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Abstract
Machine learning (ML) methods have shown powerful performance in different application. Nonetheless, designing ML

models remains a challenge and requires further research as most procedures adopt a trial and error strategy. In this study,

we present a methodology to optimize the architecture and the feature configurations of ML models considering a

supervised learning process. The proposed approach employs genetic algorithm (GA)-based integer-valued optimization

for two ML models, namely deep neural networks (DNN) and adaptive neuro-fuzzy inference system (ANFIS). The

selected variables in the DNN optimization problems are the number of hidden layers, their number of neurons and their

activation function, while the type and the number of membership functions are the design variables in the ANFIS

optimization problem. The mean squared error (MSE) between the predictions and the target outputs is minimized as the

optimization fitness function. The proposed scheme is validated through a case study of computational material design. We

apply the method to predict the fracture energy of polymer/nanoparticles composites (PNCs) with a database gathered from

the literature. The optimized DNN model shows superior prediction accuracy compared to the classical one-hidden layer

network. Also, it outperforms ANFIS with significantly lower number of generations in GA. The proposed method can be

easily extended to optimize similar architecture properties of ML models in various complex systems.

Keywords Machine learning � Deep neural networks � Optimization � Genetic algorithm � Polymer nanocomposites �
Fracture energy.

List of symbols
ML Machine learning

ANN Artificial neural networks

DNN Deep neural networks

ANFIS Adaptive neuro-fuzzy inference system

GA Genetic algorithm

MSE Mean squared error

R2 Coefficient of determination

PNCs Polymer/nanoparticles composites

Gð�Þ The activation function

f l The output of a hidden layer

w The connecting weights

k Learning iteration

e The error vector

J The Jacobian matrix for the first derivatives of

the network errors with respect to the weights

l The learning rate

I The identity matrix

fi Crisp function of ANFIS

liðxiÞ Membership grade of the inputs, xi
y The set of n integer state variables

pðyÞ The fitness function

Vf Volume fraction of nanofiller

dn The diameter of the nanoparticles

GIm The fracture energy

Em Young’s modulus

rym The yield strength

N The number of datasets

ti The target output

Oi The predicted output by ML model
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Nf The total number of the model evaluations

Nw The number of connecting weights between

layers

1 Introduction

Machine learning (ML) methods have been extensively

used for simulating material design in various applications

recently thanks to the considerable advancements in com-

puting power. The high advantage of ML is to represent the

actual behavior with much less cost and time. These tools

are based on computational intelligence through correlating

the input parameters to the output/s of interest by means of

mathematics and statistical methods. ML modeling is rea-

sonably accurate and able to capture and identify the

nonlinearity in the very complex physical systems by

developing a black box model without the need to mathe-

matical models. Thus, it has become a viable complement

and even an alternative to the physically based model

[1–3]. Artificial neural network (ANN) is a widely com-

mon ML method that has the ability to learn the pattern

rapidly. Disregarding the nature of the problem understudy,

all the influencing factors can be taken into account con-

sidering their complicated joint effect. The general struc-

ture of ANN is composed of parallel layers connected by

weights and biases to form the network. Feed-forward

neural networks are used to construct an approximate

function for the relationship starting from the input layer

toward the output layer and passing through a hidden layer.

The weights and the biases can be learned making use of a

predefined training process [4, 5]. Different from the

classical shallow ANN, the deep neural network (DNN) is

formed by multiple processing hidden layers (more than

two) providing a higher learning representation [6].

Moreover, the adaptive neuro-fuzzy inference system

(ANFIS) presents a combination of neural network and a

fuzzy system that deals with reasoning. Using these artifi-

cial intelligence approaches, the behavior of the given

problems can be captured effectively and, consequently,

the future response can be predicted implicitly with much

less effort.

