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Preface
This course is designed for students and doctoral researchers mainly from engineering. Applied mathematicians are welcome though.

The goal is to provide an overview about function spaces, and more generally speaking functional frameworks that include metric spacs, normed
spaces, inner product spaces, and convex sets for variational inequalities. Throughout, the implication to algorithms and practical applications is
made and sometimes illustrated with numerical simulations from my own work.

This course is organized into three parts:

A) What I do: 60 minutes presentation, exercises

→ What you learn: organizing a given engineering problem statement into a mathematical framework, guiding questions to be asked,
implications to algorithms and numerical simulations

B) What I do: 90 minutes presentation, exercises

→ What you learn: metric spaces, normed spaces, inner product spaces (Hilbert spaces), completeness, convergence, Cauchy sequence, L2, H1,
space-time spaces (Bochner spaces), outlook to further abstract spaces (e.g., nonlinear PDEs) such as Sobolev spaces

C) What I do: 60 minutes presentation, exercises

→ What you learn: convex sets for variational inequalities, relaxation via penalization, obstacle problem, a long exercise from mathematical
modeling, over discretization to the numerical solution

Thomas Wick
Hannover, Paris, online, June 2023

Acknowledgements: This work is supported within the International Research Training Group on Computational Mechanics Techniques in High

Dimensions GRK 2657 under Grant Number 433082294.
Thomas Wick (LUH/ENS) Function spaces and functional frameworks 2



Overview
1 Motivation and introductory derivations

Problem statements
Guiding questions
Applying functional frameworks to scientific computing and engineering
The art of making errors
Exercises

2 Spaces
Convergence
Metric spaces
Normed spaces
Inner product spaces
Abstract spaces
Exercises

3 Functional frameworks for variational inequalities
Obstacle problem
Extensions to other problems
Exercises

4 The End
Thomas Wick (LUH/ENS) Function spaces and functional frameworks 3



1 Motivation and introductory derivations
Problem statements
Guiding questions
Applying functional frameworks to scientific computing and engineering
The art of making errors
Exercises

2 Spaces
Convergence
Metric spaces
Normed spaces
Inner product spaces
Abstract spaces
Exercises

3 Functional frameworks for variational inequalities
Obstacle problem
Extensions to other problems
Exercises

4 The End

Thomas Wick (LUH/ENS) Function spaces and functional frameworks 4



Motivation I

1 We are given some problem from engineering, physics, chemistry, biology, economy, and so
forth

→ Problem statement

2 Often such a problem statement results into a differential equation1

Definition
A differential equation is a mathematical equation that relates a function with its derivatives such
that the solution satisfies both the function and the derivatives.

1e.g., Wick; Numerical Methods for Partial Differential Equations, Leibniz University Hannover, 2022,
https://doi.org/10.15488/11709
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Motivation II
1 Often, three equivalent formulations:

strong, weak, energy

2 Strong form: differential equation

3 Weak form: principle of virtual work

4 Energy form: related to physical energy (exists only for symmetric problems)

5 Example (Poisson):

Find u : Ω→ R : −∆u = f in Ω u = 0 on ∂Ω

Find u ∈ X :
∫

Ω
∇u · ∇ϕ dx =

∫
Ω

f ϕ dx ∀ϕ ∈ X

Find u ∈ X : min
u∈X

(
1
2

∫
Ω
|∇u|2 dx−

∫
Ω

fu dx
)

6 Exercise: what is Ω? What is X? What is ϕ? How is f called? How is u = 0 on ∂Ω called?
How are the three problems formally related?
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Motivation III

1 We want to organize and structure the problem statement

→ Better understanding how it ‘works’ and how it is driven by right hand side data, boundary
conditions, initial conditions, geometry, and so forth

2 Final goal: We want to have accurate, efficient (fast), and robust numerical simulations that
we can trust
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Example of differential equation: Poisson’s problem

Find u : Ω→ R such that

−∆u = f in Ω
u = g on ∂Ω

Figure: Poisson problem in 1D (left and middle). Poisson problem in 2D (right).
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Questions we can ask

1 What does this (Poisson’s problem) differential equation describe?

2 Is it useful for ‘some’ application?

3 Can we solve the differential equation analytically?

4 Does there exist a solution?

5 Is such a solution unique?

6 How does the solution change, if we change boundary conditions or initial data?

7 If not analytically, can we make use of the computer?

8 Computer: design an algorithm, implement that algorithm into some software, run the
software, analyze the outcome (numerical result)

9 Is there only one such algorithm? Or more? Do they differ in their accuracy, efficiency,
robustness?
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These questions lead to ...

→ Seven concepts of numerics:2 3 approximation, convergence, convergence order, errors, error
estimation, efficiency, stability (robustness)

→ Scientific computing: Mathematical modeling (of problem statments), design and analysis of
algorithms (in functional frameworks), implementation into software (including debugging),
analysis and interpretation of the results, feedback loop to applications and/or improvements
of math. modeling and/or improvements of algorithms and/or improvements of
software/code

2Richter, Wick; Springer, 2017 (german), first and original version of these seven concepts
3Wick; NumPDE lecture notes, 2022; https://doi.org/10.15488/11709, Chapter 2 (english)
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What do these questions have to do with function spaces?
1 Well, how can we mathematically investigate questions of well-posedness, efficiency

(convergence) of algorithms, approximation (discretization) errors?

2 We need mathematical structures

3 For instance, for approximation errors, we need to measure distances

→ Distances between two numerical solutions (do they come closer; convergence)? Distances
between manufactured and numerical solutions

4 Concept: Metric

5 Concept: Norm

6 Example: Usual metric we all know is the Euclidian metric

7 But with respect to what? In which space?

8 Well, in our well-known 3d (three-dimensional) space in which we all live

9 Aha: this is our first function space: R3
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Functional frameworks4

1 Function spaces with norms are vector spaces

2 In the presence of inequality constraints, we rather deal with convex sets

→ Functional frameworks help in better understanding engineering problem statements

→ Functional frameworks help in the choice of discretizations and numerical (linear and
nonlinear) solution algorithms

4The original title was ‘function spaces’. However, since also metric spaces, measure spaces, convex sets, and so
forth exist, ‘functional framework’ is a more general wording that I prefer to use.
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Consequences in scientific computing and engineering
1 Studying convergence rates (speed of algorithms)

→ Different norms (different spaces) may yield difference convergence rates

2 Example: 2D Poisson: Bilinear FEM with Q1
c elements. Evaluate the L2 and H1 norms using

bilinear FEM. The results are (which norm is ‘better’?):

