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Generalized bases of finite groups

Benjamin Sambale

Abstract. Motivated by recent results on the minimal base of a permuta-
tion group, we introduce a new local invariant attached to arbitrary finite
groups. More precisely, a subset Δ of a finite group G is called a p-base
(where p is a prime) if 〈Δ〉 is a p-group and CG(Δ) is p-nilpotent. Build-
ing on results of Halasi–Maróti, we prove that p-solvable groups possess
p-bases of size 3 for every prime p. For other prominent groups, we exhibit
p-bases of size 2. In fact, we conjecture the existence of p-bases of size
2 for every finite group. Finally, the notion of p-bases is generalized to
blocks and fusion systems.
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1. Introduction. Many algorithms in computational group theory depend on
the existence of small bases. Here, a base of a permutation group G acting
on a set Ω is a subset Δ ⊆ Ω such that the pointwise stabilizer GΔ is trivial
(i.e. if g ∈ G fixes every δ ∈ Δ, then g = 1). The aim of this short note is to
introduce a generalized base without the presence of a group action. To this
end, let us first consider a finite group G acting faithfully by automorphisms
on a p-group P . If p does not divide |G|, then G always admits a base of size
2 by a theorem of Halasi–Podoski [5]. Now suppose that G is p-solvable, P is
elementary abelian, and G acts completely reducibly on P . Then G has a base
of size 3 (2 if p ≥ 5) by Halasi–Maróti [4]. In those situations, we may form the
semidirect product H := P � G. Now there exists Δ ⊆ P such that |Δ| ≤ 3
and CH(Δ) = CH(〈Δ〉) ≤ P . This motivates the following definition.

Definition 1. Let G be a finite group with Sylow p-subgroup P . A subset Δ ⊆
P is called a p-base of G if CG(Δ) is p-nilpotent, i.e. CG(Δ) has a normal
p-complement.
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Clearly, any generating set of P is a p-base of G since CG(P ) = Z(P ) ×
Op′(CG(P )) (this observation is generalized in Lemma 7 below).

Our main theorem extends the work of Halasi–Maróti as follows.

Theorem 2. Every p-solvable group has a p-base of size 3 (2 if p ≥ 5).

Although Halasi–Maróti’s theorem does not extend to non-p-solvable groups,
the situation for p-bases seems more fortunate. For instance, if V is a finite
vector space in characteristic p, then every base of GL(V ) (under the natural
action) contains a basis of V , so its size is at least dim V . On the other hand,
G = AGL(V ) = V � GL(V ) possesses a p-base of size 2. To see this, let P be
the Sylow p-subgroup of GL(V ) consisting of the upper unitriangular matrices.
Let x ∈ P be a Jordan block of size dim V . Then CGL(V )(x) ≤ PZ(GL(V )). For
any y ∈ CV (x) \ {1}, we obtain a p-base Δ := {x, y} such that CG(Δ) ≤ V P .
We have even found a p-base consisting of commuting elements. After checking
many more cases, we believe that the following might hold.

Conjecture 3. Every finite group has a (commutative) p-base of size 2 for every
prime p.

The role of the number 2 in Conjecture 3 appears somewhat arbitrary
at first. There is, however, an elementary dual theorem: A finite group is p-
nilpotent if and only if every 2-generated subgroup is p-nilpotent. This can
be deduced from the structure of minimal non-p-nilpotent groups (see [6,
Satz IV.5.4]). It is a much deeper theorem of Thompson [8] that the same re-
sult holds when “p-nilpotent” is replaced by “solvable”. Similarly, 2-generated
subgroups play a role in the Baer–Suzuki theorem and its variations.

Apart from Theorem 2 we give some more evidence of Conjecture 3.

Theorem 4. Let G be a finite group with Sylow p-subgroup P . Then Conjecture
3 holds for G in the following cases:

(i) P is abelian.
(ii) G is a symmetric group or an alternating group.
(iii) G is a general linear group, a special linear group, or a projective special

linear group.
(iv) G is a sporadic simple group or an automorphism group thereof.

Our results on (almost) simple groups carry over to the corresponding qua-
sisimple groups by Lemma 8 below. The notion of p-bases generalizes to blocks
of finite groups and even to fusion systems.

Definition 5. • Let B be a p-block of a finite group G with defect group
D. A subset Δ ⊆ D is called base of B if B has a nilpotent Brauer
correspondent in CG(Δ) (see [1, Definition IV.5.38]).

