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Abstract
Creating 3D models of the static environment is an important task for the advancement of driver assistance systems and 
autonomous driving. In this work, a static reference map is created from a Mobile Mapping “light detection and ranging” 
(LiDAR) dataset. The data was obtained in 14 measurement runs from March to October 2017 in Hannover and consists in 
total of about 15 billion points. The point cloud data are first segmented by region growing and then processed by a random 
forest classification, which divides the segments into the five static classes (“facade”, “pole”, “fence”, “traffic sign”, and 
“vegetation”) and three dynamic classes (“vehicle”, “bicycle”, “person”) with an overall accuracy of 94%. All static objects 
are entered into a voxel grid, to compare different measurement epochs directly. In the next step, the classified voxels are 
combined with the result of a visibility analysis. Therefore, we use a ray tracing algorithm to detect traversed voxels and 
differentiate between empty space and occlusion. Each voxel is classified as suitable for the static reference map or not by 
its object class and its occupation state during different epochs. Thereby, we avoid to eliminate static voxels which were 
occluded in some of the measurement runs (e.g. parts of a building occluded by a tree). However, segments that are only 
temporarily present and connected to static objects, such as scaffolds or awnings on buildings, are not included in the refer-
ence map. Overall, the combination of the classification with the subsequent entry of the classes into a voxel grid provides 
good and useful results that can be updated by including new measurement data.

Keywords LiDAR · 3D point cloud · Mobile mapping · Change detection · Classification · Segmentation

Zusammenfassung
Klassifizierung und Veränderungsanalyse auf Basis von LiDAR-Punktwolken des mobilen Mappings. 3D-Modelle der 
statischen Umgebung zu erstellen ist eine wichtige Aufgabe für das Voranbringen von Fahrerassistenzsystemen und dem 
autonomen Fahren. In dieser Arbeit wird eine statische Referenzkarte aus einem Mobile Mapping “light detection and 
ranging” (LiDAR) Datensatz erstellt. Die Daten wurden in 14 Messfahrten von März bis Oktober 2017 erhoben und 
umfassen insgesamt rund 15 Milliarden Punkte. Die Punktwolken werden zunächst mittels Region Growing segmentiert 
und anschließend mittels eines Random Forest klassifiziert, der die Segmente mit einer Gesamtgenauigkeit von 94% in 
fünf statische Klassen (“Fassade”, “Pfahl”, “Zaun”, “Verkehrszeichen” und “Vegetation”) und drei dynamische Klassen 
(“Fahrzeug”, “Fahrrad”, “Person”), einteilt. Alle statischen Objekte werden in ein Voxel-Gitter eingetragen, um verschiedene 
Messepochen direkt miteinander vergleichen zu können. Im nächsten Schritt werden die klassifizierten Voxel mit dem Ergeb-
nis einer Sichtbarkeitsanalyse kombiniert. Dafür wird eine Strahlverfolgung (Ray Tracing) durchgeführt, um vom Laserstrahl 
durchquerte Voxel zu erkennen und zwischen leerem Raum und Verdeckung unterscheiden zu können. Jedes Voxel wird 
anhand seiner Objektklasse und dem jeweiligen Belegungsstatus der verschiedenen Epochen als für die statische Referenz-
karte geeignet eingestuft oder nicht. So wird vermieden, statische Voxel, die in einigen Messepochen verdeckt wurden, als 
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ungeeignet einzustufen (beispielsweise Teile eines Gebäudes, die von Bäumen verdeckt wurden). Segmente, die jedoch nur 
temporär vorhanden aber mit statischen Objekten verbunden sind, wie beispielsweise Gerüste oder Markisen an Gebäuden, 
sind nicht in der Referenzkarte enthalten. Insgesamt liefert die Kombination der Klassifizierung mit dem anschließenden 
Eintragen der Klassen in ein Voxel Gitter gute und brauchbare Ergebnisse, die sich durch den Einbezug neu aufgenommener 
Messdaten aktualisieren lassen.

1 Introduction

Driver assistance systems and functions of semi-automated 
driving are already an integral part of new vehicles and help 
to relieve the driver to increase road safety. Research is tend-
ing more and more towards (partially) autonomous vehicles 
that can automatically recognise obstacles and react accord-
ingly. 52% of the worldwide patents in the field of automated 
driving come from Germany and the development potential 
is still enormous and wide-ranging (Eckstein et al. 2018).

When using these systems, it is essential that they have 
a highly accurate and up-to-date 3D model of the environ-
ment that can integrate changes. The first step to create such 
a model is to record the environment. One approach for this 
is Mobile Mapping, in which the environment is measured, 
e.g. by mobile laser scanners, cameras or a combination of 
both. In addition, these systems are usually equipped with a 
GNSS system. During the next step of data processing, it is 
important to distinguish between temporal and static objects. 
Therefore, the classification of single points or segments is 
useful. As a result the individual elements are each assigned 
to a class. Another approach is change detection. Here, sev-
eral measurement epochs are compared to determine whether 
objects have changed or not. On the one hand this can be 
done only for static objects, for example to detect demolitions 
or new buildings. Thus, it is possible to update the environ-
ment model with new measurement data. On the other hand, 
dynamic objects can also be analysed, e.g. to detect parking 
lots or areas which are often crowded with pedestrians.