Level Elements DoFs (N) h L2 err H1 err
=============================================================================
2 16 25 1.11072 0.0955104 0.510388
3 64 81 0.55536 0.0238811 0.252645
4 256 289 0.27768 0.00597095 0.126015
5 1024 1089 0.13884 0.00149279 0.0629697
6 4096 4225 0.06942 0.0003732 0.0314801
7 16384 16641 0.03471 9.33001e-05 0.0157395
8 65536 66049 0.017355 2.3325e-05 0.00786965
9 262144 263169 0.00867751 5.83126e-06 0.00393482
10 1048576 1050625 0.00433875 1.45782e-06 0.00196741
11 4194304 4198401 0.00216938 3.64448e-07 0.000983703
=============================================================================

3 Analyzing algorithms in terms of accuracy, efficiency, robustness

4 Do we converge with our numerical scheme to the correct limit?
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Algorithm
Definition (Algorithm)

An algorithm is an instruction for a schematic solution of a mathematical problem statement. The
main purpose of an algorithm is to formulate a scheme that can be implemented into a computer
to carry out so-called numerical simulations.

1 Direct schemes solve the given problem up to round-off errors (for instance Gaussian
elimination).

2 Iterative schemes approximate the solution up to a certain accuracy (for instance Richardson
iteration for solving linear equation systems, or fixed-point iterations).

3 Algorithms differ in terms of accuracy, robustness, and efficiency.

4 Algorithms can be (sometimes/often?) rigorously analyzed within a functional framework

• In many numerical examples and applications it is a trade-off of a ‘rough’ approximation (some kind of ‘guess’ about the solution) which
might be relatively cheap in the computational cost, and on the other hand, high-accuracy or robust (with respect to all parameters)
numerical simulations.

→ One challenge (at least to me in scientific computing) is to address all three aspects of accuracy, efficiency, robustness simultaneously.
Thomas Wick (LUH/ENS) Function spaces and functional frameworks 16
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L’art de bien faire des erreurs5

Figure: From modeling over a ‘mesh’ (discretization) to finer discretizations (all top row), up to graphical
error bounds until adaptivity (bottom row). Modeling, discretization, error analysis require to choose
function spaces.

5Fau, Wick; Revue du Palais de la découverte, Vol. 436, pp. 50-55, 2022
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Important to notice I

1 These concepts are defined with respect to spaces

2 Why can we not work always with the same space?

→ Answer: we want to represent the ‘physics’ of a given problem statement, and this requires,
specifically-tailored spaces, numerical methods, preconditioners, and numerical solution
algorithms

3 Is there some optimal norm or optimal space?

→ Answer: often yes, but not always (fortunately, unfortunately)

4 Unfortunately: it often requires new analyses of problem statements in (new) function spaces

5 Fortunately: there is always something to do for us

Thomas Wick (LUH/ENS) Function spaces and functional frameworks 19



Important to notice II

1 Why does it often work out successfully not to analyze specifically in applications again
function spaces and algorithms?

2 Well, somebody (most likely from mathematics) already did it somewhere else

→ literature research/knowledge is so crucial!

3 Very, very often not exactly ‘our’ problem has been analyzed, but similar related problems (in
their correct function space framework)

→ intuitively we can hope that known algorithms work

4 Mathematical functional frameworks help to analyze new algorithms

Thomas Wick (LUH/ENS) Function spaces and functional frameworks 20
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Exercises

1 Give examples where you have been in touch with function spaces so far

2 If not, how did you treat so far PDE problem statements? Explain the procedure how you
come from a given PDE to a numerical simulation results (which steps need to be done in
your case?)

3 Give an example of an algorithm that you recently implemented (how did it perform? Were
you fully satisfied with the performance? Why yes, why not?)
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End Part I
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Introduction

1 There is a zoo of function spaces

2 They need to be chosen according to the characterization of the problem statement (see some
slides before: ‘physics’ of the problem)

→ linear, nonlinear, stationary, nonstationary, coupled, systems, inequality constraints,
continuous level, discretization after time and/or space
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Infinite-dimensional spaces versus finite-dimensional spaces

1 Main purpose of functional analysis: studying problems in infinite-dimensional spaces

2 Surprising things may happen: norms are not equivalent, compactness results (existence of
solutions) become technical, weak convergence

3 Why should we care?

4 Discretizations (such as finite differences or finite elements) yield finite-dimensional problems

→ What is the correspondance between our original problem statement and the discretized one?
Do we really converge to the correct solution?

Thomas Wick (LUH/ENS) Function spaces and functional frameworks 26



Three spatial meshes, three time step sizes

1 Computational convergence analysis: compute discretized solution on at least three different
spatial meshes

→ Having finer meshes, does the error between two subsequent solutions become smaller? Do
the curves come closer together?

2 Computational convergence analysis: compute discretized solution on at least three different
temporal meshes / time step sizes

→ Having finer meshes, does the error between two subsequent solutions become smaller? Do
the curves come closer together?

3 At least for linear problems, do we even detect some order of convergence?
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Three time step sizes for three schemes for ODE model problem
1 ODE model problem y′ = ay and y(t0) = y0 taken from Amstutz/Wick6

2 Goal: (absolute) end time error of an ODE problem on three mesh levels (different time step sizes k)

3 In addition: three schemes (FE - forward Euler, BE - backward Euler, CN - Crank-Nicolson):

4 Computational findings:

Scheme #steps k Error at t_N
===========================================
FE err.: 8 0.36 0.13786
BE err.: 8 0.36 0.16188
CN err.: 8 0.36 0.0023295
FE err.: 16 0.18 0.071567
BE err.: 16 0.18 0.077538
CN err.: 16 0.18 0.00058168
FE err.: 32 0.09 0.036483
BE err.: 32 0.09 0.037974
CN err.: 32 0.09 0.00014538
===========================================

5 Interpretation: We monitor that doubling the number of intervals (i.e., halving the step size k) reduces the error in the forward and backward
Euler scheme by a factor of 2. This is (almost) linear convergence, with α = 0.91804.
The CN scheme is much more accurate (for instance using n = 8 the error is 0.2% rather than 13− 16%) and we observe that the error is
reduced by a factor of 4. Thus quadratic convergence is detected. Here the ‘exact’ order on these three mesh levels is α = 1.9967.