• Let F be a saturated fusion system on a finite p-group P . A subset Δ ⊆ P
is called base of F if there exists a morphism ϕ in F such that ϕ(〈Δ〉) is
fully F-centralized and the centralizer fusion system C := CF (ϕ(〈Δ〉)) is
trivial, i.e. C = FCP (Δ)(CP (Δ)) (see [1, Definition I.5.3, Theorem I.5.5]).
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By Brauer’s third main theorem, the bases of the principal p-block of G are
the p-bases of G (see [1, Theorem IV.5.9]). Moreover, if F is the fusion system
attached to an arbitrary block B, then the bases of B are the bases of F (see
[1, Theorem IV.3.19]). By the existence of exotic fusion systems, the following
conjecture strengthens Conjecture 3.

Conjecture 6. Every saturated fusion system has a base of size 2.

We show that Conjecture 6 holds for p-groups of order at most p4.

2. Results.

Proof of Theorem 2. Let G be a p-solvable group with Sylow p-subgroup P .
Let N := Op′(G). For Q ⊆ P , CG(Q)N/N is contained in CG/N (QN/Q).
Hence, CG(Q) is p-nilpotent whenever CG/N (QN/Q) is p-nilpotent. Thus, we
may assume that N = 1. Instead we consider N := Op(G). Since G is p-
solvable, N �= 1. We show by induction on |N | that there exists a p-base Δ ⊆ N
such that CG(Δ) ≤ N . By the Hall–Higman lemma (see [6, Hilfssatz VI.6.5]),
CG/N (N/Φ(N)) = N/Φ(N) where Φ(N) denotes the Frattini subgroup of N .
It follows that Op′(G/Φ(N)) = 1. Hence, by induction, we may assume that
N is elementary abelian. Then G := G/N acts faithfully on N and it suffices
to find a p-base Δ ⊆ N such that CG(Δ) = 1. Thus, we may assume that
G = N � H where CG(N) = N and Op(H) = 1.

Note that Φ(G) ≤ F(G) = N where F(G) is the Fitting subgroup of G.
Since H is contained in a maximal subgroup of G, we even have Φ(G) < N . Let
K � H be the kernel of the action of H on N/Φ(G). By way of contradiction,
suppose that K �= 1. Since K is p-solvable and Op(K) ≤ Op(H) = 1, also
K0 := Op′(K) �= 1. Now K0 acts coprimely on N and we obtain

N = [K0, N ]CN (K0) = Φ(G)CN (K0)

as is well-known. Both Φ(G) and CN (K0)H lie in a maximal subgroup M of
G. But then G = NH = Φ(G)CN (K0)H ≤ M , a contradiction. Therefore,
H acts faithfully on N/Φ(G) and we may assume that Φ(G) = 1. Then there
exist maximal subgroups M1, . . . ,Mn of G such that Ni := Mi ∩ N < N
for i = 1, . . . , n and

⋂n
i=1 Ni = 1. Since G = MiN , the quotients N/Ni are

simple FpH-modules and N embeds into N/N1×· · ·×N/Nn. Hence, the action
of H on N is faithful and completely reducible. Now, by the main result of
Halasi–Maróti [4], there exists a p-base with the desired properties. �

Next we work towards Theorem 4.

Lemma 7. Let P be a Sylow p-subgroup of G. Let Q�P such that CP (Q) ≤ Q.
Then every generating set of Q is a p-base of G.

Proof. Since P ∈ Sylp(NG(Q)), we have Z(Q) = CP (Q) ∈ Sylp(CG(Q)) and
therefore CG(Q) = Z(Q)×Op′(CG(Q)) by the Schur–Zassenhaus theorem. �

Lemma 8. Let Δ be a p-base of G and let N ≤ Z(G). Then Δ := {xN : x ∈ Δ}
is a p-base of G/N .
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Proof. Let gN ∈ CG/N (Δ). Then g normalizes the nilpotent group 〈Δ〉N .
Hence, g acts on the unique Sylow p-subgroup P of 〈Δ〉N . Since g centralizes

〈Δ〉 = 〈Δ〉N/N = PN/N ∼= P/P ∩ N

and P ∩ N ≤ N ≤ Z(G), g induces a p-element in Aut(P ) and also in
Aut(〈Δ〉N). Consequently, there exists a p-subgroup Q ≤ NG(〈Δ〉N) such
that CG/N (Δ) = QCG(ΔN)/N = QCG(Δ)/N . Since CG(Δ) is p-nilpotent, so
is QCG(Δ) and the claim follows. �

The following implies the first part of Theorem 4.

