostly happens at peak electric-�eld

strengths. While a monochromatic �eld has vanishing vector potential at

electric-�eld maxima, the two-color pulse has a vector potential at maximal

(Amax) and minimal (Amin) electric �eld that depends on the two-color phase.

Here, minimal electric �eld refers to the negative electric-�eld peaks. The

negative vector potential at the main positive and negative peaks is shown as

solid lines in the bottom panel of �gure 3.9 for one intermediate value for the

intensity, I = 7 × 1014W/cm2
. For those values of ' where the electric �eld has

a double-peak structure in positive or negative direction, the vector potential

57



3 Two-color dissociation vs. ionization control at 1380nm

at the second peak is shown with symbols.

It can be seen that the PMD follows mostly −Amax, i. e. ionization takes

place at the highest positive �eld strength. This is in agreement with our

previous �ndings on the orientation dependence. Ionization of the ground

state at positive electric �eld implies that the initial tunneling goes from

helium through the hydrogen potential well into the continuum in negative

direction. For ' > � , however, the asymptotic momentum is positive, i. e. the

electron changes direction at some point, recollides
5

and leaves towards +∞
(forward scattering). The recollision is visible in the larger magnitude of the

photoelectron momentum (compare 0 < ' < � to � < ' < 2� ) which is typical

for photoelectron recollision.

For comparison: The ponderomotive potential UP = E20/(4!2) for just the

fundamental �eld at the intermediate intensity 7 × 1014W/cm2
is UP = 4.6 a.u.,

i. e. the 2UP “cuto�” for direct electrons [119–121] is at an electron momentum

of 4.3 a.u. The negative momenta in �gure 3.9 all lie within this range whereas

the positive momenta exceed this threshold
6
.

3.6 E�ect of the pulse duration

For HeH
+

the dominant fragmentation process changes from ionization at

' = 0 to dissociation at ' = � . We investigate the pulse-duration dependence

of these two extreme cases in more detail. The yields as functions of the pulse

duration are shown in �gure 3.10. Data points from �gure 3.2 can be found at

the very left end of the graph. The simulations show that for all considered

pulse durations the yields of ionization at ' = 0 and dissociation at ' = � are

of similar magnitude and scale approximately linearly with the pulse duration.

We note as an observation that when ionization is suppressed (' = � ), its

yield grows approximately as T 3. The dissociation yield for ' = 0 decreases

for large pulse durations, probably because in long laser pulses, dissociating

wave packets can still be ionized later in the pulse at large R. In this case, only

dissociation that is initiated late in the pulse contributes to the dissociation

yield.

5
Since our model is one-dimensional, it is not possible for the electron to “miss” the nuclei

when coming back after changing direction.

6
But there are also higher intensities involved, so this is not a rigorous argument.
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3.6 E�ect of the pulse duration
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+

ionization yield in �gure 3.2. Bottom: 1D photoelectron momentum distribution
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+
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is 1380 nm and the peak intensity is 5 × 1014W/cm2
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two colors is 5:1. Modi�ed �g. 5 from [53].
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3 Two-color dissociation vs. ionization control at 1380nm

3.7 Conclusion

In this chapter we have shown that it is possible to control the fragmentation

process of HeH
+

e�ciently by using a simply tunable parameter, namely

the relative two-color phase ' in a linearly polarized laser pulse. The two

fragmentation channels ionization and dissociation (into the ground state)

have opposite ' dependence and although the mechanisms for both are quite

di�erent, they are also linked to each other: Ionization cannot be understood

without taking the nuclear motion into account and ground-state dissociation

is greatly underestimated if the electronically excited states are neglected.

The focal-volume averaged results and the similar linear dependence of the

dominating processes on the pulse duration make the �ndings of this chapter

robust against experimental uncertainties. It would be interesting to have

experimental data to compare our theoretical predictions to.
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4 Mass-dependent dissociation dynamics

If you want to �nd the secrets of the universe,

think in terms of energy, frequency and

vibration.

Nikola Tesla

Parts of the content of this chapter have been published in [54].

In the previous chapters 2 and 3 we have already seen isotope e�ects: Nu-

clear motion is slower in the heavier isotopologue HeD
+

than in HeH
+

and

thus there is less population at larger internuclear distance and the enhanced

ionization is much weaker (section 2.10). Conversely, frozen-nuclei calcula-

tions can reproduce ionization yields much better for HeD
+

than for HeH
+

(section 3.3).

HeH
+

isotopologues can di�er in multiple properties from each other: The

total nuclear mass M = mH +mHe, the reduced mass � = mHmHe/M and the

mass ratio r = mH/M . The importance of M is limited since we split o� and

neglect the center-of-mass motion. The dynamics within the center-of-mass

frame—and thus observables such as dissociation or ionization yields—do not

depend on the total mass
1
. Instead, the reduced mass � is the parameter that

de�nes the nuclear kinematics because it enters the Hamiltonian (2.3) in the

kinetic-energy term of the nuclear degree of freedom. Via the Hamiltonian it

also a�ects the eigenenergies of vibrational states and their spatial distribution

(see for example �gure 3.6(c)). Finally, the mass ratio r of the hydrogen

nucleus and the total nuclear mass determines the location of the center of

mass between the nuclei and thus the permanent dipole moment which is

calculated in the center-of-mass frame
2
. The dipole moment is relevant for

the coupling of the nuclei to the electric �eld of the laser pulse and its isotope

1
This is not exactly true since the coupling strength � ≈ 1 of the electronic degree of freedom

depends on the total mass.

2
Since the molecule is charged, the dipole moment depends on the coordinate system. We

always work in coordinates where the center of mass of the nuclei is at the origin.



4 Mass-dependent dissociation dynamics

dependence has also already been observed experimentally [122].
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Figure 4.1: Mass ratios r = mH/(mH +mHe) and reduced masses � = mHmHe/(mH +
mHe) for all imaginable HeH

+
isotopologues up to helium mass 8. All masses

are given in idealized units of identical neutron/proton mass mn and the binding

energy (mass defect) is neglected. Color coding shows the total mass M =
mH + mHe. The isotopologues that can be created using the experimentally

available gases (
3
He,

4
He, H and D) are explicitly labelled and highlighted by the

black solid rectangle. The two isotopologues
3
HeT

+
and

6
HeD

+
with identical

reduced mass � = 1.5mn are highlighted by black dashed rectangles.
2
HeT

+
is

the only isotopologue with r > 0.5.

Since both r and � a�ect the strong-�eld dynamics, it would be desirable to

keep one of them �xed while changing the other one in order to systematically

study the e�ect of both. Figure 4.1 shows the values of both for a set of

imaginable isotopologues of HeH
+
. For simplicity we assume in this chapter

that protons and neutrons have equal massmn = 1837 a.u. and that the binding

energy (mass defect) can be neglected. Note that most of the helium isotopes

(
2
He and all above

4
He) are highly unstable and decay with a half-life of

less than one second (with surprisingly long half-times of 807ms for
6
He and

119ms for
8
He [123]). The experimentally easily available isotopes are

3
He and

4
He for helium as well as H and D for hydrogen. The resulting isotopologues of

HeH
+

are highlighted in the black rectangle. As we can see from �gure 4.1, all

these isotopologues di�er in both r and �. Theoretically, there is the possibility

to compare
3
HeT

+
and

6
HeD

+
which happen to have the same reduced mass

but both tritium and
6
He are not easy to use in strong-�eld experiments.

In our simulations, however, we can choose r and � arbitrarily. Using their
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4.1 Quantum models

de�nitions, we �nd:

r = mH/M
� = mHmHe/M
M = mH +mHe

⇔

mHe = �/r
mH = �/(1 − r)

M =
�

r(1 − r)

We see that for �xed �, one of the nuclear masses and thus also the total mass

diverges if r approaches 0 or 1. Since our calculations are always carried out in

the center-of-mass frame, there are no diverging terms in the Hamiltonian or

elsewhere. Therefore, the extreme values of r are accessible for calculations.

In this chapter, we will study the molecule for �xed � = 0.8mn or � = 1.5mn

and scan the mass ratio r between 0 and 1. This means that we can study

the mass dependence of the coupling to the electric �eld without getting

changes from the nuclear kinematics. Note that we are looking at arti�cial
isotopologues; especially r > 0.5 implies that the hydrogen nucleus is heavier

than the helium nucleus. In �gure 4.1, only the isotopologue
2
HeT

+
has this

property.

In particular, we will look at the dissociation dynamics of these arti�cial

HeH
+

isotopologues because this can be expected to be most sensitive to

changes in r (compared to, e. g., ionization dynamics which depends on r only

indirectly). We �rst describe the properties of the applied quantum models

as well as the classical-trajectory calculations. After an excursus on classical-

trajectory initial conditions we compare and discuss the results of quantum

and classical simulations at the end of this chapter.

4.1 �antum models

Similar to the previous chapter, we use the non-Born-Oppenheimer (non-

BO) model and the two-level Born-Oppenheimer model and solve the time-

dependent Schrödinger equation (TDSE) to describe the strong-�eld dynamics

of HeH
+

isotopologues.

4.1.1 Electron-nuclear non-Born-Oppenheimer TDSE

The non-BO model and the time-evolution scheme have been described in

section 2.1 and they are used in this chapter without any changes. We repeat
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4 Mass-dependent dissociation dynamics

the TDSE (2.2) and the Hamiltonian (2.3):

i
dΨ(x, R; t)

dt
= (H0 + (�x + �R)E(t))Ψ(x, R; t),

H0 =
p2

2�e
+
P2

2�
−

Z1√
(x + mHe

M R)
2 + �1(R)

−
Z2√

(x − mH

M R)
2 + �2(R)

+ Vion(R)

Here, � = (M + Z1 + Z2)/(M + 1) and � = (Z1mHe − Z2mH)/M are the coupling

strengths in the center-of-mass reference frame and �e = M/(M + 1).
The numerical discretisation uses 2048 grid points for the R-direction (ΔR =

0.05 a.u.) and 4096 grid points for the x-direction (Δx = 0.2 a.u.)3
. As the initial

state for the time evolution we always use the ground state of the system

calculated as the lowest-energy eigenstate of the real-time evolution operator

[124].

The linearly-polarized laser �eld is de�ned via its vector potential,

A(t) =
E0
!
cos2(�t/T ) sin(!t) (for − T /2 ≤ t ≤ T /2), E(t) = −Ȧ(t),

where T = TFWHM/0.3641 and TFWHM is the full width at half maximum (fwhm)

of the intensity. This form of the laser pulse guarantees that A(−∞) = A(∞) = 0
and thus there is no DC component in the electric �eld. Throughout this

chapter, the pulse duration is �xed at TFWHM ≈ 50 fs.
At the end of the time evolution, all bound states (also calculated as real-time-

propagator eigenstates) are projected out from the wave function which leaves

the dissociating part only. This is then projected onto electronic eigenstates

in order to yield dissociation probabilities for each electronic channel.

4.1.2 Two-level Born-Oppenheimer TDSE

In addition to the non-Born-Oppenheimer model, we apply the Born-Oppen-

heimer approximation again and use the same two-level model as in section 3.4.

We can expect it to reproduce the non-BO results even better in this chapter

than in the previous one because we will use longer wavelengths which drive

3
The number of grid points in x-direction is larger than in chapter 2 because the larger

wavelengths used in this chapter increase the electron excursion distance which has to be

covered by the grid.
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4.1 Quantum models

vibrational motion more e�ciently and electronic excitations less e�ciently

than the 1380 nm used before. We will see that assumption con�rmed later.

In order to investigate the e�ect of the mass ratio r , we �rst consider a

nuclear wave function  k on the k-th potential-energy surface alone, i. e.

without coupling to other surfaces. The TDSE and the Hamiltonian are given

by

i
)
)t
 k(R; t) = Hk(t) k(R; t),

Hk(t) =
P2

2�
+ Vk(R) − dk(R)E(t), (4.1)

where the dipole moment dk(R) is calculated from the non-Born-Oppenheimer

model as follows. The R-dependent k-th electronic eigenstate �k(x ; R) is cal-

culated for frozen nuclei
4
. With the mass ratio r , the nuclear center of mass

moves between the helium nucleus and the proton and with it the origin for

the electron coordinate x . In other words: A coordinate shift relates �k for

di�erent r .
�k(x ; R) = �k,r=0 (x + rR; R)

It follows that also the r-dependence of the purely electronic dipole transi-

tion moments can be made explicit,

djk(R) = −⟨�j ∣ x ∣ �k⟩(x) = djk(R)
|||r=0 + rR �jk . (4.2)

The dipole moment dk(R) used in (4.1) is de�ned as in (3.2); it consists of

the contributions from the electron on the one hand and from the charged

cores on the other hand. Its r-dependence can also be made explicit
5
,

dk(R) = −⟨�k ∣ (�x + �R) ∣ �k⟩(x) = �dkk(R)
|||r=0 + [1 − (2 − �)r] R, (4.3)

In the following, we use d(R) as an abbreviation for the permanent ground-state

dipole moment d1(R). Its R-dependence is the main property that determines

whether the laser �eld can drive vibrational transitions. Figure 4.2 shows d(R)
for various values of r .

4
Cf. section 2.4 for details on frozen-nuclei calculations. Note that in these calculations, the

reduced electron mass is always �e = 1 regardless of r .
5
Note that � also depends (weakly) on r .
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Figure 4.2: Left: Dipole coupling d(R) in the electronic ground state as calculated from
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one nucleus. Dotted curves are calculated for intermediate values of the mass

ratio r in steps of 0.1. Right: Sketch of the mass distribution for three cases of

r ; the sizes of the circles represent the respective masses. With the mass ratio,
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from the helium nucleus to the proton. Modi�ed �g. 1 from [54]. Note that for

consistency with our non-BO model, the orientation of the molecule has been
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4.2 Classical-trajectory model

We allow electronic excitation from the ground state to the �rst excited

state by including the coupling term d12(R). Using the de�nitions (4.1) and

(4.2), the TDSE then reads

i
)
)t (

 1(R; t)
 2(R; t))

= (
H1(t) −�d12E(t)

−�d12E(t) H2(t) )(
 1(R; t)
 2(R; t))

. (4.4)

In numerical calculations, the same R-grid is used as for the non-BO model.

The TDSE is solved by applying the split-operator scheme twice—for the

single-level propagator using Hi(t) and to account for the o�-diagonal part of

the matrix. Details on the two-level model and the time-evolution scheme are

described in appendix A.2.

Consistently with the non-BO model, we use the lowest-energy bound state

as the initial state for the time evolution, i. e. the vibrational ground state of

the lowest electronic state.  2 is initialized as 0. After the laser pulse, the

dissociation probabilities for the two available channels are calculated as fol-

lows. All bound states are projected out from  1 which leaves the dissociating

wave packet in the electronic ground state. All population of  2 contributes

to the dissociation into the �rst-excited-state channel. The probabilities are

calculated from the squared norm of the respective wave functions.

4.2 Classical-trajectory model

Since the nuclei move relatively slowly, we also try modelling the nuclear

degree of freedom using ensembles of classical trajectories. Treating the nuclei

classically means that we use the Hamiltonian function

H (R, P ; t) =
P2

2�
+ V (R) − d(R)E(t),

where V (R) = V1(R) and the other terms as de�ned before so that it agrees with

the quantum-mechanical ground-state Hamiltonian in Born-Oppenheimer

approximation (4.1). Then, the particle motion is described by Hamilton’s

equations

dR
dt

=
)H
)P

= P/�,

dP
dt

= −
)H
)R

= F (R, t) = −∇ (V (R) − d(R)E(t)) , (4.5)
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4 Mass-dependent dissociation dynamics

where F (R, t) is the classical force. Given some initial position R(t0) and mo-

mentum P (t0), the time evolution until some �nal time tf after the laser pulse

is performed using the fourth-order Runge-Kutta method [125, 126] with adap-

tive step size. The potential V (R) and dipole moment d(R) are taken from

the two-level quantum system and linearly interpolated between grid points.

After the time evolution, the �nal total energy Ef = H (R(tf), P (tf), tf) determines

whether a trajectory is unbound (by comparison with the asymptotic potential

value V (∞), i. e. the dissociation threshold).

The most important ingredient for this type of classical-trajectory calcula-

tions is the choice of initial conditions. There are many possible choices and

we will discuss a few in the following chapter.

4.3 Excursus: Classical initial conditions

For this chapter, we brie�y consider the general case that we want to reproduce

a quantum-mechanical observable using classical trajectories. More specif-

ically, we consider a one-dimensional
6

particle in a potential with a single

minimum and a �nite asymptotic value
7

so that there are unbound continuum

states. The observable we are interested in is the probability to drive the sys-

tem into the continuum. If the coordinate describes the internuclear distance

of a diatomic molecule—the situation we have in mind—, this corresponds to

dissociation. The question in this chapter is: How to sensibly choose initial

conditions for classical trajectories in order to reproduce the quantum results?

One criterion for the initial condition is that it should somehow depend

on the quantum-mechanical initial state, e. g. a vibrational wave function

 0, in order to provide a link between quantum and classical calculations.

It also makes sense that the probability distribution should not change if it

is propagated classically without any laser �eld; we call this a stationary

distribution. We will see shortly that this is not always the case.

6
The “stationary initial conditions” de�ned in this chapter do not generalize to more than

one dimension straightforwardly, therefore we apply this restriction.

7
Both conditions are typically met for ground-state Born-Oppenheimer curves of diatomic

molecules such as HeH
+
.
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4.3 Excursus: Classical initial conditions

4.3.1 Equilibrium position & expectation values

The simplest translation from the quantum to the classical world is via ex-

pectation values. This generates one set of initial conditions, position ⟨R⟩ =
⟨ 0|R| 0⟩ and momentum ⟨P⟩ = ⟨ 0|P | 0⟩ = 0, which (due to its vanishing ini-

tial velocity) is stationary in �eld-free classical propagation. Alternatively, the

position ⟨R⟩ and the (eigen-)energy ⟨ 0|H | 0⟩ = E0 can be used to calculate an

initial velocity.
8

The obvious drawback of this sampling method is that it does

not allow to extract probabilities, generate spectra or investigate mechanisms

for multiple outcomes because only a single trajectory is propagated. It is thus

not suitable for our dissociation studies.

4.3.2 Fixed-energy momentum or position distribution

The initial state can be described by a position-space wave function  0(R) or

via Fourier transform by a momentum-space wave function  ̃0(P ). Their mag-

nitude squared de�ne probability distributions which can be used to construct

phase-space distributions as follows. For each initial position (momentum) the

corresponding momentum (position) is calculated
9

via the energy condition

P2/2� + V (R) = E0, where E0 is the eigenenergy of  0. Note that although

these two phase-space distributions are de�ned similarly, their spatial distri-

butions di�er signi�cantly: If  0 is the vibrational ground state,  0(R) has a

maximum around the potential minimum whereas  ̃0(P ) is centered around

zero which leads to a classical position distribution with peaks at the classical

turning points (where V (R) = E0). A similar observation can be made for

the momentum distributions. Neither  0(R) nor  ̃0(P ) are stationary when

propagated classically: The unique stationary probability distribution at �xed

energy E0 is de�ned by the time that a classical particle spends at a certain

location. This (in�nitesimal) time is inversely proportional to the particle’s

speed |vE0(R)| =
√
2
� (E0 − V (R)) and diverges at the turning points.

8
The �rst approach gives the same initial conditions for all eigenstates of a harmonic oscillator

(or any symmetric potential) regardless of their energy, i. e. it does not even ful�l the �rst

criterion from above: dependence on the initial quantum state.

9
There are no real solutions outside the classically allowed region, thus we cut o� the spatial

wave function at the turning points. Within the classically allowed region, this equation has

two solutions which can either be randomized or trajectories for both solutions are started

(which leads to a strictly symmetric momentum distribution which can be desirable).
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4 Mass-dependent dissociation dynamics

On the one hand, the sharp energy spectrum of these distributions corre-

sponds well to the sharp eigenenergy of the initial quantum state. On the

other hand, the quantum wave function always extends into the classically

forbidden region whereas the classical distribution is strictly con�ned to the

phase-space region de�ned by E0. We will see that it is necessary to include

initial conditions with higher energy in order to provide any dissociation

signal at all for certain parameter choices.

4.3.3 Wigner or Husimi distribution

The Wigner distribution [127] for  0 is a phase-space function de�ned as

W (R, P ) =
1
� ∫

∞

−∞
 ∗0(R + s) 0(R − s)e

2iPsds

where we extend  0(R) to negative arguments by setting  0(R) = 0 for R ≤ 0.
The Wigner distribution has the neat property that integrating over one of the

phase-space variables yields the correct probability distribution for the other

one, i. e. ∫ W (R, P )dP = | 0(R)|2 and ∫ W (R, P )dR = | ̃0(P )|2. The Wigner

distribution can take negative values. However, for our application—sampling

the vibrational ground state—this is not an issue
10

. In case that the negative

values are a problem in other applications, it is possible to use the Husimi

distribution instead which is a smoothed version (convolution with a Gaussian)

of the Wigner distribution—at the cost of changing the marginal distributions

[129].

4.3.4 Stationary initial conditions

As described in section 4.3.2 on �xed-energy distributions, there is a unique

stationary distribution for a given energy E. Since the following considerations

are not only valid for our speci�c case of vibrational motion, let us use x and

p as generalized one-dimensional coordinate and momentum labels for a

moment and assume that V (x) is a general potential with a single minimum.

10
The Wigner function is positive i�  0(R) ∼ e−(aR

2+2bR)/2
with Re a > 0 [128]. Since the ground

state is close to a (shifted) Gaussian function, the negative parts of the Wigner function are

small and they are located outside the region of the phase space that corresponds to bound

initial conditions.
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4.3 Excursus: Classical initial conditions

Then,

PE(x) =
2
TE

1
|vE(x)|

(4.6)

is the stationary probability distribution where |vE(x)| =
√
2
� (E − V (x)) is the

speed at position x ,

TE = 2 ∫
xr

xl

1
|vE(x)|

dx

is the oscillation period (which is included in (4.6) for normalization) and xl,r
are the left and right turning points, V (xl,r ) = E, xl ≤ xr . For an ensemble

of classical trajectories all with the same energy E to be stationary (i. e. the

probability distributions
11

in space or momentum are constant in time), we

require it to be distributed in space according to (4.6) and in momentum

according to the energy condition

E =
p2

2�
+ V (x)

with positive and negative momenta being equiprobable. Since the total energy

of a particle is a constant of motion, we can add up ensembles of trajectories

with several energies weighted by an energy spectrum S(E) and end up with a

stationary ensemble as long as for each energy the aforementioned conditions

are met. The spatial distribution is then given by

P (x) = ∫ S(E)PE(x)dE. (4.7)

Every distribution can be uniquely decomposed into an energy integral like

this. Furthermore, an distribution is stationary if and only if every energy

component by itself is stationary. Since the stationary distribution at �xed

energy (4.6) is unique, it follows that every stationary distribution can be

written in the form of (4.7).

In order to apply these considerations to our system, we want P (x) to

reproduce the quantum probability | 0(x)|2 as closely as possible. It turns out

that it is possible to reproduce any (continuously di�erentiable) function f (x)
on one side of the minimum, e. g. using

S(E) ∼

{
TE ∫

∞
xr (E)

f ′(x)√
V (x)−E

dx if E ∈ (Vmin, Vmax,+)

0 else

(4.8)

11
For a �nite number of trajectories, binning is required.
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4 Mass-dependent dissociation dynamics

to reproduce f (x) on the right of the potential minimum. Here, Vmin =
minx V (x) is the potential minimum and Vmax,+ = limx→∞ V (x) is the right

asymptotic potential value. By construction, this distribution is guaranteed to

be stationary under �eld-free propagation.

To prove that S(E) reproduces f (x), one can simply insert (4.6) and (4.8)

into (4.7) and use Fubini’s integral theorem. The derivation of (4.8) is inspired

by the inverse Abel transform [130]: Inserting (4.6) into (4.7), doing partial

integration and di�erentiating with respect to x yields

P ′(x) =
√
2� ∫

∞

V (x)

S̃′(E)√
E − V (x)

V ′(x)dE, (4.9)

where S̃(E) = S(E)/TE . (4.8) inverts this relation to ensure P (x) = f (x). Note

that for a given x , only energies with E > V (x) contribute to P ′(x) in (4.9).

The same “onion-peeling” principle applies in (4.8).

Later in this chapter, we will use and compare the Wigner distribution

and the stationary initial conditions (SIC) for classical-trajectory calculations.

Di�erences will become obvious and we will discuss them in section 4.6.

4.4 �antum ladder climbing to dissociation

The energies and energy spacings of vibrational levels depend on the reduced

mass � but not on the mass ratio r . We choose the laser wavelength so that we

e�ciently drive one of the transitions v = 0→ 1 or v = 0→ 2 with v being

the vibrational quantum number. More precisely, we use 3436 nm for � = 0.8mn

and 4575 nm or 2376 nm for � = 1.5mn. For these three cases, the dissociation

yield as a function of the mass ratio r is shown in �gure 4.3. It can be seen that

the dissociation yield changes by many orders of magnitude despite always

matching a resonant transition. The blue triangular data points from non-Born-

Oppenheimer calculations agree very well with the corresponding two-level

Born-Oppenheimer results (violet solid line). We infer that the role of excited

states beyond the �rst excited state is negligible. The most remarkable feature

of �gure 4.3 is the deep minimum around r = 0.8 if the wavelength corresponds

to the v = 0 → 1 resonance. In contrast, the yield decreases monotonically

with r for the v = 0→ 2 resonance case.