The structure and the related configurations are essential

modeling factors in building the ML model. Different

results are obtained when the architecture and the feature

configurations are changed. The numbers of input and

output variables define the number of neurons in the input

and output layers. In the meantime, there is still no general

rule for setting the dimension of the hidden layers and the

number of neurons in each layer. It is difficult to find the

optimal set of the possible structures and parameters. A

trial and error is a very common adopted procedure in

which the tedious iterative process is inevitable. Though,

reliable and powerful optimization methods have been

effectively used in identifying the optimal model from

several trained models. Much of the focus has been given

on mainly optimizing the parameters that can be derived

through the training process. The optimal model was

selected by finding the optimal connecting weights and was

approximated by reducing the training error between the

predictions and corresponding targets [7–9]. In ANFIS

models, most of the optimization techniques were utilized

for defining the membership functions and the corre-

sponding fuzzy rules to increase the accuracy of standalone

ANFIS [10, 11]. When it comes to optimal architecture, it

is seen that limited analyses were investigated. An efficient

configuration of ML models can be obtained by optimizing

hyperparameters whose magnitude is to be set before the

learning process begins. This is a complicated optimization

problem as it contains a large number of correlated design

variables and nonlinear objective function. Therefore, a

method for developing and optimizing ML models to

obtain the best model configuration is needed.

This paper presents a robust methodology for finding

the optimal architecture and features of the DNN and

ANFIS models. Supervised learning is considered where

the data points include a target output to be predicted from

a given set of input variables. Genetic algorithm (GA)-

based integer-valued optimization is employed to find the

best ML model configuration through minimizing a fitness

function of the mean squared error (MSE) between the

predicted and the target values. The hyperparameters are

restricted to be integers. For DNN, the optimization

variables include: the number of hidden layers, the num-

ber of neurons in each one, and the type of the activation

function, whereas for ANFIS, they are the type and the

number of membership functions In addition, the perfor-

mance of the addressed ML models is also evaluated and

compared by calculating the corresponding coefficient of

determination (R2) and the probability distribution of the

relative error.

We apply the proposed methodology to the computa-

tional design of materials in order to validate the method

and compare it with the classical technique. The focus of

interest in this paper is the prediction of the fracture energy

of polymer/nanoparticles composites (PNCs) based on a set

of experimental measurements gathered from the literature.

This is a challenging task considering the complex and

nonlinear nature of toughening mechanism of PNCs which

depends on diverse uncertain factors. Up to date, there are

only a few contributions on ML to investigate the behavior

of PNCs [12–14]. In a previous study, we presented

unoptimized ML models for PNCs that were constructed
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using the concept of trial and error [15]. The developed

ANN and ANFIS showed a considerable superior perfor-

mance compared to the results obtained by the analytical

and linear regression models. Yet, the search for a better

model never stops. To the best knowledge of the authors,

the optimal design of the architecture and the hyperpa-

rameters of the ML model in the area of PNCs material

design remains almost unexplored.

The rest of the paper is organized as follows: firstly, we

describe the machine learning and the optimization meth-

ods with their essential mathematical background in

Sect. 2. Then, Sect. 3 addresses the model problem

including details of the dataset. Subsequently, we briefly

describe the application and performance’s analysis of the

proposed method in Sect. 4. Finally, Sect. 5 summarizes

the key results and provides direction for future works.

2 Material and methods

There exist several ML approaches documented in the lit-

erature such as decision trees, random forest, support

vector, Bayesian networks, extreme learning machine,

evolutionary computing, ANN, and ANFIS, among others.

An extensive review on the methods can be found in

[16–18]. Nevertheless, for the purpose of finding the

optimal configurations of ML model, ANN and ANFIS are

investigated in this study due to their flexible and

adjustable architecture. We have not performed a conclu-

sive or exhaustive analysis to determine whether and how

they are better, as our major concern to have relatively

simple and optimized model that could be easily applied.

Hereafter, a short description and the mathematical for-

mulations involved in the development of the proposed

method are elucidated.

2.1 Artificial neural networks

Artificial neural network (ANN) is a highly parallel system

that mimics the function of the biological brain. It is

designed to model the relation among the input and output

parameters through a training process. The typical ANN

model contains several inter-connected processing units

called neurons or nodes grouped together into layers. The

neighboring layers are connected by weights forming a

large network. The network learns by analyzing multiple

datasets and adjusting the connection weights [19, 20]. In

the course of this study, we apply the multilayer feedfor-

ward networks to predict the fracture energy of the PNCs.

The optimal architecture of the deep neural network

(DNN), a network composed of two or more hidden layers,

is examined. The architecture of the network and the

proposed DNN model for predicting the fracture energy of

PNCs is shown in Fig. 1.