In this study an environment model is created by the 
classification and detection of changes in Mobile Mapping 
LiDAR point clouds. The data processing uses the follow-
ing steps: (i) segmentation of the point clouds using region 
growing, (ii) setting up a feature vector for the segments, 
(iii) classification of the segments using a random forest, 
(iv) insertion of the classes into a voxel grid with an edge 
length of 10 cm, and (v) comparison of the classes and 
occupancy state of the voxels for the different measurement 
epochs.

2  Related Work

Mobile Mapping is used for a wide range of applications. It 
is important that the data acquisition and processing are well 
adjusted to the desired result. In this section we summarise 

related work on point cloud classification (Sect. 2.1), fol-
lowed by applications of change detection (Sect.  2.2). 
Related datasets are described in the next (Sect. 3).

2.1  Classification of LiDAR Point Clouds

To classify point clouds with traditional classifiers such as 
random forest, typically geometric features based on the 3D 
points within a defined neighbourhood are extracted in a 
first step (Weinmann et al. 2015). These features are later 
used for the classification of the point cloud. The underlying 
assumption is that neighbouring pixels tend to be correlated, 
which can be valuable additional information in the classifi-
cation process. As we will use context information from the 
neighbouring pixels in our method the focus in this section 
is on context-based algorithms.

Weinmann et  al. (2015) compare different kinds of 
neighbourhoods, geometric features, approaches for fea-
ture selection and classifiers. They conclude that an indi-
vidual neighbourhood selection, based on their method of 
eigenentropy-based scale selection, significantly improves 
the classification result. They also use the random forest 
classifier as a good trade-off between classification accuracy 
and efficiency. Landrieu et al. (2017) construct a regularisa-
tion framework based on structured optimisation to smooth 
semantic labelling from any classification result of a 3D 
point cloud. They improve the results after experimenting 
with different regularisers and fidelity functions.

Another approach to include context information is to 
use object segmentation as a preprocessing step. Afterwards 
the individual objects are classified and all points of the 
object are assigned to the same class. A disadvantage of this 
method is that the accuracy of the classification is highly 
dependent on the segmentation. Therefore, it is important to 
use a well-performing segmentation algorithm. Grilli et al. 
(2017) give an overview of different point cloud segmenta-
tion algorithms and their strengths and weaknesses.

It is important to find appropriate features to describe the 
individual segments adequately. Lehtomäki et al. (2016) ana-
lyse and compare three different groups of object features: 
local descriptor histograms (Himmelsbach et al. 2009), spin 
images (Johnson and Hebert 1999) and features that describe 
the general shape and point distribution of an object. Before 
classification, the ground and buildings are removed and 
the remaining point cloud is segmented. Using support vec-
tor machines (SVM) the segments are classified into “tree”, 
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“street lamp”, “traffic sign”, “vehicle”, “pedestrian” and 
“object groupings”. The additional use of the new feature 
groups improved the classification accuracy by 9.8% com-
pared to the classification where only the features for general 
shape and point cloud distribution were used.

During the past years, neural networks have been estab-
lished as the new, state-of-the-art method for several classifi-
cation tasks, including semantic segmentation of images and 
point clouds. Qi et al. (2017) achieve state-of-the-art results 
using their PointNet architecture which can directly operate 
on point clouds and can be used for tasks like object clas-
sification and part segmentation. This network was extended 
for example by Engelmann et al. (2017) who incorporated 
a larger receptive field to further improve the results. Other 
deep learning approaches like the one proposed by Lan-
drieu and Simonovsky (2018) consider the spatial relations 
between neighbouring points using a structure called super-
point graph that offers a rich representation of contextual 
relationships. As most deep learning models need a large 
amount of training data, Hackel et al. (2017) presented a new 
3D point cloud classification benchmark dataset with more 
than four billion manually labelled points.

2.2  Change Detection

Change detection is used in most cases to identify static 
objects in point clouds. Lindenbergh and Pietrzyk (2015) 
and Qin et al. (2016) present reviews of different methods 
for change detection and deformation analysis. While many 
approaches deal with airborne data and use digital surface 
models (DSMs), there are only a few using point clouds of 
urban areas, acquired by Mobile Mapping Systems. Related 
to our work, the approaches for change detection can be 
divided into three categories: point/ ray based, voxel based 
and object based.

Hebel et al. (2013) align the actual measurement to a 
reference and then perform a point-wise analysis of the point 
cloud. In order to deal with penetrable objects and occlu-
sion, they first apply a pre-classification of vegetation. Then 
they use ray tracing to determine the occupancy state of the 
free space: the space along the laser ray is empty and the 
space behind the reflecting point is unknown. These states 
can be updated with each laser ray that traverses space. The 
approach of Xiao et al. (2015) applies a similar model to 
Mobile Mapping LiDAR point clouds. Their model is also 
based on the scanning rays and the local point distribution. 
It directly evaluates the consistency of points. In contrast to 
Hebel et al. (2013) they do not use a pre-classification and 
combine their method with a distance-based approach to 
avoid conflicts with permeable objects.