The dipole coupling d(R), depicted in �gure 4.2, depends monotonically on

r for most R. In the simple approximation that HeH
+

consists of a neutral
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4.4 Quantum ladder climbing to dissociation
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Figure 4.3: Ground-state dissociation yield from a 50 fs laser pulse at 7 × 1013W/cm2

peak intensity as a function of the mass ratio r . The wavelength is chosen so

that either the v = 0→ 1 transition (violet line, blue triangles and small green

circles) or the v = 0→ 2 transition (brown dashed curve) are in resonance. Blue

triangles are calculated using the non-BO model, all other curves are calculated in

high resolution (steps in the mass ratio 0.01) using the two-level BO model. Data

points (mass ratio & reduced mass) that correspond to existing isotopologues of

HeH
+

are marked, cf. �gure 4.1. Modi�ed �g. 2 from [54].

73



4 Mass-dependent dissociation dynamics

helium atom and a proton (sketched on the right of �gure 4.2), the dipole

coupling is d(R) = −(1 − r)R. Decreasing the magnitude of the dipole coupling

by increasing r e�ectively reduces the laser interaction term −d(R)E(t) in the

nuclear Hamiltonian (4.1), i. e. it has the same e�ect as decreasing the laser

�eld strength
12

. This can already explain qualitatively the dashed curve in

�gure 4.3. In order to understand the minimum that occurs if we drive the

v = 0 → 1 transition (solid curves), we need to consider the exact shape of

d(R): It di�ers from −(1 − r)R because the ground-state electron is not exactly

located at the helium nucleus; the polarized helium atom partly counters the

dipole moment that is due to the location of the proton. This gives rise to the

“bump” in d(R).
We now consider vibrational transitions in the electronic ground state,

i. e. we use the vibrational states in the lower level of the two-level Born-

Oppenheimer model. The coupling strength is given by vibrational transition

matrix elements | ⟨v2|d(R)|v1⟩ | for the vibrational transition v1 → v2. If the

dipole moment was given by the simple formula −(1 − r)R, then the transition

matrix elements as a function of r would be proportional to 1 − r . If instead

we insert d(R) including the “bump”, the resulting transition matrix elements

can cross zero at r < 1 which leads to distinct minima in �gure 4.4 (a) and

(b). Especially the series of vibrational transitions that occur in vibrational

ladder climbing (v = 0 → 1 → 2 etc.) all have minima close to r = 0.8.
Since the probability for reaching a highly excited state via ladder climbing

depends on the product of the single transition probabilities, all these minima

together contribute to the structure of the minimum in the dissociation yield in

�gure 4.3. Note that “ladder climbing” is an idealized picture for the excitation

to the dissociation threshold: Due to the anharmonicity of the potential, the

spacings between successive vibrational levels become smaller towards larger

energies and the higher transitions are not driven in perfect resonance by our

laser pulses.
13

Therefore, multiple pathways may contribute to the dissociation

yield. They all have in common the excitation step to the �rst excited state

as a gateway if we speci�cally tune the laser to that resonance. We see that

at a certain mass ratio, this gateway is e�ectively blocked which results in

signi�cant suppression of the dissociation probability.

12
Dipole coupling of vibrational states requires a R-dependent dipole moment, i. e. the magni-

tude of d ′(R) is essential, not that of d(R). However, decreasing d(R) or E(t) has the same

e�ect as decreasing d ′(R).
13

See [103] for a detailed study of HeH
+

as an example of an anharmonic oscillator.
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Figure 4.4: Upper two panels: Vibrational transition matrix elements |⟨v2|d(R)|v1⟩|
for selected vibrational transitions v1 → v2 in the electronic ground state with

� = 0.8mn . (a) Transitions which start in the vibrational ground state. (b) First

four transitions that occur in a vibrational ladder-climbing scheme starting

in the ground state v = 0. (c) Derivative of the dipole coupling d(R) at three

selected internuclear distances. This quantity is proportional to the classical

driving force, see (4.5). Modi�ed �g. 3 from [54].
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4 Mass-dependent dissociation dynamics

In agreement with this explanation, the dissociation yield in the v = 0→ 2
resonance case in �gure 4.3 follows a similar trend as the corresponding

v = 0→ 2 curve in �gure 4.4(a).

4.5 Electronic excitation

In the two-level TDSE (4.4), the electronically excited state is coupled to the

ground state via the dipole transition element d12 which is independent of the

mass ratio, see (4.2). Therefore, we could expect the population of electronically

excited states to be independent of r in �rst order, i. e. without taking nuclear

motion into account. Figure 4.5 shows the population of the �rst excited state at

the end of the time evolution for both the two-level Born-Oppenheimer model

(yellow dashed line) and the non-Born-Oppenheimer model (orange circles).

We see that it has the same general shape as the probability for dissociation

into the ground state, i. e. a suppression by many orders of magnitude centered

roughly around r = 0.8. The �attened minimum at approximately 10−15 is

the double-precision limit of the numerical calculation of the population and

likely not caused by physics.

From the population of the excited state and its dependence on the mass

ratio we can conclude that electronic excitation does not occur primarily from

the initial vibrational state (which would give the same value for all r ). Instead,

enhanced excitation [90] at larger internuclear distance is the main pathway

to the excited state. This is similar to chapter 2 where we already saw how

vibrational motion a�ects the probability for electronic transitions. Here, the

dissociation probability is directly connected to the expansion of the molecule

into the region of enhanced excitation which explains the similar shapes of

the excitation and dissociation curves.

Overall, the magnitude of the excited-state population is very small both

in absolute numbers and also relative to the dissociation probability. It is

therefore justi�ed to carry out the following classical calculations on the

ground-state potential curve alone.

4.6 Classical dissociation probabilities

Now, we compare the results from TDSE calculations for � = 0.8mn and

3436 nm wavelength to classical simulations as described in section 4.2. For a
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Figure 4.5: Dissociation probabilities for � = 0.8mn and a 50 fs laser pulse with

7 × 1013W/cm2
peak intensity at 3436 nm wavelength. The green line/circles

show results from classical calculations on the electronic-ground-state potential

curve using the Wigner distribution as initial conditions. The red dashed curve

shows the same using stationary initial conditions (SIC) as de�ned in section 4.3.4.

The violet solid curve and the blue triangles show the ground-state dissociation

yield from TDSE calculations (same as in �gure 4.3). Additionally, the population

of the �rst excited electronic state is shown (yellow dashed curve and orange

symbols). The curves without symbols are calculated using the two-level BO

model; the blue triangles and orange crosses are results from the non-BO TDSE.

Bottom panel shows a linear-scale zoom into the dashed rectangular region of

the top panel. Modi�ed �g. 4 from [54].
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4 Mass-dependent dissociation dynamics

classical trajectory, there are no vibrational levels with transition probabilities.

Instead, there is a time- and position-dependent force F (R, t), (4.5). Via d′(R),
it depends not only on R but also, parametrically, on the mass ratio r . For three

values of the internuclear distance, the r dependence of the force is plotted in

�gure 4.4(c). From (4.3) and �gure 4.2 it can be seen that d′(R) depends roughly

linearly on r and may or may not cross zero, depending on the value of R.

Zero-crossings are visible in the log-scale plot of �gure 4.4(c) as deep minima

at mass ratios that depend on R. This means that for each r ≳ 0.7, there is an

internuclear distance between the equilibrium distance (R = 1.45 a.u.) and the

dissociation limit where the force vanishes and the molecule can be trapped.

In �gure 4.5, the classical dissociation probabilities are shown as green

circles/line (Wigner initial conditions) and thin dashed line (stationary initial

conditions). Both results show a signi�cant suppression of the dissociation

process near r = 0.75 in agreement with the previous reasoning and the

quantum models. It is, however, remarkable that the quantitative results of the

classical calculations are extremely sensitive to the choice of initial conditions.

The right panel of �gure 4.5 shows the small-r region of the left panel in

linear scale. It can be seen that here both classical models are able to reproduce

the quantum results relatively well. This is because at small mass ratio the

force is strong enough to drive trajectories with low initial energy—this means

location close to the potential minimum and small velocity—out to the contin-

uum. Both the Wigner distribution and the stationary initial conditions have

most of their probabilities concentrated at this low-energy part of the phase

space. If the laser coupling becomes weaker with increasing r , the probability

at larger initial energies becomes more and more important. Whereas—by

de�nition—the SIC energy spectrum approaches zero towards the dissociation

threshold, the Wigner distribution has a �nite value at the threshold
14

. From

these considerations it is clear that �xed-energy distributions of initial condi-

tions as described in section 4.3.2 give much too small yields. To be precise, I

was not able �nd any classical trajectory at all which starts at the energy of

the vibrational ground state and dissociates at the conditions of �gure 4.5 for

r ≥ 0.4, i. e. the yield drops to zero.

We conclude that on the one hand it is hard to simulate a quantum process

14
Actually, the Wigner distribution’s energy spectrum exceeds the dissociation threshold and

thus contains unbound initial conditions. We do not consider these self-dissociating initial

conditions , i. e. we cut the energy spectrum at the dissociation threshold.
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using classical trajectories. Results depend on the choice of initial conditions.

Similarities between the quantum initial state and classical initial conditions

can (or must) not be made perfect, e. g. the sharp energy of the quantum state

must not be reproduced by the classical initial energy distribution. On the

other hand, the same suppression e�ect as in quantum simulations can be seen,

at least qualitatively: Via the mass-ratio dependent coupling of the molecule

to the laser �eld, the dissociation probability depends on the distribution of

the nuclear masses and the resulting permanent dipole moment. This can

change the dissociation probability by several orders of magnitude.

4.7 Conclusion

In this chapter, we have seen that not only the reduced molecular mass but

also the mass distribution within a molecule can a�ect the dynamics in strong

external laser �elds signi�cantly. The ingredients for this e�ect are: 1. a total
charge of the molecule such that the dipole moment depends on the location

of the center of mass and 2. a wavelength that is long enough to drive certain

vibrational transitions, in our case v = 0→ 1. If these conditions are met, the

mass-ratio dependent dipole transition matrix elements in the dissociation

pathway via vibrational ladder climbing vanish at some mass ratio which

leads to dramatically decreased dissociation probability. For the HeH
+

case

studied here, the critical mass ratio is around 0.8 which is not realistic since

the hydrogen would need to be heavier than the helium.

The general observation is, however, that moving the center of mass close to

the charge (assuming the simple model of a diatomic molecule with one neutral

and one charged component) reduces the dipole moment and suppresses the

dissociation. In this sense, our simple arti�cial model HeH
+

generalizes to

other molecular ions and may �nd applications in other studies of isotope-

dependent strong-�eld e�ects.

Notably, strong-�eld dissociation of charged molecules occurs frequently

as the second step after strong-�eld ionization of neutral molecules. Since

the dipole moment depends on the electronic state that is populated after the

ionization step, interesting isotopologue-dependent e�ects may be observable.
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5 Conclusion and outlook

In this thesis, we have discussed the strong-�eld dynamics of molecular ions

by the example of the helium hydride molecular ion HeH
+
. It serves as a simple

benchmark system for asymmetric diatomic molecular ions and the fragmen-

tation channels—electron removal (ionization) and dissociation into di�erent

electronic con�gurations—are simple examples of light-induced chemical re-

actions.

In order to make theoretical predictions via numerical simulations, we have

developed a reduced-dimensional model with special potentials that allow

our model to accurately reproduce real Born-Oppenheimer potential-energy

curves. For this reason, calculations with our model require only moderate

computational resources while still avoiding limiting assumptions such as the

Born-Oppenheimer approximation. Comparisons with experimental data in

section 2.9 support the validity of our model.

We have seen throughout this work that, in general, dynamics of the (active)

electron and dynamics of the nuclei cannot be separated from each other

in the presence of a strong laser �eld. Enhanced excitation and enhanced

ionization occur when the molecule has stretched to two to four times its

equilibrium internuclear distance. If the molecule has the chance to stretch,

e. g. via vibrational excitation, this can dramatically increase the ionization

probability and change the shape of the kinetic-energy-release (KER) spectrum.

As an e�ect, the ionization probability and KER di�er qualitatively between

400 nm and 800 nm laser pulses at low intensities because the latter can induce

vibrational excitation whereas the former cannot. We also conclude that in

general, high dissociation probabilities facilitate the ionization process.

Furthermore, we have seen that the spatial asymmetry of the molecule

can be exploited to control the fragmentation channel: By adding a relatively

weak collinearly polarized second harmonic �eld to the laser pulse, a spatially

asymmetric electric �eld is created and its asymmetry can be controlled via

the relative delay or relative phase of the two colors. Both ionization and

dissociation yields are sensitive to the relative phase but in contrast to our

previous �ndings this tailored two-color �eld suppresses ionization when
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the dissociation yield is large and vice versa. In other words: The easily

controllable relative two-color phase allows to steer the molecule into one

of the two fragmentation channels. In our simulations, this e�ect survives

focal-volume averaging and should thus be visible in experiments.

If observables depend on the nuclear motion it is likely that the nuclear

reduced mass has an e�ect. Indeed, isotope e�ects have been discussed in all

chapters of this thesis, usually with the intuitive result that heavier isotopo-

logues such as HeD
+

move slower and thus show less dissociation, enhanced

excitation and ionization. However, isotopologues di�er not only in their

reduced masses but also the mass distribution within the molecule (or the

mass ratio between the nuclei) can vary. We have isolated the e�ect of the

mass ratio by studying arti�cial isotopologues with �xed reduced mass and

looked speci�cally at the ground-state dissociation process. The main result

is that the excitations necessary for vibrational ladder climbing can be e�ec-

tively forbidden
1

around a certain value of the mass ratio. This suppresses

the dissociation probability by many orders of magnitude. These �ndings are

general in the sense that the same e�ect can occur in other charged molecules

if the center of mass is near the charge. If isotopologues are compared, not

only the reduced mass but also the mass distribution plays an important role

for the coupling to the laser �eld.

Future research

In the introduction, we have raised three questions and we have found at

least some answers throughout this work. However, science does not stop

and new projects may start from this point. While we were lucky to have

experimentalists with us who provided data to compare our simulations from

chapter 2 to, measurement data to compare with the two-color calculations is

still missing. It would be a nice progress if the degree of control that we have

found theoretically could also be realized in the lab.

Isotope e�ects due to the mass distribution in molecular ions have not

found much attention so far. Investigations for other molecules than HeH
+

can be interesting, e. g. the carbon monoxide cation CO
+
. Its isotopologues

12
C
18

O
+

and
13

C
16

O
+

have similar reduced masses and are possible targets

for measurements. Also, CO
+

has multiple electronic states that support

1
In the sense that the transition matrix elements become very small.
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vibrational levels. With their di�erent charge distributions these states will

likely have di�erent critical mass ratios where the suppression of vibrational

transitions is strongest.

It is easy to predict that isotope e�ects are also important in the case that

a freed electron returns to and interacts with the fragmenting HeH
2+

parent

ion and the remaining electron during the laser pulse. If the laser intensity is

high enough, non-sequential double ionization can occur, i. e. the returning

electron leads to removal of the second electron. The internuclear distance at

the time of recollision depends on the reduced nuclear mass and thus on the

isotopologue. Our single-active-electron model is not able to describe double

ionization but it can be extended. In appendix B.2, the two-active-electron

version of our reduced-dimensionality model is outlined and the parameter

functions for the softened Coulomb potentials are given so that the model

again reproduces the real-world potential curves. This model potential is

ready to be used for fully correlated two-electron non-Born-Oppenheimer

calculations of the strong-�eld dynamics of HeH
+
.
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A Born-Oppenheimer approximation

A.1 General considerations

For some calculations and arguments throughout this thesis we use or refer to

the Born-Oppenheimer approximation [131]. Therefore, we derive its main

properties here brie�y along the lines of [88].

We consider a molecular system with a �xed number of electrons and

nuclei. Electrons and nuclei are labeled with indices j, k and A, B, respectively,

and sums are understood to cover all electrons or nuclei, depending on the

index type. In this chapter, we collect coordinates x⃗j and momenta p⃗j of all

electrons in bold notation x and p, nuclear coordinates and momenta are

written in capital letters X⃗A, P⃗A, X, P. Distances between electrons are denoted

as rjk = |x⃗j − x⃗k | and analogously rAB for distances between nuclei and riA
for distances between an electron and a nucleus. Both electron and nuclear

spins are ignored here
1
, as well as relativistic contributions. Then, the full

Hamiltonian for the molecule in some external interacting �eld is given by

H = He + Hn + Hint, e(x, p, t) + Hint, n(X, P, t),

He = ∑
j

p⃗2j
2
+ Vee(x) + Ven(x,X),

Hn = ∑
A

P⃗2A
2MA

+ Vnn(X).

Vee =
1
2
∑
j≠k

1
rjk
, Ven = −∑

j,A

ZA
rjA

, Vnn =
1
2
∑
A≠B

ZAZB
rAB

,

where ZA andMA are nuclear charges and masses, respectively. The interaction

Hint,e, Hint,n can be given in length or velocity gauge, which is why we specify

the (possible) dependence on both coordinates and momenta. For �xed nuclei,

1
At this stage, neglecting the spin simply aids notational brevity. There is no need for this

simpli�cation but we do not consider spins later anyway.



A Born-Oppenheimer approximation

we consider electronic eigenstates �n which solve the time-independent �eld-

free Schrödinger equation for the electrons,

He�n(x;X) = En(X)�n(x;X), n ∈ ℕ. (A.1)

Here, �n is a real-valued square-integrable wave function of electron coordi-

nates x and depends parametrically on the nuclear con�guration X, n labels

electronic eigenstates and En(X) are Born-Oppenheimer potential-energy sur-
faces (BO-PES). We assume the phases of the the �n to be chosen such that

derivatives with respect to X exist
2
. Since the electronic eigenstates form an

orthonormal basis, ⟨�n |�m⟩(x) = �nm (subscript (x) means integration only

over x coordinates), it is possible to expand any wave function of x and X as

Ψ(x,X; t) = ∑
n∈ℕ

�n(x;X) n(X; t). (A.2)

Inserting this expansion into the time-dependent Schrödinger equation i)tΨ =
H and projecting onto �n gives a system of coupled di�erential equations

for the time evolution of the  n,

i)t n(X; t) = ⟨�n |HΨ⟩(x) =∶ (Hn ⃗)n
,  ⃗ = ( 1,  2,…), (A.3)

where Hn

3
is a matrix of operators that is applied to the vector of nuclear wave

functions  ⃗ , i. e. the prefactors of  n in ⟨�n |HΨ⟩(x) are the diagonal elements

of Hn and prefactors of  m with m ≠ n are o�-diagonal coupling terms. Using

(A.1) and considering that �l depends on X and thus does not commute with

P⃗A = −i∇X⃗A , the scalar product can be split into multiple terms,

⟨�n |HΨ⟩(x) =⟨
�n

|||||
∑
m∈ℕ

(Em + Hn + Hint, e + Hint, n) (�m m)⟩
(x)

= (En(X) + Hn + Hint, n) n

+∑
m,A

1
MA ⟨�n

||| P⃗A�m⟩(x)
⋅ P⃗A m (A.4)

+∑
m,A

1
2MA ⟨�n

||| P⃗
2
A�m⟩(x)

 m +∑
m

⟨�n ||Hint, e�m⟩(x)  m.

2
Note that there are cases where it is not possible to choose �n both real and di�erentiable (cf.

Berry phase [132]). For simplicity, we still assume both.

3
Note the di�erence between the subscript n which stands for nuclear and the index n which

numbers electronic levels.
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A.2 Two-level Born-Oppenheimer model

From ∇X⃗A |�n |
2 = 2�n∇X⃗A�n it follows that

⟨�n |P⃗A�n⟩(x) = −
i
2
∇X⃗A ⟨�n |�n⟩(x) = 0.

Up to this point, there is no approximation (beyond the assumptions ex-

plicitly stated above). The Born-Oppenheimer approximation is that the scalar

products involving P⃗A in (A.4) can be neglected. Then, the �eld-free Hamilto-

nian Hn is diagonal, i. e. vibrational wave functions evolve independently on

all PES,

i)t m(X; t) = (Em(X) + Hn) m(X; t), m ∈ ℕ. (A.5)

To see the validity of the Born-Oppenheimer approximation, we remember that

�m depends on X and x in a similar way because Ven depends on the distances

rjA. Thus it is reasonable to assume that the terms P⃗2A�m give contributions

that are of similar magnitude as the kinetic-energy term in (A.1) but with

prefactors 1/MA that usually are at least 3 orders of magnitude smaller. The

same argument can be applied to P⃗A�m. It is not easy to make this argument

rigorous for the general case [133] and in fact the approximation is not always

valid. To see this, we �rst note that

[P⃗A, He] = [P⃗A, Ven] = −i(∇X⃗AVen) = iZA∑
j

x⃗j − X⃗A
r3jA

. (A.6)

Then, for n ≠ m the scalar product in the third line of (A.4) can be written as

⟨�n
||| P⃗A�m⟩(x)

=
⟨�n

|||| [
P⃗A, He] �m⟩

(x)

Em(X) − En(X)
.

Using (A.6), one can see that the numerator as a sum of one-electron matrix

elements is �nite, i. e. the coupling of vibrational wave functions on di�er-

ent electronic surfaces becomes stronger (and thus the Born-Oppenheimer

approximation is not valid) if the PES come close to each other or cross.

A.2 Two-level Born-Oppenheimer model

If the separation between potential-energy surfaces is large or certain excita-

tion pathways are prohibited—e. g. due to polarization of the laser �eld—often
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A Born-Oppenheimer approximation

it is enough to consider only one or two electronic states, i. e. to truncate

the sum (A.2) after one or two terms. We derive the resulting Hamiltonian

including the coupling terms and a calculation scheme for time propagation

in this section. Let’s consider the interaction terms in length gauge and dipole

approximation, i. e. the laser pulse is described by its electric �eld vector E⃗(t)
and the interaction Hamiltonian is

Hint, e(x, t) = ∑
j
x⃗j ⋅ E⃗(t) = −d⃗e ⋅ E⃗(t),

Hint, n(X, t) = −∑
A
ZAX⃗A ⋅ E⃗(t) = −d⃗n ⋅ E⃗(t),

with dipole operators d⃗e and d⃗n. The dipole transition matrix elements for the

electronic states �n are given by

d⃗nm(X) = ⟨�n
||| d⃗e + d⃗n

||| �m⟩(x)
= ⟨�n

||| d⃗e

||| �m⟩(x)
+ d⃗n�nm.

Using d⃗nm = d⃗mn (for real �n, �m), the TDSE reads

i)t (
 1(X; t)
 2(X; t))

=
(

H1 −d⃗12 ⋅ E⃗(t)
−d⃗12 ⋅ E⃗(t) H2 )(

 1
 2)

≕ HBO

n (
 1
 2)

(A.7)

with the nuclear Hamiltonian on the �rst electronic surface H1 = Hn + E1(X) −
d⃗11 ⋅ E⃗(t) and similarly for H2. The matrix HBO

n
is the truncated and BO-

approximated version of Hn in (A.3). Obviously, in the �eld-free case (A.7)

reduces to (A.5). Numerical solutions for the TDSE (A.7) can be obtained

conveniently by the following procedure. We want to apply the short-time

propagator exp(−iHBO

n
Δt). To this end, we split the 2 × 2 matrix HBO

n
into a

diagonal part Hd and an anti-diagonal coupling part Hc,

HBO

n
= Hd + Hc = (

H1
H2)

− d⃗12 ⋅ E⃗(t)(
1

1 ) .

The diagonal matrix Hd and its exponential exp(−iHdΔt) acts on each  n
separately and can be implemented with any TDSE solver, e. g. the split-

operator method. The matrix exponential of the coupling term Hc between

electronic states can be easily calculated. From

H2
c
= (d⃗12 ⋅ E⃗(t))

2

(
1

1)
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A.2 Two-level Born-Oppenheimer model

it follows that

e−iHcΔt = ∑
n

(−iHcΔt)n

n!

= cos(d⃗12 ⋅ E⃗(t)Δt)(
1

1) + i sin(d⃗12 ⋅ E⃗(t)Δt)(
1

1 ) .

Then, the full short-time propagator can be split using the split-operator

formula,

e−iH
BO

n
Δt = e−iHcΔt/2e−iHd

Δte−iHcΔt/2 + (Δt3)

where each of the operators can be applied easily.

Extending this to a general multi-level propagation scheme is in principle

straightforward except that Hc is a general symmetric matrix with zeros on

the diagonal. Factoring out the time-dependent part E⃗(t) allows to calculate

the rotation (matrix of eigenvectors) that diagonalizes Hc. This has to be done

only once, the calculation of exp(−iHcΔt) in every time step is then achieved

by simple matrix multiplication.
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B Fine-tuning of so�-core parameters

B.1 Parameters for one-electron model

In numerical calculations the Coulomb potential is often softened, i. e. the

singularity is removed. Except for nuclear-nuclear repulsion, we always use

potentials of the form

V� (x) =
q1q2√

|x1 − x2|2 + �
,

where � > 0 is the soft-core parameter, qi are the charges and xi are the

locations of the charges.