Inputs from previous layers are linked to each neuron by

the corresponding weights and bias by which the neuron

receives data and consequently proceeds it to the next

layer. The weighted sums are passed through an activation

function, Gð�Þ, to determine the neuron output. It takes

inputs from previous layer to produce a scalar output. The

output is computed layer by layer as in Eq. (1).

f l ¼ Gðwl � f l�1 þ blÞ ð1Þ

where f l�1 is the output from the preceding layer (l� 1),

and w and b are the connecting weights and bias, respec-

tively. Finally, the signal from the neurons of the last

hidden layer is passed to the output layer with linear acti-

vation [21, 22]. The network learns iteratively from several

datasets in supervised learning process. The predicted

outputs are compared with the target output, and accord-

ingly, new iteration is proceeded to minimize the mean

squared error (MSE). Levenberg–Marquardt algorithm is

used for training where the weights and bias are updated

via the error back-propagation (BP). It is a combination of

gradient descent forms and Newton method. After each

learning iteration, k, the error vector (e) is computed and

the weights are updated. The Jacobian matrix (J) includes

the first derivatives of the network errors with respect to the

weights. During the training in the standard gradient des-

cent, as the error converges to a minimum value, the gra-

dient will become very small and the weights are updated

very slightly. Contrary, the training by Levenberg–Mar-

quardt method can be much faster [23, 24]. The modifi-

cation applied to update the weights is given by Eq. (2).

wkþ1 ¼ wk � ½JTJþ lI��1JTe ð2Þ

where l is the learning rate that governs the step size and I

is the identity matrix.

In constructing the DNN models, we divide the data into

two groups: training and testing datasets. The training

dataset is used to build the network and approximate the
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Fig. 1 The general architecture of multilayer feedforward networks

for the model problem
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connecting weights, while testing dataset is used to validate

the models against unseen data (cross-validation) and to

prevent possible overfitting. Doing so, the learning itera-

tions continues until the stopping criterion is met; (1) the

MSE in the testing set increases to a maximum number of

successive iterations of 20, and (2) the gradient of the error

has a minimum value of 10�7.

2.2 Adaptive neuro-fuzzy inference system

The concept of fuzzy logic can be introduced through a

fuzzy inference system (FIS) to map the input/output

relationship. The process starts with defining the mem-

bership functions of fuzzy sets (fuzzification) statistically

making use of the available dataset, comes through creat-

ing the rules and merging all the fuzzy rules by a proper

fuzzy inference and ends finally by defuzzification into

crisp output values [25]. The adaptive neuro-fuzzy infer-

ence system (ANFIS) benefits from the merits of fuzzy

logic and the neural network [26]. It is based on using

fuzzy rules for adaptation of a set of model parameters and

the neural network for training and updating these param-

eters. Takagi–Sugeno fuzzy model is one of the ANFIS

approaches characterized by linear or constant terms in the

consequent part of the if-then rules [27].

The learning method of the ANFIS is similar to the

common feedforward neural networks with defined net-

work representation. It is comprised of nodes with specific

functions collected in main five layers. For each layer, the

output signals are processed by the node functions as dis-

played in Fig. 2. In the first layer, the nodes evaluate the

fuzzy membership grade of the inputs, liðxiÞ, by dividing

the domain of each one into a number of fuzzy subsets. The

membership function can be of increasing, decreasing or

approximation type [25]. The nodes in the second layer

multiply the incoming signals from Layer 1 to calculate the

weights of the rules firing strength, wi, and send the product

out to the next layer. Then, the normalized firing strength

of the fuzzy rules is approximated at the nodes of Layer 3,

where the output in each node is calculated as the ratio of

the firing weight to the sum of all firing weights. In the

fourth layer, the outcomes from the preceding layer are

multiplied by a crisp function (fi) that specifies the

membership function of the output. In this way, the

defuzzification of the fuzzy rules is achieved for the overall

weighted output. Finally, the overall output is computed as

the summation of all incoming signals in Layer 5.