Gehrung et al. (2017) work on multi-temporal Mobile 
Mapping LiDAR point clouds. They use an octree for their 
map representation and perform a plane-filtered ray casting 

to determine the voxel occupancy states (“occupied”, “mov-
ing object” or “residual”). This way they are not only able 
to filter the environment for static objects, but also remove 
artefacts caused by discretization, especially near to planar 
structures. The work of Fuse and Yokozawa (2017) focuses 
on detecting changes with low-cost sensors. Therefore, they 
use Mobile Mapping data to generate artificial measure-
ments of realistic traffic participants, which serve as input 
for the actual simulation. They use an occupancy grid to 
model the environment and use Dempster–Shafer theory to 
distinguish between occlusion and real changes.

Aijazi et al. (2013) use an object based approach to detect 
and analyse changes in an urban environment. They use 
multi-temporal Mobile Mapping data. In the first step, they 
segment the point clouds of the individual measurement runs 
and perform a classification into the two classes “permanent” 
and “temporal” using geometrical models and local descrip-
tors. All temporal and unclassified objects are removed and 
the remaining point clouds are aligned by an ICP (itera-
tive closest point) algorithm. The result is mapped into 3D 
evidence grids. Schachtschneider et al. (2017) combine an 
occupancy grid with an object-based approach. Therefore, 
LiDAR point clouds of several epochs are first registered and 
segmented into objects. Then an occupancy grid is created 
by tracing each individual laser ray to determine the behav-
iour of each object. For each voxel it is stored whether it is 
“free”, “occupied” or “not seen”. Objects are classified as 
static or dynamic using thresholds, e.g. an object is static if 
at least 25% of all voxels in that segment are occupied in at 
least 70% of all measurement runs. Thus, temporary objects 
can be removed from the occupancy grid and only static 
objects remain, even if they have been partially occluded. 
In this paper, we use the results of an object classification 
together with a visibility analysis of the voxels to determine 
their probability to belong to a static object. Therefore, we 
first perform an object segmentation (Sect. 4.1) on the point 
clouds of the individual measurement runs. For each object, 
we calculate a set of feature values. Then the objects are 
classified using a random forest (Sect. 4.2). The classifica-
tion result is inserted into a voxel grid. This way the differ-
ent measurements can be compared and filtered to create 
the static map. In addition, data from a visibility analysis 
are used to detect occlusions (as in Schachtschneider et al. 
(2017)). This two-step approach has several advantages: 
The object-wise classification has the benefit that objects 
are labelled as static in their full extent. There are no outlier 
points, e.g. at edges or in areas that are only rarely measured. 
Furthermore, the classification makes it possible to distin-
guish objects for which the voxel occupancy can be very 
similar over time, e.g. vegetation and vehicles on frequently 
occupied parking lots. By combining the classification with 
the visibility analysis, we are able to filter temporary parts 
like construction scaffolds or extended sunblinds which 
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could not be separated by the region growing segmentation 
from static objects. The result is a static reference map of an 
urban environment.

3  Data

The data for this project were collected using a Riegl VMX-
250 Mobile Mapping System installed on the roof of a meas-
urement van (see Fig. 1). It consists of two laser scanners, 
a camera system and a localisation unit. Each of the laser 
scanners acquires 100 scan lines, and up to 300,000 meas-
ured 3D points, per second. The measuring range is between 
1.5 and 200 m. For a distance of 50 m, the accuracy is speci-
fied as ten millimetres, with a precision of five millimetres. 
The localisation unit consists of a highly accurate GNSS/
IMU combined with a Distance Measurement Instrument 
(rotary encoder, attached to one wheel). The accuracy of 
the trajectory is 10–30 cm in height and 20 cm in position, 
under good conditions. Further specifications of the Mobile 
Mapping System can be found in RIEGL Laser Measure-
ment Systems (2012).

The data used in this work were collected by a 1-year 
measurement campaign along a 20-km route in Hannover, 
Germany (see Fig. 2). The whole measurement campaign 
consists of 26 measurement runs which were performed 
about every other week. Figure 3 shows that the dataset cov-
ers all different seasons and various lighting and weather 
conditions.

In Table 3 in the appendix, we summarised a number of 
freely available LiDAR datasets. We note that our dataset 
features a special combination of characteristics:

• Long-term measurements / repeated measurements of the 
same area (one year of biweekly measurements, different 
seasons, weather and lighting conditions).

• Large measurement area with a variety of different scenes 
(20 km route with inner city streets, residential areas, 
tram lines, various intersections, areas with high pedes-
trian and bike traffic, parking lots).

• High point density, very high accuracy LiDAR measure-
ments and very precise alignment across measurement 
campaigns.