We note that the softened potential is monotonic in � , more precisely

|V� (x)| > |V� ′(x)| ∀x ∈ ℝ, ∀� ′ > �. (B.1)

We consider the reduced-dimensionality model of HeH
+

in �eld-free Born-

Oppenheimer approximation. Since the location of the center of mass is not

important, we choose the origin centered between the nuclei such that the

nuclei with charges Z1, Z2 are located at x = ∓R/2.
Within the single-active-electron approximation and for �xed nuclei (i. e.

neglecting the kinetic-energy term for the nuclei), the Hamiltonian reads

H =
p2

2
+ Vion(R) + VH(x ; R) + VHe(x ; R)

=
p2

2
+ Vion(R) +

−Z1√
(x + R/2)2 + �1(R)

+
−Z2√

(x − R/2)2 + �2(R)
. (B.2)

Since we assume the inactive electron to be located at the helium core, the

e�ective nuclear charges are Z1 = Z2 = 1. This has the e�ect that the eigenen-

ergies of (B.2) are symmetric with respect to exchange of �1 and �2. We �x the

orientation of the molecule to H-He by choosing �1 > �2 (helium at x = +R/2
has the deeper potential well). Vion(R) is the BO-PEC of the ground state



B Fine-tuning of soft-core parameters

Table B.1: Numeric values of polarizabilities together with their sources.

quantity value (a. u.) source

�D,He 1.383 746 [135]

�D,H 4.5 [136]
3

�
D,He

+ 0.281 187 8 [137]

(1s� ) of HeH
2+

; we use literature data from [84, Table 4]. It roughly equals

1/R − 2 a.u. except for small internuclear distances. For the calculation of

soft-core parameters in this chapter, we subtract the 2/R nuclear repulsion

from Vion(R) which makes it �nite for R → 0.
Our goal is now to tune �1 and �2 for each R so that the two lowest eigenen-

ergies E0, E1 of (B.2) reproduce the literature values for the two lowest singlet

BO curves
1
. We use the ground-state energies from [81, Table II] and combine

data from [82, Table V], [83, Table III] and from additional calculations using

the framework of [81]
2

for the energies of the �rst excited state.

Asymptotic behaviour of potential-energy curves

For R → ∞, we use the asymptotic behaviour instead of data points from the

literature: In the ground state, HeH
+

dissociates into He + H
+

and thus E0(R)
approaches the ionization potential of helium in lowest order as − 12�D,He/R4
with the dipole polarizability of helium �D,He. In the �rst excited state, it

dissociates into He
++H with energy −2−0.5 = −2.5 (here, we know analytically

that �1(∞) = 2 gives the correct hydrogen ground-state energy −0.5 [134]). The

lowest-order approximation of the asymptotic behaviour is given by − 12�D,H/R4
with the dipole polarizability of hydrogen �D,H. The ionized system HeH

2+

dissociates into He
+ + H

+
in its ground state and thus the lowest-order term

for the energy is 1/R. For consistency, we also include the induced dipole shift

and approximate the asymptotic behaviour to the same order in 1/R as the

other energies by 1/R − 1
2�D,He

+/R4 with the dipole polarizability of He
+ �

D,He
+ .

The values of the polarizabilities are given in table B.1.

1
We only consider singlet states because we start in a singlet state and in dipole approximation

the laser �eld does not couple to the electron spin.

2
I am grateful for the support from Magda Zientkiewicz and Krzysztof Pachucki who provided

the data to me.
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B.1 Parameters for one-electron model

For R → 0, we end up with a Li
+

ion. Because Li
2+

is hydrogen-like, we

have Vion(0) = 9/2, and the ground- and excited-state energies of Li
+

can be

looked up from atomic-spectra databases [73]. The combined BO PEC are

shown in �gure B.1. It is the same as �gure 2.1 but without the 2/R nuclear

repulsion. In this plot, the potential minimum at the equilibrium distance

R ≈ 1.46 a.u. is not obvious.
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Figure B.1: Born-Oppenheimer potential-energy curves Vion(R), E0(R) and E1(R) with-

out 2/R nuclear repulsion. Data collected, interpolated and sampled from [81–84]

as described in the text.

Calculation of optimized so�-core parameters

Once the input data Vion(R), E0(R) and E1(R) is known, it is straightforward to

calculate �1(R) and �2(R) by applying Newton’s algorithm on the �1-�2 plane
4
,

calculating the lowest two eigenstates in each step, e. g. by imaginary-time

evolution [138]. This is fast and accurate because the internuclear distance is

�xed and the eigenstate calculation is thus one-dimensional. It is useful to use

the results for one value of R as initial guess for the neighbouring R value.

The resulting curves for �1 and �2 are printed in table B.2 and displayed

in �gure B.2. For most internuclear distances, the potential wells have a

constant shape/depth because �1 and �2 are almost constant. Only for small

3
This is the exact value for non-relativistic hydrogen.

4
One can work on the ln(�1)-ln(�2) plane instead which at the same time restricts � to positive

values and conveniently allows to have one value very large and the other one very small.
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B Fine-tuning of soft-core parameters
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Figure B.2: Tuned soft-core parameters �1(R) and �2(R).

separations the helium well becomes quite a bit deeper (�2 decreases). �1
reaches relatively large values but this is not problematic since it just makes

the hydrogen potential very shallow.

Using these parameter curves in (B.2) guarantees that our very simple one-

dimensional model exactly reproduces at least the two lowest potential-energy

curves of HeH
+

and the vertical ionization potential.

Table B.2: Numerical values of input and output data of the described procedure

on an internuclear-distance grid with 0.05 a.u. grid spacing up to R = 6 a.u.
and 0.5 a.u. for larger R. Input: Ground- and excited-state energies E0, E1 of

HeH
+

and ground-state energy Vion of HeH
2+

(see text for sources). All energies

without 2/R nuclear repulsion. Output: Softening parameters �1, �2.
R E0 E1 V

ion
�1 �2

0.00 −7.279 72 −5.040 85 −4.5 120.799 230 040 902 30 2.764 153 800 545 884 2 ×10−2
0.05 −7.238 579 770 146 289 5 −5.014 005 732 419 525 1 −4.474 230 881 480 234 1 122.557 618 913 516 95 2.807 205 178 632 607 1 ×10−2
0.10 −7.138 448 755 973 120 0 −4.947 578 634 999 998 4 −4.411 316 871 487 636 1 129.751 990 145 855 87 2.912 163 324 846 685 2 ×10−2
0.15 −7.004 899 622 664 794 4 −4.859 366 057 540 786 0 −4.327 375 492 358 932 3 138.725 292 023 247 22 3.061 798 254 764 795 7 ×10−2
0.20 −6.853 138 599 446 220 2 −4.759 422 621 199 999 7 −4.232 694 714 478 920 0 151.331 711 331 803 58 3.245 577 883 161 991 6 ×10−2
0.25 −6.694 701 366 517 122 7 −4.655 035 769 348 386 6 −4.133 650 926 966 653 9 165.339 704 453 714 15 3.453 310 768 836 700 3 ×10−2
0.30 −6.535 287 039 387 886 1 −4.550 075 329 666 666 1 −4.034 134 906 133 936 7 181.313 079 689 370 68 3.680 939 162 685 676 5 ×10−2
0.35 −6.378 690 471 980 974 1 −4.447 550 181 194 828 6 −3.936 482 362 865 090 2 195.916 781 732 739 11 3.927 340 928 991 630 84×10−2
0.40 −6.226 926 036 556 521 1 −4.350 443 024 099 999 6 −3.842 058 126 972 948 4 198.299 192 443 004 24 4.199 690 346 853 912 6 ×10−2
0.45 −6.081 354 180 337 335 4 −4.260 945 263 001 457 5 −3.751 619 672 280 606 1 180.144 981 281 858 29 4.506 659 522 124 674 41×10−2
0.50 −5.942 500 132 059 320 7 −4.178 109 299 200 000 0 −3.665 543 943 731 378 8 154.188 840 735 951 29 4.844 743 762 811 318 9 ×10−2
0.55 −5.810 607 894 758 277 3 −4.100 503 013 611 837 7 −3.583 969 873 659 024 0 130.845 796 543 490 96 5.206 229 175 959 541 8 ×10−2
0.60 −5.685 631 787 156 554 0 −4.027 895 208 933 333 7 −3.506 888 621 505 817 5 110.922 462 442 591 20 5.590 867 602 401 270 6 ×10−2
0.65 −5.567 425 441 285 179 1 −3.960 302 804 564 883 2 −3.434 201 098 903 513 7 93.774 079 004 115 748 6.000 876 414 497 117 3 ×10−2
0.70 −5.455 729 426 723 375 6 −3.897 534 264 942 856 4 −3.365 754 807 636 653 5 79.202 042 987 614 959 6.438 021 361 601 011 0 ×10−2
0.75 −5.350 249 226 136 308 6 −3.839 353 377 922 677 2 −3.301 367 463 078 567 0 66.938 693 006 842 342 6.904 174 012 862 025 8 ×10−2
0.80 −5.250 663 036 984 721 4 −3.785 553 679 999 999 6 −3.240 842 100 894 590 2 56.630 863 139 810 437 7.402 085 170 663 939 84×10−2
0.85 −5.156 643 615 356 569 1 −3.735 931 297 462 068 2 −3.183 976 656 133 368 4 47.960 777 036 870 503 7.935 120 757 210 957 5 ×10−2