2.3 Genetic algorithm

For the purpose of constructing the ML models of the

highest performance, the architecture and features are to be

optimized in this work. The state variables represent the

number of hidden layers, the number neurons in each, and

the type of the activation function for the DNN, while they

are the type and the number of membership functions in

ANFIS. Such discrete nature of the variables makes the

optimization a non-convex problem. The classical method

for solving these problems is based on the branch and

bound algorithm. It starts by finding the optimal solution of

the variables without the integer constraints. Then, the

branches of this solution are explored creating two new

subproblems. The branch for each variable is checked

against upper and lower estimated bounds on the optimal

solution. The subproblems are solved for the new con-

strained and the process of branching is repeated until

obtaining a solution that satisfies all the integer constraints

[28]. Alternatively, heuristics methods such as genetic and

evolutionary algorithms are faster and more efficient to

approximate the solution of computationally expensive

problems. It has been applied in solving numerical prob-

lems and prediction [29, 30]. The heuristics methods search

within the domain for integer feasible solutions. Starting

from randomly generated candidate, a new generation with

modified objective values is extracted. The procedure is

continued to derive sufficiently good solution. Like the

neural networks, a genetic algorithm (GA) is biologically

inspired heuristic approach based on the evolutionary

process representing an optimization procedure in a binary

search space. It seeks to find the values of the decision state

variables that optimize an objective function. The concept

of GA was presented by Holland and his collaborators [31].

In this study, GA-based integer-valued optimization is

employed [32]. The mathematical formulation of the

problem is defined in Eq. (3).

Layer 1

O
(1)
i = µi(xi)

Fuzzification

Layer 2

w
(2)
i =

∏
µji(xi)

Fuzzy rule

Layer 3

w
(3)
i = wi∑

wi

Layer 4

O
(4)
i = wfi

Defuzzification

Layer 5

O
(5)
i =

∑
wfi

Fig. 2 Schematic representation

for the layers of ANFIS
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Minimize
y

p ðyÞ

Subject to gðyÞ ¼ 0

hðyÞ� 0

yl � yi � yu : integer; i ¼ 1; . . .; n

y ¼ y1; y2; . . .; yn½ �T

ð3Þ

In the above expression, y is the set of n integer variables

with lower and upper limits of yl and yu; pðyÞ is the fitness
function; and gðyÞ and hðyÞ are the equality and inequality

constraints. The objective (fitness) function is a nonlinear

function representing the MSE for the predictions of the

ML models with respect to the experimental data. The

flowchart of the optimization steps is shown in Fig. 3. The

genetic learning starts with creation of an initial population

consisting of randomly generated rules. Each rule can be

represented by a string of bits. The random population is

the state variables that define the architecture of the ML.

Then, a new population is formed consisting the fittest rules

[33]. At each step, GA uses three main types of rules to

create the next generation from the current population:

crossover, mutation, and selection. In the crossover, the

genetic information of two parents is combined from the

selection operator to explore the design space, while the

genetic information is changed with mutation probability to

introduce diversity and to prevent local optimal solution.

Meanwhile, a selection operator is maintained to choose fit

individuals for the reproduction operators. In this way, the

derivatives of the objective function are not required

making GA favorable choice for the nonlinear and dis-

continuous optimization problems. The obtained solution is

evaluated by the objective optimization function of the

MSE. The corresponding value of the objective (known as

the fitness) measures the performance of the chosen indi-

viduals compared to the other whole population. The pro-

cess of generating new populations continues as long as the

termination check has not been met with the condition that

each rule in the population satisfies a prespecified fitness

threshold.

3 Model problem

Epoxy polymer is well known to be a brittle material. It has

a poor fracture toughness and a poor resistance to crack

initiation and propagation. Several diverse second-phase

materials have been added to the polymer matrix in order

to improve the fracture properties without sacrificing other

important thermo-physical properties. Structural charac-

terization can be enhanced for the purpose of environ-

mental applications [34, 35]. Inorganic additives of fillers

with the size of nanometer are effectively applied because

of their high surface to volume ratio. In this regard, poly-

mer nanocomposites have offered exceptional improve-

ments even at lower filler contents. The shape of the

nanofillers can be of spherical particles with a radius of

10–80 nm [36–38].

Studying the fracture energy enhancement due to the

addition of rigid nanofillers is a highly challenging task. It

depends on different factors which highly affect the

toughening mechanism such as the volume fraction, the

curing conditions, the mechanical properties of the two

phases, the agglomeration, and distribution of the fillers.