Fig. 1  Measurement van with Riegl VMX-250

Fig. 2  Measurement area, red: route, yellow: bounding box “Nord-
stadt”, blue: bounding box “Stöcken”, background map: OpenStreet-
Map Foundation (2019)

Fig. 3  Example images of the same scene in different seasons 
a 17-03-28, b 17-04-28, c 17-06-06, d 17-06-20, e 17-08-08, f 17-10-
04, g 17-11-07, h 18-01-17, i 18-02-15
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Most other datasets only contain one or very few measure-
ment runs of the same area. Only the NCLT dataset (Car-
levaris-Bianco et al. 2016) and the Oxford dataset (Mad-
dern et al. 2016) are long-term datasets with multiple runs 
during different seasons. The NCLT dataset was acquired 
using a Segway robot. The same area (about a square kilo-
metre around the University of Michigan North Campus, 
US) was surveyed with several varying routes (about 5.5 km 
each, indoors and outdoors) over a period of 15 months in 
approximately biweekly measurements. The Oxford dataset 
was acquired using the Oxford RobotCar platform, driving 
a route in central Oxford, UK. The measurements were per-
formed twice a week for more than 1 year. Both datasets 
cover a smaller area than ours and have lower point density 
due to the sensors used. Other datasets provide annotated 
LiDAR data. The Semantic3D.net has the largest amount of 
annotated points, four billion manually labelled points with 
eight classes. This dataset was acquired by terrestrial laser 
scanners and contains various different scenes of central 
Europe. The KITTI dataset is also worth mentioning, as it 
contains a large number of benchmarks. It was acquired in 
the metropolitan area of Karlsruhe.

For our work, we used a subset of 14 measurement runs 
(recorded March–October 2017) of the whole biweekly 
measurement campaign. Figure 4 shows the temporal distri-
bution of the measurement runs used in this paper. In order 
to be able to examine the recorded point clouds for changes 
after a successful classification, data from two partial sec-
tions of the whole measuring area are used. The first area is 
located in the district “Nordstadt” of Hannover (see Fig. 2, 
yellow box) and consists of 892 million points. The second 
section is located in the district “Stöcken” and contains 489 
million points (see Fig. 2, blue box). The first area is close to 
the city centre while the second area is a residential area in 
a suburb and contains more trees and other vegetation. The 
used laser scanning point clouds are already pre-processed 

by the Riegl software. Additionally, a bundle adjustment is 
performed as described in Brenner (2016) to align all meas-
urement campaigns. Afterwards, the precision of the point 
clouds is usually below one centimetre (Brenner 2016).

4  Methodology

This section describes the individual steps of data process-
ing (see Fig. 5): The pre-processed and aligned point clouds 
are segmented using region growing (Sect. 4.1) and classi-
fied using a random forest, based on features describing the 
local point geometry (described in more detail in Sect. 4.2). 
The resulting labelled objects are then inserted into a voxel 
grid. In the end, the classification results for the different 
measurements are compared and combined with a temporal 
analysis for change detection (Sect. 4.3).

4.1  Segmentation

In this work we consider the object-wise classification of 
urban objects. Therefore, we perform an object segmentation 
in the first step. The segmentation of the point clouds is done 
using a region growing, similar to the one used by Schlicht-
ing and Brenner (2016a). First, the ground is removed as one 
segment using the height and normal vectors. This method 
is suitable for flat areas and needs to be adapted for areas 
with a slope. Afterwards, all other segments are separated 
using a distance threshold of 10 cm. Conditions for instan-
tiating a new segment are a minimum number of points  
( nmin = 500) and a minimum height ( hmin = 20 cm). In this 
way, segments that are too small are excluded and do not 
lead to unnecessary misclassifications. The parameters nmin 

Fig. 4  Example view and temporal distribution of the data. Left: 
aligned point cloud of 14 campaigns, coloured by campaign. Right: 
campaign colours and distribution of campaigns over the year

Fig. 5  Overview of the individual steps of the change detection 
process
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and hmin were chosen based on experience. Segments with 
a smaller nmin and hmin can usually not be recognised by 
humans and, therefore, cannot be labelled manually. To 
avoid problems with large amounts of data during the seg-
mentation process, the recorded point clouds are divided into 
tiles of 15 × 15 m edge length (in x and y direction) before 
segmentation. In Fig. 6 some examples for segments of dif-
ferent classes are shown.

4.2  Classification

The segments are classified using a random forest classi-
fier. We used the Cityscapes dataset (Cordts et al. 2016) 
as a reference and adapted their classes to our data. As a 
result, we use the following eight classes: “facade”, “vehi-
cle”, “person”, “pole”, “fence”, “traffic sign”, “bicycle” 
and “vegetation”. During the manual creation of the train-
ing data, the class “without class” is additionally used to 
exclude segments that cannot be assigned to one of the eight 
classes. Since some objects could not be separated by the 
region growing with a threshold of 10 cm, e.g. vegetation 
grown around traffic signs or objects (e.g. bicycles) leaning 
against facades, it is important that these merged objects 
are not included in the training data. We also took care that 
segments from both measurement areas and different time 
epochs were labelled. This is especially important for veg-
etation which was still leafless during the first measurement 
runs. The total amount of training data is 6108 segments.

To train the classifier a total number of 383 features is 
calculated for each segment as follows:

• Number of points inside one segment (1 feature).
• Covariance matrix, eigenvalues and eigenvectors of the 

scatter matrix (6, 3 and 9 features, respectively).
• Axis-parallel bounding box: This box contains all the 

points of the segment and is aligned parallel to the x, y 
and z axis (3 features).

• Oriented bounding box: This box also contains all points 
of the segment but is oriented according to the calculated 
eigenvectors of the segment (3 features).