94



B.1 Parameters for one-electron model

R E0 E1 V
ion

�1 �2

0.90 −5.067 869 237 053 042 0 −3.690 262 967 122 221 6 −3.130 569 938 854 254 3 40.672 581 868 890 532 8.506 917 587 624 712 7 ×10−2
0.95 −4.984 023 086 454 855 4 −3.648 321 081 460 796 5 −3.080 425 258 303 316 9 34.548 430 132 100 165 9.121 532 699 614 384 73×10−2
1.00 −4.904 804 431 509 119 5 −3.609 880 045 100 000 2 −3.033 352 518 074 749 6 29.402 293 718 219 916 9.783 330 969 518 125 3 ×10−2
1.05 −4.829 926 765 470 023 8 −3.574 714 709 856 359 2 −2.989 169 326 670 967 1 25.077 887 283 357 999 0.104 968 545 537 347 34
1.10 −4.759 119 492 945 939 3 −3.542 599 704 181 817 8 −2.947 701 485 648 776 2 21.444 685 196 609 264 0.112 665 563 609 890 87
1.15 −4.692 128 142 732 727 3 −3.513 310 451 785 102 8 −2.908 783 096 567 302 3 18.393 441 061 061 271 0.120 964 796 512 828 71
1.20 −4.628 714 133 051 786 9 −3.486 625 780 766 665 6 −2.872 256 446 617 248 2 15.832 186 215 655 732 0.129 899 007 788 461 67
1.25 −4.568 654 259 230 121 4 −3.462 327 035 925 311 3 −2.837 971 777 463 343 9 13.683 723 616 696 616 0.139 488 344 781 350 91
1.30 −4.511 740 017 191 657 5 −3.440 202 224 461 538 4 −2.805 787 003 796 762 0 11.882 570 470 999 905 0.149 736 809 071 310 21
1.35 −4.457 776 837 906 601 8 −3.420 043 748 138 891 9 −2.775 567 421 818 999 8 10.373 531 309 890 549 0.160 627 630 453 110 43
1.40 −4.406 583 282 187 547 5 −3.401 654 924 571 428 9 −2.747 185 429 778 999 0 9.109 391 741 820 056 5 0.172 123 137 756 053 95
1.45 −4.357 990 227 864 704 9 −3.384 845 445 251 400 1 −2.720 520 270 411 856 1 8.050 358 143 611 632 0 0.184 162 872 576 838 17
1.50 −4.311 840 069 713 451 1 −3.369 439 581 333 333 8 −2.695 457 797 100 336 2 7.162 370 883 982 303 5 0.196 668 788 943 847 68
1.55 −4.267 985 944 726 281 6 −3.355 269 467 764 389 7 −2.671 890 260 691 128 1 6.416 955 478 913 837 2 0.209 546 186 135 295 21
1.60 −4.226 290 990 181 119 9 −3.342 184 115 000 001 1 −2.649 716 111 327 133 9 5.789 927 388 734 264 8 0.222 692 579 458 594 69
1.65 −4.186 627 638 597 331 1 −3.330 041 122 000 216 2 −2.628 839 808 766 035 6 5.261 329 429 163 708 0 0.235 998 913 822 263 93
1.70 −4.148 876 951 450 413 1 −3.318 715 566 235 294 3 −2.609 171 634 926 383 8 4.814 387 293 089 268 4 0.249 358 727 245 290 15
1.75 −4.112 927 992 222 263 5 −3.308 091 046 341 775 0 −2.590 627 503 410 765 5 4.435 420 682 985 128 6 0.262 667 551 080 092 32
1.80 −4.078 677 238 421 230 2 −3.298 067 767 111 112 5 −2.573 128 762 157 394 6 4.113 016 585 168 169 0 0.275 830 335 443 952 02
1.85 −4.046 028 031 763 200 7 −3.288 553 776 747 021 7 −2.556 601 986 899 078 6 3.837 928 424 581 956 0 0.288 758 896 197 497 06
1.90 −4.014 890 065 355 486 6 −3.279 471 890 947 368 8 −2.540 978 764 566 570 0 3.602 458 702 215 492 4 0.301 377 329 536 877 13
1.95 −3.985 178 906 574 144 1 −3.270 751 736 117 683 4 −2.526 195 467 033 355 5 3.400 376 082 656 904 9 0.313 618 416 452 755 01
2.00 −3.956 815 554 216 120 3 −3.262 335 413 999 999 8 −2.512 193 016 589 962 6 3.226 478 983 463 441 1 0.325 427 457 547 511 90
2.05 −3.929 726 028 461 681 5 −3.254 170 677 817 439 3 −2.498 916 645 234 259 7 3.076 539 870 755 414 8 0.336 758 516 763 331 46
2.10 −3.903 840 992 133 071 9 −3.246 215 411 380 952 7 −2.486 315 650 280 683 8 2.947 007 622 445 525 9 0.347 577 112 564 108 28
2.15 −3.879 095 401 719 654 4 −3.238 432 024 462 584 4 −2.474 343 148 959 763 4 2.834 974 784 039 961 7 0.357 856 784 802 858 82
2.20 −3.855 428 186 607 029 7 −3.230 790 900 090 907 4 −2.462 955 834 646 144 6 2.737 978 350 309 014 3 0.367 580 919 497 130 62
2.25 −3.832 781 954 930 009 5 −3.223 265 942 112 736 3 −2.452 113 737 168 993 6 2.653 982 347 857 669 8 0.376 739 799 878 600 96
2.30 −3.811 102 724 443 225 0 −3.215 837 164 391 304 6 −2.441 779 989 371 994 9 2.581 245 519 489 927 1 0.385 331 740 550 689 14
2.35 −3.790 339 676 791 954 4 −3.208 487 255 562 119 8 −2.431 920 601 744 207 7 2.518 312 714 709 888 0 0.393 360 628 537 201 22
2.40 −3.770 444 933 537 052 5 −3.201 203 493 333 334 6 −2.422 504 246 573 172 1 2.463 926 951 026 503 2 0.400 836 523 317 894 16
2.45 −3.751 373 352 309 264 1 −3.193 975 137 858 486 9 −2.413 502 052 704 901 6 2.417 025 712 967 185 9 0.407 773 631 019 205 33
2.50 −3.733 082 341 455 520 3 −3.186 794 790 000 000 4 −2.404 887 411 651 228 2 2.376 682 761 993 342 8 0.414 190 503 905 929 04
2.55 −3.715 531 691 575 017 2 −3.179 656 486 790 031 9 −2.396 635 795 475 495 1 2.342 106 202 283 851 2 0.420 108 427 199 505 86
2.60 −3.698 683 422 372 488 9 −3.172 556 669 230 768 7 −2.388 724 586 619 857 9 2.312 599 525 620 421 0 0.425 551 386 889 307 60
2.65 −3.682 501 643 314 495 3 −3.165 492 788 279 108 2 −2.381 132 919 613 549 8 2.287 560 789 496 283 9 0.430 544 809 170 226 92
2.70 −3.666 952 426 638 859 1 −3.158 463 930 740 739 8 −2.373 841 534 420 876 1 2.266 457 047 422 668 0 0.435 115 396 860 675 52
2.75 −3.652 003 691 350 347 3 −3.151 469 865 547 338 3 −2.366 832 641 047 468 9 2.248 823 177 994 244 0 0.439 290 216 651 102 63
2.80 −3.637 625 096 929 084 6 −3.144 511 454 285 714 9 −2.360 089 794 919 303 2 2.234 244 796 314 908 6 0.443 096 519 061 635 89
2.85 −3.623 787 945 581 752 5 −3.137 589 995 813 166 8 −2.353 597 782 476 477 1 2.222 357 050 504 368 4 0.446 561 108 105 190 45
2.90 −3.610 465 091 973 551 9 −3.130 707 445 413 794 0 −2.347 342 516 377 921 1 2.212 833 656 783 452 3 0.449 710 181 689 069 29
2.95 −3.597 630 859 493 295 8 −3.123 866 009 637 004 6 −2.341 310 939 689 110 1 2.205 385 170 377 872 4 0.452 568 949 025 816 29
3.00 −3.585 260 962 215 506 7 −3.117 068 243 666 666 1 −2.335 490 938 418 474 5 2.199 751 984 519 536 1 0.455 161 523 399 735 98
3.05 −3.573 332 431 834 813 0 −3.110 316 822 321 173 9 −2.329 871 261 775 281 3 2.195 702 281 764 766 9 0.457 510 725 811 247 24
3.10 −3.561 823 548 952 181 0 −3.103 614 550 322 581 2 −2.324 441 449 539 254 5 2.193 027 755 932 207 3 0.459 638 030 260 928 42
3.15 −3.550 713 778 191 164 8 −3.096 964 254 474 112 3 −2.319 191 765 957 084 0 2.191 541 408 876 296 8 0.461 563 498 253 989 96
3.20 −3.539 983 706 711 039 3 −3.090 368 719 999 999 8 −2.314 113 139 610 911 1 2.191 075 313 977 501 9 0.463 305 762 414 850 00
3.25 −3.529 614 985 763 884 8 −3.083 830 691 925 706 4 −2.309 197 108 737 128 8 2.191 478 043 044 240 7 0.464 882 056 091 176 17
3.30 −3.519 590 275 010 966 9 −3.077 352 796 060 607 5 −2.304 435 771 508 633 7 2.192 613 432 652 425 1 0.466 308 233 944 351 22
3.35 −3.509 893 189 373 494 6 −3.070 937 575 802 335 8 −2.299 821 740 829 139 0 2.194 358 278 962 684 8 0.467 598 843 857 225 83
3.40 −3.500 508 248 241 266 6 −3.064 587 364 117 648 0 −2.295 348 103 223 148 0 2.196 602 276 387 997 3 0.468 767 157 661 833 13
3.45 −3.491 420 826 902 595 9 −3.058 304 384 306 003 2 −2.291 008 381 439 283 0 2.199 245 451 896 166 2 0.469 825 277 338 100 37
3.50 −3.482 617 110 089 671 0 −3.052 090 631 428 571 4 −2.286 796 500 417 279 4 2.202 198 422 349 959 1 0.470 784 179 754 215 49
3.55 −3.474 084 047 557 631 1 −3.045 947 983 121 050 8 −2.282 706 756 299 741 2 2.205 380 077 270 340 2 0.471 653 826 495 404 16
3.60 −3.465 809 311 631 905 3 −3.039 878 075 555 555 9 −2.278 733 788 198 770 1 2.208 718 218 750 934 9 0.472 443 209 466 857 92
3.65 −3.457 781 256 671 281 3 −3.033 882 421 371 432 2 −2.274 872 552 454 421 1 2.212 147 427 259 631 5 0.473 160 457 055 500 80
3.70 −3.449 988 880 400 130 4 −3.027 962 280 540 540 2 −2.271 118 299 146 778 4 2.215 609 998 125 055 7 0.473 812 875 998 732 62
3.75 −3.442 421 787 068 683 1 −3.022 118 792 782 275 7 −2.267 466 550 646 358 9 2.219 053 826 605 565 0 0.474 407 051 867 588 25
3.80 −3.435 070 152 399 943 8 −3.016 352 869 473 685 0 −2.263 913 082 008 374 4 2.222 433 266 024 004 7 0.474 948 889 712 379 31
3.85 −3.427 924 690 282 949 4 −3.010 665 311 087 369 1 −2.260 453 903 035 471 8 2.225 707 325 409 915 3 0.475 443 699 929 740 62
3.90 −3.420 976 621 168 662 7 −3.005 056 702 820 512 6 −2.257 085 241 850 882 4 2.228 840 611 645 093 2 0.475 896 232 721 228 94
3.95 −3.414 217 642 124 021 3 −2.999 527 527 031 632 6 −2.253 803 529 839 546 9 2.231 801 683 664 101 3 0.476 310 752 216 241 75
4.00 −3.407 639 898 494 769 8 −2.994 078 070 000 000 5 −2.250 605 387 828 990 4 2.234 563 949 201 883 4 0.476 691 066 080 355 00
4.05 −3.401 235 935 211 028 8 −2.988 708 526 085 383 2 −2.247 487 613 394 481 0 2.237 104 157 008 611 9 0.477 040 617 684 989 01
4.10 −3.394 998 781 093 371 1 −2.983 418 918 048 780 9 −2.244 447 169 184 531 4 2.239 403 334 173 673 4 0.477 362 362 902 736 26
4.15 −3.388 921 693 958 416 4 −2.978 209 187 893 457 3 −2.241 481 172 173 167 1 2.241 445 213 274 483 1 0.477 659 134 470 735 55
4.20 −3.382 998 416 883 386 2 −2.973 079 126 190 476 1 −2.238 586 883 754 654 5 2.243 217 315 404 178 3 0.477 933 285 114 357 79
4.25 −3.377 222 915 933 534 1 −2.968 028 455 662 373 5 −2.235 761 700 604 800 1 2.244 709 497 600 053 9 0.478 187 056 655 050 68
4.30 −3.371 589 563 865 647 7 −2.963 056 779 069 766 8 −2.233 003 146 240 382 5 2.245 914 716 443 116 8 0.478 422 322 739 598 39
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4.35 −3.366 092 926 364 553 6 −2.958 163 638 654 526 0 −2.230 308 863 215 022 1 2.246 827 966 920 486 0 0.478 640 885 069 010 26
4.40 −3.360 727 934 135 713 9 −2.953 348 454 545 454 7 −2.227 676 605 895 835 9 2.247 447 152 253 873 3 0.478 844 230 123 829 37
4.45 −3.355 489 689 390 856 8 −2.948 610 597 692 649 5 −2.225 104 233 770 630 8 2.247 771 898 213 645 0 0.479 033 797 379 882 72
4.50 −3.350 373 615 346 144 1 −2.943 949 364 444 444 3 −2.222 589 705 240 217 0 2.247 803 943 907 972 4 0.479 210 770 537 929 65
4.55 −3.345 375 286 560 339 7 −2.939 364 012 391 517 0 −2.220 131 071 854 823 3 2.247 546 457 460 863 2 0.479 376 306 485 378 49
4.60 −3.340 490 561 958 152 4 −2.934 853 718 695 652 3 −2.217 726 472 957 436 2 2.247 004 602 174 901 5 0.479 531 346 669 307 13
4.65 −3.335 715 434 492 327 4 −2.930 417 626 698 947 7 −2.215 374 130 700 447 5 2.246 184 751 410 774 0 0.479 676 820 285 670 49
4.70 −3.331 046 148 861 776 9 −2.926 054 824 893 618 0 −2.213 072 345 405 091 6 2.245 094 778 519 677 1 0.479 813 478 664 793 29
4.75 −3.326 479 068 537 769 2 −2.921 764 377 520 732 0 −2.210 819 491 236 004 2 2.243 743 490 000 898 8 0.479 942 072 046 990 91
4.80 −3.322 010 780 334 826 7 −2.917 545 306 666 666 3 −2.208 614 012 165 781 6 2.242 140 862 718 274 2 0.480 063 202 191 639 50
4.85 −3.317 637 976 518 473 1 −2.913 396 614 454 160 5 −2.206 454 418 206 644 8 2.240 297 601 389 644 3 0.480 177 477 458 278 05
4.90 −3.313 357 547 814 991 5 −2.909 317 265 306 121 7 −2.204 339 281 888 472 2 2.238 225 359 604 258 7 0.480 285 381 296 301 16
4.95 −3.309 166 478 741 731 9 −2.905 306 210 946 092 5 −2.202 267 234 964 183 2 2.235 936 280 371 175 8 0.480 387 409 542 123 50
5.00 −3.305 061 930 519 549 2 −2.901 362 390 000 000 5 −2.200 236 965 325 255 6 2.233 442 992 010 959 3 0.480 483 954 172 722 66
5.05 −3.301 041 147 959 607 3 −2.897 484 731 943 043 5 −2.198 247 214 111 562 1 2.230 758 428 088 881 5 0.480 575 423 050 880 08
5.10 −3.297 101 533 530 777 4 −2.893 672 142 745 097 5 −2.196 296 773 001 115 8 2.227 895 989 677 715 5 0.480 662 134 839 619 28
5.15 −3.293 240 564 359 524 8 −2.889 923 521 664 081 3 −2.194 384 481 666 562 1 2.224 869 221 394 209 2 0.480 744 426 419 990 38
5.20 −3.289 455 858 544 954 9 −2.886 237 764 615 384 7 −2.192 509 225 386 304 1 2.221 691 750 663 429 1 0.480 822 559 827 008 44
5.25 −3.285 745 101 014 267 1 −2.882 613 767 632 774 3 −2.190 669 932 799 222 5 2.218 377 146 535 554 2 0.480 896 816 815 460 59
5.30 −3.282 106 103 034 387 0 −2.879 050 430 566 037 4 −2.188 865 573 792 817 1 2.214 938 854 972 742 0 0.480 967 415 171 630 00
5.35 −3.278 536 735 826 588 9 −2.875 546 654 340 845 0 −2.187 095 157 515 439 6 2.211 390 149 926 244 5 0.481 034 592 746 256 43
5.40 −3.275 034 984 089 821 0 −2.872 101 340 370 370 3 −2.185 357 730 504 054 4 2.207 744 123 381 957 0 0.481 098 531 847 181 82
5.45 −3.271 598 886 439 995 2 −2.868 713 392 477 486 6 −2.183 652 374 919 606 8 2.204 013 592 689 920 0 0.481 159 434 718 168 36
5.50 −3.268 226 583 683 214 1 −2.865 381 723 636 363 5 −2.181 978 206 882 749 1 2.200 211 006 186 107 5 0.481 217 455 765 885 26
5.55 −3.264 916 265 203 881 0 −2.862 105 253 232 184 7 −2.180 334 374 903 210 5 2.196 348 422 532 497 4 0.481 272 768 998 216 97
5.60 −3.261 666 212 509 397 6 −2.858 882 917 142 857 1 −2.178 720 058 396 616 6 2.192 437 382 147 842 2 0.481 325 507 029 544 80
5.65 −3.258 474 751 054 094 1 −2.855 713 659 753 143 0 −2.177 134 466 283 043 4 2.188 488 963 904 547 7 0.481 375 821 232 213 17
5.70 −3.255 340 289 956 976 6 −2.852 596 442 982 456 2 −2.175 576 835 662 027 5 2.184 513 676 289 314 3 0.481 423 826 059 210 02
5.75 −3.252 261 277 890 282 6 −2.849 530 226 845 929 7 −2.174 046 430 559 113 0 2.180 521 661 217 814 4 0.481 469 653 547 856 42
5.80 −3.249 236 238 074 506 1 −2.846 513 946 206 896 2 −2.172 542 540 739 442 1 2.176 522 969 914 566 7 0.481 513 402 857 388 53
5.85 −3.246 263 730 501 838 0 −2.843 546 585 281 315 8 −2.171 064 480 584 150 1 2.172 526 661 432 438 6 0.481 555 191 053 925 47
5.90 −3.243 342 387 703 028 1 −2.840 627 350 847 459 1 −2.169 611 588 025 695 0 2.168 538 795 748 789 8 0.481 595 109 934 119 53
5.95 −3.240 470 872 356 451 7 −2.837 755 313 099 550 3 −2.168 183 223 538 480 6 2.164 566 662 982 135 6 0.481 633 263 457 119 54
6.00 −3.237 647 895 192 453 9 −2.834 928 773 333 333 9 −2.166 778 769 181 422 0 2.160 626 094 779 716 2 0.481 669 717 387 845 75
6.50 −3.211 835 348 490 087 7 −2.808 991 951 641 095 5 −2.153 927 078 642 402 7 2.123 856 454 272 290 0 0.481 957 767 223 375 02
7.00 −3.189 745 102 042 305 5 −2.786 733 095 714 285 3 −2.142 917 048 902 651 0 2.093 778 460 503 405 1 0.482 146 584 706 195 20
7.50 −3.170 621 019 748 184 6 −2.767 454 326 666 666 9 −2.133 378 640 633 866 0 2.070 955 034 398 436 6 0.482 274 466 433 485 20
8.00 −3.153 900 595 181 039 7 −2.750 609 290 000 000 3 −2.125 034 906 487 937 5 2.054 249 556 254 522 9 0.482 364 457 911 312 55
8.50 −3.139 155 911 640 219 0 −2.735 768 817 647 058 7 −2.117 674 390 489 678 4 2.042 169 309 132 136 7 0.482 430 330 420 261 18
9.00 −3.126 055 398 686 042 4 −2.722 596 122 222 222 4 −2.111 132 818 902 167 4 2.033 398 626 419 495 0 0.482 480 289 897 426 14
9.50 −3.114 337 989 164 994 3 −2.710 824 375 789 474 8 −2.105 280 618 710 942 1 2.026 945 914 934 375 4 0.482 519 327 201 928 92
10.00 −3.103 794 408 066 120 2 −2.700 232 670 000 000 1 −2.100 014 204 749 676 6 2.022 186 626 168 039 2 0.482 551 631 561 780 05
10.50 −3.094 257 488 073 244 3 −2.690 661 298 533 018 3 −2.095 249 769 556 136 5 2.018 523 495 743 229 2 0.482 577 616 342 023 45
11.00 −3.085 589 814 709 142 1 −2.681 971 859 845 639 0 −2.090 918 774 532 877 2 2.015 615 838 205 177 6 0.482 598 322 220 000 04
11.50 −3.077 676 978 575 709 7 −2.674 041 687 958 519 4 −2.086 964 621 831 660 4 2.013 312 554 944 392 2 0.482 615 725 053 269 38
12.00 −3.070 424 409 489 752 4 −2.666 775 173 611 111 2 −2.083 340 161 002 209 5 2.011 458 622 264 898 0 0.482 630 492 126 311 98
12.50 −3.063 752 716 152 200 2 −2.660 092 160 000 000 0 −2.080 005 795 748 245 0 2.009 945 381 746 769 0 0.482 643 124 180 588 36
13.00 −3.057 594 755 277 178 5 −2.653 924 932 600 399 1 −2.076 928 028 670 195 2 2.008 695 154 980 117 1 0.482 654 005 529 020 05
13.50 −3.051 893 355 280 058 5 −2.648 215 888 499 381 6 −2.074 078 330 102 829 2 2.007 651 280 414 279 4 0.482 663 436 573 307 90
14.00 −3.046 599 529 913 128 5 −2.642 915 712 203 248 7 −2.071 432 249 810 984 5 2.006 771 622 823 118 5 0.482 671 655 666 652 54
14.50 −3.041 671 062 959 515 8 −2.637 981 933 630 339 2 −2.068 968 712 786 129 1 2.006 024 289 231 448 2 0.482 678 854 294 571 97
15.00 −3.037 071 376 994 613 8 −2.633 377 777 777 777 6 −2.066 669 456 098 057 2 2.005 384 753 412 048 6 0.482 685 187 914 170 20
15.50 −3.032 768 621 797 368 2 −2.629 071 239 311 287 8 −2.064 518 574 891 737 4 2.004 833 887 048 452 1 0.482 690 783 880 261 38
16.00 −3.028 734 934 178 285 0 −2.625 034 332 275 390 6 −2.062 502 153 614 217 2 2.004 356 585 325 997 0 0.482 695 747 355 328 89
16.50 −3.024 945 832 736 480 9 −2.621 242 477 365 692 8 −2.060 607 964 365 487 1 2.003 940 788 720 572 0 0.482 700 165 791 764 89
17.00 −3.021 379 719 678 484 8 −2.617 673 998 156 152 3 −2.058 825 218 535 008 9 2.003 576 774 881 547 6 0.482 704 112 378 025 02
17.50 −3.018 017 468 224 790 4 −2.614 309 704 289 879 3 −2.057 144 361 053 719 9 2.003 256 635 792 354 2 0.482 707 648 720 769 88
18.00 −3.014 842 078 918 360 1 −2.611 132 544 581 618 9 −2.055 556 898 965 909 9 2.002 973 888 572 430 6 0.482 710 826 954 396 65
18.50 −3.011 838 391 768 179 2 −2.608 127 316 703 313 9 −2.054 055 257 821 434 4 2.002 723 180 178 899 4 0.482 713 691 414 704 38
19.00 −3.008 992 843 919 732 9 −2.605 280 422 955 624 8 −2.052 632 660 758 663 8 2.002 500 061 072 242 8 0.482 716 279 978 708 25
19.50 −3.006 293 264 664 277 9 −2.602 579 663 799 509 1 −2.051 283 026 202 007 0 2.002 300 809 618 160 5 0.482 718 625 143 871 43
20.00 −3.003 728 701 240 369 9 −2.600 014 062 500 000 1 −2.050 000 878 711 875 1 2.002 122 295 892 265 8 0.482 720 754 904 439 44
20.50 −3.001 289 270 161 316 3 −2.597 573 715 540 698 8 −2.048 781 283 874 467 9 2.001 961 856 732 585 0 0.482 722 690 963 300 06
21.00 −2.998 966 029 807 398 6 −2.595 249 664 491 647 0 −2.047 619 770 537 481 9 2.001 817 281 194 224 3 0.482 724 459 666 407 87
21.50 −2.996 750 870 816 004 2 −2.593 033 785 821 403 6 −2.046 512 285 886 894 5 2.001 686 629 951 549 9 0.482 726 076 418 022 79
22.00 −2.994 636 421 434 263 3 −2.590 918 695 785 807 0 −2.045 455 145 626 579 3 2.001 568 258 031 347 6 0.482 727 557 204 355 73
22.50 −2.992 615 965 503 682 6 −2.588 897 668 038 408 8 −2.044 444 993 019 942 2 2.001 460 749 533 917 8 0.482 728 916 031 834 71
23.00 −2.990 683 371 152 208 3 −2.586 964 562 019 146 4 −2.043 478 763 275 931 3 2.001 362 881 053 765 4 0.482 730 165 208 265 67
23.50 −2.988 833 028 597 203 8 −2.585 113 760 510 164 8 −2.042 553 652 483 103 4 2.001 273 591 574 243 7 0.482 731 315 578 749 60
24.00 −2.987 059 795 729 263 7 −2.583 340 115 017 361 2 −2.041 667 090 428 180 8 2.001 191 957 993 179 8 0.482 732 376 725 101 11
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24.50 −2.985 358 950 364 231 5 −2.581 638 897 856 144 9 −2.040 816 716 743 977 9 2.001 117 174 136 656 0 0.482 733 357 134 353 22
25.00 −2.983 726 148 229 000 1 −2.580 005 760 000 000 1 −2.040 000 359 920 384 2 2.001 048 534 077 468 4 0.482 734 264 342 357 33
25.50 −2.982 157 385 893 428 3 −2.578 436 693 898 673 6 −2.039 216 018 785 310 8 2.000 985 417 726 594 7 0.482 735 105 055 877 97
26.00 −2.980 648 967 982 003 4 −2.576 928 000 595 217 3 −2.038 461 846 122 991 5 2.000 927 278 908 645 0 0.482 735 885 257 256 25
26.50 −2.979 197 478 099 568 0 −2.575 476 260 572 708 0 −2.037 736 134 147 259 3 2.000 873 635 151 648 1 0.482 736 610 294 245 58
27.00 −2.977 799 752 989 305 7 −2.574 078 307 846 026 1 −2.037 037 301 589 263 5 2.000 824 059 071 088 6 0.482 737 284 957 049 15
27.50 −2.976 452 859 511 327 5 −2.572 731 206 884 775 6 −2.036 363 882 194 101 9 2.000 778 171 726 445 0 0.482 737 913 545 265 63
28.00 −2.975 154 074 089 058 3 −2.571 432 232 012 703 4 −2.035 714 514 450 196 7 2.000 735 635 228 072 1 0.482 738 499 925 373 21
28.50 −2.973 900 864 320 167 0 −2.570 178 848 978 889 3 −2.035 087 932 400 006 4 2.000 696 148 722 876 7 0.482 739 047 580 870 88
29.00 −2.972 690 872 490 664 2 −2.568 968 698 438 103 3 −2.034 482 957 401 514 2 2.000 659 443 093 628 6 0.482 739 559 655 884 89
29.50 −2.971 521 900 766 226 1 −2.567 799 581 113 412 0 −2.033 898 490 727 675 6 2.000 625 277 281 526 5 0.482 740 038 993 078 32
30.00 −2.970 391 897 864 983 9 −2.566 669 444 444 444 0 −2.033 333 506 906 049 4 2.000 593 435 032 562 3 0.482 740 488 166 860 49
30.50 −2.969 298 947 041 676 9 −2.565 576 370 550 550 3 −2.032 787 047 713 634 7 2.000 563 721 729 158 3 0.482 740 909 512 506 37
31.00 −2.968 241 255 235 048 6 −2.564 518 565 360 181 4 −2.032 258 216 752 948 6 2.000 535 961 679 898 6 0.482 741 305 150 915 96
31.50 −2.967 217 143 249 182 5 −2.563 494 348 776 715 4 −2.031 746 174 544 734 7 2.000 509 997 992 987 0 0.482 741 677 014 807 52
32.00 −2.966 225 036 855 630 2 −2.562 502 145 767 211 9 −2.031 250 134 080 791 4 2.000 485 686 268 651 1 0.482 742 026 860 971 12
32.50 −2.965 263 458 717 141 8 −2.561 540 478 274 570 1 −2.030 769 356 787 361 7 2.000 462 897 385 310 7 0.482 742 356 295 402 13
33.00 −2.964 331 021 045 820 2 −2.560 607 957 865 658 9 −2.030 303 148 855 531 0 2.000 441 513 781 197 1 0.482 742 666 784 921 89
33.50 −2.963 426 418 918 936 1 −2.559 703 279 038 422 0 −2.029 850 857 900 282 5 2.000 421 428 663 326 4 0.482 742 959 671 603 80
34.00 −2.962 548 424 184 686 4 −2.558 825 213 120 053 3 −2.029 411 869 914 377 5 2.000 402 544 786 319 8 0.482 743 236 185 208 87
34.50 −2.961 695 879 898 025 7 −2.557 972 602 696 213 3 −2.028 985 606 487 140 1 2.000 384 773 615 080 8 0.482 743 497 453 654 97
35.00 −2.960 867 695 233 536 4 −2.557 144 356 518 117 3 −2.028 571 522 261 657 4 2.000 368 034 284 713 2 0.482 743 744 513 053 85
35.50 −2.960 062 840 828 309 4 −2.556 339 444 840 347 1 −2.028 169 102 606 884 0 2.000 352 252 908 059 7 0.482 743 978 316 026 89
36.00 −2.959 280 344 512 996 0 −2.555 556 895 147 462 1 −2.027 777 861 483 755 8 2.000 337 361 820 133 0 0.482 744 199 739 708 11
36.50 −2.958 519 287 393 814 4 −2.554 795 788 232 095 1 −2.027 397 339 486 710 0 2.000 323 299 078 687 4 0.482 744 409 592 478 94
37.00 −2.957 778 800 252 295 8 −2.554 055 254 591 254 3 −2.027 027 102 044 007 8 2.000 310 007 796 347 4 0.482 744 608 620 122 97
37.50 −2.957 058 060 233 108 2 −2.553 334 471 111 111 0 −2.026 666 737 762 051 1 2.000 297 435 788 265 2 0.482 744 797 511 621 97
38.00 −2.956 356 287 793 418 4 −2.552 632 658 013 674 2 −2.026 315 856 900 413 6 2.000 285 534 979 513 4 0.482 744 976 903 913 49
38.50 −2.955 672 743 890 005 9 −2.551 949 076 041 529 5 −2.025 974 089 965 713 3 2.000 274 261 112 618 3 0.482 745 147 386 539 23
39.00 −2.955 006 727 382 799 3 −2.551 283 023 859 264 1 −2.025 641 086 413 658 3 2.000 263 573 334 824 9 0.482 745 309 505 659 30
39.50 −2.954 357 572 635 638 4 −2.550 633 835 652 357 0 −2.025 316 513 449 674 0 2.000 253 434 297 748 3 0.482 745 463 767 903 84
40.00 −2.953 724 647 297 010 5 −2.550 000 878 906 249 8 −2.025 000 054 919 492 0 2.000 243 808 974 206 5 0.482 745 610 643 273 81
40.50 −2.953 107 350 245 204 1 −2.549 383 552 350 015 2 −2.024 691 410 281 921 6 2.000 234 664 628 843 4 0.482 745 750 567 252 94
41.00 −2.952 505 109 683 837 9 −2.548 781 284 050 562 1 −2.024 390 293 656 788 6 2.000 225 973 241 767 5 0.482 745 883 950 008 28
41.50 −2.951 917 381 375 087 0 −2.548 193 529 644 675 2 −2.024 096 432 941 705 3 2.000 217 705 439 750 3 0.482 746 011 165 309 02
42.00 −2.951 343 646 999 116 1 −2.547 619 770 697 394 4 −2.023 809 568 991 926 0 2.000 209 836 692 377 5 0.482 746 132 567 506 04
42.50 −2.950 783 412 629 344 8 −2.547 059 513 176 326 7 −2.023 529 454 858 105 8 2.000 202 342 571 371 1 0.482 746 248 483 915 67
43.00 −2.950 236 207 314 092 4 −2.546 512 286 032 442 5 −2.023 255 855 077 233 3 2.000 195 201 403 386 1 0.482 746 359 221 088 16
43.50 −2.949 701 581 756 059 5 −2.545 977 639 878 791 0 −2.022 988 545 012 474 0 2.000 188 392 439 254 9 0.482 746 465 065 091 45
44.00 −2.949 179 107 081 856 3 −2.545 455 145 759 340 2 −2.022 727 310 238 024 8 2.000 181 896 685 849 1 0.482 746 566 283 134 34
44.50 −2.948 668 373 694 487 9 −2.544 944 394 000 845 4 −2.022 471 945 965 436 6 2.000 175 696 295 728 2 0.482 746 663 125 149 97
45.00 −2.948 168 990 202 356 5 −2.544 444 993 141 289 1 −2.022 222 256 508 190 9 2.000 169 774 661 575 9 0.482 746 755 825 032 46
45.50 −2.947 680 582 418 881 2 −2.543 956 568 929 000 0 −2.021 978 054 781 575 6 2.000 164 116 192 185 5 0.482 746 844 601 804 06
46.00 −2.947 202 792 427 370 3 −2.543 478 763 387 066 4 −2.021 739 161 835 180 5 2.000 158 706 657 190 4 0.482 746 929 660 886 89
46.50 −2.946 735 277 706 226 8 −2.543 011 233 938 132 3 −2.021 505 406 415 556 6 2.000 153 531 400 097 3 0.482 747 011 191 301 31
47.00 −2.946 277 710 310 004 0 −2.542 553 652 585 076 5 −2.021 276 624 556 789 2 2.000 148 580 523 571 3 0.482 747 089 384 035 43
47.50 −2.945 829 776 102 181 0 −2.542 105 705 143 453 7 −2.021 052 659 196 935 8 2.000 143 839 648 219 0 0.482 747 164 398 597 38
48.00 −2.945 391 174 035 899 8 −2.541 667 090 521 918 3 −2.020 833 359 818 427 6 2.000 139 298 303 183 4 0.482 747 236 397 785 77
48.50 −2.944 961 615 479 194 0 −2.541 237 520 047 180 6 −2.020 618 582 110 730 1 2.000 134 946 105 804 0 0.482 747 305 531 593 12
49.00 −2.944 540 823 581 537 6 −2.540 816 716 830 294 6 −2.020 408 187 653 641 7 2.000 130 773 532 695 6 0.482 747 371 941 232 63
49.50 −2.944 128 532 678 780 3 −2.540 404 415 171 368 1 −2.020 202 043 619 797 8 2.000 126 771 330 132 1 0.482 747 435 759 445 23
50.00 −2.943 724 487 733 800 0 −2.540 000 360 000 000 1 −2.020 000 022 495 024 1 2.000 122 930 758 627 7 0.482 747 497 111 363 39
50.50 −2.943 328 443 810 376 2 −2.539 604 306 348 963 7 −2.019 802 001 815 295 8 2.000 119 243 852 379 8 0.482 747 556 115 047 38
51.00 −2.942 940 165 578 022 5 −2.539 216 018 858 863 1 −2.019 607 863 919 179 9 2.000 115 702 441 467 3 0.482 747 612 880 901 96
51.50 −2.942 559 426 845 662 5 −2.538 835 271 311 648 0 −2.019 417 495 714 692 6 2.000 112 300 894 422 8 0.482 747 667 516 317 15
52.00 −2.942 186 010 122 208 8 −2.538 461 846 191 047 3 −2.019 230 788 459 609 9 2.000 109 030 966 054 3 0.482 747 720 118 005 65
52.50 −2.941 819 706 202 258 6 −2.538 095 534 268 129 1 −2.019 047 637 554 330 7 2.000 105 886 798 663 4 0.482 747 770 780 519 84
53.00 −2.941 460 313 775 238 9 −2.537 736 134 210 322 6 −2.018 867 942 346 467 7 2.000 102 862 426 955 7 0.482 747 819 592 325 10
53.50 −2.941 107 639 056 469 2 −2.537 383 452 212 369 9 −2.018 691 605 946 393 1 2.000 099 952 115 245 8 0.482 747 866 637 119 94
54.00 −2.940 761 495 438 726 7 −2.537 037 301 647 784 3 −2.018 518 535 053 032 8 2.000 097 150 563 760 8 0.482 747 911 994 198 31
54.50 −2.940 421 703 162 985 8 −2.536 697 502 739 497 8 −2.018 348 639 789 253 2 2.000 094 452 936 692 0 0.482 747 955 738 567 44
55.00 −2.940 088 089 007 126 8 −2.536 363 882 248 480 2 −2.018 181 833 546 222 0 2.000 091 854 162 246 6 0.482 747 997 941 185 34
55.50 −2.939 760 485 991 464 1 −2.536 036 273 179 187 0 −2.018 018 032 836 187 2 2.000 089 349 932 678 0 0.482 748 038 669 398 42
56.00 −2.939 438 733 100 053 5 −2.535 714 514 500 794 0 −2.017 857 157 153 137 4 2.000 086 935 917 107 4 0.482 748 077 987 047 50
56.50 −2.939 122 675 016 802 2 −2.535 398 450 883 237 7 −2.017 699 128 840 867 2 2.000 084 608 108 643 6 0.482 748 115 954 614 03
57.00 −2.938 812 161 875 462 8 −2.535 087 932 447 145 6 −2.017 543 872 967 983 1 2.000 082 362 684 057 8 0.482 748 152 629 564 16
57.50 −2.938 507 049 022 673 0 −2.534 782 814 526 820 5 −2.017 391 317 209 428 9 2.000 080 196 029 151 7 0.482 748 188 066 476 90
58.00 −2.938 207 196 793 257 0 −2.534 482 957 445 484 8 −2.017 241 391 734 146 3 2.000 078 104 724 712 3 0.482 748 222 317 081 48
58.50 −2.937 912 470 297 043 4 −2.534 188 226 302 051 6 −2.017 094 029 098 487 8 2.000 076 085 516 389 0 0.482 748 255 430 626 83
59.00 −2.937 622 739 216 529 1 −2.533 898 490 768 740 5 −2.016 949 164 145 056 1 2.000 074 135 336 027 4 0.482 748 287 453 904 41
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59.50 −2.937 337 877 614 742 1 −2.533 613 624 898 901 9 −2.016 806 733 906 641 1 2.000 072 251 254 965 1 0.482 748 318 431 434 29
60.00 −2.937 057 763 752 715 5 −2.533 333 506 944 444 5 −2.016 666 677 514 961 3 2.000 070 430 465 214 6 0.482 748 348 405 463 77
60.50 −2.936 782 279 916 006 8 −2.533 058 019 182 326 0 −2.016 528 936 113 929 6 2.000 068 670 409 718 1 0.482 748 377 416 402 97
61.00 −2.936 511 312 249 756 1 −2.532 787 047 749 573 5 −2.016 393 452 777 184 5 2.000 066 968 499 599 1 0.482 748 405 502 547 94
61.50 −2.936 244 750 601 785 0 −2.532 520 482 486 350 3 −2.016 260 172 429 646 1 2.000 065 322 362 400 5 0.482 748 432 700 480 23
62.00 −2.935 982 488 373 290 8 −2.532 258 216 786 624 3 −2.016 129 041 772 865 9 2.000 063 729 761 929 0 0.482 748 459 045 017 73
62.50 −2.935 724 422 376 708 7 −2.532 000 147 455 999 9 −2.016 000 009 213 962 1 2.000 062 188 497 427 2 0.482 748 484 569 380 13
63.00 −2.935 470 452 700 339 0 −2.531 746 174 576 322 3 −2.015 873 024 797 934 8 2.000 060 696 590 748 6 0.482 748 509 305 221 73
63.50 −2.935 220 482 579 373 1 −2.531 496 201 376 679 5 −2.015 748 040 143 184 6 2.000 059 252 012 819 8 0.482 748 533 282 741 59
64.00 −2.934 974 418 272 964 2 −2.531 250 134 110 450 7 −2.015 625 008 380 049 5 2.000 057 852 909 562 9 0.482 748 556 530 787 91
64.50 −2.934 732 168 947 017 2 −2.531 007 881 938 076 6 −2.015 503 884 092 201 0 2.000 056 497 534 375 8 0.482 748 579 076 922 48
65.00 −2.934 493 646 562 385 6 −2.530 769 356 815 237 6 −2.015 384 623 260 748 4 2.000 055 184 122 026 2 0.482 748 600 947 365 21
65.50 −2.934 258 765 768 193 6 −2.530 534 473 386 157 7 −2.015 267 183 210 899 5 2.000 053 911 194 231 0 0.482 748 622 167 296 69
66.00 −2.934 027 443 800 002 5 −2.530 303 148 881 755 3 −2.015 151 522 561 046 3 2.000 052 676 893 410 4 0.482 748 642 760 528 15
66.50 −2.933 799 600 382 576 6 −2.530 075 303 022 392 6 −2.015 037 601 174 151 3 2.000 051 480 365 727 2 0.482 748 662 750 493 77
67.00 −2.933 575 157 636 995 7 −2.529 850 857 924 976 1 −2.014 925 380 111 305 4 2.000 050 319 633 762 0 0.482 748 682 158 658 35
67.50 −2.933 354 039 991 906 2 −2.529 629 738 014 191 4 −2.014 814 821 587 352 3 2.000 049 193 538 486 3 0.482 748 701 006 208 26
68.00 −2.933 136 174 098 677 4 −2.529 411 869 937 650 4 −2.014 705 888 928 471 9 2.000 048 100 791 834 0 0.482 748 719 313 208 23
68.50 −2.932 921 488 750 281 0 −2.529 197 182 484 755 2 −2.014 598 546 531 621 6 2.000 047 040 179 445 5 0.482 748 737 098 900 82
69.00 −2.932 709 914 803 693 7 −2.528 985 606 509 093 2 −2.014 492 759 825 736 3 2.000 046 010 510 256 4 0.482 748 754 381 713 83
69.50 −2.932 501 385 105 650 7 −2.528 777 074 854 179 1 −2.014 388 495 234 606 9 2.000 045 010 700 562 3 0.482 748 771 179 310 37
70.00 −2.932 295 834 421 583 3 −2.528 571 522 282 382 1 −2.014 285 720 141 353 8 2.000 044 039 654 754 1 0.482 748 787 508 589 63
70.50 −2.932 093 199 367 575 4 −2.528 368 885 406 876 2 −2.014 184 402 854 401 6 2.000 043 096 325 289 8 0.482 748 803 385 736 50
71.00 −2.931 893 418 345 200 3 −2.528 169 102 626 465 2 −2.014 084 512 574 902 1 2.000 042 179 469 045 1 0.482 748 818 826 062 35
71.50 −2.931 696 431 479 090 3 −2.527 972 114 063 146 6 −2.013 986 019 365 518 6 2.000 041 288 999 283 1 0.482 748 833 845 171 98
72.00 −2.931 502 180 557 105 3 −2.527 777 861 502 271 7 −2.013 888 894 120 512 4 2.000 040 423 121 038 5 0.482 748 848 456 674 93
72.50 −2.931 310 608 972 979 9 −2.527 586 288 335 188 1 −2.013 793 108 537 064 8 2.000 039 581 355 272 9 0.482 748 862 674 529 49
73.00 −2.931 121 661 671 327 1 −2.527 397 339 504 232 0 −2.013 698 635 087 782 6 2.000 038 762 776 678 7 0.482 748 876 511 859 60
73.50 −2.930 935 285 094 884 9 −2.527 210 961 449 974 9 −2.013 605 446 994 319 9 2.000 037 966 610 923 1 0.482 748 889 981 342 24
74.00 −2.930 751 427 133 904 6 −2.527 027 102 060 602 1 −2.013 513 518 202 074 7 2.000 037 192 111 827 2 0.482 748 903 095 084 89
74.50 −2.930 570 037 077 575 1 −2.526 845 710 623 331 1 −2.013 422 823 355 901 5 2.000 036 438 515 215 8 0.482 748 915 864 878 89
75.00 −2.930 391 065 567 390 4 −2.526 666 737 777 778 1 −2.013 333 337 776 795 2 2.000 035 705 161 091 7 0.482 748 928 301 707 51
75.50 −2.930 214 464 552 370 2 −2.526 490 135 471 168 9 −2.013 245 037 439 500 8 2.000 034 991 350 922 1 0.482 748 940 416 514 23
76.00 −2.930 040 187 246 049 8 −2.526 315 856 915 328 3 −2.013 157 898 951 012 4 2.000 034 296 434 847 6 0.482 748 952 219 603 01
76.50 −2.929 868 188 085 154 5 −2.526 143 856 545 347 8 −2.013 071 899 529 907 9 2.000 033 619 803 999 4 0.482 748 963 720 934 07
77.00 −2.929 698 422 689 885 5 −2.525 974 089 979 868 2 −2.012 987 016 986 493 0 2.000 032 960 801 706 7 0.482 748 974 930 116 70
77.50 −2.929 530 847 825 741 4 −2.525 806 513 982 898 2 −2.012 903 229 703 714 4 2.000 032 319 026 863 2 0.482 748 985 856 328 92
78.00 −2.929 365 421 366 809 7 −2.525 641 086 427 101 3 −2.012 820 516 618 802 5 2.000 031 693 761 860 3 0.482 748 996 508 490 40
78.50 −2.929 202 102 260 463 3 −2.525 477 766 258 489 1 −2.012 738 857 205 623 1 2.000 031 084 541 603 8 0.482 749 006 895 081 10
79.00 −2.929 040 850 493 392 2 −2.525 316 513 462 449 6 −2.012 658 231 457 693 5 2.000 030 490 705 025 3 0.482 749 017 024 347 80
79.50 −2.928 881 627 058 920 4 −2.525 157 289 031 063 2 −2.012 578 619 871 839 2 2.000 029 912 079 433 4 0.482 749 026 904 237 38
80.00 −2.928 724 393 925 550 3 −2.525 000 054 931 640 5 −2.012 500 003 432 467 8 2.000 029 347 949 245 9 0.482 749 036 542 336 75
80.50 −2.928 569 114 006 676 1 −2.524 844 774 076 436 6 −2.012 422 363 596 428 5 2.000 028 797 892 446 3 0.482 749 045 946 027 13
81.00 −2.928 415 751 131 417 7 −2.524 691 410 293 481 2 −2.012 345 682 278 422 5 2.000 028 261 520 558 5 0.482 749 055 122 351 50
81.50 −2.928 264 270 016 534 4 −2.524 539 928 298 488 6 −2.012 269 941 836 969 2 2.000 027 738 370 776 7 0.482 749 064 078 189 46
82.00 −2.928 114 636 239 361 5 −2.524 390 293 667 794 4 −2.012 195 125 060 866 3 2.000 027 227 903 103 7 0.482 749 072 820 016 67
82.50 −2.927 966 816 211 728 5 −2.524 242 472 812 270 3 −2.012 121 215 156 156 1 2.000 026 730 176 532 7 0.482 749 081 354 415 41
83.00 −2.927 820 777 154 827 7 −2.524 096 432 952 189 8 −2.012 048 195 733 555 2 2.000 026 244 306 127 0 0.482 749 089 687 254 33
83.50 −2.927 676 487 074 979 8 −2.523 952 142 092 994 2 −2.011 976 050 796 340 2 2.000 025 770 265 636 1 0.482 749 097 824 615 89
84.00 −2.927 533 914 740 265 3 −2.523 809 569 001 920 2 −2.011 904 764 728 662 1 2.000 025 307 517 169 4 0.482 749 105 772 080 24
84.50 −2.927 393 029 657 990 2 −2.523 668 683 185 465 3 −2.011 834 322 284 280 5 2.000 024 855 785 615 1 0.482 749 113 535 221 37
85.00 −2.927 253 802 052 939 1 −2.523 529 454 867 638 1 −2.011 764 708 575 690 5 2.000 024 414 512 841 6 0.482 749 121 119 149 80
85.50 −2.927 116 202 846 401 3 −2.523 391 854 968 983 3 −2.011 695 909 063 634 2 2.000 023 983 612 854 8 0.482 749 128 528 875 86
86.00 −2.926 980 203 635 920 5 −2.523 255 855 086 330 0 −2.011 627 909 546 978 5 2.000 023 563 290 743 5 0.482 749 135 770 705 38
86.50 −2.926 845 776 675 748 7 −2.523 121 427 473 245 0 −2.011 560 696 152 938 6 2.000 023 152 613 692 5 0.482 749 142 847 919 59
87.00 −2.926 712 894 857 976 8 −2.522 988 545 021 160 4 −2.011 494 255 327 647 4 2.000 022 751 298 125 9 0.482 749 149 765 510 03
87.50 −2.926 581 531 694 310 5 −2.522 857 181 241 149 3 −2.011 428 573 827 041 0 2.000 022 358 748 183 6 0.482 749 156 527 196 47
88.00 −2.926 451 661 298 467 2 −2.522 727 310 246 322 6 −2.011 363 638 708 058 7 2.000 021 976 016 340 0 0.482 749 163 139 839 84
88.50 −2.926 323 258 369 167 8 −2.522 598 906 734 816 9 −2.011 299 437 320 136 3 2.000 021 601 595 692 6 0.482 749 169 605 071 91
89.00 −2.926 196 298 173 707 5 −2.522 471 945 973 367 5 −2.011 235 957 296 997 3 2.000 021 235 396 002 5 0.482 749 175 927 587 43
89.50 −2.926 070 756 532 070 9 −2.522 346 403 781 419 2 −2.011 173 186 548 703 0 2.000 020 877 853 305 7 0.482 749 182 111 837 70
90.00 −2.925 946 609 801 579 2 −2.522 222 256 515 775 0 −2.011 111 113 253 984 1 2.000 020 528 077 783 9 0.482 749 188 161 082 03
90.50 −2.925 823 834 862 049 1 −2.522 099 481 055 753 8 −2.011 049 725 852 813 7 2.000 020 186 042 783 5 0.482 749 194 079 126 81
91.00 −2.925 702 409 101 436 5 −2.521 978 054 788 831 5 −2.010 989 013 039 233 2 2.000 019 851 638 535 7 0.482 749 199 869 534 07
91.50 −2.925 582 310 401 952 5 −2.521 857 955 596 758 4 −2.010 928 963 754 408 5 2.000 019 524 517 977 0 0.482 749 205 535 703 72
92.00 −2.925 463 517 126 632 8 −2.521 739 161 842 126 5 −2.010 869 567 179 916 4 2.000 019 204 588 608 7 0.482 749 211 080 968 85
92.50 −2.925 346 008 106 342 9 −2.521 621 652 355 373 8 −2.010 810 812 731 245 6 2.000 018 891 589 308 5 0.482 749 216 508 530 81
93.00 −2.925 229 762 627 201 7 −2.521 505 406 422 208 7 −2.010 752 690 051 509 8 2.000 018 585 348 207 5 0.482 749 221 821 491 99
93.50 −2.925 114 760 418 408 5 −2.521 390 403 771 433 4 −2.010 695 189 005 361 3 2.000 018 285 698 414 1 0.482 749 227 022 846 39
94.00 −2.925 000 981 640 458 5 −2.521 276 624 563 163 3 −2.010 638 299 673 097 6 2.000 017 992 463 276 6 0.482 749 232 115 543 99
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94.50 −2.924 888 406 873 734 0 −2.521 164 049 377 412 1 −2.010 582 012 344 957 8 2.000 017 705 369 232 5 0.482 749 237 102 338 86
95.00 −2.924 777 017 107 452 5 −2.521 052 659 203 044 7 −2.010 526 317 515 597 8 2.000 017 424 498 296 7 0.482 749 241 986 093 81
95.50 −2.924 666 793 728 967 7 −2.520 942 435 427 072 9 −2.010 471 205 878 739 7 2.000 017 149 433 133 6 0.482 749 246 769 320 91
96.00 −2.924 557 718 513 397 7 −2.520 833 359 824 286 9 −2.010 416 668 321 985 5 2.000 016 879 376 954 8 0.482 749 251 452 627 70
96.50 −2.924 449 773 613 580 4 −2.520 725 414 547 206 9 −2.010 362 695 921 795 1 2.000 016 616 604 948 0 0.482 749 256 044 662 34
97.00 −2.924 342 941 550 339 2 −2.520 618 582 116 350 9 −2.010 309 279 938 621 5 2.000 016 358 229 156 1 0.482 749 260 541 505 63
97.50 −2.924 237 205 203 045 9 −2.520 512 845 410 797 0 −2.010 256 411 812 189 7 2.000 016 105 476 216 2 0.482 749 264 947 924 92
98.00 −2.924 132 547 800 476 3 −2.520 408 187 659 036 1 −2.010 204 083 156 923 9 2.000 015 857 847 848 6 0.482 749 269 265 871 19
98.50 −2.924 028 952 911 939 4 −2.520 304 592 430 103 5 −2.010 152 285 757 515 6 2.000 015 615 220 174 7 0.482 749 273 497 651 07
99.00 −2.923 926 404 438 678 8 −2.520 202 043 624 978 1 −2.010 101 011 564 621 4 2.000 015 377 523 667 3 0.482 749 277 645 387 28
99.50 −2.923 824 886 605 534 5 −2.520 100 525 468 244 7 −2.010 050 252 690 694 3 2.000 015 144 618 166 2 0.482 749 281 711 189 80
100.00 −2.923 724 383 952 849 9 −2.520 000 022 500 000 1 −2.010 000 001 405 939 2 2.000 014 915 921 101 8 0.482 749 285 696 419 62
100.50 −2.923 624 881 328 625 4 −2.519 900 519 568 007 1 −2.009 950 250 134 386 9 2.000 014 692 715 586 4 0.482 749 289 604 887 50
101.00 −2.923 526 363 880 903 0 −2.519 802 001 820 077 7 −2.009 900 991 450 089 6 2.000 014 473 467 952 6 0.482 749 293 436 686 21
101.50 −2.923 428 817 050 375 3 −2.519 704 454 696 682 0 −2.009 852 218 073 422 0 2.000 014 258 553 268 3 0.482 749 297 194 170 65
102.00 −2.923 332 226 563 212 0 −2.519 607 863 923 777 1 −2.009 803 922 867 497 8 2.000 014 047 991 792 9 0.482 749 300 879 261 54