Several numerical and analytical models have been pro-

posed to model the fracture and crack propagation of

PNCs, see, for example, the contributions in [39–45] and

the references therein. Besides these approximation mod-

els, the fracture energy of PNCs has been directly extracted

from experiments [46–49].

In this study, we introduce data-driven models as a

promising alternative to the ’classical’ computational

approaches. To establish the database for the purpose of

developing the ML models, five parameters are defined.

Two of them represent the geometrical properties of the

rigid nanofillers, i.e., the volume fraction ðVf Þ, and the

diameter of the particle ðdnÞ. The remaining three define

the material properties of the epoxy polymers: the fracture

energy ðGImÞ, the Young’s modulus ðEmÞ, and the yield

Start

ML architecture
Variable definition

Constraints
Yes

No

ML training
evaluate MSE

Find the mean
and the best values

Termination
check

No

Yes

New generation

Optimal model

End

Fig. 3 Flowchart of the methodology for ML optimization using

integer based GA
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strength ðrymÞ. These parameters are well known to be the

governing factors in the toughening mechanism of PNCs

according to Huang and Kinloch [39], Williams [40], and

Quaresimin et al. [41]. In a previous study, we have

employed ANN and ANFIS to predict the fracture energy

by establishing a database collected from the literature

[15]. The dataset consists of 115 experimental measure-

ments. Various ranges are collected to ensure the devel-

opment of a robust model that can be applied to a wide

range of the PNCs. Table 1 lists the range of the variation

of the input–output parameters.

Of the total datasets, 85 samples are assigned for

training the ML models. The remaining is set as testing

data to compute the validation error. It is also utilized to

prevent overfitting that results in good performance in the

training set and poor predictions in the overall data. Instead

of random division, the data are divided based on the

condition that the training and the testing datasets have

identical statistical distributions.

An optimal machine learning model will be constructed

to predict the fracture energy of PNCs as a function of the

selected five inputs. The modeling relation is defined as

GIc ¼ f ðxÞ; x ¼ Vf ; dn;GIm;Em; rym
� �

ð4Þ

where GIc is the fracture energy of the PNCS and f() is the

developed mapping function. An integer-valued-based GA

optimization is applied to find the optimal architecture in

DNN and ANFIS. In optimization scheme, various

arrangements of neurons in the hidden layers using pre-

defined multilayer neural networks of DNN are sought. In

each layer, the number of neurons and the activation

function are optimized in order to evaluate the fitness

function. Likewise, the optimal type and number of

membership functions in ANFIS are obtained.

Measuring the performance of the models generally

depends on the residual of the differences between the

predictions and the target values. Ordinary, absolute, or

relative absolute sum of residuals is affected by the

direction of over- or under-prediction. Contrary, the indi-

cators which consider the variance are used to eliminate

this effect. In our analysis, the predictions of the developed

ML models are evaluated by two performance evaluation

indices: the mean squared error (MSE) and the coefficient

of determination ðR2Þ in which the variance of the esti-

mator and its squared bias are taken into account. MSE and

R2 can be calculated, respectively, using Eqs. (5) and (6).

MSE ¼1

N
Rðti � OiÞ2 ð5Þ

R2 ¼1� Rðti � OiÞ2

Rðti � �tiÞ2
ð6Þ

where N is the number of datasets, ti refers to the actual

observation from the experiments, and Oi is the predicted

fracture energy by the addressed ML model. From Eq. (5),

MSE is the variance of the residuals that corresponds to the

error’s discrepancy between ti and Oi. It measures the

absolute fit of the model to identify the undesirable large

differences. Differently, R2 evaluates the relative measure

of the fit which quantifies the variance of the residuals

divided by the total sum of squares of error with respect to

the mean. Besides, the probability distribution of the rela-

tive error is employed to measure the performance of the

optimal models.