6Amstutz, Wick; Refresher course in maths and a project on numerical modeling done in twos, Hannover :
Institutionelles Repositorium der Leibniz Universität Hannover, 2022, https://doi.org/10.15488/11629
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Example and counter example7

1 3rd figure: no (qualitative) convergence, since curves have same distance

2 4th (last) figure: convergence: on finer meshes, curves become closer

3 What is the problem in the 3rd figure?

4 Answer not fully clear: on the left we vary both a regularization parameter ε and the spatial
mesh size h

5 Possibility 1: The limit ε→ 0 does not lie anymore in the usual Hilbert space H1(Ω)

6 Possibility 2: The goal functional that we measure is
∫

Γ σ · n ds over the top boundary Γ. We
have not checked, whether this quantity is well-defined in the underlying function space

7Heister, Wheeler, Wick; CMAME, Vol. 290, pp. 466-495, 2015; Fig. 9 and Fig. 8
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Convergence in different function spaces

1 What is better: L2 error ‖u− uh‖L2 with O(h2) or H1 error ‖u− uh‖H1 with O(h)?

2 Answer: it depends!

3 Convergence in L2 is faster, but we only ‘know’ something about the function values
themselves

4 Convergence in H1 is slower, but we know function values and function gradients (so we
have more information about the numerical solutions)
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Metric spaces11

1 A metric space8 is a set X with a metric on it

2 A generalization of metric spaces are topological spaces9 10

3 Metric associates with any pair of elements of X a distance

4 Example: R with a distance function

d = d(x, y) = |x− y|, x, y ∈ R (1)

5 Functional analysis: more general spaces and functions

6 Replace set X (here real numbers R) with some abstract set X

7 In exactly the same fashion, we can define a distance on the abstract set X

8Metric spaces were first considered by Fréchet in 1906
9Topological spaces were first introduced by Hausdorff in 1914

10Dirk Werner; Funktionalanalysis, 8. Auflage, Springer, 2018; Anhang B
11Erwin Kreyszig; Introductory functional analysis with applications, Wiley, 1978
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Metric spaces12

Definition (Metric space, metric)

A metric space is a pair (X, d), where X is a set and d is a metric on X, i.e., d is a distance function
on X, that is, a function on X×X such that for all x, y, z ∈ X, it holds:

1 d is real-valued, finite, non-negative

2 d(x, y) = 0 if and only if x = y

3 d(x, y) = d(y, x), symmetry

4 d(x, y) ≤ d(x, z) + d(z, y), triangle inequality

Exercise:

1 Take X := R

2 Take for example 1, 4, 7 ∈ X

3 Double-check the above four conditions for the metric d(a, b) := |a− b|.
12Erwin Kreyszig; Introductory functional analysis with applications, Wiley, 1978
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Solution to the exericse
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Euclidian space R3

1 The daily space we live in

2 X := R3

3 Ordered triples x, y ∈ X with

x = (x1, x2, x3)
T, y = (y1, y2, y3)

T (2)

4 Euclidian metric defined by

d(x, y) =
√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 (3)
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Function space C[a, b]

1 C = set of continuous functions u1, u2, . . .

2 Independent variable t

3 We have u1(t), . . .; thus u1 is the dependent variable

4 Set X := C[a, b] where t ∈ [a, b] and u1, u2, . . . ∈ X

5 Metric defined by
d(u1, u2) = max

[a,b]
|u1(t)− u2(t)| (4)

6 C[a, b] is a function space because every ‘point’ of C[a, b] is a function
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Function space: definition and properties

Definition
A set X that contains functions as its elements ui ∈ X for i = 1, 2, 3, . . . is a function space. In
analogy to R (previous example), functions are considered as ‘points’ in that space. To those
points, a metric d can be associated to measure distances. In discretizations, these distances
represent for example so called discretization errors. Further properties such as norms, possibly
inner products, are introduced later and apply in the same fashion to X and ui.
It is a general concept to view functions, measures, and so forth in any abstract space (we get to
know many more later) as such elements with such properties.
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Convergence
Definition
A sequence (xn)n∈N in a metric space X with distance function d is said to converge if there is a
limit x ∈ X such that

lim
n→∞

d(xn, x) = 0 (5)

or in another notation
lim

n→∞
xn = x (6)

If (xn)n∈N does not converge, then the sequence is said to diverge

Why should we care in engineering and scientific computing?

1 The elements x1, x2, . . . are in our case often FEM numerical solutions

2 Compare our previous example with three meshes and three time step sizes

3 Principle and key interest whether taking more and more numerical solutions whether we
really converge to something (i.e., the limit) useful (not clear at all! See counter example from
before)
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Cauchy sequence and completeness

Definition
A sequence (xn)n∈N in a metric space X with distance function d is said to be a Cauchy sequence if
for every ε > 0 there exists an N such that

d(xm, xn) < ε ∀m, n > N (7)

The space X is said to be complete if every Cauchy sequence in X converges.

1 Each convergent sequence (xn)n∈N is a Cauchy sequence. Due to convergence the above
criterion is naturally fulfilled.

2 However, not each Cauchy sequence does converge!

3 We are now at a fundamental ground of the choice of the correct function space

Thomas Wick (LUH/ENS) Function spaces and functional frameworks 39



Example I
1 The rational line Q is incomplete.

2 Between each two x, y ∈ Q, we will find an irrational number z ∈ R.

3 Thus, we can construct sequences (xn)n∈N ⊂ Q that converge to a limit x ∈ R

4 Why should we care?

5 Again: assume (xn)n∈N is a sequence of numerical solutions in a certain function space, say
FEM in H1. When the limit x 6= H1 what can we say about our numerics?

→ Drastically speaking, in this case, our numerics is useless and not robust

6 In practice: Why very often we do not ‘see’ these phenomena?

7 Two reasons:

1 Our functional framework is correct and everything behaves well
2 We are too far away from the (asymptotic) limits. Sometimes FEM meshes are too coarse to ‘see’

problems in the convergence

→ The last point is sometimes the reason what we observe in high performance computing,
when we can we have much finer meshes, and now - suddenly - convergence problems arise
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Example II: a Cauchy sequence that does not converge

1 Take X := (0, 1]; left-half open interval

2 Usual metric d(x, y) := |x− y|

3 Define sequence (xn), n = 1, 2, 3, . . . with

xn =
1
n

(8)

4 This is clearly a Cauchy sequence: d(xm, xn) < ε for m, n > N is fulfilled!

5 But it does not converge! The limit x = 0 (since xn → 0 for n→ ∞) is not an element of X
(because we excluded 0)

6 This shows convergence is not an intrinsic property of the sequence, but requires also the
correct design of the function space X such that the limit x is included.