• Height above the ground: The difference between the 
mean height of the corresponding ground segment and 
the mean height of the segment (1 feature).

• Height difference between laser scanner and segment: 
Height difference between the laser scanner and the mean 
height of the segment points (similar to height above the 
ground, 1 feature).

• Constant cylinder distribution: For cylinder plates with 
a height of 50 cm the percentage share of points is cal-
culated (40 features for a maximum high of 20 m for 
objects).

• Dynamic cylinder distribution: For four “dynamic” 
(adjusted in height) cylinder plates the percentage share 
of points is calculated. Each of the plates has a height 
of 1/4 of the total height of the segment (Similar to the 
calculation in Lehtomäki et al. (2016), four features).

• View point feature histogram (VPFH): With this the sur-
face of the segment is described using the points and 
normal vectors. See the work of Rusu et al. (2010) for 
the exact calculation (308 features).

• Linearity, planarity and scatter: describe whether the 
points inside a segment are distributed rather linear, pla-
nar or scattered. The exact calculation is described in 
Demantke et al. (2011) (3 features).

• Mean distance between each point and the centre of the 
segment (1 feature).

In order to find the best parameter settings for the random 
forest classification, we tested possible parameter sets by 
a grid search and picked the best choice. These param-
eters include the maximum depth of the decision trees, the 
minimum number of training data for a leaf, the minimum 
number of training data for a node, and the total number 
of decision trees to train. To split the samples assigned 
to a node in the decision tree, the Gini impurity is used 
(Breiman 1984). Its value is between zero and one, where 
a value of zero occurs if all samples belong to the same 
class. The Gini impurity is calculated for a subset of samples 
XXX = {x1, x2,… , xJ} at node t using equation 1, where J is the 
number of samples at this node, and pc is the proportion of 
samples belonging to class c, 1 ≤ c ≤ C , which is computed 
from the absolute counts nc using pc = nc∕J:

Fig. 6  Examples for segments
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For each node, a feature and a particular threshold is 
selected, subdividing XXX into two subsets XXX1 and XXX2 . Where 
the optimal selection is obtained if the weighted sum 
of their corresponding Gini impurities I1 and I2 is small-
est, the weights are selected according to the sizes of the 
two subsets, J1 and J2 . For example, for C = 2 , the larg-
est possible impurity I(p1, p2) = 0.5 would occur for 
p1 = p2 = 0.5 , and an optimal split would separate the two 
classes, each subset would be pure ( I1 = I2 = 0 ), leading to 
J1∕J ⋅ I1 + J2∕J ⋅ I2 = 0.

As some of these features are redundant, a selection of the 
most suitable features is included after the training process, 
to analyze their influence on the classification. For this pur-
pose, the Gini Impurity is used to calculate the Gini impor-
tance. At each node of a tree, the goodness-of-split is defined 
as the difference of the impurity of the parent node and the 
impurities of the left and right child, weighted by their cor-
responding proportions of samples (Breiman 1996). This 
decrease in impurity, caused by the selection of a specific 
feature for the split, is summed over all nodes, weighted by 
the proportions of samples reaching the nodes. Thus, for 
each tree and each feature, a total decrease in node impurity 
caused by that feature is obtained. Finally, these per-tree 
importances are averaged over all trees to obtain the overall 
feature importance.

4.3  Detection of Static Objects Using a Voxel Grid

We use a grid with voxels of 10 cm edge length to store our 
data for the static reference map. In order to create the voxel 
grid, we merge all classified segments of all epochs and store 
one class for every measurement run for every voxel. If more 
than one class for the same measurement run lies within one 
voxel the closest one is retained, but this should not happen 
normally because the distance threshold for the object seg-
mentation is also 10 cm.

The detection of static objects uses two steps: first, the 
voxels are divided into static and temporary according to 
their class. The following classes are declared as static: 
“Facade”, “fence”, “pole”, “traffic sign” and “vegetation”. 
The class “vegetation” is only semi-static as it behaves dif-
ferently from the other static classes, for example trees and 
bushes remain static in one place, but move and grow, lose 
leaves or are cut depending on the seasons or human inter-
vention. In the second step, misclassifications and objects 
that only occur temporarily in a few campaigns shall be 

(1)I(p1, p2,… , pC) = 1 −

C
∑

c=1

p2
c
.

removed. For example, a scaffold should not be included in 
the static map, even if the segment was assigned to a static 
class (fence or facade). In order to delete these elements 
from our map, we perform a visibility analysis. Therefore, 
we use a ray tracing algorithm similar to Schachtschneider 
et al. (2017). Each voxel (edge length 10 cm) stores an 
occupancy state (“hit” or “traversed” by the laser ray or 
“not seen”) for each measurement run as a sequence of 
observations. Here, the method used in Schachtschneider 
et al. (2017) was slightly adapted. In a pre-processing step, 
scan strips are segmented into objects with continuous 
surfaces as described in Brenner (2016) (see Fig. 5, step 
3), which are then used to enter planar surface elements 
into a voxel grid. Instead of just checking whether a voxel 
was traversed by the laser ray, now it is checked whether 
one of the estimated plane elements was traversed. The 
scan-strip segmentation discards small plane elements. 
This means, objects with a very rough surface or high cur-
vature (e.g. tree foliage), which consist of many very small 
plane elements) are removed. The data of the ray tracing 
are involved to get the additional information whether a 
voxel was traversed by a laser ray. The combination of 
the classification and the visibility analysis results in the 
following four cases that can be distinguished for each 
measurement run:

• Static class and no traversing ray: normal case when an 
object is in this voxel.