4 Results and discussion

The hyperparameters defining the optimal architecture of

ML models are sought for the model problem of predicting

the fracture energy of the PNCs ðGIcÞ. Several network

architectures are examined including the shallow ANN of

one hidden layer and DNN of more than two hidden layers

(from 2 to 6) in order to evaluate and select the most

appropriate structure. We examine also the optimal type of

the activation function out of four functions: tan-sigmoid,

log-sigmoid, Elliot-sigmoid, and radial basis. Apparently,

these are nonlinear functions. The derivative of the linear

base (e.g., triangular or pure linear) is a constant and

cannot go back and modify the weights to provide a better

prediction. Hence, the linear functions are not possible to

use back-propagation for training the DNN models. An

integer-valued-based GA is applied for this purpose with

MSE minimized as the objective function. Therefore, a

population size of 100 is set for the first generation and 50

for the followings. Figure 4 shows the convergence rate to

obtain the minimum MSE against the number of genera-

tions in the different DNN architectures. It can be noted

that Str:-1 has stationary trend and cannot be improved

with further generations; Str:-6 requires 75 (= 3800 func-

tion evaluations) generations to get the lowest fitness of

MSE ¼ 1503:3 among the different DNNs. In the second

order comes Str:-3 surpassing Str:-4 and Str:-5.

Table 1 The lower and the upper limits of the dataset

Parameter Unit [Lower, upper] limits

Inputs

Vf % [0.5,30]

dn nm [12,170]

GIm J=m2 [46.5,606]

Em GPa [2.41,3.53]

rym MPa [57.1,111.0]

Output

GIc J=m2 [58.3,2156.6]

1928 Neural Computing and Applications (2021) 33:1923–1933

123



The optimal architectures of the created models are

summarized in Table 2. Each row contains the optimal

number of neurons in each hidden layer of the k-layered

networks and their activation functions, Gð�Þ, accompanied

by the corresponding prediction accuracy measures (MSE

and R2). The last two columns include the total number of

the model evaluations (Nf ) used to get the optimal archi-

tecture, and the number of connecting weights (Nw)

between layers. Except of the shallow network, the log-

sigmoid is found to be the optimal activation function. This

may be explained by its smooth gradient that prevent the

jumps in the output values. Moreover, the results show that

the MSE decreases steadily with the increase of hidden

layers from Str:-1 until Str:-3. Afterward, it becomes

slightly stabilized before it reaches the minimum at Str:-6.

With the increase of the hidden layers, the number of

connecting weights grows significantly (excluding Str:-4).

In the comparison between Str:-3 and Str:-6, the latter, on

the one hand, provides higher accuracy. On the other hand,

however, it has around fourfolded number of connecting

weights. Interestingly, the more the deeper of the hidden

layers is, the higher the required computation burden for

each function evaluation.

The network performance for the training and testing

datasets in the optimal structures is shown in Fig. 5. The

training error is decreasing sharply in the first ten iterations

before it reaches a roughly stable convergence. The train-

ing could be continued with negligible improvement, but

the error in the testing set diverges after specific number of

learning iterations. The training is allowed 20 more itera-

tions since the last time it decreased in the testing set.

Hence, in order to prevent overfitting, the connecting

weights are selected at the lowest MSE in the testing set.

Notably, Str:-3 is the fastest to reach the best results.

Similarly, integer-valued-based GA optimization is

applied to find the optimal hyperparameters in ANFIS

model. In particular, we optimize the number and the type

of the membership functions required for the fuzzification

of the full space in the input parameters. The number of the

rules equals the product of a sequence of the numbers of

membership functions associated with the each of the five

inputs. As the numbers of membership functions increase,

the number of the generated rules considerably increases,

and the computation time becomes unaffordable. Seven

different forms of approximating membership functions are

examined: Bell-shaped, Gaussian, Gaussian combination,

triangular, trapezoidal, P-shaped, and difference between

two sigmoidal functions. An integer values from 1 to 7 are

assigned to represent each type. Considering the number of

membership functions with respect to the input parameters,

the rules are generated using grid partitioning to generate a

full range of the rules. The convergence of the MSE is

depicted in Fig. 6. After 222 generations, the MSE con-

verges to its minimum value of 2008.8. This convergence

required 11,150 function evaluations. The computation
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Fig. 4 Convergence curve for the objective function against the

number of generations using different DNN structures

Table 2 The optimized architecture of DNN for predicting the fracture energy of PNCs

