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The book by Repin and Sauter is an inspiring piece of
work. The key question is centered around ‘How accurate
is a mathematical model?’ by deriving model error esti-
mates arising in different approaches for treating partial
differential equations and variational problems of elliptic
type.

Accuracy is nothing else than measuring distances,
in metric spaces or normed vector spaces, between (un-
known) exact solutions and their (numerical) approxima-
tions in terms of error estimates. There is a rich theory on
complete metric spaces and Banach spaces which forms
the basis for some well-posedness results and numerical

analysis of partial differential equations and variational problems. While the theory
for linear (elliptic) problems is fairly complete, nonlinear (time-dependent) differen-
tial equations and variational inequality systems are subject of ongoing research.

Error estimates often include several sources such as model-, regularization-,
homogenization-, discretization-, interpolation-, linear solver-, nonlinear solver-,
quadrature-, and implementation (bugs) errors. But also the exact solution to com-
pare with, might be error-prone from inaccurate experimental setups, uncertain data,
and measurement errors.

The important confession one has to make is the fact that such errors never can
be avoided. Rather, the aim is to design error estimates that allow us to quantify their
influence and to adjust those terms with the largest contributions.
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As an illustration let us consider the spaces (X,‖ ·‖) and (X̃,‖ ·‖). Therein, u ∈ X

and ũ ∈ X̃ are considered as points describing the exact solution on the continuous
level and its approximation, respectively. An error estimator is usually denoted by a
positive η. To estimate the distance (i.e., the accuracy) between u and ũ, the objective
is to establish two-sided estimates of the form

c1η ≤ ‖u − ũ‖ ≤ c2η,

with some positive constants c1, c2. The upper and lower bounds are known as re-
liability and efficiency of the error estimator, respectively. Asymptotically, we aim
for

‖u − ũ‖ → 0.

From a practical viewpoint in computations, we are satisfied when

‖u − ũ‖ ≤ c2η ≤ TOL,

where TOL is some given positive small tolerance, but larger than the machine preci-
sion of the computer. When various error sources are present, the triangle inequality
is used to split them into different parts. An example in the book at hand is pro-
vided in the chapter on homogenization. Let � be a bounded Lipschitz domain in
R

n, where n is the dimension. Moreover, let H 1
0 (�) be the usual Sobolev space of

square-integrable functions with one weak square-integrable derivative and vanishing
on the boundary. For periodic heterogeneities of the (small) lengthscale ε ∈ (0,1], the
weak form of the homogenization problem reads: Find uε ∈ H 1

0 (�) such that

aε(uε,ϕ) = l(ϕ) for all ϕ ∈ H 1
0 (�),

where

aε(uε,ϕ) =
∫

�

Aε∇u · ∇ϕ dx +
∫

�

(bε · ∇u + cεu)ϕ dx,

l(ϕ) =
∫

�

f ϕ dx.

Here, Aε is a symmetric diffusion matrix with coefficients in L∞, the vector bε ∈
W 1,∞(�,Rn) is a convection term and cε ∈ L∞(�,Rn) is a reaction term. In many
applications (see e.g., [2] for a concise overview and literature references) periodic
structures play an important role. Here, the effective material properties Aε , bε and
cε are derived on a reference cell.

From a numerical viewpoint, solving the previous problem with any method re-
quires too much effort when ε is very small. The reason is that ε must be resolved
by the discretization resulting into large systems of linear equations. Using homog-
enization the solution is averaged, which is based on asymptotic expansions of the
form

uε =
∞∑
i=0

εiui .
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Therein, u0 is the zero-order approximation, u1 the first-order approximation, and
so forth. The infinite-dimensional solutions can be approximated (i.e., discretized)
with a Galerkin method (for instance Galerkin finite elements) denoted by ũε . In
the following, let us consider in more detail the first-order approximation u1,ε :=
u0 + εu1 and its discrete representation ũ1,ε . The total error of interest is

Etot := ‖∇(uε − ũ1,ε)‖.
In order to identify the dominant error source, the continuous-level first-order ap-
proximation u1,ε is inserted and it holds with the triangle inequality:

Etot := ‖∇(uε − u1,ε + u1,ε − ũ1,ε)‖ ≤ ‖∇(uε − u1,ε)‖ + ‖∇(u1,ε − ũ1,ε)‖
=: Ehom + Eapprox.

The first part Ehom is the error induced by the homogenization, while the second part
Eapprox is the approximation error due to the discretization. At this point, the goals
are two-fold. The first objective is to clarify whether the error parts are computable.
The second aim is to identify the dominating error contribution. Concerning the first
question, the homogenization error Ehom is not computable because the approxima-
tion u1,ε is not known, while Eapprox can be bounded with available information
obtained within the discretization. To this end, Repin and Sauter further find that the
approximation error can be bounded as follows:

Eapprox ≤ η := ρ1ε + ρ2δ + ρ3δint + ρ4δ̂ + τ1 + τ2 + τ3.

These seven error parts are further discussed in the book. Ideally such estimates are
confirmed by prototype numerical simulations.