Proposition 9. Let P be a Sylow p-subgroup of G with nilpotency class c. Then
G has a p-base of size 2c.

Proof. The p′-group NG(Z(P ))/CG(Z(P )) acts faithfully on Z(P ). By Halasi–
Podoski [5], there exists Δ0 = {x, y} ⊆ Z(P ) such that NH(Z(P )) ≤ CH(Z(P ))
where H := CG(Δ0). If c = 1, then P = Z(P ) is abelian and Burnside’s transfer
theorem implies that H is p-nilpotent. Hence, let c > 1. By a well-known fusion
argument of Burnside, elements of Z(P ) are conjugate in H if and only if they
are conjugate in NH(Z(P )). Consequently, all elements of Z(P ) are isolated in
our situation. By the Z∗-theorem (assuming the classification of finite simple
groups), we obtain

Z(H/Op′(H)) = Z(P )Op′(H)/Op′(H).

The group H := H/Z(P )Op′(H) has Sylow p-subgroup P ∼= P/Z(P ) of nilpo-
tency class c − 1. By induction on c, there exists a p-base Δ1 ⊆ P of H of
size 2(c − 1). We may choose Δ1 ⊆ P such that Δ1 = {x : x ∈ Δ1}. Since
CH(Δ1) ≤ CH(Δ1) is p-nilpotent, so is

(
CH(Δ1)Z(P )Op′(H)/Op′(H)

)
/Z(H/Op′(H)).

It follows that CH(Δ1)Z(P )Op′(H)/Op′(H) and CH(Δ1) = CG(Δ0 ∪ Δ1) are
p-nilpotent as well. Hence, Δ := Δ0 ∪ Δ1 is a p-base of G of size (at most) 2c.

�

Proposition 10. The symmetric and alternating groups Sn and An have com-
mutative p-bases of size 2 for every prime p.

Proof. Let n =
∑k

i=0 aip
i be the p-adic expansion of n. Suppose first that

G = Sn. Let

x =
k∏

i=0

ai∏

j=1

xij ∈ G

be a product of disjoint cycles xij where xij has length pi for j = 1, . . . , ai.
Then x is a p-element and

CG(x) ∼=
k∏

i=0

Cpi � Sai
.
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Since ai < p, P := 〈xij : i = 0, . . . , k, j = 1, . . . , ai〉 is an abelian Sylow
p-subgroup of CG(x). Let y :=

∏k
i=0

∏ai

j=1 xj
ij ∈ P . It is easy to see that

Δ := {x, y} is a commutative p-base of G with CG(Δ) = P .
Now let G = An. If p > 2, then x, y lie in An as constructed above and

the claim follows from CAn
(Δ) ≤ CSn

(Δ). Hence, let p = 2. If
∑k

i=1 ai ≡ 0
(mod 2), then we still have x ∈ An and CG(x) = 〈xij : i, j〉 is already a 2-
group. Thus, we have a 2-base of size 1 in this case. In the remaining case, let
m ≥ 1 be minimal such that am = 1. We adjust our definition of x by replacing
xm1 with a disjoint product of two cycles of length 2m−1. Then x ∈ An and
CG(x) is a 2-group or a direct product of a 2-group and S3 (the latter case
happens if and only if m = 1 = a0). We clearly find a 2-element y ∈ CG(x)
such that CG(x, y) is a 2-group. �

The following elementary facts are well-known, but we provide proofs for
the convenience of the reader.

Lemma 11. Let p be a prime and let q be a prime power such that p � q. Let
e | p−1 be the multiplicative order of q modulo p. Let ps be the p-part of qe −1.
Then for every n ≥ 1, the polynomial Xpn − 1 decomposes as

Xpn − 1 = (X − 1)
(ps−1)/e∏

k=1

γ0,k

n−s∏

i=1

ϕ(ps)/e∏

k=1

γi,k

where the γi,k are pairwise coprime polynomials in Fq[X] of degree epi for
i = 0, . . . , n − s.

Proof. Let ζ be a primitive root of Xpn − 1 in some finite field extension of
Fq. Then

Xpn − 1 =
pn−1∏

k=0

(X − ζk).