Nl Number of neurons in each hidden layer Activation function, Gð�Þ MSE R2 Nf Nw

Str:-1 1 [20] Tan-sigmoid 2252.0 0.984 100 140

Str:-2 2 [34, 12] Log-sigmoid 1787.7 0.987 1250 439

Str:-3 3 [46, 18, 25] Log-sigmoid 1577.6 0.989 3100 1623

Str:-4 4 [33, 16, 11, 39] Log-sigmoid 1638.2 0.988 5400 1437

Str:-5 5 [37, 38, 29, 20, 25] Log-sigmoid 1644.1 0.988 1400 3948

Str:-6 6 [49, 37, 31, 40, 36, 12] Log-sigmoid 1503.0 0.990 3850 6535

Nl the number of hidden layers,

Nf the total number of the objective function evaluations used to get the optimal architecture by using GA, and

Nw the number of connecting weights between layers
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cost of GA in optimizing ANFIS is significantly higher

with lower predictive accuracy compared to DNN. Details

on the developed optimal ANFIS are listed in Table 3. The

best performance is obtained also after ten training itera-

tions. Additional training iterations lead to an overfitting

error in the testing dataset, see Fig. 7. In [15], ANFIS was

found to outperform a trial selected classical one-layer

ANN model. However, an optimized multiple hidden lay-

ers configuration of DNN shows better prediction accuracy.

We also employ a graphical analysis of the relative error

to evaluate the performance of the optimized DNN and

ANFIS models. The percentage relative error is calculated

as the relative variation of the predicted value from the

corresponding experimental data. The prediction inaccu-

racies of the optimal DNN (Str:-3 and Str:-6) and ANFIS

are represented by the histograms in Fig. 8. Obviously,

most of the data points have a relative error value close to

zero indicating a robust predictive capability of both

methods. The scatter of the distribution on either side of the

equality is very similar. The probability of full matching

the experimental values in the predictions by DNN is

higher. The histograms show that Str:-6, Str:-3 and ANFIS

can predict nearly 86%, 87%, and 76%, respectively, of the

data with an absolute relative error of 10% or less.
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Fig. 5 Comparative convergence analyses of MSE in the training and testing datasets along the learning iterations for the optimal architectures of

DNN models
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Fig. 6 Convergence curve for the objective function against the

number of generations using ANFIS
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5 Conclusions

A robust optimization approach for machine learning

modeling was presented in this paper based on genetic

algorithm. An integer-valued optimization was adopted.

The approach investigated the architecture and the feature

configurations of two machine learning models: deep

neural networks (DNN) and adaptive neuro-fuzzy inference

system (ANFIS). The set of optimized variables were the

number of neurons in the hidden layers using predefined

multilayer neural networks and the type of the activation

function in the former, but the type and the number of

membership functions in the latter. In solving the opti-

mization problem, the mean squared error (MSE) was

assigned to be the fitness function. We elucidated the

proposed method by using a case study in the computa-

tional material design application. The aim was to find an

efficient structure of DNN and ANFIS models to predict

the fracture energy of polymer/nanoparticles composites

(PNCs). The conventional analytical predictor models of

PNCs show a complex and nonlinear toughening mecha-

nism dominated by different parameters. Thus, the

addressed ML models were trained to establish the inherent

relation between five inputs and the fracture energy based

on dataset gathered from the literature. The parameters

include the percent of the volume fraction of the

nanoparticles, their size, the fracture energy of the bulk

epoxy polymer, its Young’s modulus, and its yield

strength. The dataset was divided into two groups: the

training dataset used to build the model and the testing one

used to validate the performance and to prevent overfitting

during learning iterations. The mean squared error (MSE),

the coefficient of determination (R2), and the probability

distribution of the relative error were employed to compare

and to measure the performance of the optimized DNN and

ANFIS models. The results indicated that the optimized

DNN not only surpassed the classical one layer ANN

model as expected but also yielded better prediction

accuracy compared to ANFIS. The DNN with three and six

hidden layers has shown the highest performance. How-

ever, it was found that as the number of the layers

increases, the network structure becomes larger and the

complexity of the algorithm increases. Although the results

are limited to the application case study, the method can be

applied to variant applications. In the future, we will extend

the presented work to optimize non-supervised ML models

in finding the solution of the partial differential equations.
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Table 3 The optimized ANFIS for predicting the fracture energy of PNCs

Membership functions Input-parameters Performance indices

Vf dn GIm Em rym MSE R2

Number 3 4 3 2 5

Type Gaussian Triangular Trapezoidal Bell-shaped Triangular 2008.8 0.986
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