B.2 Parameters for two-electron model

We can remove the single-active-electron approximation from our model by

including the second electron in the Hamiltonian, leading to a two-active-

electron (TAE) model. As the �xed-nuclei TAE Hamiltonian, i. e. the analogue

to (B.2), we propose

HHeH+ =
p21
2
+
p22
2
+ VH(x1; R) + VHe(x1; R) + VH(x2; R) + VHe(x2; R)

+ Vee(x1, x2; R) + VH−He(R)
(B.3)

using the potentials

VH(x) =
−Z1√

(x + R/2)2 + �1(R)

VHe(x) =
−Z2√

(x − R/2)2 + �2(R)

Vee(x1, x2) =
1√

(x1 − x2)2 + �(R)

VH−He =
Z1Z2
R

.

Here, x1 and x2 are the coordinates of the two electrons and the nuclei are

located at ±R/2 as before. The charge of the helium nucleus is not shielded by

an inactive electron anymore, therefore we have Z1 = 1, Z2 = 2. Instead of the

literature potential values Vion(R) in (B.2), the nuclear repulsion is included in
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the exact term VH−He. In �xed-nuclei calculations, it is constant and can be

omitted. It is, however, important for calculations including nuclear motion.

It may seem counterintuitive that the electron-electron repulsion Vee de-

pends on the internuclear distance. The reason for introducing the R-depen-

dent function �(R) is that we still want to reproduce three Born-Oppenheimer

curves which in general requires three tunable functions. We can consider the

model reasonable if �(R) does not vary too much and if it is constant for large

internuclear distance.

If one electron has been removed from the molecule, the reduced system

can be described by the following Hamilton operator (which follows from

(B.3) via x ∶= x1 and x2 → ∞).

HHeH2+ =
p2

2
+ VH(x) + VHe(x) + VH−He

Similar to the SAE model, we tune the soft-core parameter functions �1(R),
�2(R) and �(R) such that the model reproduces the two lowest Born-Oppen-

heimer potential-energy curves of HeH
+

and the ground-state BO PEC of

HeH
2+

. Explicitly, we solve the time-independent Schrödinger equations

HHeH+ (x1, x2; R) = E(R) (x1, x2; R) (B.4)

and

HHeH2+� (x ; R) = Eion(R)� (x ; R) (B.5)

for each value of the internuclear distance R.

In the following, �rst we consider how to solve the eigenvalue equations

(B.4) and (B.5). Then, we develop a strategy for optimizing the parameters

functions.

Solving the eigenvalue problems

The eigenenergy calculation for HeH
2+

, i. e. the solution of eq. (B.5) is easy: It

is an ordinary di�erential equation (depending only on x as a variable) which

can be perfectly solved using the shooting method with Numerov integration

[139, 140]. The ground-state energy is the largest energy for which “shooting”

gives a wave function without nodes.

Solving (B.4) is harder. Since we are not interested in all eigenvalues but

only the lowest two, diagonalization of the Hamiltonian (which can be a
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large matrix, depending on the grid sizes for x1 and x2) is wasteful. Instead,

iterative algorithms such as imaginary-time evolution [138] or the power

method [124, 141] can be applied.
5

A numerically two-dimensional operator

has to be evaluated many times which is relatively expensive compared to the

calculation of eigenstates of H
HeH

2+ . The excited state and its energy can be

calculated by projecting out the ground state during the iteration.

Summarizing these considerations, the calculation of Eion is easy whereas

E0 and E1 are much harder with E1 being slightly more expensive because of

the projections.

Physical intuition

In order to optimize the tuning algorithm for the soft-core parameters, we

investigate how they a�ect the di�erent eigenenergies if the eigenstates are

close to the real-world situation. For large internuclear distance, the three

relevant eigenstates can be characterized as follows.

E0: In the ground state of HeH
+
, both electrons are located at the helium

core. Therefore, the ground-state energy is sensitive to �2 (the softening

parameter for helium) and � (the softening parameter for the electron-electron

interaction), but not very sensitive to �1.
E1: In the excited state, one of the electrons has moved to the hydrogen

core and the electrons are thus far apart.
6

Therefore, the excited-state energy

depends on both �1 and �2, but not very strongly on � .

Eion: In the ground state of the ionized system, the single electron is located

at the helium core. Since there is no electron-electron interaction, the energy

does not depend on � at all. Eion depends sensitively on �2 and only very

weakly on �1.
Most of these considerations apply only “close to the real situation”. As

an example: The “real” excited state (i. e. one electron at He and H each) can

become the ground state of the model system if � gets very small because in this

case the electron-electron interaction becomes very strong which increases

the energy of the “real” ground state where both electrons are located at the

helium site. In this case, the ground-state energy in the model is also sensitive

5
Power method here means to apply the shifted operator HHeH

+ + � repeatedly to a randomly

initialized state. The shift � is chosen such that all eigenvalues are negative. This procedure

converges towards the ground state.

6
The wave function of course is still symmetric with respect to x1 ↔ x2.

101



B Fine-tuning of soft-core parameters

to �1. This kind of pitfalls can lead to undesired behaviour if the algorithms

are not restricted to physically reasonable parameter ranges.

Calculating the so�-core parameter

We restrict the parameters �1, �2, � to positive values with the parametrization

�1 = exp(�1) �2 = exp(�2) � = exp(�3)

and we only use �i in the following. Consider the following function

f ∶
⎛
⎜
⎜
⎝

�1
�2
�3

⎞
⎟
⎟
⎠
↦

⎛
⎜
⎜
⎝

E0
E1
Eion

⎞
⎟
⎟
⎠
,

assuming that each of the eigenenergies has been shifted by the correct value

from the literature. The sought-after parameters then are the solution of

f (�1, �2, �3) = 0. (B.6)

One could apply a general root-�nding algorithm in three dimensions (e. g.

the generalized Newton’s method), but in the following we construct in three

steps a specialized algorithm that uses the physical intuition.

The ionized problem: �1(�2)

For any given �2, we can easily calculate �1 (and vice versa): For �xed �2, Eion
depends monotonically on �1 (cf. (B.1)), so once two bounds for �1 are found

(with di�ering sign of Eion), a simple bisection or secant method converges

quickly.

This works as long as �2 is not too small. If that is the case, Eion cannot be

made positive, no matter how large �1 is. This indicates that this small value

of �2 cannot solve (B.6). If it works, this de�nes a function �1(�2) which is not

too expensive to evaluate.

Although all components of f (�1, �2, �3) are monotonic in �2, this is no

longer true for �2 ↦ f (�1(�2), �2, �3). This function can have local extrema

which can severely disturb Newton’s algorithm.
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B.2 Parameters for two-electron model

The ground-state energy: �3(�2)

The ground-state energy is still monotonic in �3 for �xed �1 and �2. Therefore,

for �xed �2, it is possible to calculate the root of

�3 ↦ E0(�1(�2), �2, �3)

similarly to the procedure outlined in the previous section. The major dif-

ference is that instead of solving a one-dimensional eigenvalue problem, in

every step a two-dimensional eigenstate has to be found. If we use iterative

algorithms for that, only an approximation to that state is calculated, i. e. the

degree of convergence can in�uence the results. Also, the e�ort is much higher

to calculate these states than for the one-dimensional case.

Anyway, this gives a function �3(�1, �2) which can already take minutes to

hours to evaluate, depending on the grid size and convergence criteria. Again,

for some values of �2 it may be impossible to �nd a suitable �3. A good starting

value for �2 and small steps help to avoid that situation.

Final stage: find �2

Given some value of �2, the functions �1(�2) and �3(�2) give results which

guarantee that E0 and Eion are reproduced, if possible. This leaves a one-

dimensional function

�2 ↦ E1(�1(�2), �2, �3(�2))

which is not only not monotonic, but can also have a very large derivative.

Therefore, at a zero-crossing it can e�ectively jump from positive to negative

values and Newton’s algorithm is not very useful here. Instead, it proved

useful to look at some starting value for �2 and neighbouring values, alternat-

ing between larger and smaller values while increasing the di�erence to the

starting value. Once a sign change of E1 is detected, the secant (or regula falsi)

method is used within the found bounds.

As long as the starting value is not too bad, this usually converges quickly.

It is useful to calculate soft-core parameters for neighbouring values of R one

after the other and use the previous parameters as initial values for the next

step. Also, it makes sense to reuse the eigenstates corresponding to E0 and E1,
respectively, to speed up the convergence if the parameters have been changed

only slightly.
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Figure B.3: Tuned soft-core parameters �1(R), �2(R) and �(R).

Resulting so�-core parameters

The described algorithm uses the same potential-energy curves as the input

as the SAE model. Their values are printed in table B.2. The results of these

calculations are shown in �gure B.3. It is not guaranteed that the solution is

unique but the displayed parameters reproduce the three energy curves and

they are physically reasonable. �1 and �2 are similar (but not identical) to their

counterparts in the single-active-electron model, cf. �gure B.2. The softening

of the electron-electron repulsion varies with the internuclear distance but

does not take extreme values and it �attens for large R in agreement with

our initial considerations. That �(R) takes its maximum value close to the

equilibrium distance of HeH
+

has no direct physical explanation; it is just

necessary in order to produce correct energies. The numerical values of the

three soft-core parameters as a function of the internuclear distance are printed

in table B.3.

Table B.3: Numerical values of the resulting softening parameters �1, �2, � of the

described procedure on an internuclear-distance grid with 0.05 a.u. grid spacing

up to R = 6 a.u. and 0.5 a.u. for larger R.