• Static class and traversing ray: this causes a conflict 
that must have occurred during data processing. For the 
further processing it is assumed that the entered class 
is correct.

• No class and no traversing ray: an occlusion can be 
assumed if a static object was measured in another 
epoch.

• No class and traversing ray: the voxel is empty.

In order to detect static objects, we calculate a value Wstatic 
for each voxel, which is a measure for the voxel being 
static, as follows:

Where k is the number of times a static class within a voxel 
is measured during the measurement runs and v is the num-
ber of occlusions. Epochs is the total number of measure-
ment runs which is 14 in the case of this study and thus 
corresponds to the maximum times a voxel can be observed. 
The value for Wstatic lies between zero and one, where larger 
values indicate a static object.

(2)Wstatic =
k

epochs − v
,
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5  Results

This section presents the results of the individual process-
ing steps described in Sect. 4. First, Sect. 5.1 deals with 
the segmentation results. Section 5.2 presents the results of 
the classification, and Sect. 5.3 compares them with results 
from other authors. Finally, Sect. 5.4 presents the created 
reference map.

5.1  Segmentation Results

The segmentation of the ground and all other segments 
works very well for standard situations. After the ground 
segmentation, all other objects are no longer connected and 
can be stored as single segments with a distance threshold of 
10 cm. Figure 7 shows the segmentation result of an example 
scene. If different objects are too close to each other (point 
distance below 10 cm), they may become merged into one 
object. For example, in Fig. 7, objects close to the facade 
are not separated by the segmentation approach. The same 
may happen, e.g. with street signs close to vegetation or per-
sons with a low distance to each other (see Fig. 6c). Another 
problem may arise if several ground heights occur within 
one point cloud. With the used algorithm, only the lowest 
ground level is extracted and the objects remain connected 
if more ground levels exist. Consequently, the objects cannot 
be segmented correctly. An example of such a case is shown 
in Fig. 8. Here only the lowest ground level within a subway 
shaft is extracted as ground (shown in red).

5.2  Classification Results

The best parameter combination for the random forest clas-
sifier, detected by the grid search as described in Sect. 4.2, 
is as follows:

• Maximum depth: 25.
• Minimum number of training data for a leaf: 1.
• Minimum number of training data for a node: 2.
• Number of decision trees: 150.
• Used features: 99.

For the selection of the features we took into account the 
Gini Importance as described in Sect. 4.2. The 99 features 
with the highest Gini Importance were used for training. Fol-
lowing is a summary of the most important features:

• Mean height difference between laser scanner and seg-
ment and height above the ground: Both features indicate 
the height of the segment, but with different references. 
Both features make it easy to distinguish small objects 
(persons, bicycles) from medium-sized objects (trees) 
and large objects (facades).

• VPFH: With the help of the calculated surface compo-
nent, the distribution of the normal vectors of an object 
is well described, allowing a clear angle histogram per 
class to be established during training.

• Constant cylinder distribution: Especially the lower cyl-
inder plates (up to a height of approx. 4 m), in which 
most objects are located, have a large impact on the clas-
sification results.

• Oriented bounding box: The oriented bounding box 
seems to adapt better to the individual objects and is, 
therefore, more meaningful than the axis-parallel bound-
ing box.

Other features, like the eigenvalues, covariance matrix or 
linear, planar and scatter features are also used but have a 

Fig. 7  Segmentation result of an example scene

Fig. 8  Segmentation of the ground in the area of the underground 
shaft (red: subway shaft, detected as “ground”; blue: remaining point 
cloud)
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much lower impact on the classification result. For training, 
we randomly picked 80% of the labeled segments, testing 
on the remaining 20%. The classification achieves an overall 
accuracy of 94% with the test data. The values for Precision, 
Recall, F-Score and Support are shown in Table 1. The exact 
calculation of these values can be found in Sokolova and 
Lapalme (2009).

With a value of 0.71 for the F-score, the class “bicycle” 
achieves the worst results. This may be due to the fact that 
this class contains both freestanding bicycles and cyclists 
and in some cases also multiple bicycles joined into one 
object. Another reason may be the small amount of training 
data available for this class (154 training segments). A posi-
tive example of a class with little training data is the class 
“pole”. Here the F-score reaches 0.88 though there are only 
140 training segments. The reason for this is that the shape 
of this class (long, vertical bar) clearly distinguishes it from 
the other classes and is very consistent within the class.

When analysing the other misclassifications using the 
confusion matrix in Table 2, it appears that they are quite 
distributed and do not occur mainly between two or three 
similar classes. When the classifier is applied to new data, 

more challenges arise: Some misclassifications occur due to 
small segments inside buildings. These fragments, scanned 
through windows, are difficult to assign to a class. A solu-
tion to avoid this would be the exclusion of areas behind 
facades before the classification. Another problem are 
merged objects that contain different classes and thus cannot 
be assigned clearly to one class. One way to further improve 
the classification would be the introduction of more training 
data. This is particularly necessary if the classification shall 
be extended to other regions with different characteristics 
(e.g. other types of buildings or vegetation).