7 In FA (functional analysis)13 these concepts are further generalized in abstract spaces

13Kreyszig (1978), Werner (2018), Ciarlet (2013), and many more
Thomas Wick (LUH/ENS) Function spaces and functional frameworks 41



Example III
1 X := R is complete (each Cauchy sequence converges)

2 X := Q is not complete

3 X := C[a, b] is complete w.r.t. to the maximum norm we had earlier

4 X := C[a, b] with the metric

d(u, v) :=
∫ b

a
|u(t)− v(t)| dt (9)

is not complete

5 Proof: See Kreyszig (1978) on page 38

6 Why should we care?

7 Well, in FEM we work with weak forms (principle of virtual work) and consequently, we
work with integrals.

→ The space C[a, b] is not appropriate for FEM

8 This is the reason, why L2 spaces must be introduced (later more)
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Normed spaces

1 So far no linear algebra structure; arbitrary metric spaces

2 Now let X be a vector space

3 Define a metric by means of a norm

4 A norm generalizes the length of a vector in abstract spaces

5 Complete normed spaces are known as Banach spaces
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Vector spaces14

Definition
A vector space, also known as linear space, over a field K (often K = R) is a nonempty set X of
elements x, y, . . . (called vectors) together with two algebraic operations:

1 Vector addition: for x, y ∈ X, we have x + y ∈ X

2 Multiplication by scalars: for x ∈ X and a ∈ K, we have ax ∈ X

Moreover, we then have commutative, associative, and distributive laws.

14e.g., Gerd Fischer; Lineare Algebra, Springer, 2014
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Examples

1 X := Rn, then

x + y ∈ X (10)
ax ∈ X (11)

for x, y ∈ X and a ∈ R (little exercise write down detailed version of vectors yourself)

2 X := C[a, b], then for u, v ∈ X and t ∈ [a, b]

(u + v)(t) = u(t) + v(t) (12)
(au)(t) = au(t) (13)
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Dimension of a vector space

Definition
A vector space X is said to be finite dimensional if there exists a positive integer n such that X
contains a linearly independent set of n vectors, while n + 1 (or more) vectors are linearly
dependent. The integer n is called the dimension of X, written n = dim(X). Such a n-tuple of X is
called a basis, which spans X and each element of X can be obtained by a linear combination of the
n basis vectors. If X is not finite dimensional, then X is infinite dimensional.

Examples:

1 dim(R) has the dimension 1

2 dim(Rn) has the dimension n

3 dim(C[a, b]) is infinite dimensional, because we have infinite many t ∈ [a, b] to insert into u(t)
in order to span C[a, b]

4 The main purpose of FA (functional analysis) is to investigate infinite-dimensional spaces
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Dimension of a vector space

Why should we care? (About infinite-dimensional vector spaces)

1 Answer 1: Nearly all engineering problem statements take place in infinite-dimensional
spaces, C[a, b], L2, H1, . . .

2 Answer 2: Norms are not anymore equivalent (we cannot switch simply from one norm to
another)

3 Answer 3: Convergence is not anymore obvious

4 Answer 4: Numerical simulations must be analyzed with care (as before: is limit x ∈ X? Etc.)
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Example

1 Take X := R3

2 Dimension: dim(X) = 3

3 Basis: canonical basis: e1 = (1, 0, 0)T, e2 = (0, 1, 0)T, e3 = (0, 0, 1)T

4 Each vector from x ∈ X can be represented as a linear combination of e1, e2, e3:

x = a1e1 + a2e2 + a3e3, (14)

for the scalars a1, a2, a3 ∈ K = R
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Normed spaces

Definition
A normed (vector) space X is a vector space with a norm. A Banach space is a complete (each
Cauchy sequence converges) normed space. A norm is a real-valued function on X with the
notation ‖x‖ for x ∈ X and the properties:

1 ‖x‖ ≥ 0

2 ‖x‖ = 0 if and only if x = 0

3 ‖ax‖ = |a|‖x‖ for x ∈ X and a ∈ K (K being the field as before)

4 ‖x + y‖ ≤ ‖x‖+ ‖y‖

A norm defines a metric d on X via
d(x, y) := ‖x− y‖ (15)

Clearly, we see that a norm measures the distance in X.
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Normed spaces

Examples:

1 The norm on X := Rn is defined by ‖x− y‖ :=
√
|x1 − y1|2 + . . . + |xn − yn|2

2 The norm on X := C[a, b] is defined by ‖u‖ := maxt∈[a,b] |u(t)|
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Completion of C[a, b] resulting into L2[a, b]
1 Recall from before C[a, b] with ‖u‖ :=

√∫ b
a u(t)2 dt is not complete. Limit may not be in C[a, b]

2 Choice of norm is important!

3 But of course: norm must fit to the problem statement: weak forms of PDEs require integrals.
Maximum norm is not good!

4 PDEs in strong form discretized with FD (finite differences) can be treated however with
‖u‖ := maxt∈[a,b] |u(t)|

→ Given the same problem statement, different numerical methods, may require different
functional frameworks, i.e., different function spaces and/or different norms

5 Back to the problem, take [a, b] = [0, 1] w.l.o.g

‖un − um‖ =
∫ 1

0
[un(t)− um(t)]2 dt =

(n−m)2

3mn2 <
1

3m
− 1

3n
(16)

6 This Cauchy sequence does not converge! Limit u does result into a discontinuous function
(Kreyszig, p. 38), and thus u 6= C[0, 1].
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Inner product spaces; Hilbert spaces

1 So far no orthogonality, two vectors are perpendicular

→ x, y ∈ X result into x · y = 0

2 Euclidian spaces have an inner product, Pythagoras

3 Complete spaces (Banach spaces) with inner product are called Hilbert spaces 15

15Hilbert spaces were initiated by David Hilbert in 1912
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Hilbert space

Definition
An inner product space (pre-Hilbert space) is a vector space X with an inner product defined on X.
A Hilbert space is a complete inner product space. The metric is defined by the inner product. The
inner product is a mapping of X×X into the scalar field K, often denoted by 〈x, y〉 or (x, y). It
holds

1 (x + y, z) = (x, z) + (y, z)

2 (ax, y) = a(x, y)

3 (x, y) = (y, x)

4 (x, x) ≥ 0 and (x, x) = 0 if and only if x = 0
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Hilbert space (cont’d)

Definition (cont’d)
The norm is defined by

‖x‖ :=
√
(x, x) (17)

and the resulting metric is given by

d(x, y) := ‖x− y‖ =
√
(x− y, x− y) (18)

Thus: inner product spaces are normed spaces. Hilbert spaces are Banach spaces.
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Examples
1 The Euclidian space Rn is a Hilbert space with inner product

(x, y) =
n

∑
i=1

xiyi (19)

2 In R3 let e1, e2, e3 be the canonical basis. The inner product of two of them is for instance

(e1, e2) = 1 · 0 + 0 · 1 + 0 · 0 = 0.

Thus, e1 and e2 are orthogonal (was clear; school knowledge!)