R �1 �2 �

0.05 26.374 716 394 859 085 7.932 316 297 922 131 8 ×10−2 0.171 054 377 972 186 78
0.10 27.531 007 105 865 097 8.215 025 823 332 450 2 ×10−2 0.177 473 423 642 548 14
0.15 29.014 155 922 901 207 8.614 524 942 862 147 9 ×10−2 0.186 537 956 477 529 49
0.20 30.917 976 659 641 507 9.093 432 219 049 202 3 ×10−2 0.197 082 297 256 623 18
0.25 33.041 357 431 250 297 9.633 551 175 771 072 6 ×10−2 0.209 132 671 996 239 44
0.30 35.379 057 619 688 304 0.102 214 579 564 383 39 0.222 191 605 643 154 68
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R �1 �2 �

0.35 37.557 978 092 880 496 0.108 533 680 879 168 55 0.236 021 115 196 706 96
0.40 38.426 331 680 534 453 0.115 396 129 165 865 71 0.250 217 248 008 496 04
0.45 36.968 861 274 138 639 0.122 950 778 785 333 05 0.264 539 683 044 816 84
0.50 34.203 993 029 238 397 0.131 098 683 536 193 92 0.278 845 137 132 983 70
0.55 31.270 486 845 806 165 0.139 672 444 664 747 07 0.293 113 252 722 912 00
0.60 28.364 537 092 777 717 0.148 646 385 974 372 08 0.307 199 295 163 287 26
0.65 25.496 811 484 361 025 0.158 047 642 967 749 92 0.320 963 018 565 627 31
0.70 22.738 309 716 467 921 0.167 891 035 138 068 77 0.334 262 863 357 986 44
0.75 20.145 515 142 251 831 0.178 191 161 004 601 06 0.346 972 970 754 412 64
0.80 17.743 050 424 811 667 0.188 973 372 593 789 60 0.358 963 237 462 970 60
0.85 15.543 755 913 913 849 0.200 267 199 557 902 70 0.370 110 310 359 390 96
0.90 13.556 749 543 463 855 0.212 096 796 502 087 76 0.380 306 443 601 070 80
0.95 11.783 287 259 768 690 0.224 479 549 555 176 13 0.389 453 940 111 704 20
1.00 10.218 418 914 852 876 0.237 419 515 299 705 17 0.397 475 435 523 574 62
1.05 8.852 075 859 414 398 5 0.250 900 868 674 985 40 0.404 312 000 387 689 16
1.10 7.670 505 570 931 999 8 0.264 881 000 045 557 42 0.409 924 866 009 033 16
1.15 6.657 319 070 721 048 8 0.279 286 486 368 794 94 0.414 295 366 418 664 43
1.20 5.794 522 020 970 085 0 0.294 013 170 502 368 30 0.417 422 943 073 774 42
1.25 5.063 832 406 417 378 5 0.308 928 277 587 410 04 0.419 324 712 012 702 66
1.30 4.447 404 820 739 649 3 0.323 878 488 316 286 85 0.420 033 231 493 683 27
1.35 3.928 790 397 240 357 7 0.338 696 552 987 647 56 0.419 597 506 974 892 79
1.40 3.493 095 745 134 267 0 0.353 213 568 940 651 53 0.418 081 273 138 813 33
1.45 3.127 401 614 069 411 2 0.367 265 574 119 626 01 0.415 564 648 595 117 49
1.50 2.820 508 335 321 630 7 0.380 705 382 511 503 99 0.412 141 992 023 019 65
1.55 2.563 039 305 511 424 0 0.393 405 439 699 991 26 0.407 922 833 668 849 18
1.60 2.347 042 006 811 653 1 0.405 266 305 615 395 89 0.403 027 214 431 526 56
1.65 2.165 964 714 942 519 6 0.416 215 311 949 539 59 0.397 585 592 020 737 23
1.70 2.014 289 322 330 590 4 0.426 210 890 849 028 47 0.391 731 994 678 129 25
1.75 1.887 506 159 730 321 8 0.435 237 233 077 380 16 0.385 603 174 332 746 66
1.80 1.781 801 626 683 473 5 0.443 305 841 919 639 29 0.379 330 524 461 588 88
1.85 1.694 052 191 392 999 3 0.450 448 100 643 702 55 0.373 039 468 908 921 15
1.90 1.621 598 912 413 738 7 0.456 714 394 459 431 24 0.366 842 012 059 300 62
1.95 1.562 247 178 037 192 9 0.462 166 634 559 557 70 0.360 837 040 968 017 50
2.00 1.514 108 321 582 175 6 0.466 876 440 276 548 90 0.355 104 943 226 902 56
2.05 1.475 610 512 248 765 3 0.470 918 653 714 043 07 0.349 709 737 952 162 15
2.10 1.445 386 602 694 840 8 0.474 369 827 124 324 57 0.344 696 214 074 023 29
2.15 1.422 289 579 710 502 4 0.477 303 579 061 442 83 0.340 093 654 295 854 92
2.20 1.405 316 962 001 808 7 0.479 789 859 049 538 47 0.335 915 335 110 693 99
2.25 1.393 622 142 495 244 2 0.481 892 408 799 355 80 0.332 162 804 444 404 44
2.30 1.386 463 126 309 566 8 0.483 668 889 191 008 09 0.328 826 548 028 435 69
2.35 1.383 210 867 556 601 9 0.485 169 892 197 874 21 0.325 889 981 210 610 86
2.40 1.383 313 417 547 653 1 0.486 439 654 881 875 79 0.323 330 411 115 322 01
2.45 1.386 301 219 126 380 6 0.487 515 985 438 686 63 0.321 121 901 630 123 00
2.50 1.391 761 992 277 945 6 0.488 431 185 029 230 61 0.319 236 353 590 413 75
2.55 1.399 343 484 800 474 0 0.489 212 383 789 662 36 0.317 645 028 071 357 64
2.60 1.408 735 683 076 406 6 0.489 882 411 435 295 54 0.316 319 340 928 800 10
2.65 1.419 672 368 665 329 4 0.490 460 232 644 140 96 0.315 231 749 515 095 75
2.70 1.431 918 678 042 301 4 0.490 961 653 547 523 47 0.314 356 072 504 490 71
2.75 1.445 271 681 532 822 4 0.491 399 718 078 619 76 0.313 667 901 825 690 60
2.80 1.459 551 590 598 957 6 0.491 785 237 642 520 02 0.313 144 531 325 529 55
2.85 1.474 601 840 211 247 1 0.492 127 109 212 435 41 0.312 765 397 572 082 55
2.90 1.490 283 433 258 637 9 0.492 432 678 474 600 98 0.312 511 704 647 031 37
2.95 1.506 474 282 573 204 5 0.492 707 985 500 471 01 0.312 366 558 363 693 43
3.00 1.523 065 612 966 985 1 0.492 958 010 888 789 71 0.312 314 765 997 177 11
3.05 1.539 961 182 376 534 2 0.493 186 850 071 976 55 0.312 342 839 298 139 33
3.10 1.557 074 990 827 568 5 0.493 397 878 670 672 36 0.312 438 769 243 307 55
3.15 1.574 330 335 128 735 7 0.493 593 876 047 839 44 0.312 591 904 813 255 61
3.20 1.591 658 545 169 077 2 0.493 777 133 169 621 35 0.312 792 877 485 819 24
3.25 1.608 998 302 093 423 8 0.493 949 535 243 063 90 0.313 033 457 731 681 23
3.30 1.626 294 270 274 550 9 0.494 112 640 195 300 93 0.313 306 416 230 788 81
3.35 1.643 496 696 745 691 9 0.494 267 733 137 418 67 0.313 605 463 187 711 99
3.40 1.660 561 144 367 146 2 0.494 415 871 625 610 40 0.313 925 040 652 847 15
3.45 1.677 447 425 568 366 0 0.494 557 931 707 580 67 0.314 260 471 714 692 85
3.50 1.694 119 715 301 666 7 0.494 694 634 265 487 88 0.314 607 568 483 364 19
3.55 1.710 545 398 396 430 5 0.494 826 578 916 303 94 0.314 962 783 097 975 04
3.60 1.726 695 711 626 846 0 0.494 954 257 929 839 05 0.315 323 078 626 056 02
3.65 1.742 544 471 284 178 0 0.495 078 081 566 212 30 0.315 685 837 281 810 27
3.70 1.758 068 846 491 457 1 0.495 198 385 897 292 37 0.316 048 824 887 925 35
3.75 1.773 248 186 776 977 6 0.495 315 451 552 314 82 0.316 410 174 177 097 33
3.80 1.788 064 478 031 662 1 0.495 429 509 863 419 05 0.316 768 292 581 868 28
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R �1 �2 �

3.85 1.802 502 245 970 955 7 0.495 540 751 193 277 56 0.317 121 863 965 212 69
3.90 1.816 547 298 926 263 4 0.495 649 338 600 152 70 0.317 469 812 531 118 39
3.95 1.830 188 246 924 387 5 0.495 755 402 802 861 51 0.317 811 247 532 434 17
4.00 1.843 415 283 721 306 3 0.495 859 055 625 681 89 0.318 145 426 547 751 96
4.05 1.856 220 045 408 977 2 0.495 960 391 187 415 14 0.318 471 794 416 999 41
4.10 1.868 596 435 981 036 8 0.496 059 486 023 598 62 0.318 789 984 364 438 89
4.15 1.880 539 112 300 481 3 0.496 156 407 855 052 94 0.319 099 590 821 365 52
4.20 1.892 045 020 807 156 9 0.496 251 211 404 664 99 0.319 400 435 868 450 24
4.25 1.903 111 757 215 255 8 0.496 343 946 352 752 97 0.319 692 341 725 425 38
4.30 1.913 738 885 127 936 0 0.496 434 654 149 067 34 0.319 975 283 372 971 04
4.35 1.923 926 320 004 438 5 0.496 523 373 575 692 76 0.320 249 198 368 733 17
4.40 1.933 676 206 507 900 3 0.496 610 136 876 753 21 0.320 514 177 734 200 16
4.45 1.942 991 077 356 561 7 0.496 694 974 676 223 26 0.320 770 237 146 380 20
4.50 1.951 874 662 137 938 8 0.496 777 914 902 143 35 0.321 017 584 492 283 79
4.55 1.960 331 650 412 641 8 0.496 858 983 109 976 39 0.321 256 295 050 190 54
4.60 1.968 367 632 499 785 9 0.496 938 203 831 561 01 0.321 486 598 381 715 12
4.65 1.975 988 746 814 018 7 0.497 015 601 905 330 95 0.321 708 629 558 678 79
4.70 1.983 202 429 424 322 7 0.497 091 199 775 337 61 0.321 922 601 475 046 81
4.75 1.990 016 445 417 259 1 0.497 165 020 901 102 26 0.322 128 747 454 549 22
4.80 1.996 439 272 792 101 2 0.497 237 088 769 162 28 0.322 327 321 254 979 54
4.85 2.002 479 965 841 380 3 0.497 307 426 623 332 72 0.322 518 481 725 654 62
4.90 2.008 148 261 943 321 1 0.497 376 057 448 324 14 0.322 702 504 052 913 06
4.95 2.013 453 925 241 412 5 0.497 443 004 920 787 75 0.322 879 626 077 832 49
5.00 2.018 407 609 448 917 4 0.497 508 292 848 913 40 0.323 050 105 899 203 47
5.05 2.023 020 070 219 249 3 0.497 571 945 478 780 31 0.323 214 106 280 690 69
5.10 2.027 302 255 197 357 6 0.497 633 988 249 022 44 0.323 371 944 930 448 46
5.15 2.031 265 709 027 340 3 0.497 694 446 250 286 14 0.323 523 786 293 328 62
5.20 2.034 921 861 104 265 0 0.497 753 345 809 268 61 0.323 669 911 233 519 74
5.25 2.038 282 474 800 506 2 0.497 810 713 167 035 73 0.323 810 466 346 960 92
5.30 2.041 359 172 308 366 6 0.497 866 575 254 265 92 0.323 945 714 642 568 05
5.35 2.044 163 952 498 719 2 0.497 920 958 640 424 02 0.324 075 861 901 374 66
5.40 2.046 708 304 406 160 0 0.497 973 891 235 279 02 0.324 201 133 817 404 12
5.45 2.049 004 178 596 521 6 0.498 025 400 553 032 29 0.324 321 679 345 908 89
5.50 2.051 063 361 964 426 5 0.498 075 514 630 507 87 0.324 437 705 897 314 58
5.55 2.052 897 460 838 031 5 0.498 124 262 099 602 92 0.324 549 402 036 629 69
5.60 2.054 517 682 730 941 3 0.498 171 672 382 864 58 0.324 656 956 773 828 33
5.65 2.055 935 429 164 252 4 0.498 217 774 042 707 78 0.324 760 482 109 949 79
5.70 2.057 161 777 622 389 4 0.498 262 595 902 416 56 0.324 860 245 252 469 43
5.75 2.058 207 402 027 743 4 0.498 306 167 037 188 89 0.324 956 320 189 982 00
5.80 2.059 083 420 900 755 4 0.498 348 515 291 161 48 0.325 048 916 751 043 19
5.85 2.059 800 247 111 966 1 0.498 389 669 664 483 56 0.325 138 148 224 710 10
5.90 2.060 366 104 439 097 1 0.498 429 661 460 395 47 0.325 224 166 904 379 94
5.95 2.060 789 937 912 505 6 0.498 468 520 794 068 61 0.325 307 086 566 260 23
6.00 2.061 088 777 728 198 5 0.498 506 265 946 776 88 0.325 387 059 985 177 53
6.50 2.058 764 633 534 950 3 0.498 828 919 093 291 08 0.326 049 029 429 195 56
7.00 2.051 130 225 174 724 8 0.499 069 984 817 971 60 0.326 522 416 634 270 78
7.50 2.042 363 874 728 634 3 0.499 251 067 748 653 80 0.326 869 827 370 556 37
8.00 2.034 345 272 330 673 6 0.499 388 679 349 107 97 0.327 131 042 317 943 32
8.50 2.027 685 427 543 652 9 0.499 494 781 529 404 52 0.327 331 548 624 364 81
9.00 2.022 392 946 268 185 1 0.499 577 841 559 855 24 0.327 488 235 763 294 94
9.50 2.018 262 423 992 789 8 0.499 643 817 886 808 23 0.327 612 522 515 553 67
10.00 2.015 123 715 136 545 1 0.499 696 910 185 080 33 0.327 711 384 257 302 73
10.50 2.012 641 885 464 236 5 0.499 740 184 556 144 11 0.327 792 144 127 493 08
11.00 2.010 628 526 960 059 2 0.499 775 841 179 466 44 0.327 859 361 512 412 57
11.50 2.009 023 025 129 033 1 0.499 805 490 395 113 57 0.327 915 021 683 887 36
12.00 2.007 727 144 811 955 4 0.499 830 359 621 189 49 0.327 961 581 794 541 60
12.50 2.006 668 645 631 382 5 0.499 851 384 254 217 05 0.328 000 797 494 312 27
13.00 2.005 795 081 223 401 3 0.499 869 284 268 396 72 0.328 034 093 466 014 14
13.50 2.005 066 077 812 794 2 0.499 884 622 017 795 88 0.328 062 523 823 021 59
14.00 2.004 452 628 424 050 7 0.499 897 843 284 381 69 0.328 086 967 296 346 34
14.50 2.003 932 253 798 007 8 0.499 909 303 765 029 12 0.328 108 087 923 850 71
15.00 2.003 487 626 368 230 0 0.499 919 287 561 520 26 0.328 126 432 683 200 85
15.50 2.003 105 224 112 582 8 0.499 928 024 827 485 77 0.328 142 431 402 258 74
16.00 2.002 774 373 087 717 7 0.499 935 705 608 510 69 0.328 156 474 930 537 68
16.50 2.002 486 559 064 001 5 0.499 942 486 456 874 61 0.328 168 836 862 249 18
17.00 2.002 234 926 670 428 0 0.499 948 494 944 395 25 0.328 179 771 300 714 13
17.50 2.002 013 907 844 512 7 0.499 953 837 129 565 93 0.328 189 473 719 324 78
18.00 2.001 818 943 450 339 3 0.499 958 603 891 234 20 0.328 198 100 505 801 62
18.50 2.001 646 033 804 482 8 0.499 962 871 933 944 23 0.328 205 847 201 179 46
19.00 2.001 492 524 933 355 7 0.499 966 704 066 393 37 0.328 212 733 306 130 66
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R �1 �2 �

19.50 2.001 355 498 763 714 1 0.499 970 153 546 167 31 0.328 218 934 836 789 71
20.00 2.001 232 959 559 478 4 0.499 973 269 166 423 26 0.328 224 549 572 870 51
20.50 2.001 123 049 039 514 4 0.499 976 089 070 879 81 0.328 229 616 612 272 01
21.00 2.001 023 941 780 698 8 0.499 978 647 889 374 07 0.328 234 194 622 468 28
21.50 2.000 934 431 937 503 5 0.499 980 974 075 690 64 0.328 238 361 841 109 44
22.00 2.000 853 509 799 600 1 0.499 983 094 375 000 27 0.328 242 157 382 059 97
22.50 2.000 780 144 687 277 9 0.499 985 032 198 212 61 0.328 245 581 232 425 20
23.00 2.000 713 170 564 832 7 0.499 986 805 909 165 94 0.328 248 750 771 453 10
23.50 2.000 652 230 295 171 9 0.499 988 431 413 675 99 0.328 251 646 426 452 83
24.00 2.000 596 579 153 501 4 0.499 989 924 778 993 68 0.328 254 307 321 136 14
24.50 2.000 545 897 234 398 1 0.499 991 300 277 455 14 0.328 256 733 449 793 45
25.00 2.000 498 835 348 362 8 0.499 992 568 442 513 44 0.328 258 983 504 494 12
25.50 2.000 455 930 097 060 8 0.499 993 738 413 717 64 0.328 261 057 481 617 16
26.00 2.000 416 702 577 892 7 0.499 994 820 434 245 81 0.328 262 974 943 822 34
26.50 2.000 379 744 545 351 3 0.499 995 823 745 940 65 0.328 264 755 454 470 42
27.00 2.000 346 651 312 743 3 0.499 996 754 435 586 44 0.328 266 399 011 332 75
27.50 2.000 315 438 484 972 4 0.499 997 617 878 344 12 0.328 267 886 046 060 83
28.00 2.000 286 477 050 168 3 0.499 998 420 951 100 75 0.328 269 314 388 392 19
28.50 2.000 259 742 664 713 5 0.499 999 169 947 127 79 0.328 270 625 338 193 46
29.00 2.000 235 030 487 266 9 0.499 999 868 422 714 04 0.328 271 858 027 110 73
29.50 2.000 211 762 525 770 7 0.500 000 519 458 990 71 0.328 273 012 454 262 38
30.00 2.000 190 368 181 852 0 0.500 001 127 940 974 62 0.328 274 088 618 822 68
30.50 2.000 170 022 312 704 8 0.500 001 698 412 707 03 0.328 275 066 953 302 55
31.00 2.000 150 820 274 581 2 0.500 002 232 851 602 50 0.328 276 025 723 921 62
31.50 2.000 133 207 541 525 7 0.500 002 732 942 120 39 0.328 276 886 663 190 21
32.00 2.000 116 749 087 756 9 0.500 003 202 349 167 95 0.328 277 708 470 962 05
32.50 2.000 101 287 600 988 3 0.500 003 644 499 875 67 0.328 278 491 146 943 07
33.00 2.000 087 843 603 019 6 0.500 004 060 385 205 95 0.328 279 215 123 886 91
33.50 2.000 074 363 542 005 5 0.500 004 450 831 340 37 0.328 279 880 401 405 21
34.00 2.000 061 499 116 668 1 0.500 004 818 699 200 55 0.328 280 526 113 226 94
34.50 2.000 049 448 519 653 2 0.500 005 166 708 014 76 0.328 281 113 125 076 18
35.00 2.000 038 481 109 388 3 0.500 005 495 212 098 58 0.328 281 700 137 975 03
35.50 2.000 027 861 601 891 8 0.500 005 804 458 417 14 0.328 282 248 017 627 68
36.00 2.000 017 845 258 035 3 0.500 006 096 794 021 86 0.328 282 737 196 661 62
36.50 2.000 008 389 538 749 9 0.500 006 374 466 315 35 0.328 283 226 376 424 49
37.00 1.999 999 455 956 126 9 0.500 006 637 416 653 74 0.328 283 695 989 682 66
37.50 1.999 991 009 331 346 2 0.500 006 885 494 025 94 0.328 284 126 469 092 77
38.00 1.999 983 016 616 828 4 0.500 007 120 702 610 66 0.328 284 517 814 500 85
38.50 1.999 975 447 440 632 6 0.500 007 344 973 743 44 0.328 284 928 727 681 50
39.00 1.999 968 274 324 046 1 0.500 007 557 959 432 97 0.328 285 300 506 716 73
39.50 1.999 961 472 043 375 2 0.500 007 759 248 462 86 0.328 285 613 584 125 56
40.00 1.999 955 016 604 441 1 0.500 007 950 607 174 29 0.328 285 965 796 567 38
40.50 1.999 948 885 942 182 8 0.500 008 133 745 489 91 0.328 286 278 874 610 65
41.00 1.999 943 060 104 658 2 0.500 008 308 114 443 52 0.328 286 572 385 547 43
41.50 1.999 937 520 700 273 9 0.500 008 473 125 000 63 0.328 286 865 896 746 60
42.00 1.999 932 257 656 708 5 0.500 008 630 370 992 19 0.328 287 159 408 208 24
42.50 1.999 927 231 769 069 3 0.500 008 781 409 526 98 0.328 287 394 217 566 42
43.00 1.999 922 451 125 685 5 0.500 008 925 555 502 80 0.328 287 668 162 029 98
43.50 1.999 917 894 586 882 3 0.500 009 062 085 102 65 0.328 287 902 971 752 09
44.00 1.999 913 548 906 966 2 0.500 009 192 472 131 49 0.328 288 098 646 648 82
44.50 1.999 909 401 712 221 4 0.500 009 318 168 829 32 0.328 288 333 456 678 85
45.00 1.999 905 586 730 800 4 0.500 009 438 382 647 11 0.328 288 529 131 832 15
45.50 1.999 901 659 731 738 1 0.500 009 552 301 159 95 0.328 288 724 807 102 08
46.00 1.999 898 044 732 324 0 0.500 009 661 308 088 44 0.328 288 920 482 488 64
46.50 1.999 894 587 539 690 1 0.500 009 766 779 059 73 0.328 289 116 157 991 89
47.00 1.999 891 279 870 774 4 0.500 009 867 848 919 54 0.328 289 272 698 478 41
47.50 1.999 888 114 102 135 6 0.500 009 963 630 983 93 0.328 289 429 239 039 59
48.00 1.999 885 119 073 918 9 0.500 010 055 450 329 17 0.328 289 585 779 675 43
48.50 1.999 882 177 500 717 2 0.500 010 144 622 948 46 0.328 289 742 320 385 88
49.00 1.999 879 392 923 168 9 0.500 010 230 226 683 12 0.328 289 898 861 170 99
49.50 1.999 876 723 139 682 3 0.500 010 311 325 335 35 0.328 290 055 402 030 77
50.00 1.999 874 161 710 191 6 0.500 010 389 201 721 03 0.328 290 172 807 724 60
50.50 1.999 871 703 031 873 8 0.500 010 465 120 927 17 0.328 290 290 213 460 40
51.00 1.999 869 342 206 882 3 0.500 010 538 123 291 88 0.328 290 407 619 238 17
51.50 1.999 867 074 813 521 4 0.500 010 607 234 366 41 0.328 290 525 025 057 90
52.00 1.999 864 895 946 234 0 0.500 010 673 698 863 54 0.328 290 642 430 919 71
52.50 1.999 862 800 964 801 2 0.500 010 738 755 822 58 0.328 290 759 836 823 43
53.00 1.999 860 786 276 862 0 0.500 010 801 403 588 67 0.328 290 877 242 769 17
53.50 1.999 858 848 278 230 5 0.500 010 860 649 116 71 0.328 290 994 648 756 88
54.00 1.999 856 983 073 846 9 0.500 010 917 706 786 85 0.328 291 072 919 438 71
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54.50 1.999 855 187 046 600 6 0.500 010 973 784 968 50 0.328 291 190 325 496 36
55.00 1.999 853 457 273 078 8 0.500 011 027 867 872 66 0.328 291 268 596 224 87
55.50 1.999 851 790 948 050 4 0.500 011 078 935 532 54 0.328 291 346 866 971 98
56.00 1.999 850 185 052 106 2 0.500 011 128 175 653 41 0.328 291 425 137 737 74
56.50 1.999 848 636 439 522 3 0.500 011 176 787 333 42 0.328 291 503 408 522 20
57.00 1.999 847 142 870 995 4 0.500 011 223 734 184 16 0.328 291 581 679 325 32
57.50 1.999 845 702 328 542 5 0.500 011 267 970 010 16 0.328 291 659 950 147 09
58.00 1.999 844 312 119 118 9 0.500 011 310 679 662 76 0.328 291 738 220 987 51
58.50 1.999 842 969 755 723 4 0.500 011 353 038 610 88 0.328 291 816 491 846 58
59.00 1.999 841 673 507 890 8 0.500 011 393 995 112 19 0.328 291 894 762 724 30
59.50 1.999 840 421 680 715 7 0.500 011 432 498 900 90 0.328 291 973 033 620 73
60.00 1.999 839 218 742 353 5 0.500 011 469 713 760 65 0.328 292 012 169 075 94
60.50 1.999 838 042 847 039 3 0.500 011 506 802 233 61 0.328 292 090 440 000 35
61.00 1.999 836 912 313 903 0 0.500 011 542 709 204 34 0.328 292 129 575 469 55
61.50 1.999 835 819 368 243 7 0.500 011 576 364 317 26 0.328 292 207 846 421 94
62.00 1.999 834 762 098 330 6 0.500 011 608 929 231 35 0.328 292 246 981 905 12
62.50 1.999 833 738 825 683 0 0.500 011 641 553 729 57 0.328 292 325 252 885 54
63.00 1.999 832 748 402 800 2 0.500 011 673 172 716 00 0.328 292 364 388 382 72
63.50 1.999 831 789 851 358 5 0.500 011 702 712 841 90 0.328 292 403 523 884 56
64.00 1.999 830 863 502 293 0 0.500 011 731 320 351 26 0.328 292 481 794 902 28
64.50 1.999 829 962 237 240 4 0.500 011 760 146 469 75 0.328 292 520 930 418 11
65.00 1.999 829 090 847 143 0 0.500 011 788 110 062 75 0.328 292 560 065 938 65
65.50 1.999 828 250 487 850 0 0.500 011 814 130 990 16 0.328 292 599 201 463 81
66.00 1.999 827 428 463 316 8 0.500 011 839 357 039 41 0.328 292 638 336 993 68
66.50 1.999 826 635 211 532 8 0.500 011 864 926 998 67 0.328 292 677 472 528 16
67.00 1.999 825 865 101 674 3 0.500 011 889 755 194 84 0.328 292 755 743 611 22
67.50 1.999 825 118 756 609 4 0.500 011 912 762 338 58 0.328 292 794 879 159 74
68.00 1.999 824 394 653 800 4 0.500 011 935 080 944 88 0.328 292 834 014 712 88
68.50 1.999 823 691 619 930 3 0.500 011 957 849 825 22 0.328 292 834 014 712 88
69.00 1.999 823 009 154 093 2 0.500 011 979 983 220 44 0.328 292 873 150 270 73
69.50 1.999 822 346 891 406 5 0.500 012 000 387 951 02 0.328 292 912 285 833 24
70.00 1.999 821 703 756 661 9 0.500 012 020 200 005 46 0.328 292 951 421 400 41
70.50 1.999 821 078 766 922 6 0.500 012 040 550 602 89 0.328 292 990 556 972 25
71.00 1.999 820 472 411 652 8 0.500 012 060 347 831 63 0.328 293 029 692 548 75
71.50 1.999 819 881 890 998 7 0.500 012 078 499 866 29 0.328 293 068 828 129 92
72.00 1.999 819 312 041 807 5 0.500 012 096 138 137 13 0.328 293 107 963 715 75
72.50 1.999 818 751 248 918 3 0.500 012 114 391 418 24 0.328 293 107 963 715 75
73.00 1.999 818 209 223 889 0 0.500 012 132 162 083 73 0.328 293 147 099 306 24
73.50 1.999 817 682 386 803 9 0.500 012 148 358 763 18 0.328 293 186 234 901 39
74.00 1.999 817 169 922 318 2 0.500 012 164 107 863 64 0.328 293 186 234 901 39
74.50 1.999 816 671 101 760 0 0.500 012 180 531 492 43 0.328 293 225 370 501 26
75.00 1.999 816 185 688 646 5 0.500 012 196 537 498 51 0.328 293 264 506 105 74

108



Bibliography

[1] Joseph Fraunhofer. “Bestimmung des Brechungs- und des Farben-

zerstreungs-Vermögens verschiedener Glasarten, in Bezug auf die Ver-

vollkommnung achromatischer Fernröhre”. In: Annalen der Physik 56.7

(1817), pp. 264–313. doi: 10.1002/andp.18170560706.