Typical further questions are the choice of the norm ‖ · ‖ and the resulting conver-
gence order in terms of adjustable parameters for approximating u with a sequence
{ũl}l∈N. Depending on regularity properties, the geometry, smoothness of functions
and coefficients, appropriate Sobolev spaces can be chosen. Hence various norms
may be available yielding different convergence orders.

Error estimates can be classified into two categories: a priori and a posteriori
error estimates. The former incorporate the (unknown) exact solution u, such that
η := η(u), and yield qualitative convergence rates for asymptotic limits. They can be
derived before (thus a priori) the approximation ũ is known. On the other hand, a pos-
teriori error estimates of the form η := η(ũ) explicitly employ the approximation ũ

and therefore yield quantitative information with computable majorants (i.e., bounds)
and can be further utilized to design adaptive schemes. An example (among others)
is provided for modeling-discretization strategies in Sect. 5.5.3 (pages 230ff) in the
book at hand.

For computable (a posteriori) error estimates η := η(ũ), it is furthermore interest-
ing to evaluate the (reciprocal) effectivity index

Ieff = η

‖u − ũ‖ ,

in order to judge the approximation quality. This can be done for known exact so-
lutions u, derived for prototype problems. Alternatively, reference solutions u might
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be obtained purely based on numerical (brute-force) simulations in which the dis-
cretization parameters are usually chosen sufficiently small. Asymptotically, in either
attempt, the aim is to achieve Ieff → 1.

Repin and Sauter summarize error estimates for several state-of-the-art develop-
ments for dimension reduction models (Chap. 3), model simplifications (Chap. 4),
elliptic homogenization (Chap. 5) and model conversions (Chap. 6). In each chap-
ter, comments on modeling-discretization strategies are made, which are useful for
computer implementations and numerical simulations. In the preface of the book the
main motivations and goals are clearly described. Therein also the need to restrict to
certain concepts and errors, mainly model errors, are justified. Discretization errors
are considered as a special class of modeling errors.

Chapter 1 summarizes classical inequalities of Friedrichs, Poincaré, and Korn in
order to provide a self-contained work. Chapter 2 provides estimates to measure the
distance to exact solutions. In Theorem 2.2.1 the main error identity is established.
Afterwards, several examples of linear problems and further applications are dis-
cussed in great detail. In Sect. 2.6, errors due to numerical approximations such as
discretization errors based on a posteriori estimates of functional type are discussed.

The key results are contained in Chaps. 3–6. First, Repin and Sauter concentrate
on dimension reduction models. These are well-known in continuum mechanics for
solids and fluids. For the former, elastic thin-walled structures can be derived. For flu-
ids, a well-known example is Reynolds lubrication equation, which can be obtained
by upscaling the incompressible Navier-Stokes equations.

In Chap. 4, model simplifications are addressed. Here, the emphasis is on simpli-
fications of coefficients such as material parameters. In practice these may be tensor-
valued, heterogeneous, non-isotropic, and possibly non-smooth. Often in mathemat-
ical modeling they are assumed to be single-valued, homogeneous, isotropic and
smooth. An example is the Saint-Venant Kirchhoff material in solid mechanics in
which we only deal with two independent parameters: the so-called Lamé coeffi-
cients. These can be linked to Poisson’s ratio (behavior of the material under com-
pression) and Young’s modulus measuring the stiffness of a solid material. The book
at hand provides estimates to measure the deviation between complicated coefficients
and their simpler counterparts. Next, simplifications of boundary conditions are dis-
cussed. An exciting part is then Sect. 4.4 (Comments), where rough coefficients em-
ploying higher-order estimates in Sobolev spaces, modeling-discretization adaptivity,
and uncertain data are briefly referenced by pointing to numerous references in the lit-
erature. In Chap. 5, elliptic homogenization is addressed, which is a prominent topic
and was briefly introduced before. Again, error estimates yielding computable majo-
rants are provided. Similar to the previous chapter, the ‘Comments’ part (Sect. 5.6)
is recommended. First, specific regularity constants are provided. Second, modeling-
discretization techniques for adaptive strategies are derived. Finally, references to
multiscale problems are provided.

While the book by Repin and Sauter uses functional-type estimates [9], concurrent
developments by others in a posteriori error estimation and adaptivity are residual-
based techniques [11], error estimates for contact problems [13], goal functionals
(i.e., technical quantities of interest) [1, 3, 4], flux reconstructions [7], and adaptive
multiscale predictive modeling [8]. Moreover, axioms of adaptivity were proposed in
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[5], and they help to establish proofs of optimal convergence rates for certain adaptive
algorithms.