3 In R3 let, a = (4, 1, 0)T and b = (1, 56, 3)T, then

(a, b) = 4 · 1 + 1 · 56 + 0 · 3 = 60.

4 The space L2[a, b] is a Hilbert space with inner product

(u, v) =
∫ b

a
u(t)v(t) dt (20)
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Lebesgue space L2

Definition (L2 space in Rn)

Let Ω ⊂ Rn be a Lebesgue-measurable open domain. The space L2 = L2(Ω) contains all
square-integrable functions in Ω:

L2 = {v is Lebesgue measurable |
∫

Ω
v2 dx < ∞}.

The space L2 is complete (each Cauchy sequence converges in the norm defined below) and thus a
Banach-space. For a proof see for instance Kreyszig 1989 [Section 2.2-7] or Werner 2018 [Kapitel I].
Moreover, we can define an inner product:

(u, v) =
∫

Ω
vu dx

such that L2 is even a Hilbert space with norm

‖u‖L2 =
√
(u, u).
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Convergence of CG (conjugate gradients)16

1 Background: solve linear equation system Ax = b

2 Let A ∈ Rn×n symmetric, positive, definite

3 Then, we can define a weighted inner product (Ax, x) with induced norm (energy norm)

‖x‖A :=
√
(Ax, x) (21)

4 Convergence results are shown in this norm:

‖xn − x‖A ≤ 2
(

1− 1/
√

κ

1 + 1/
√

κ

)n

‖x0 − x‖A, n = 1, 2, 3, . . . (22)

where κ := cond2(A) is the spectral condition of A

16e.g., Saad; Iterative methods for sparse linear systems, SIAM, 2003
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Linear stationary PDEs
1 Let Ω be a domain (with certain assumptions)

2 Our problem statement takes geometrically place in that domain; e.g., car simulation, aircraft,
ship, screw, ...

3 Hilbert space L2(Ω) (we had before)

4 Hilbert space H1(Ω)

5 Hilbert space H1
0(Ω)

6 Roughly (but each new equation, requires new thinking), second-order PDEs (in strong form)
result (by integration by parts) into weak first-order derivatives on trial and test functions,
for which we need H1 spaces:

−∆u →
∫

Ω
∇u · ∇ϕ dx

7 For non-symmetric problems, e.g., b · ∇u, it depends whether integration by parts is applied
or not (e.g., pressure term in Navier-Stokes or transport equations)
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Hilbert spaces H1

Definition (The space H1)

Let Ω ⊂ Rn be an open, measurable, domain. The space H1 := H1(Ω) is defined by

H1 := {v ∈ L2(Ω)| ∂xiv ∈ L2, i = 1, . . . , n}

In compact form:
H1 := {v ∈ L2(Ω)| ∇v ∈ L2}.

Remark
In physics and mechanics, the space H1 is also called the energy space . The associated norm is called
energy norm.
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Hilbert spaces H1

Proposition (H1 is a Hilbert space)

We define the inner product

(u, v)H1 :=
∫

Ω
(uv +∇u · ∇v) dx

which induces the norm:
‖u‖H1 =

√
(u, u)H1 .

The space H1 equipped with the norm ‖u‖H1 is a Hilbert space.

• In the above definition (u, v)H1 , constants such as material parameters are hidden, but do
exist, since otherwise the physical units of u and ∇u would not match in the definition of the
inner product
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Hilbert spaces H1

Proof.
It is tivial to see that (u, v)H1 defines a inner product. It remains to show that H1 is complete. Let
(un)n∈N be a Cauchy sequence in H1. We need to show that this Cauchy sequence converges in H1.
Specifically (un)n∈N and (∂xiun)n∈N are Cauchy sequences in L2. Since L2 is complete, see
Definition 12, there exist two limits u and wi with

un → u in L2 for n→ ∞

∂xiun → wi in L2 for n→ ∞.

We employ now the weak derivative:∫
Ω

un(x)∂xi ϕ(x) dx = −
∫

Ω
∂xiun(x)ϕ(x) dx ϕ ∈ C∞

c

Passing to the limit n→ ∞ yields∫
Ω

u(x)∂xi ϕ(x) dx = −
∫

Ω
wi(x)ϕ(x) dx.

This shows that u has a weak derivative w. Therefore, the element w is contained in H1 and
(un)n∈N ⊂ H1, which shows the assertion.
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Hilbert spaces H1
0

Definition (H1
0)

The space H1
0(Ω) contains vanishing function values on the boundary ∂Ω. The space H1

0(Ω) is the
closure of C∞

c (Ω) in H1.

One often writes:

Definition (H1
0)

The space H1
0 (spoken: ‘H,1,0’ and not ‘H,0,1’) is defined by:

H1
0(Ω) = {v ∈ H1| v = 0 on ∂Ω}.
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Embedding theorems17

1 Lebesgue and Sobolev spaces generalize solution concepts

2 But sometimes basic needs cannot be guarenteed, e.g., evaluation of point values

3 Embedding theorems tell us which function spaces can be embedded, i.e., Y ⊂ X

4 Depends on the dimension of the problem statement

5 Curious things happen (only on the first view; on the second view, one can learn that these
facts can be rigorously mathematically established)

Proposition (Singularities of H1 functions)
Let Ω ⊂ Rn be open and measurable. It holds:
• For n = 1, H1(Ω) ⊂ C(Ω).
• For n ≥ 2, functions in H1(Ω) are in general neither continuous nor bounded.

17e.g., Evans; Partial differential equations, AMS, 2010
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Well-posedness of Poisson’s problem

Proposition

Let Ω be a bounded domain of class C1 and let f ∈ L2. Let V := H1
0. Then, the Poisson problem has a

unique solution u ∈ V and it exists a constant cp (independant of f ) such that the stability estimate

‖u‖H1 ≤ cp‖f‖L2

holds true.

Proof.
Apply Lax-Milgram lemma. E.g., my NumPDE lecture notes.
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A priori error FEM estimates of Poisson

Theorem
Let Th be a quasi-uniform decomposition of Ω. Then it holds for uh ∈ V(k)

h , k = 1, 2, 3 and triangular or
quadrilaterals elements:

‖u− uh‖H1 ≤ ch‖u‖H2 ≤ ch‖f‖L2 = O(h).

Using a duality argument (Aubin-Nitsche18), we obtain:

Theorem
Let the previous assumptions hold true, then:

‖u− uh‖L2 ≤ ch2‖f‖L2 = O(h2).