[2] H. Hertz. “Ueber einen Ein�uss des ultravioletten Lichtes auf die elec-

trische Entladung”. In: Annalen der Physik und Chemie 267.8 (1887),

pp. 983–1000. doi: 10.1002/andp.18872670827.

[3] A. Einstein. “Über einen die Erzeugung und Verwandlung des Lichtes

betre�enden heuristischen Gesichtspunkt”. In: Annalen der Physik
322.6 (1905), pp. 132–148. doi: 10.1002/andp.19053220607.

[4] T. H. Maiman. “Stimulated Optical Radiation in Ruby”. In: Nature
187.4736 (1960), pp. 493–494. doi: 10.1038/187493a0.

[5] Georg A. Reider. Photonics. Springer International Publishing, 2016.

doi: 10.1007/978-3-319-26076-1.

[6] Markus Kitzler and Stefanie Gräfe, eds. Ultrafast Dynamics Driven
by Intense Light Pulses. Springer International Publishing, 2016. doi:

10.1007/978-3-319-20173-3.

[7] Thomas Brabec and Ferenc Krausz. “Intense few-cycle laser �elds:

Frontiers of nonlinear optics”. In: Reviews of Modern Physics 72.2 (2000),

pp. 545–591. doi: 10.1103/revmodphys.72.545.

[8] Ferenc Krausz and Misha Ivanov. “Attosecond physics”. In: Reviews of
Modern Physics 81.1 (2009), pp. 163–234. doi: 10.1103/revmodphys.81.163.

[9] W. Becker et al. “Above-Threshold Ionization: From Classical Features

to Quantum E�ects”. In: Advances In Atomic, Molecular, and Optical
Physics. Elsevier, 2002, pp. 35–98. doi: 10.1016/s1049-250x(02)80006-4.

[10] B. Walker et al. “Precision Measurement of Strong Field Double Ioniza-

tion of Helium”. In: Physical Review Letters 73.9 (1994), pp. 1227–1230.

doi: 10.1103/physrevlett.73.1227.

https://doi.org/10.1002/andp.18170560706
https://doi.org/10.1002/andp.18872670827
https://doi.org/10.1002/andp.19053220607
https://doi.org/10.1038/187493a0
https://doi.org/10.1007/978-3-319-26076-1
https://doi.org/10.1007/978-3-319-20173-3
https://doi.org/10.1103/revmodphys.72.545
https://doi.org/10.1103/revmodphys.81.163
https://doi.org/10.1016/s1049-250x(02)80006-4
https://doi.org/10.1103/physrevlett.73.1227


Bibliography

[11] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich. “Generation of

Optical Harmonics”. In: Physical Review Letters 7.4 (1961), pp. 118–119.

doi: 10.1103/physrevlett.7.118.

[12] Georg A. Reider. “XUV attosecond pulses: generation and measure-

ment”. In: Journal of Physics D: Applied Physics 37.5 (2004), R37–R48.

doi: 10.1088/0022-3727/37/5/r01.

[13] A. M. Perelomov, V. S. Popov, and M. V. Terent’ev. “Ionization of Atoms

in an Alternating Electric Field”. In: Soviet Journal of Experimental and
Theoretical Physics 23 (1966), p. 924.

[14] A. M. Perelomov, V. S. Popov, and M. V. Terent’ev. “Ionization of Atoms

in an Alternating Electric Field: II”. In: Soviet Journal of Experimental
and Theoretical Physics 24 (1967), p. 207.

[15] Maxim V. Ammosov, Nikolai B. Delone, and Vladimir P. Krainov. “Tun-

nel ionization of complex atoms and atomic ions in electromagnetic

�eld”. In: High intensity laser processes. Vol. 664. SPIE. 1986, pp. 138–141.

doi: 10.1117/12.938695.

[16] L. V. Keldysh. “Ionization in the �eld of a strong electromagnetic wave”.

In: Sov. Phys. JETP 20.5 (1965), pp. 1307–1314.

[17] F. H. M. Faisal. “Collision of electrons with laser photons in a back-

ground potential”. In: Journal of Physics B: Atomic andMolecular Physics
6.11 (1973), pp. L312–L315. doi: 10.1088/0022-3700/6/11/003.

[18] Howard R. Reiss. “E�ect of an intense electromagnetic �eld on a weakly

bound system”. In: Physical Review A 22.5 (1980), pp. 1786–1813. doi:

10.1103/physreva.22.1786.

[19] Je�rey L. Krause, Kenneth J. Schafer, and Kenneth C. Kulander. “High-

order harmonic generation from atoms and ions in the high intensity

regime”. In: Physical Review Letters 68.24 (1992), pp. 3535–3538. doi:

10.1103/physrevlett.68.3535.

[20] P. B. Corkum. “Plasma perspective on strong �eld multiphoton ion-

ization”. In: Physical Review Letters 71.13 (1993), pp. 1994–1997. doi:

10.1103/physrevlett.71.1994.

[21] Wolfgang Demtröder. Atoms, Molecules and Photons. Springer Berlin

Heidelberg, 2010. doi: 10.1007/978-3-642-10298-1.

110

https://doi.org/10.1103/physrevlett.7.118
https://doi.org/10.1088/0022-3727/37/5/r01
https://doi.org/10.1117/12.938695
https://doi.org/10.1088/0022-3700/6/11/003
https://doi.org/10.1103/physreva.22.1786
https://doi.org/10.1103/physrevlett.68.3535
https://doi.org/10.1103/physrevlett.71.1994
https://doi.org/10.1007/978-3-642-10298-1


[22] Ahmed H. Zewail. “Laser Femtochemistry”. In: Science 242.4886 (1988),

pp. 1645–1653. doi: 10.1126/science.242.4886.1645.

[23] Ahmed H. Zewail. “Femtochemistry: Atomic-Scale Dynamics of the

Chemical Bond”. In: The Journal of Physical Chemistry A 104.24 (2000),

pp. 5660–5694. doi: 10.1021/jp001460h.

[24] Marc J. J. Vrakking and Franck Lepine. Attosecond molecular dynamics.
Vol. 13. Royal Society of Chemistry, 2018. doi: 10.1039/9781788012669.

[25] S. Gräfe and V. Engel. “Indirect versus direct photoionization with ul-

trashort pulses: interferences and time-resolved bond-length changes”.

In: Chemical Physics Letters 385.1-2 (2004), pp. 60–65. doi: 10.1016/j.

cplett.2003.12.047.

[26] Manfred Lein. “Attosecond Probing of Vibrational Dynamics with

High-Harmonic Generation”. In: Physical Review Letters 94.5 (2005),

p. 053004. doi: 10.1103/physrevlett.94.053004.

[27] S. Baker et al. “Probing Proton Dynamics in Molecules on an At-

tosecond Time Scale”. In: Science 312.5772 (2006), pp. 424–427. doi:

10.1126/science.1123904.

[28] T. Zuo and A. D. Bandrauk. “Charge-resonance-enhanced ionization

of diatomic molecular ions by intense lasers”. In: Physical Review A
52.4 (1995), R2511–R2514. doi: 10.1103/physreva.52.r2511.

[29] Tamar Seideman, M. Yu. Ivanov, and P. B. Corkum. “Role of Electron

Localization in Intense-Field Molecular Ionization”. In: Physical Review
Letters 75.15 (1995), pp. 2819–2822. doi: 10.1103/physrevlett.75.2819.

[30] Volkhard May and Oliver Kühn. Charge and Energy Transfer Dynamics
in Molecular Systems. Wiley, 2011. doi: 10.1002/9783527633791.

[31] R. A. Marcus. “On the Theory of Oxidation-Reduction Reactions In-

volving Electron Transfer. I”. In: The Journal of Chemical Physics 24.5

(1956), pp. 966–978. doi: 10.1063/1.1742723.

[32] R. A. Marcus. “Electrostatic Free Energy and Other Properties of States

Having Nonequilibrium Polarization. I”. In: The Journal of Chemical
Physics 24.5 (1956), pp. 979–989. doi: 10.1063/1.1742724.

[33] Hans Jakob Wörner et al. “Charge migration and charge transfer in

molecular systems”. In: Structural Dynamics 4.6 (2017), p. 061508. doi:

10.1063/1.4996505.

111

https://doi.org/10.1126/science.242.4886.1645
https://doi.org/10.1021/jp001460h
https://doi.org/10.1039/9781788012669
https://doi.org/10.1016/j.cplett.2003.12.047
https://doi.org/10.1016/j.cplett.2003.12.047
https://doi.org/10.1103/physrevlett.94.053004
https://doi.org/10.1126/science.1123904
https://doi.org/10.1103/physreva.52.r2511
https://doi.org/10.1103/physrevlett.75.2819
https://doi.org/10.1002/9783527633791
https://doi.org/10.1063/1.1742723
https://doi.org/10.1063/1.1742724
https://doi.org/10.1063/1.4996505


Bibliography

[34] S. Lepp, P. C. Stancil, and A. Dalgarno. “Atomic and molecular pro-

cesses in the early Universe”. In: Journal of Physics B: Atomic, Molec-
ular and Optical Physics 35.10 (2002), R57–R80. doi: 10 . 1088 / 0953 -

4075/35/10/201.

[35] Rolf Güsten et al. “Astrophysical detection of the helium hydride ion

HeH
+
”. In: Nature 568.7752 (2019), pp. 357–359. doi: 10.1038/s41586-019-

1090-x.

[36] Michele Pavanello, Sergiy Bubin, Marcin Molski, and Ludwik Adamow-

icz. “Non-Born–Oppenheimer calculations of the pure vibrational spec-

trum of HeH
+
”. In: The Journal of Chemical Physics 123.10 (2005),

p. 104306. doi: 10.1063/1.2012332.

[37] T. R. Hogness and E. G. Lunn. “The Ionization of Hydrogen by Electron

Impact as Interpreted by Positive Ray Analysis”. In: Physical Review
26.1 (1925), pp. 44–55. doi: 10.1103/physrev.26.44.

[38] Zhuan Liu and Paul B. Davies. “Infrared laser absorption spectroscopy

of rotational and vibration rotational transitions of HeH
+

up to the

dissociation threshold”. In: The Journal of Chemical Physics 107.2 (1997),

pp. 337–341. doi: 10.1063/1.474394.

[39] Alejandro Saenz. “Photoabsorption and photoionization of HeH+”. In:

Phys. Rev. A 67 (3 2003), p. 033409. doi: 10.1103/PhysRevA.67.033409.

[40] J. Fernández and F. Martín. “Photoionization of the HeH
+

molecular

ion”. In: Journal of Physics B: Atomic, Molecular and Optical Physics
40.12 (2007), pp. 2471–2480. doi: 10.1088/0953-4075/40/12/020.

[41] H. B. Pedersen et al. “Crossed Beam Photodissociation Imaging of

HeH+ with Vacuum Ultraviolet Free-Electron Laser Pulses”. In: Phys.
Rev. Lett. 98 (22 2007), p. 223202. doi: 10.1103/PhysRevLett.98.223202.

[42] Irina Dumitriu and Alejandro Saenz. “Photodissociation of the HeH
+

molecular ion”. In: Journal of Physics B: Atomic, Molecular and Optical
Physics 42.16 (2009), p. 165101. doi: 10.1088/0953-4075/42/16/165101.

[43] Qing Liao, Peixiang Lu, Qingbin Zhang, Zhenyu Yang, and Xinbing

Wang. “Double ionization of HeH
+

molecules in intense laser �elds”.

In: Optics Express 16.21 (2008), p. 17070. doi: 10.1364/oe.16.017070.

112

https://doi.org/10.1088/0953-4075/35/10/201
https://doi.org/10.1088/0953-4075/35/10/201
https://doi.org/10.1038/s41586-019-1090-x
https://doi.org/10.1038/s41586-019-1090-x
https://doi.org/10.1063/1.2012332
https://doi.org/10.1103/physrev.26.44
https://doi.org/10.1063/1.474394
https://doi.org/10.1103/PhysRevA.67.033409
https://doi.org/10.1088/0953-4075/40/12/020
https://doi.org/10.1103/PhysRevLett.98.223202
https://doi.org/10.1088/0953-4075/42/16/165101
https://doi.org/10.1364/oe.16.017070


[44] D. Ursrey, F. Anis, and B. D. Esry. “Multiphoton dissociation of HeH
+

be-

low the He
+
(1s)+H(1s) threshold”. In: Phys. Rev. A 85 (2 2012), p. 023429.

doi: 10.1103/PhysRevA.85.023429.

[45] E. Dehghanian, A. D. Bandrauk, and G. Lagmago Kamta. “Enhanced

ionization of the non-symmetric HeH
+

molecule driven by intense

ultrashort laser pulses”. In: The Journal of Chemical Physics 139.8 (2013),

p. 084315. doi: 10.1063/1.4818528.

[46] D. Ursrey and B. D. Esry. “Using the carrier-envelope phase to control

strong-�eld dissociation ofHeH+ at midinfrared wavelengths”. In: Phys.
Rev. A 96 (6 2017), p. 063409. doi: 10.1103/PhysRevA.96.063409.

[47] Shang Wang, Jun Cai, and Yanjun Chen. “Ionization dynamics of polar

molecules in strong elliptical laser �elds”. In: Physical Review A 96.4

(2017), p. 043413. doi: 10.1103/physreva.96.043413.

[48] A. Vilà, J. Zhu, A. Scrinzi, and A. Emmanouilidou. “Intertwined elec-

tron-nuclear motion in frustrated double ionization in driven heteronu-

clear molecules”. In: Journal of Physics B: Atomic, Molecular and Optical
Physics 51.6 (2018), p. 065602. doi: 10.1088/1361-6455/aaaa2a.

[49] Philipp Wustelt et al. “Heteronuclear Limit of Strong-Field Ionization:

Fragmentation of HeH+ by Intense Ultrashort Laser Pulses”. In: Phys.
Rev. Lett. 121 (7 2018), p. 073203. doi: 10.1103/PhysRevLett.121.073203.

[50] Simon Brennecke and Manfred Lein. “High-order above-threshold

ionization beyond the electric dipole approximation”. In: Journal of
Physics B: Atomic, Molecular and Optical Physics 51.9 (2018), p. 094005.

doi: 10.1088/1361-6455/aab91f .

[51] Bing Zhang and Manfred Lein. “High-order harmonic generation from

diatomic molecules in an orthogonally polarized two-color laser �eld”.

In: Physical Review A 100.4 (2019), p. 043401. doi: 10.1103/physreva.100.

043401.

[52] Nicolas Eicke, Simon Brennecke, and Manfred Lein. “Attosecond-Scale

Streaking Methods for Strong-Field Ionization by Tailored Fields”. In:

Physical Review Letters 124.4 (2020), p. 043202. doi: 10.1103/physrevlett.

124.043202.

113

https://doi.org/10.1103/PhysRevA.85.023429
https://doi.org/10.1063/1.4818528
https://doi.org/10.1103/PhysRevA.96.063409
https://doi.org/10.1103/physreva.96.043413
https://doi.org/10.1088/1361-6455/aaaa2a
https://doi.org/10.1103/PhysRevLett.121.073203
https://doi.org/10.1088/1361-6455/aab91f
https://doi.org/10.1103/physreva.100.043401
https://doi.org/10.1103/physreva.100.043401
https://doi.org/10.1103/physrevlett.124.043202
https://doi.org/10.1103/physrevlett.124.043202


Bibliography

[53] Florian Oppermann et al. “Dissociation and ionization of HeH
+

in

sub-cycle-controlled intense two-color �elds”. In: Journal of Physics B:
Atomic, Molecular and Optical Physics 53.17 (2020). doi: 10.1088/1361-

6455/ab9a93.

[54] Florian Oppermann, Saurabh Mhatre, Stefanie Gräfe, and Manfred Lein.

“Mass-ratio dependent strong-�eld dissociation of arti�cial helium

hydride isotopologues”. In: Journal of Physics B: Atomic, Molecular and
Optical Physics (2023), accepted. arXiv: 2301.04500.

[55] John Nuckolls, Lowell Wood, Albert Thiessen, and George Zimmerman.

“Laser Compression of Matter to Super-High Densities: Thermonuclear

(CTR) Applications”. In: Nature 239.5368 (1972), pp. 139–142. doi: 10.

1038/239139a0.

[56] A. B. Zylstra et al. “Record Energetics for an Inertial Fusion Implosion

at NIF”. In: Physical Review Letters 126.2 (2021), p. 025001. doi: 10.1103/

physrevlett.126.025001.

[57] Jörn Bleck-Neuhaus. “Quarks, Gluonen, Starke Wechselwirkung”. In:

Elementare Teilchen. Springer Berlin Heidelberg, 2010, pp. 585–632.

doi: 10.1007/978-3-540-85300-8_13.

[58] Albert Einstein. “Zur Quantentheorie der Strahlung”. In: Physikalische
Zeitschrift 18 (1917), pp. 121–128.

[59] Norbert Straumann. Einstein in 1916: “On the Quantum Theory of Radi-
ation”. 2017. arXiv: 1703.08176.

[60] Christopher Gerry and Peter Knight. Introductory Quantum Optics.
Cambridge University Press, 2004. isbn: 9780511229497.

[61] Richard Phillips Feynman, Robert B. Leighton, and Matthew Sands.

The Feynman Lectures on Physics, Vol. 2. Addison Wesley, 1971, p. 592.

isbn: 9780201021172. url: https://feynmanlectures.caltech.edu/II_toc.html.

[62] D. B. Milošević, G. G. Paulus, D. Bauer, and W. Becker. “Above-thresh-

old ionization by few-cycle pulses”. In: Journal of Physics B: Atomic,
Molecular and Optical Physics 39.14 (2006), R203–R262. doi: 10.1088/

0953-4075/39/14/r01.

[63] A. Ludwig et al. “Breakdown of the Dipole Approximation in Strong-

Field Ionization”. In: Physical Review Letters 113.24 (2014), p. 243001.

doi: 10.1103/physrevlett.113.243001.

114

https://doi.org/10.1088/1361-6455/ab9a93
https://doi.org/10.1088/1361-6455/ab9a93
https://arxiv.org/abs/2301.04500
https://doi.org/10.1038/239139a0
https://doi.org/10.1038/239139a0
https://doi.org/10.1103/physrevlett.126.025001
https://doi.org/10.1103/physrevlett.126.025001
https://doi.org/10.1007/978-3-540-85300-8_13
https://arxiv.org/abs/1703.08176
https://feynmanlectures.caltech.edu/II_toc.html
https://doi.org/10.1088/0953-4075/39/14/r01
https://doi.org/10.1088/0953-4075/39/14/r01
https://doi.org/10.1103/physrevlett.113.243001


[64] Reiner M. Dreizler and Eberhard K. U. Gross. Density Functional Theory.

Springer Berlin Heidelberg, 1990. doi: 10.1007/978-3-642-86105-5.

[65] Eberhard Engel and Reiner M. Dreizler. Density Functional Theory.

Springer Berlin Heidelberg, 2011. doi: 10.1007/978-3-642-14090-7.

[66] David Hochstuhl and Michael Bonitz. “Time-dependent restricted-

active-space con�guration-interaction method for the photoionization

of many-electron atoms”. In: Physical Review A 86.5 (2012), p. 053424.

doi: 10.1103/physreva.86.053424.

[67] S. Bauch, L. K. Sørensen, and L. B. Madsen. “Time-dependent gener-

alized-active-space con�guration-interaction approach to photoion-

ization dynamics of atoms and molecules”. In: Physical Review A 90.6

(2014), p. 062508. doi: 10.1103/physreva.90.062508.

[68] Kenneth C. Kulander. “Multiphoton ionization of hydrogen: A time-

dependent theory”. In: Physical Review A 35.1 (1987), pp. 445–447. doi:

10.1103/physreva.35.445.

[69] C. I. Blaga et al. “Strong-�eld photoionization revisited”. In: Nature
Physics 5.5 (2009), pp. 335–338. doi: 10.1038/nphys1228.

[70] Michael Spanner, Jochen Mikosch, Arjan Gijsbertsen, Andrey E. Bo-

guslavskiy, and Albert Stolow. “Multielectron e�ects and nonadiabatic

electronic dynamics in above threshold ionization and high-harmonic

generation”. In: New Journal of Physics 13.9 (2011), p. 093010. doi:

10.1088/1367-2630/13/9/093010.

[71] Chuan Yu and Lars Bojer Madsen. “Above-threshold ionization of

helium in the long-wavelength regime: Examining the single-active-

electron approximation and the two-electron strong-�eld approxima-

tion”. In: Physical Review A 95.6 (2017), p. 063407. doi: 10.1103/physreva.

95.063407.

[72] Kasra Amini et al. “Symphony on strong �eld approximation”. In:

Reports on Progress in Physics 82.11 (2019), p. 116001. doi: 10.1088/1361-

6633/ab2bb1.

[73] Alexander Kramida, Yuri Ralchenko, J. Reader, and NIST ASD Team.

NIST Atomic Spectra Database, NIST Standard Reference Database 78.

1999. doi: 10.18434/T4W30F. url: https://physics.nist.gov/asd.

115

https://doi.org/10.1007/978-3-642-86105-5
https://doi.org/10.1007/978-3-642-14090-7
https://doi.org/10.1103/physreva.86.053424
https://doi.org/10.1103/physreva.90.062508
https://doi.org/10.1103/physreva.35.445
https://doi.org/10.1038/nphys1228
https://doi.org/10.1088/1367-2630/13/9/093010
https://doi.org/10.1103/physreva.95.063407
https://doi.org/10.1103/physreva.95.063407
https://doi.org/10.1088/1361-6633/ab2bb1
https://doi.org/10.1088/1361-6633/ab2bb1
https://doi.org/10.18434/T4W30F
https://physics.nist.gov/asd


Bibliography

[74] F. Gesztesy. “On the one-dimensional Coulomb Hamiltonian”. In: Jour-
nal of Physics A: Mathematical and General 13.3 (1980), pp. 867–875.

doi: 10.1088/0305-4470/13/3/019.

[75] P. Kurasov. “On the Coulomb potential in one dimension”. In: Journal
of Physics A: Mathematical and General 29.8 (1996), pp. 1767–1771. doi:

10.1088/0305-4470/29/8/023.

[76] J. Javanainen, J. H. Eberly, and Qichang Su. “Numerical simulations

of multiphoton ionization and above-threshold electron spectra”. In:

Physical Review A 38.7 (1988), pp. 3430–3446. doi: 10.1103/physreva.38.

3430.

[77] Stefanie Kerbstadt, Kevin Eickho�, Tim Bayer, and Matthias Wollen-

haupt. “Bichromatic Control of Free Electron Wave Packets”. In: Topics
in Applied Physics. Springer International Publishing, 2020, pp. 43–76.

doi: 10.1007/978-3-030-47098-2_3.

[78] Philipp Wustelt. “Atome und Moleküle fundamentaler Bedeutung in

intensiven Laserfeldern: He, He
+

und HeH
+
”. PhD thesis. 2019. doi:

10.22032/DBT.38372.

[79] Mathias Uhlmann, Thomas Kunert, and Rüdiger Schmidt. “Molecular

alignment of fragmenting H
+
2 and H2 in strong laser �elds”. In: Physical

Review A 72.4 (2005), p. 045402. doi: 10.1103/physreva.72.045402.

[80] Lun Yue et al. “Strong-�eld polarizability-enhanced dissociative ion-

ization”. In: Phys. Rev. A 98 (4 2018), p. 043418. doi: 10.1103/PhysRevA.

98.043418.

[81] Krzysztof Pachucki. “Born-Oppenheimer potential for HeH
+
”. In: Phys-

ical Review A 85.4 (2012), p. 042511. doi: 10.1103/physreva.85.042511.

[82] T. A. Green, H. H. Michels, J. C. Browne, and M. M. Madsen. “Con�gu-

ration interaction studies of the HeH
+

molecular ion. I Singlet sigma

states”. In: The Journal of Chemical Physics 61.12 (1974), pp. 5186–5199.

doi: 10.1063/1.1681864.

[83] W. Kołos. “Long- and intermediate-range interaction in three lowest

sigma states of the HeH
+

ion”. In: International Journal of Quantum
Chemistry 10.2 (1976), pp. 217–224. doi: 10.1002/qua.560100203.

116

https://doi.org/10.1088/0305-4470/13/3/019
https://doi.org/10.1088/0305-4470/29/8/023
https://doi.org/10.1103/physreva.38.3430
https://doi.org/10.1103/physreva.38.3430
https://doi.org/10.1007/978-3-030-47098-2_3
https://doi.org/10.22032/DBT.38372
https://doi.org/10.1103/physreva.72.045402
https://doi.org/10.1103/PhysRevA.98.043418
https://doi.org/10.1103/PhysRevA.98.043418
https://doi.org/10.1103/physreva.85.042511
https://doi.org/10.1063/1.1681864
https://doi.org/10.1002/qua.560100203


[84] T. G. Winter, M. D. Duncan, and N. F. Lane. “Exact eigenvalues, elec-

tronic wavefunctions and their derivatives with respect to the internu-

clear separation for the lowest 20 states of the HeH
2+

molecule”. In:

Journal of Physics B: Atomic and Molecular Physics 10.2 (1977), pp. 285–

304. doi: 10.1088/0022-3700/10/2/016.

[85] M. Frigo and S.G. Johnson. “The Design and Implementation of FFTW3”.

In: Proceedings of the IEEE 93.2 (2005), pp. 216–231. doi: 10.1109/jproc.