5.3  Comparison with Classification Results 
from Other Authors

Since there is no other work available that uses the same 
data and classes, a direct comparison of the results is not 
possible. Nevertheless, we want to rank our results in order 
to evaluate their quality. Therefore, we compare our outcome 
with similar work.

Lehtomäki et al. (2016) achieve an average overall accu-
racy of 88.1% using a support vector machine classifier, 
which is nearly 6% worse than our results. They compare 
new features, such as Spin Images or Local Descriptor Histo-
grams, to traditional features such as the point distribution of 
a segment. Since the focus of their work is on new features, 
they do not fix errors that occur during segmentation, which 
can have a negative impact on the overall result. The clas-
sification divides the segments into the following six classes: 
“tree”, “lantern”, “car”, “pedestrians”, “traffic signs” and 
“hoarding”. An exception is the class “construction fence/ 
hoarding” with a Recall value of 0.67. The authors explain 
this by the fact that this class is partly mixed up with the 
class “traffic signs”, because both classes contain vertical 
planes. The class “pole” or “lantern” is classified even bet-
ter than in our work. This may be due to the fact that a pre-
selection of segments is performed before the classification. 

Table 1  Precision, Recall, F-score and Support of the individual 
classes with the selected classifier random forest with eight classes

Class Prec. Recall F-Sc. Support

Bicycle 0.76 0.67 0.71 33
Vehicle 0.93 0.94 0.93 151
Fence 0.89 0.83 0.86 60
Facade 0.94 0.97 0.96 351
Pole 0.95 0.82 0.88 22
Person 0.81 0.96 0.88 45
Traffic sign 0.90 0.90 0.90 82
Vegetation 0.98 0.96 0.97 478
Mean/sum 0.94 0.94 0.94 1222

Table 2  Confusion matrix of the random forest classification with eight classes

Actual class

A: Bicycle B: Vehicle C: Fence D: Facade E: Pole F: Person G: Traffic 
sign

H: Vegetation

Predicted class A 22 0 0 0 0 0 0 7
B 4 142 0 3 0 1 0 3
C 0 1 50 3 0 0 0 2
D 0 6 9 341 0 0 4 3
E 0 0 0 0 18 0 1 0
F 7 2 0 1 0 43 0 0
G 0 0 0 0 4 0 74 4
H 0 0 1 3 0 1 3 459



204 PFG (2021) 89:195–207

1 3

Thus, in our case, segments which are too small or consist of 
too few points are filtered out and are not classified.

Paul et al. (2012) divide segmented point clouds into the 
following six classes using a Gaussian process classifier: 
“building”, “tree”, “ground”, “hedge”, “vehicle” and “back-
ground”. Only the classes “building”, “tree” and “vehicle” 
can be compared with the results of this paper. The Recall 
values for the classes “building” and “tree” are close to our 
results and lie in a very good range from 0.98 to 1.0. The 
class “vehicle”, with a Recall of 0.64, is classified much 
worse than in Lehtomäki et al. (2016) and our work. This 
can be explained by the number of available training data: 
in Paul et al. (2012) there are 74 training segments of the 
class “vehicle”, while we use 547 segments. This difference 
is a clear indication of how important the amount of training 
data is for the classification.

The comparison has shown that the amount of training 
data plays a key role in the classification and it should be 
invested in the production of meaningful training data. In 
addition, the selection of suitable classes plays an important 
role, as similarities lead to misclassifications that degrade 
the overall result.

5.4  Reference Map

The results of the static reference map based on the clas-
sification, the voxel grid and the ray tracing can be shown 
best by an example. For this purpose, in Fig. 9 the church 
“Lutherkirche” in the “Nordstadt” district of Hannover was 
chosen. Each voxel is coloured according to its number of 
occurrences during the 14 measurements. The blue colour 
indicates rarely occurring voxels (1–3 occurrences, which 

corresponds to 7–21%), green slightly more frequent voxels 
(4–9 occurrences, which corresponds to 28–64%), and red 
represents very often occurring voxels (12–14 occurrences, 
which corresponds to 85–100%). It is easy to see that the 
roof, the scaffolding and also the side wall of the building, 
which is partially covered by the trees in front of it, were 
scanned significantly fewer times than other parts of the 
facade.

Figure  10 shows the same voxels, coloured by the 
value of Wstatic , which also takes into account the ray trac-
ing results. The tree from Fig. 9 was cut out to show the 
complete facade. Here, the blue colour represents a small 
value for Wstatic and red a high value. Both, the roof and the 
facade parts, which are partly covered by trees (as shown in 
Fig. 9), have a high value. In contrast, the scaffold, which 
only appeared during approximately 3–5 measurements, has 
a much smaller value because the corresponding voxels were 
traversed by the laser beam during the other measurement 
runs and could thus be identified as being empty.

By selecting a threshold value of 0.8, outliers and tempo-
rary objects can be removed quite reliably. What remain are 
the voxels which have a very high probability of belonging 
to static objects, as shown in Fig. 11. This threshold can be 
modified according to the class or other external conditions.