18e.g., Braess; Finite Elemente, 4. Auflage, Springer, 2007
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A priori error FD estimates of Poisson

Proposition

The five-point stencil approximation of the Poisson problem in two dimensions satisfies the following a priori
error estimate:

max
ij
|u(xij)− uij| ≤

1
96

h2 max
Ω

(|∂4
xu|+ |∂4

yu|).

Main differences between FEM and FD

1 Different norms

2 Different spaces (FEM H1 and FD C4(Ω))

3 FD requires more derivatives (up to 4 than FEM up to 2)
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Linear nonstationary PDE modeling

1 Bochner spaces: time-dependent function spaces

2 Space-time formulations

3 Let I := (0, T) with 0 < T < ∞ a bounded time interval with end time value T.

4 For any Banach space X and 1 ≤ p ≤ ∞, the space

Lp(I, X) (23)

denotes the space of Lp integrable functions f from the time interval I into X.

5 This is a Banach space, the so-called Bochner space, with the norm, see Wloka19

19Wloka; Partial differential equations, Cambridge University Press, 1987
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Linear nonstationary PDE modeling

Definition (Weak derivative of space-time functions)

Let u ∈ L1(I; X). A function v ∈ L1(I; X) is the weak derivative of v, denoted as

∂tu = v

if ∫ T

0
∂t ϕ(t)u(t) dt = −

∫ T

0
ϕ(t)v(t) dt

for all test functions ϕ ∈ C∞
c (I).
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Linear nonstationary PDE modeling

In particular, the following result holds (Evans; 2010)

Theorem
Assume v ∈ L2(I, H1

0) and ∂tv ∈ L2(I, H−1). Then, v is continuous in time, i.e.,

v ∈ C(I, L2)

(after possible redefined on a set of measure zero). Furthermore, the mapping

t 7→ ‖v(t)‖2
L2(X)

is absolutely continuous with
d
dt
‖v(t)‖2

L2(X) = 2〈 d
dt

v(t), v(t)〉

for a.e. 0 ≤ t ≤ T.
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Mixed systems and electro-magnetic problems (Maxwell)

1 Hdiv spaces; normally-continuous, well-suited for mixed problems

→ Raviart-Thomas finite elements20 21

2 Hcurl spaces; tangentially-continuous, well-suited for Maxwell’s equations

→ Nédélec finite elements22 23

20Raviart, Pierre-Arnaud and Thomas, Jean-Marie. A mixed finite element method for 2nd order elliptic problems,
in Mathematical aspects of finite element methods (eds: Galligani, Ilio and Magenes, Enrico), 1977

21https://defelement.com/
22J.-C. Nédélec; Mixed finite elements in R3, Numerische Mathematik, Vol. 35, pp. 315-341, 1980
23J.-C. Nédélec; A new family of mixed finite elements in R3, Numerische Mathematik, Vol. 50, pp. 57-81, 1986

Thomas Wick (LUH/ENS) Function spaces and functional frameworks 73

https://defelement.com/


Space-time heat equation

Formulation
Find u := u(x, t) : Ω× I→ R such that

ρ∂tu−∇ · (α∇u) = f in Ω× I,
u = a on ∂Ω× [0, T],

u(0) = g in Ω× t = 0,

where f : Ω× I→ R and g : Ω→ R and α ∈ R and ρ are material parameters, and a ≥ 0 is a Dirichlet
boundary condition. More precisely, g is the initial temperature and a is the wall temperature, and f is some
heat source.
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Space-time heat equation

Definition (Inner products)

The spatial inner product on H is denoted by

(u, ϕ)H =
∫

Ω
u · ϕ dx

The temporal inner product on a space-time space X is denoted by

(u, ϕ) := (u, ϕ)X =
∫ T

0
(u, ϕ)H dt
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Space-time heat equation

1 Let us now define the function spaces.

2 In space, we choose our well-known canditates:

V := H1
0(Ω), H := L2(Ω)

3 On the time interval I, we introduce the Hilbert space X := W(0, T) with

W(0, T) := {v|v ∈ L2(I, V), ∂tv ∈ L2(I, V∗)}

4 The notation L2(I, V) means that v is square-integrable in time using values from I and
mapping to the image space V.

5 The space X is embedded in C(Ī, H), which allows to work with well-defined (continuous)
initial conditions u0 (theorem from a few slides before).
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Space-time heat equation
Definition (Bilinear forms)
We define the spatial bilinear form ā : V×V → R as usually. The time-dependent semi-linear
form is as follows: a : X×X→ R:

a(u, ϕ) :=
∫ T

0
ā(u(t), ϕ(t)) dt.

Formulation (Space-time weak form)

Then the space-time parabolic problem is given by: Find u ∈ X such that∫ T

0
(∂tu, ϕ) + a(u, ϕ) =

∫ T

0
(f , ϕ) ∀ϕ ∈ X

u(0) = u0

with f ∈ L2(I, V∗) and u0 ∈ H.
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Nonlinear PDE modeling

1 Recall: Lp(Ω) denotes Lebesgue spaces for which
∫

Ω |u(x)|
p dx < ∞

2 Sobolev space Wl,p(Ω), which consists of the functions ϕ : Ω→ R such that their weak
derivatives Dα ϕ with |α| ≤ l belong to Lp(Ω).

3 Norms: ϕ ∈ Wl,p(Ω), then its norm is defined by

‖ϕ‖Wl,p(Ω) =
(

∑
0≤|α|≤l

‖Dα ϕ‖p
Lp(Ω)

) 1
p and ‖ϕ‖Wl,∞(Ω) = max

0≤|α|≤l
‖Dα ϕ‖L∞(Ω),

for 1 ≤ p < ∞ and p = ∞, respectively.
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Example: regularized p-Laplacian 24 25

1 Assume Ω being a bounded polygonal domain in Rd, with d = 2 and ΓD = ∂Ω.

2 Consider the following scalar p-type problem

− divA(∇u) = f in Ω, u = uD on ΓD, (24)

where f : Ω→ R and uD : ΓD → R are given smooth functions.

3 The operator A(∇u) : R2 → R2 has the following p-power law form

A(∇u) = (ε2 + |∇u|2)
p−2

2 ∇u, (25)

where p ∈ (1, ∞) and ε > 0 are model parameters and | · |2 = (·, ·).