For general goal functionals [1, 3, 4, 8] of the form J : X → R, it should be noticed
that these are not necessarily norms anymore. In fact, J (u) ∈ R and J (ũ) ∈ R may
have negative values, and J (u) = J (ũ) may happen for u �= ũ. This is a drawback
jeopardizing rigorous error estimates. On the other hand, such goal functionals allow
for problem-specific error quantifications in which not the entire solution is measured
in a global norm, but only parts of the solution or derivative information evaluated
in subdomains, boundaries, interfaces or single points. Typical examples are mean
value evaluations in the domain �, derivative information over interfaces 
, or point
value evaluations, respectively:

J (u) =
∫

�

udx, J (u) =
∫




∂nuds, J (u) = u(x), x ∈ �.

In fluid and solid mechanics, stress evaluations are often of interest:

J (u) =
∫




σs(u)n e ds, J (v,p) =
∫




σf (v,p)ne ds,

where σs(u) is the solid Cauchy stress tensor with vector-valued displacements
u : � → R

n, and σf (v,p) is the fluid Cauchy stress tensor with the vector-valued
velocity v : � → R

n and scalar-valued pressure p : � → R. Furthermore, e is a
unit vector in R

n. The last goal functional is important in aerodynamics for com-
puting drag (with e = (1,0,0)T as the main flow direction) and lift values (with
e = (0,1,0)T orthogonal to the main flow direction), e.g. for airplanes. As for norms,
the objective is to derive two-sided estimates

c1η ≤ |J (u) − J (ũ)| ≤ c2η.

Since |J (u) − J (ũ)| = 0 may happen, the lower bound estimate remains a question-
able task and was only recently achieved in [6] using a so-called saturation assump-
tion.

Findings as discussed in this book are useful for two research directions of equal
importance. First, an increasing number of mathematical methods and numerical
techniques require a careful rigorous numerical analysis for which suggestions can
be obtained from this book. Second, there is on the other hand, an increasing number
of models and numerical techniques in scientific computing and computational engi-
neering addressing challenging variational multiphysics problems. These are charac-
terized as nonstationary, nonlinear, coupled systems of partial differential equations.
Examples are for instance fluid-structure interaction [10] and coupled variational in-
equality systems [12]. Currently, complete analyses for such problems are out of
scope. Partial results include goal-oriented error estimation for fluid-structure inter-
action and multigoal-oriented error estimates (i.e., controlling simultaneously differ-
ent goal functionals) with balancing of discretization and nonlinear iteration errors,
respectively. Despite these developments, there is a current need to also employ (or
couple with) techniques as described by Repin and Sauter, that may help to design



274 T. Wick

homogenized approaches, model simplifications, adaptive schemes, and model con-
versions that are cheaper in their numerical solution without deteriorating the mathe-
matical accuracy.

Summarizing, the book at hand is a valuable reference for state-of-the-art results
on model error estimates for partial differential equations and variational problems
of elliptic type by covering various approaches that can usually not be found in one
single work. It should be appealing to graduate students with prerequisites in mathe-
matical modeling, differential equations, continuum mechanics, and homogenization
as well as advanced researchers who are interested in employing accuracy concepts
in function spaces. Therefore, this book is an inspiring source for both advanced
teaching and conducting research in the fascinating field of numerical error analysis.

Funding Note Open Access funding enabled and organized by Projekt DEAL.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are in-
cluded in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Pure and Ap-
plied Mathematics (New York). Wiley-Interscience, New York (2000)

2. Allaire, G.: Shape Optimization by the Homogenization Method. Springer, Berlin (2002)
3. Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Lectures

in Mathematics. Birkhäuser, ETH Zürich (2003)
4. Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite ele-

ment methods. In: Acta Numerica, pp. 1–102. Cambridge University Press, Cambridge (2001)
5. Carstensen, C., Feischl, M., Page, M., Praetorius, D.: Axioms of adaptivity. Comput. Math. Appl.

67(6), 1195–1253 (2014)
6. Endtmayer, B., Langer, U., Wick, T.: Two-side a posteriori error estimates for the dual-weighted

residual method. SIAM J. Sci. Comput. 42(1), A371–A394 (2020)
7. Ern, A., Vohralík, M.: Adaptive inexact Newton methods with a posteriori stopping criteria for non-

linear diffusion PDEs. SIAM J. Sci. Comput. 35(4), A1761–A1791 (2013)
8. Oden, J.T.: Adaptive multiscale predictive modelling. Acta Numer. 27, 353–450 (2018)
9. Repin, S.: A Posteriori Estimates for Partial Differential Equations. Radon Series on Computational

and Applied Mathematics, vol. 4. de Gruyter, Berlin (2008)
10. Richter, T.: Fluid-Structure Interactions: Models, Analysis, and Finite Elements. Springer, Berlin

(2017)
11. Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University

Press, London (2013)
12. Wick, T.: Multiphysics Phase-Field Fracture: Modeling, Adaptive Discretizations, and Solvers. Radon

Series on Computational and Applied Mathematics, vol. 28. de Gruyter, Berlin (2020)
13. Wohlmuth, B.: Variationally consistent discretization schemes and numerical algorithms for contact

problems. Acta Numer. 20, 569–734 (2011)


	Sergey I. Repin, Stefan A. Sauter: "Accuracy of Mathematical Models"
	Funding Note
	References