For the classes “vegetation” and “traffic sign”, the occu-
pancy states from the ray tracing were not used, because they 
are not available for many voxels of these classes. The rea-
son for this is the pre-processing of the scan strip data, where 
small segments are discarded, as described in Sect. 4.3. In 
the future, this could be fixed by including small segments 
as well.

Figure 12 shows the created reference map for the meas-
urement area “Nordstadt”. The extracted ground segments 

Fig. 9  Example voxel grid of the “Lutherkirche”, coloured by 
the number of occurrences during 14 epochs of the measurement  
campaign

Fig. 10  Example voxel grid of the “Lutherkirche”, coloured by W
static

 
from 0 to 1 (the tree from Fig. 9 was cut out to show the complete 
facade)
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are coloured in purple. Some visible holes on the street are 
caused by parked cars, which occluded the ground during 
the corresponding measurement. The classes “vegetation” 
(dark green), “traffic sign” (yellow) and “pole” (orange) are 
only included in the map if their number of occurrences is at 
least three. The classes “facade” (grey) and “fence”(brown) 
are included if their value for Wstatic is at least 0.8.

6  Conclusion and Outlook

6.1  Summary of the Results

The aim of this work was to create a static reference map of 
an urban environment. Therefore, LiDAR point clouds were 
segmented and classified. Several measuring epochs were 
compared to separate between static and dynamic objects as 
well as to detect changes. The result is a 3D voxel grid that 
stores all static objects and their classification result. In the 
following, the individual steps, experienced difficulties, and 
possible solutions are summarised.

For the segmentation, we used a region growing algo-
rithm, which separates objects by a distance threshold. For 
most cases this works well. However, if various ground 
levels occur in a point cloud, our implementation only 
considers the lowest one. This could be easily avoided by 
a more elaborated ground segmentation, e.g. by searching 
for several horizontal planes within a certain height range, 
as suggested by Paul et al. (2012). We also do not consider 
any slope so far, which could be improved by estimating 
the topography of the scene, as in Blomley and Weinmann 
(2017).

The classification yields very good results with an over-
all accuracy of 94%. Due to the low number of training 
examples and strong similarity of some classes, the original 

Fig. 11  Example voxel grid of the “Lutherkirche”, coloured by W
static

 
from 0.8 to 1 (the tree from Fig. 9 was cut out to show the complete 
facade)

Fig. 12  Reference map of the Nordstadt measurement area
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classes from the Cityscapes dataset (Cordts et al. 2016) had 
to be reduced significantly. Our random forest-based clas-
sification shows good results, also in comparison to similar 
work, e.g. Lehtomäki et al. (2016) and Paul et al. (2012). 
The remaining misclassifications are mainly caused by 
objects inside buildings, measured through the windows. 
These objects are often incomplete or do not belong to any 
of the used classes. One way to deal with this would be to 
detect the facades first and delete all objects behind them, 
before the main classification is invoked. Another factor that 
leads to misclassifications are merged objects which were 
not separated by the region growing algorithm, e.g. traffic 
signs ingrown by trees, bicycles attached to traffic signs or 
leaned against facades, etc.

A major advantage of our approach is that we combine 
classification and observation sequences. This is especially 
important when we extract the static part of the environ-
ment. “Vegetation”, for example, is defined as static but 
changes over time due to growth, seasonal changes or human 
intervention. Contrary to this is the class “vehicle” which 
is defined as dynamic but could be assumed to be static in 
areas of permanently parked cars. If only the observation 
sequences were used for filtering the static objects, it can 
happen that both classes are treated similarly, although this 
is unintended. Classification thus enables a deeper under-
standing of the behaviour of objects, which is self-evident 
for humans.

A visual inspection of the reference map shows that it 
provides very good results. Objects such as awnings, scaf-
folds or other segments associated with static objects that 
only occur during a few measurement runs are not added to 
the static map. If a previously static object disappears, e.g. 
due to a building demolition, it is also removed from the 
static map after a certain number of observations.

We envision many possible applications for our reference 
map. Of course, distinctive points in the map can support 
localisation, as e.g. mentioned in Schlichting and Brenner 
(2016b). However, the reference map is useful in a much 
more broader sense, as the combination of semantic and 
temporal information allows an automated system (using this 
map) to anticipate the state of the environment at a given 
point in time more precisely.

6.2  Outlook

In future work, we want to use larger amounts of data on the 
one hand and improve data processing on the other hand. For 
the former, we need to create more training data, especially 
for the smaller classes, in order to improve the classifica-
tion results and to introduce more classes. In addition, the 
methods developed in this work will be improved and then 
applied to all data of the measurement campaign. In the data 

processing part, the ground removal and facade detection 
could be improved.

Another important next step is the incremental integration 
of new measurement data. For this, the definition of Wstatic 
has to be extended in such a way that newly recorded data 
has a higher influence than older data, so that changes, such 
as new or demolished buildings, appear faster in the refer-
ence map. In this context it would also be interesting to gain 
insight into the update rate which is required to maintain a 
useful reference map, because the different real-world object 
classes each show their own temporal behaviour.
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