4 The function a(∇u) = (ε2 + |∇u|2)
p−2

2 is the diffusivity term of (24).
24Wick; Numerical Methods for Partial Differential Equations, Leibniz University Hannover,

https://doi.org/10.15488/11709, Sec. 13.15
25Toulopoulos, Wick; Numerical methods for power-law diffusion problems, SIAM J. Sci. Comput., Vol. 39(3), 2017,

pp. A681-A710
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Example: regularized p-Laplacian
The weak formulation for (24) reads as follows: Find u ∈ W1,p

D such that

B(u, ϕ) =lf (ϕ), ∀ϕ ∈ W1,p
0 (Ω), where B(u, ϕ) =

∫
Ω

A(∇u) · ∇ϕ dx, lf (ϕ) =
∫

Ω
f ϕ dx. (26)

Theorem
Let u ∈ V be the solution of (26) under some assumptions, and let uh ∈ V(k)

D,h be the solution of the discrete
p-Laplacian. Then, there exist C ≥ 0, independent of the grid size h, such that∫

Ω
|F(∇u)− F(∇uh)|2 dx ≤ Ch2(l−1)‖u‖2

Wl,p(Ω)
. (27)

Proof.
See Toulopoulos, Wick; Numerical methods for power-law diffusion problems, SIAM J. Sci.
Comput., Vol. 39(3), 2017, pp. A681-A710.
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Example: regularized p-Laplacian
We obtain as numerical results for computational error analysis, nonlinear Newton solver, and linear multigrid:

FE degree eps p TOL (LinSolve) TOL(Newton)
===========================================================
1 0.1 1.01 1e-12 1e-10
-----------------------------------------------------------
Cells DoFs h F-norm err ConvRate Min/MaxLinIter Newton iter
===========================================================================================
4096 4225 2.20971e-02 5.43340e-02 1.04683e+00 18/28 5
16384 16641 1.10485e-02 2.03360e-02 1.41782e+00 27/37 5
65536 66049 5.52427e-03 1.01906e-02 9.96804e-01 25/33 4
262144 263169 2.76214e-03 5.09674e-03 9.99587e-01 25/30 3
1048576 1050625 1.38107e-03 2.54855e-03 9.99899e-01 24/28 3
4194304 4198401 6.90534e-04 1.27430e-03 9.99975e-01 23/25 3
===========================================================================================

Observations:

• The F norm is close to 1 as to be expected from the theory stated above

• The number of linear iterations is (nearly) mesh-independent and asymptotically stable. Therefore, the geometric multigrid preconditioner
works very well.

• The number of nonlinear Newton iterations is as well mesh-independent and asymptotically stable
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Nonlinear coupled PDE and limiting processes

1 Limiting processes26: plasticity27 and fracture 28

→ solution u may have discontinuities

2 Measure spaces: BD (bounded deformation) or BV (bounded variation)

26Limiting processes my own definition for these lecture notes
27Temam; Mathematical Problems in Plasticity, Dover, 2018
28Francfort, Larsen; Existence and convergence for quasi-static evolution in brittle fracture, Comm. Pure Appl.

Math., Vol. 56(10), pp. 1465-1500, 2003
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Broken Sobolev spaces 31 32

1 Problem statements with discontinuities (e.g., transport)

2 Broken Sobolev spaces

3 Jumps and averages to be added to bilinear/semi-linear forms

4 Discontinuous Galerkin finite elements as discretization

5 Interior penality Galerkin methods (IPG), symmetric IPG (SIPG), nonsymmetric IPG (NIPG),
incomplete IPG (IIPG)

6 Applications in all fields: solid mechanics, fluid mechanics, porous media, and so forth

7 High flexibility in the discretization, but also higher cost (because more degrees of freedom)

8 Related is enriched Galerkin (EG)29 30

29S. Sun, J. Liu, A locally conservative finite element method based on piecewise constant enrichment of the
continuous galerkin method, SIAM J. Sci. Comput. 31 (4) (2009) 2528-2548

30S. Lee, M.F. Wheeler, Enriched Galerkin approximations for two phase flow in porous media with capillary
pressure, J. Comput. Phys. 367 (2018) 65-86.

31Rivière; Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, SIAM, 2008
32Di Pietro, Ern; Mathematical Aspects of Discontinuous Galerkin Methods, Springer, 2012
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Stochastic PDEs33 34

1 Stochastic Lebesgue and Sobolev spaces

2 Schwartz space

3 Brownian motion, white noise (Hida, 1980)

4 Stochastic Poisson, stochastic heat equation

33e.g., Holden, Oksendal, Uboe, Zhang; Stochastic Partial Differential Equations, Springer, 2010
34e.g., Evans; An Introduction to Stochastic Differential Equations, AMS, 2013
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Lebesgue and Sobolev spaces with variable exponents35

1 Variable exponent spaces

2 Variable expondent Lebesgue spaces

3 Weighted variable exponent Lebesgue spaces

4 Orlicz spaces

35Diening, Harjulehto, Hästö, Ruzicka; Lebesgue and Sobolev spaces with variable exponents, Springer, 2010
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Exercises
1 Short question: what is the difference between a metric space and a normed space?

2 Short question: why is completeness important?

3 Short question: define the inner product of L2(Ω)

4 Let −∆u = f in Ω with u = 0 on ∂Ω:

1 Formulate the weak form
2 Design the trial/test spaces X
3 Write down explicitly the norm

5 Let −∆u = f in Ω with u = 0 on ∂ΩD and ∂nu = 0 on ∂ΩN1 and ∂nu = g on ∂ΩN2, where the
three boundary parts are non-overlapping (as usual).

1 Formulate the weak form
2 Design the trial/test spaces X
3 Write down explicitly the norm

6 Design formally an FEM scheme in Xh with dim(Xh) = N
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End Part II
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Motivation
1 Many PDEs are subject to variational inequality constraints
2 Example: Obstacle problem36 37, fracture with irreversibility38

3 Obstacle problem: Find u : Ω→ R such that

−∆u ≥ f , u ≥ g, (f − ∆u)(u− g) = 0 in Ω

u = 0 on ∂Ω

Figure: Obstacle problem −u′′ = −1 in Ω and u(0) = u(1) = 0: deformation u of a line that is
constraint by the obstacle g. In the green area with u > g, the PDE is solved. In the red area u = g we
‘sit’ on the obstacle.