2004.840301.

[86] M. D. Feit, J. A. Fleck, and A. Steiger. “Solution of the Schrödinger

equation by a spectral method”. In: Journal of Computational Physics
47.3 (1982), pp. 412–433. doi: 10.1016/0021-9991(82)90091-2.

[87] Nicolas Thomas Eicke. “Momentum distributions from bichromatic

ionization of atoms and molecules”. PhD thesis. Hannover: Gottfried

Wilhelm Leibniz Universität, 2020. doi: 10.15488/10082.

[88] Frank Grossmann. “Molecules in Strong Laser Fields”. In: In�nity
in Early Modern Philosophy. Springer International Publishing, 2018,

pp. 173–256. doi: 10.1007/978-3-319-74542-8_5.

[89] G. Lagmago Kamta and A. D. Bandrauk. “Phase Dependence of En-

hanced Ionization in Asymmetric Molecules”. In: Phys. Rev. Lett. 94.20

(2005), p. 203003. doi: 10.1103/PhysRevLett.94.203003.

[90] G. Lagmago Kamta and A. D. Bandrauk. “Nonsymmetric molecules

driven by intense few-cycle laser pulses: Phase and orientation depen-

dence of enhanced ionization”. In: Phys. Rev. A 76.5 (2007), p. 053409.

doi: 10.1103/PhysRevA.76.053409.

[91] Moshe Shapiro. “Photofragmentation and mapping of nuclear wave-

functions”. In: Chemical Physics Letters 81.3 (1981), pp. 521–527. doi:

10.1016/0009-2614(81)80455-1.

[92] M.S. Child and M. Shapiro. “Photodissociation and the Condon re-

�ection principle”. In: Molecular Physics 48.1 (1983), pp. 111–128. doi:

10.1080/00268978300100081.

[93] M. S. Child, Hanno Essén, and Robert J. Le Roy. “An RKR-like inversion

procedure for bound–continuum transition intensities”. In: The Journal
of Chemical Physics 78.11 (1983), pp. 6732–6740. doi: 10.1063/1.444673.

117

https://doi.org/10.1088/0022-3700/10/2/016
https://doi.org/10.1109/jproc.2004.840301
https://doi.org/10.1109/jproc.2004.840301
https://doi.org/10.1016/0021-9991(82)90091-2
https://doi.org/10.15488/10082
https://doi.org/10.1007/978-3-319-74542-8_5
https://doi.org/10.1103/PhysRevLett.94.203003
https://doi.org/10.1103/PhysRevA.76.053409
https://doi.org/10.1016/0009-2614(81)80455-1
https://doi.org/10.1080/00268978300100081
https://doi.org/10.1063/1.444673


Bibliography

[94] T. Nubbemeyer, K. Gorling, A. Saenz, U. Eichmann, and W. Sandner.

“Strong-Field Tunneling without Ionization”. In: Phys. Rev. Lett. 101.23

(2008), p. 233001. doi: 10.1103/PhysRevLett.101.233001.

[95] B. Manschwetus et al. “Strong Laser Field Fragmentation of H2: Cou-

lomb Explosion without Double Ionization”. In: Physical Review Letters
102.11 (2009), p. 113002. doi: 10.1103/physrevlett.102.113002.

[96] Francisco M. Fernández and Javier Garcia. “Highly Accurate Potential

Energy Curves for the Hydrogen Molecular Ion”. In: ChemistrySelect
6.35 (2021), pp. 9527–9534. doi: 10.1002/slct.202102509.

[97] Bernold Feuerstein and Uwe Thumm. “Fragmentation of H
+
2 in strong

800-nm laser pulses: Initial-vibrational-state dependence”. In: Physical
Review A 67.4 (2003), p. 043405. doi: 10.1103/physreva.67.043405.

[98] André D. Bandrauk and Jonathan Ruel. “Charge-resonance-enhanced

ionization of molecular ions in intense laser pulses: Geometric and

orientation e�ects”. In: Physical Review A 59.3 (1999), pp. 2153–2162.

doi: 10.1103/physreva.59.2153.

[99] Amalia Apalategui, Alejandro Saenz, and P. Lambropoulos. “E�ect of

vibration and internuclear axis orientation on multiphoton ionization

of H2+”. In: Journal of Physics B: Atomic, Molecular and Optical Physics
33.14 (2000), pp. 2791–2807. doi: 10.1088/0953-4075/33/14/316.

[100] Fatima Anis and B. D. Esry. “Role of nuclear rotation in dissociation of

H
+
2 in a short laser pulse”. In: Phys. Rev. A 77 (3 2008), p. 033416. doi:

10.1103/PhysRevA.77.033416.

[101] T. Rathje et al. “Coherent Control at Its Most Fundamental: Carrier-

Envelope-Phase-Dependent Electron Localization in Photodissociation

of a H
+
2 Molecular Ion Beam Target”. In: Physical Review Letters 111.9

(2013), p. 093002. doi: 10.1103/physrevlett.111.093002.

[102] T. Rathje et al. “Review of attosecond resolved measurement and con-

trol via carrier–envelope phase tagging with above-threshold ioniza-

tion”. In: Journal of Physics B: Atomic, Molecular and Optical Physics
45.7 (2012), p. 074003. doi: 10.1088/0953-4075/45/7/074003.

118

https://doi.org/10.1103/PhysRevLett.101.233001
https://doi.org/10.1103/physrevlett.102.113002
https://doi.org/10.1002/slct.202102509
https://doi.org/10.1103/physreva.67.043405
https://doi.org/10.1103/physreva.59.2153
https://doi.org/10.1088/0953-4075/33/14/316
https://doi.org/10.1103/PhysRevA.77.033416
https://doi.org/10.1103/physrevlett.111.093002
https://doi.org/10.1088/0953-4075/45/7/074003


[103] Philipp Wustelt et al. “Laser-Driven Anharmonic Oscillator: Ground-

State Dissociation of the Helium Hydride Molecular Ion by Midinfrared

Pulses”. In: Physical Review Letters 127.4 (2021). doi: 10.1103/PhysRevLett.

127.043202.

[104] Pengqian Wang, A. Max Sayler, Kevin D. Carnes, Brett D. Esry, and

Itzik Ben-Itzhak. “Disentangling the volume e�ect through intensity-

di�erence spectra: application to laser-induced dissociation of H
+
2”. In:

Opt. Lett. 30.6 (2005), pp. 664–666. doi: 10.1364/OL.30.000664.

[105] Mette B. Gaarde, Jennifer L. Tate, and Kenneth J. Schafer. “Macroscopic

aspects of attosecond pulse generation”. In: Journal of Physics B: Atomic,
Molecular and Optical Physics 41.13 (2008), p. 132001. doi: 10.1088/0953-

4075/41/13/132001.

[106] Pengfei Lan et al. “Attosecond Probing of Nuclear Dynamics with

Trajectory-Resolved High-Harmonic Spectroscopy”. In: Physical Re-
view Letters 119.3 (2017), p. 033201. doi: 10.1103/physrevlett.119.033201.

[107] J. Loreau, J. Lecointre, X. Urbain, and N. Vaeck. “Rovibrational analysis

of the XUV photodissociation of HeH
+

ions”. In: Physical Review A
84.5 (2011), p. 053412. doi: 10.1103/physreva.84.053412.

[108] Erich Goll, Günter Wunner, and Alejandro Saenz. “Formation of Ground-

State Vibrational Wave Packets in Intense Ultrashort Laser Pulses”. In:

Physical Review Letters 97.10 (2006), p. 103003. doi: 10.1103/physrevlett.

97.103003.

[109] H. G. Muller, P. H. Bucksbaum, D. W. Schumacher, and A. Zavriyev.

“Above-threshold ionisation with a two-colour laser �eld”. In: Jour-
nal of Physics B: Atomic, Molecular and Optical Physics 23.16 (1990),

pp. 2761–2769. doi: 10.1088/0953-4075/23/16/018.

[110] E. Charron, A. Giusti-Suzor, and F. H. Mies. “Two-color coherent con-

trol of H
+
2 photodissociation in intense laser �elds”. In: Physical Review

Letters 71.5 (1993), pp. 692–695. doi: 10.1103/physrevlett.71.692.

[111] B. Sheehy, B. Walker, and L. F. DiMauro. “Phase Control in the Two-

Color Photodissociation of HD+”. In: Phys. Rev. Lett. 74.24 (1995),

pp. 4799–4802. doi: 10.1103/PhysRevLett.74.4799.

119

https://doi.org/10.1103/PhysRevLett.127.043202
https://doi.org/10.1103/PhysRevLett.127.043202
https://doi.org/10.1364/OL.30.000664
https://doi.org/10.1088/0953-4075/41/13/132001
https://doi.org/10.1088/0953-4075/41/13/132001
https://doi.org/10.1103/physrevlett.119.033201
https://doi.org/10.1103/physreva.84.053412
https://doi.org/10.1103/physrevlett.97.103003
https://doi.org/10.1103/physrevlett.97.103003
https://doi.org/10.1088/0953-4075/23/16/018
https://doi.org/10.1103/physrevlett.71.692
https://doi.org/10.1103/PhysRevLett.74.4799


Bibliography

[112] N. Dudovich et al. “Measuring and controlling the birth of attosecond

XUV pulses”. In: Nature Physics 2.11 (2006), pp. 781–786. doi: 10.1038/

nphys434.

[113] D. Ray et al. “Momentum spectra of electrons rescattered from rare-gas

targets following their extraction by one- and two-color femtosecond

laser pulses”. In: Phys. Rev. A 83.1 (2011), p. 013410. doi: 10 . 1103 /

PhysRevA.83.013410.

[114] Dror Sha�r et al. “Resolving the time when an electron exits a tun-

nelling barrier”. In: Nature 485.7398 (2012), pp. 343–346. doi: 10.1038/

nature11025.

[115] Xinhua Xie et al. “Probing the in�uence of the Coulomb �eld on atomic

ionization by sculpted two-color laser �elds”. In: New Journal of Physics
15.4 (2013), p. 043050. doi: 10.1088/1367-2630/15/4/043050.

[116] Li Zhang et al. “Laser-sub-cycle two-dimensional electron-momentum

mapping using orthogonal two-color �elds”. In: Phys. Rev. A 90.6 (2014),

p. 061401. doi: 10.1103/PhysRevA.90.061401.

[117] Jinlei Liu et al. “Trajectory-based analysis of low-energy electrons and

photocurrents generated in strong-�eld ionization”. In: Phys. Rev. A
90.6 (2014), p. 063420. doi: 10.1103/PhysRevA.90.063420.

[118] S. Skruszewicz et al. “Two-Color Strong-Field Photoelectron Spec-

troscopy and the Phase of the Phase”. In: Phys. Rev. Lett. 115.4 (2015),

p. 043001. doi: 10.1103/PhysRevLett.115.043001.

[119] P. B. Corkum, N. H. Burnett, and F. Brunel. “Above-threshold ionization

in the long-wavelength limit”. In: Physical Review Letters 62.11 (1989),

pp. 1259–1262. doi: 10.1103/physrevlett.62.1259.

[120] K. J. Schafer, Baorui Yang, L. F. DiMauro, and K. C. Kulander. “Above

threshold ionization beyond the high harmonic cuto�”. In: Physical
Review Letters 70.11 (1993), pp. 1599–1602. doi: 10.1103/physrevlett.70.

1599.

[121] G. G. Paulus, W. Becker, and H. Walther. “Classical rescattering e�ects

in two-color above-threshold ionization”. In: Physical Review A 52.5

(1995), pp. 4043–4053. doi: 10.1103/physreva.52.4043.

120

https://doi.org/10.1038/nphys434
https://doi.org/10.1038/nphys434
https://doi.org/10.1103/PhysRevA.83.013410
https://doi.org/10.1103/PhysRevA.83.013410
https://doi.org/10.1038/nature11025
https://doi.org/10.1038/nature11025
https://doi.org/10.1088/1367-2630/15/4/043050
https://doi.org/10.1103/PhysRevA.90.061401
https://doi.org/10.1103/PhysRevA.90.063420
https://doi.org/10.1103/PhysRevLett.115.043001
https://doi.org/10.1103/physrevlett.62.1259
https://doi.org/10.1103/physrevlett.70.1599
https://doi.org/10.1103/physrevlett.70.1599
https://doi.org/10.1103/physreva.52.4043


[122] K. B. Laughlin, Geo�rey A. Blake, R. C. Cohen, D. C. Hovde, and R. J.

Saykally. “Determination of the dipole moment of ArH
+

from the

rotational Zeeman e�ect by tunable far infrared laser spectroscopy”.

In: Physical Review Letters 58.10 (1987), pp. 996–999. doi: 10 . 1103 /

physrevlett.58.996.

[123] G. Audi, F. G. Kondev, Meng Wang, W. J. Huang, and S. Naimi. “The

NUBASE2016 evaluation of nuclear properties”. In: Chinese Physics C
41.3 (2017), p. 030001. doi: 10.1088/1674-1137/41/3/030001.

[124] Florian Oppermann, Nicolas Eicke, and Manfred Lein. “Real-time prop-

agator eigenstates”. In: Journal of Physics B: Atomic, Molecular and
Optical Physics (2022). doi: 10.1088/1361-6455/ac8bb9.

[125] C. Runge. “Über die numerische Au�ösung von Di�erentialgleichun-

gen”. In: Mathematische Annalen 46.2 (1895), pp. 167–178. doi: 10.1007/

bf01446807.

[126] W. Kutta. “Beitrag zur näherungsweisen Integration totaler Di�eren-

tialgleichungen”. In: Zeit. Math. Phys. 46 (1901), pp. 435–53.

[127] E. Wigner. “On the Quantum Correction For Thermodynamic Equilib-

rium”. In: Physical Review 40.5 (1932), pp. 749–759. doi: 10.1103/physrev.

40.749.

[128] R. L. Hudson. “When is the wigner quasi-probability density non-

negative?” In: Reports on Mathematical Physics 6.2 (1974), pp. 249–252.

doi: 10.1016/0034-4877(74)90007-x.

[129] E. Colomés, Z. Zhan, and X. Oriols. “Comparing Wigner, Husimi and

Bohmian distributions: which one is a true probability distribution

in phase space?” In: Journal of Computational Electronics 14.4 (2015),

pp. 894–906. doi: 10.1007/s10825-015-0737-6.

[130] N. H. Abel. “Au�ösung einer mechanischen Aufgabe.” In: Journal für
die reine und angewandte Mathematik (Crelles Journal) 1826.1 (1826),

pp. 153–157. doi: 10.1515/crll.1826.1.153.

[131] M. Born and R. Oppenheimer. “Zur Quantentheorie der Molekeln”.

In: Annalen der Physik 389.20 (1927), pp. 457–484. doi: 10.1002/andp.

19273892002.

121

https://doi.org/10.1103/physrevlett.58.996
https://doi.org/10.1103/physrevlett.58.996
https://doi.org/10.1088/1674-1137/41/3/030001
https://doi.org/10.1088/1361-6455/ac8bb9
https://doi.org/10.1007/bf01446807
https://doi.org/10.1007/bf01446807
https://doi.org/10.1103/physrev.40.749
https://doi.org/10.1103/physrev.40.749
https://doi.org/10.1016/0034-4877(74)90007-x
https://doi.org/10.1007/s10825-015-0737-6
https://doi.org/10.1515/crll.1826.1.153
https://doi.org/10.1002/andp.19273892002
https://doi.org/10.1002/andp.19273892002


Bibliography

[132] Michael Victor Berry. “Quantal phase factors accompanying adiabatic

changes”. In: Proceedings of the Royal Society of London. A.Mathematical
and Physical Sciences 392.1802 (1984), pp. 45–57. doi: 10.1098/rspa.1984.

0023.

[133] Hermann Haken and Hans Christoph Wolf. Molekülphysik und Quan-
tenchemie. Springer Berlin Heidelberg, 1992. doi: 10.1007/978-3-662-

08832-6.

[134] Wei-Chih Liu and C. W. Clark. “Closed-form solutions of the Schro-

dinger equation for a model one-dimensional hydrogen atom”. In:

Journal of Physics B: Atomic, Molecular and Optical Physics 25.21 (1992),

pp. L517–L524. doi: 10.1088/0953-4075/25/21/001.

[135] Peter Schwerdtfeger and Je�rey K. Nagle. “2018 Table of static dipole

polarizabilities of the neutral elements in the periodic table”. In: Molec-
ular Physics 117.9-12 (2018), pp. 1200–1225. doi: 10.1080/00268976.2018.

1535143.

[136] P. W. Fowler. “Energy, polarizability and size of con�ned one-electron

systems”. In: Molecular Physics 53.4 (1984), pp. 865–889. doi: 10.1080/

00268978400102701.

[137] S. P. Goldman. “Gauge-invariance method for accurate atomic-physics

calculations: Application to relativistic polarizabilities”. In: Physical
Review A 39.3 (1989), pp. 976–980. doi: 10.1103/physreva.39.976.

[138] R. Koslo� and H. Tal-Ezer. “A direct relaxation method for calculating

eigenfunctions and eigenvalues of the schrödinger equation on a grid”.

In: Chemical Physics Letters 127.3 (1986), pp. 223–230. doi: https://doi.

org/10.1016/0009-2614(86)80262-7.

[139] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.

Flannery. Numerical Recipes 3rd Edition. The Art of Scienti�c Computing.

Cambridge University Press, 2007, p. 1256. isbn: 9780521880688. url:

http://numerical.recipes/.

[140] B. V. Noumerov. “A Method of Extrapolation of Perturbations”. In:

Monthly Notices of the Royal Astronomical Society 84.8 (1924), pp. 592–

602. doi: 10.1093/mnras/84.8.592.

122

https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1007/978-3-662-08832-6
https://doi.org/10.1007/978-3-662-08832-6
https://doi.org/10.1088/0953-4075/25/21/001
https://doi.org/10.1080/00268976.2018.1535143
https://doi.org/10.1080/00268976.2018.1535143
https://doi.org/10.1080/00268978400102701
https://doi.org/10.1080/00268978400102701
https://doi.org/10.1103/physreva.39.976
https://doi.org/https://doi.org/10.1016/0009-2614(86)80262-7
https://doi.org/https://doi.org/10.1016/0009-2614(86)80262-7
http://numerical.recipes/
https://doi.org/10.1093/mnras/84.8.592


[141] R. V. Mises and H. Pollaczek-Geiringer. “Praktische Verfahren der

Gleichungsau�ösung .” In: ZAMM - Journal of Applied Mathematics
and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
9.2 (1929), pp. 152–164. doi: https://doi.org/10.1002/zamm.19290090206.

123

https://doi.org/https://doi.org/10.1002/zamm.19290090206




Acknowledgements

soli Deo gloria

This work is the result of a long journey through the world of physics research

which would not have been possible without many people accompanying and

guiding me.

First and foremost, I am grateful to my supervisor Manfred Lein for giving me

the opportunity to do full-time research in an international group with a lot

of freedom and fun. He also organized the QUTIF DFG priority programme

which I was a part of and which allowed me to meet many fantastic colleagues.

As a part of our QUTIF collaboration, I have had many fruitful discussions with

Philipp Wustelt, Lun Yue and Saurabh Mhatre as well as with their professors

Gerhard G. Paulus and Stefanie Gräfe.

I want to express my gratitude towards my o�cemates in the institute (�rst

Marc Ruhmann, later Tobias Florin) who endured my jokes and lifted my

spirits. The same holds for my closest friends and regular mensa company:

Stina Scheer, Daniel Edler, Christoph Dreißigacker and Julian Westerweck

During all this time I found a lot of support in my church, in the famous

#theobubble on Twitter and of course in my family without whom I’d not be

where I am now.





Curriculum Vitae

14 June 1992 Born in Hannover, Germany

1998 – 2010 School in Hannover,

Degree: Abitur (general quali�cation for university entrance)

2010 – 2015 Studies of physics at Leibniz University Hannover:

2014 Bachelor’s thesis: “Quantenzustände auf dem Sierpiński-Teppich”

Supervisor: Manfred Lein

Degree: Bachelor of Science

2015 Master’s thesis: “Die Poincaré-symmetrische Saite”

Supervisor: Norbert Dragon

Degree: Master of Science

2015 – 2023 PhD student / scienti�c assistant at Leibniz University Hannover,

group of Manfred Lein



List of publications

[1] Philipp Wustelt, Florian Oppermann, Lun Yue, Max Möller, Thomas

Stöhlker, Manfred Lein, Stefanie Gräfe, Gerhard G. Paulus, and A. Max

Sayler. “Heteronuclear Limit of Strong-Field Ionization: Fragmentation

of HeH+ by Intense Ultrashort Laser Pulses”. In: Phys. Rev. Lett. 121 (7

2018), p. 073203. doi: 10.1103/PhysRevLett.121.073203.

[2] Lun Yue, Philipp Wustelt, A. Max Sayler, Florian Oppermann, Man-

fred Lein, Gerhard G. Paulus, and Stefanie Gräfe. “Strong-�eld polar-

izability-enhanced dissociative ionization”. In: Phys. Rev. A 98 (4 2018),

p. 043418. doi: 10.1103/PhysRevA.98.043418.

[3] Hongcheng Ni, Nicolas Eicke, Camilo Ruiz, Jun Cai, Florian Opper-
mann, Nikolay I. Shvetsov-Shilovski, and Liang-Wen Pi. “Tunneling

criteria and a nonadiabatic term for strong-�eld ionization”. In: Physi-
cal Review A 98.1 (2018), p. 013411. doi: 10.1103/physreva.98.013411.

[4] Florian Oppermann, Philipp Wustelt, T. Florin, S. Mhatre, Gerhard G.

Paulus, Manfred Lein, and Stefanie Gräfe. “Dissociation and ionization

of HeH
+

in sub-cycle-controlled intense two-color �elds”. In: Journal
of Physics B: Atomic, Molecular and Optical Physics 53.17 (2020). doi:

10.1088/1361-6455/ab9a93.

[5] Philipp Wustelt, Florian Oppermann, Saurabh Mhatre, Matthias

Kübel, A. Max Sayler, Manfred Lein, Stefanie Gräfe, and Gerhard G.

Paulus. “Laser-Driven Anharmonic Oscillator: Ground-State Dissocia-

tion of the Helium Hydride Molecular Ion by Midinfrared Pulses”. In:

Physical Review Letters 127.4 (2021). doi: 10.1103/PhysRevLett.127.043202.

[6] Norbert Dragon and Florian Oppermann. “Heisenberg Algebra and

String Theory”. In: (2022). arXiv: 2203.03063.

[7] Florian Oppermann, Nicolas Eicke, and Manfred Lein. “Real-time

propagator eigenstates”. In: Journal of Physics B: Atomic, Molecular
and Optical Physics (2022). doi: 10.1088/1361-6455/ac8bb9.

https://doi.org/10.1103/PhysRevLett.121.073203
https://doi.org/10.1103/PhysRevA.98.043418
https://doi.org/10.1103/physreva.98.013411
https://doi.org/10.1088/1361-6455/ab9a93
https://doi.org/10.1103/PhysRevLett.127.043202
https://arxiv.org/abs/2203.03063
https://doi.org/10.1088/1361-6455/ac8bb9


[8] Norbert Dragon and Florian Oppermann. “Heisenberg versus the

Covariant String”. In: (2022). arXiv: 2212.07256.

[9] Norbert Dragon and Florian Oppermann. “The Rough with the

Smooth of the Light Cone String”. In: (2022). arXiv: 2212.14822.

[10] Florian Oppermann, Saurabh Mhatre, Stefanie Gräfe, and Manfred

Lein. “Mass-ratio dependent strong-�eld dissociation of arti�cial he-

lium hydride isotopologues”. In: Journal of Physics B: Atomic, Molecular
and Optical Physics (2023), accepted. arXiv: 2301.04500.

129

https://arxiv.org/abs/2212.07256
https://arxiv.org/abs/2212.14822
https://arxiv.org/abs/2301.04500



	Abstract
	Atomic units
	Introduction
	Quantum mechanics and limitations
	Molecules and strong-field physics
	The helium hydride molecular ion
	Open questions and outline
	Approximations

	HeH+ in monochromatic 400nm and 800nm fields
	Non-Born-Oppenheimer TDSE model
	Fragmentation pathways
	Kinetic-energy release
	Frozen-nuclei ionization and enhancement
	Ionization and frustrated ionization
	Application of the HeH+ model to H2+
	Strong-field experiments on HeH+
	Focal-volume / intensity averaging
	Intensity dependence of ionization KER
	Ionization of HeD+
	Conclusion

	Two-color dissociation vs. ionization control at 1380nm
	Tailored fields
	Non-Born-Oppenheimer and focal-volume-averaged results
	Two-color ionization in detail
	Two-color dissociation in detail
	Photoelectron momentum distribution
	Effect of the pulse duration
	Conclusion

	Mass-dependent dissociation dynamics
	Quantum models
	Electron-nuclear non-Born-Oppenheimer TDSE
	Two-level Born-Oppenheimer TDSE

	Classical-trajectory model
	Excursus: Classical initial conditions
	Equilibrium position & expectation values
	Fixed-energy momentum or position distribution
	Wigner or Husimi distribution
	Stationary initial conditions

	Quantum ladder climbing to dissociation
	Electronic excitation
	Classical dissociation probabilities
	Conclusion

	Conclusion and outlook
	Born-Oppenheimer approximation
	General considerations
	Two-level Born-Oppenheimer model

	Fine-tuning of soft-core parameters
	Parameters for one-electron model
	Parameters for two-electron model

	Bibliography
	Acknowledgements
	Curriculum Vitae
	List of publications