36Kinderlehrer, Stampacchia; An Introduction to Variational Inequalities and Their Applications, SIAM, 2000
37Kikuchi, Oden; Contact problems in elasticity, SIAM, 1988
38Wick, Multiphysics phase-field fracture, de Gruyter, 2020
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Obstacle problem I

1 Solution u in a convex set K (rather a linear function space)

→ cannot apply standard FEM as discretization

2 Either special algorithms from optimization

3 One other possibility: regularize inequality constraint:

u ≥ g → γ[g− u]+ (28)

where [x]+ = max{0, x} and γ > 0
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Obstacle problem II

1 Introducing the penalization relaxes the inequality contraint (relaxation means it is not
enforced that strictly anymore), but enlarges from the convex set K to a linear function space
X (here X = H1

0(Ω))

2 Now, classical FEM works again

3 Prize to pay: nonlinear problem with a high dependence on γ

4 γ too high: enforces better inequality, but nonlinear solution algorithm suffers

5 γ too small: inequality constraint more and more violated, better performance of solution
algorithm (balance between accuracy and efficiency)
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Obstacle problem III (Poisson versus obstacle)

Figure: Left: 3d surface plot solution of the classical Poisson problem in (0, 1)2 and right hand side f = −1.
Right: obstacle problem with g = −0.01 and simple penalization.
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Obstacle problem IV

The nonlinear solver (Newton’s method) behaves as follows (Convergence in 5 steps):

Newton step: 0 Residual (abs.): 2.4414e-04
Newton step: 0 Residual (rel.): 1.0000e+00
Newton step: 1 Residual (rel.): 9.7262e-01 LineSearch {2}
Newton step: 2 Residual (rel.): 4.8631e-01 LineSearch {1}
Newton step: 3 Residual (rel.): 2.6331e-01 LineSearch {0}
Newton step: 4 Residual (rel.): 5.1674e-03 LineSearch {0}
Newton step: 5 Residual (rel.): < 1.0000e-11 LineSearch {0}

As comparison, we briefly state the results for the classical Poisson problem (Convergence in 1
step - linear problem!)

Newton step: 0 Residual (abs.): 2.4414e-04
Newton step: 0 Residual (rel.): 1.0000e+00
Newton step: 1 Residual (rel.): < 1.0000e-11 LineSearch {0}
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Obstacle: energy minimization problem
1 Let Ω ⊂ R (all developements in this section hold also for Ω ⊂ Rn) be open and u : Ω→ R

and f : Ω→ R.

2 The (nonlinear) potential energy is defined as

E(u) =
∫

Ω

(
µ(
√

1 + |∇u|2 − 1)− fu
)

dx

where µ > 0 is a material parameter.

3 Taylor linearization yields:

E(u) =
1
2

∫
Ω
(µ|∇u|2 − fu) dx

4 The physical state without constraints is given by

min
u∈V

E(u)

with V = {v ∈ H1(Ω)| v = u0 on ∂Ω}.

5 So far, all is equivalent to Poisson
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Obstacle: constraint and convex set

1 We introduce the constraint (for instance a table that blocks the further deformation of the
membrane):

u ≥ g, g ∈ L2

2 Then:
min

u∈V,u≥g
E(u)

3 The admissible space is the convex set

K = {v ∈ H1|v = u0 on ∂Ω, v ≥ g in Ω}.

4 We recall the definition of a convex set:

u, v ∈ K : θu + (1− θ)v ∈ K.
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Weak form with convex sets

1 If u ∈ K is a minimum, it holds:
E(u) = min

v∈K
E(v).

2 We now derive a variational formulation. Let θv + (1− θ)u = u + θ(v− u) ∈ K for θ ∈ [0, 1].
Then it clearly holds:

E(u + θ(v− u)) ≥ E(u)

3 We derive now the first-order optimality condition (i.e., the PDE in weak form):

• Differentiate w.r.t. θ;
• Set θ = 0.

Thomas Wick (LUH/ENS) Function spaces and functional frameworks 98



Directional derivative (first-order necessary condition)

Then:

d
dθ

E(u + θ(v− u))|θ=0 ≥
d
dθ

E(u)

⇔ d
dθ

E(u + θ(v− u))|θ=0 ≥ 0

⇔ d
dθ

∫
Ω

µ∇u · ∇(u + θ(v− u))|θ=0 dx−
∫

Ω
f (v− u) dx ≥ 0

⇒
∫

Ω
µ∇u · ∇(v− u) dx−

∫
Ω

f (v− u) dx ≥ 0

for all v ∈ K.
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Weak form with convex sets
In summary:

Formulation (Obstacle problem: variational formulation)

We have
(µ∇u,∇(v− u)) ≥ (f , v− u)

for
K = {v ∈ H1| v = u0 on ∂Ω, v ≥ g in Ω}.

1 Recall that (·, ·) is the inner product on L2, i.e.,

(µ∇u,∇(v− u)) :=
∫

Ω
µ∇u · ∇(v− u) dx

and
(f , v− u) :=

∫
Ω

f · (v− u) dx
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Extensions

1 Irrevesible processes, bounds on the solution (as in obstacle), e.g., damage/fracture

→ e.g., space-time material modeling using an extended Hamilton functional39

2 Optimal control problems with control and/or state constraints40

39Junker, Wick; Space-time variational material modeling: a new paradigm demonstrated for thermo-mechanically
coupled wave propagation, visco-elasticity, elasto-plasticity with hardening, and gradient-enhanced damage, 2023

40Hinze, Pinnau, Ulbrich, Ulbrich; Optimization with PDE constraints, Springer, 2009
Thomas Wick (LUH/ENS) Function spaces and functional frameworks 102



1 Motivation and introductory derivations
Problem statements
Guiding questions
Applying functional frameworks to scientific computing and engineering
The art of making errors
Exercises

2 Spaces
Convergence
Metric spaces
Normed spaces
Inner product spaces
Abstract spaces
Exercises

3 Functional frameworks for variational inequalities
Obstacle problem
Extensions to other problems
Exercises

4 The End

Thomas Wick (LUH/ENS) Function spaces and functional frameworks 103



Exercises

1 Go to the NumPDE lecture notes https://doi.org/10.15488/11709 and do Section 13.4
(Exercise) on page 321ff.

2 Formulate the functional framework for phase-field fracture.
Hint: Wick, 2020 https://doi.org/10.1515/9783110497397 in Chapter 4.

Thomas Wick (LUH/ENS) Function spaces and functional frameworks 104

https://doi.org/10.15488/11709
https://doi.org/10.1515/9783110497397


1 Motivation and introductory derivations
Problem statements
Guiding questions
Applying functional frameworks to scientific computing and engineering
The art of making errors
Exercises

2 Spaces
Convergence
Metric spaces
Normed spaces
Inner product spaces
Abstract spaces
Exercises

3 Functional frameworks for variational inequalities
Obstacle problem
Extensions to other problems
Exercises

4 The End

Thomas Wick (LUH/ENS) Function spaces and functional frameworks 105



Take away in a few words

1 Function spaces, more general functional frameworks give mathematical structure to
engineering problem statements

2 Function spaces, more general functional frameworks are needed to study well-posedness
(existence, uniqueness, data dependencies) and error estimates

3 Function spaces, more general functional frameworks help analyzing numerical algorithms
in terms of their accuracy, efficiency, robustness and can consequently suggest
improvements
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