Recall that Fq is the fixed field under the Frobenius automorphism c �→ cq.
Hence, the irreducible divisors of Xpn − 1 in Fq[X] correspond to the orbits of
〈q +pn

Z〉 on Z/pn
Z via multiplication. The trivial orbit corresponds to X −1.

For i = 1, . . . , s, the order of q modulo pi is e by the definition of s. This yields
(ps − 1)/e non-trivial orbits of length e in pn−s

Z/pn
Z. The corresponding

irreducible factors are denoted by γ0,k for k = 1, . . . , (ps − 1)/e.
For i ≥ 1, the order of q modulo ps+i divides epi (it can be smaller if p = 2

and s = 1). We partition (pn−s−i
Z/pn

Z)× into ϕ(ps+i)/(epi) = ϕ(ps)/e unions
of orbits under 〈q + pn

Z〉 such that each union has size epi. The correspond-
ing polynomials γi,1, . . . , γi,ϕ(ps)/e are pairwise coprime (but not necessarily
irreducible). �

Lemma 12. Let A be an n × n-matrix over an arbitrary field F such that the
minimal polynomial of A has degree n. Then every matrix commuting with A
is a polynomial in A.
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Proof. By hypothesis, A is similar to a companion matrix. Hence, there exists
a vector v ∈ Fn such that {v,Av, . . . , An−1v} is a basis of Fn. Let B ∈ Fn×n

such that AB = BA. There exist a0, . . . , an−1 ∈ F such that Bv = a0v + · · ·+
an−1A

n−1v. Set γ := a0 + a1X + · · · + an−1X
n−1. Then

BAiv = AiBv = a0A
iv + · · · + an−1A

n−1Aiv = γ(A)Aiv

for i = 0, . . . , n − 1. Since {v,Av, . . . , An−1v} is a basis, we obtain B = γ(A)
as desired. �

Proposition 13. The groups GL(n, q), SL(n, q), and PSL(n, q) possess commu-
tative p-bases of size 2 for every prime p.

Proof. Let q be a prime power. By Lemma 8, it suffices to consider GL(n, q) and
SL(n, q). Suppose first that p | q. Let x ∈ G := GL(n, q) be a Jordan block of
size n×n with eigenvalue 1. Then x is a p-element since xpn −1 = (x−1)pn

= 0.
Moreover, CG(x) consists of polynomials in x by Lemma 12. In particular,
CG(x) is abelian and therefore p-nilpotent. Hence, we found a p-base of size 1.
Since (q − 1, p) = 1, this is also a p-base of SL(n, q).

Now let p � q. We “linearize” the argument from Proposition 10. Let e and
s be as in Lemma 11. Let 0 ≤ a0 ≤ e − 1 be such that n ≡ a0 (mod e). Let

n − a0

e
=

r∑

i=0

ai+1p
i

be the p-adic expansion. Let Mi ∈ GL(epi, q) be the companion matrix of the
polynomial γi,1 from Lemma 11 for i = 0, . . . , r. Let Gi := GL(eai+1p

i, q) and
xi := diag(Mi, . . . ,Mi) ∈ Gi. Then the minimal polynomial of

x := diag(1a0 , x0, . . . , xr) ∈ G

divides Xpr+s − 1 by Lemma 11. In particular, x is a p-element. Since the γi,1

are pairwise coprime, it follows that

CG(x) = GL(a0, q) ×
r∏

i=0

CGi
(xi).

Since a0 < e, GL(a0, q) is a p′-group. By Lemma 12, every matrix commuting
with Mi is a polynomial in Mi. Hence, the elements of CGi

(xi) have the form
A = (Akl)1≤k,l≤ai+1 where each block Akl is a polynomial in Mi. We define

yi := diag(Mi,M
2
i , . . . ,M

ai+1
i ) ∈ CGi

(xi)

and y := diag(1a0 , y0, . . . , yr) ∈ CG(x). Let A = (Akl) ∈ CGi
(xi, yi). We

want to show that Akl = 0 for k �= l. To this end, we may assume that
k < l and Akl = ρ(Mi) where ρ ∈ Fq[X] with deg(ρ) < deg(γi,1) = epi.
Since A ∈ CGi

(xi, yi), we have Mk
i Akl = M l

iAkl and (M l−k − 1)Akl = 0. It
follows that the minimal polynomial γi,1 of Mi divides (X l−k −1)ρ. By way of
contradiction, we assume that ρ �= 0. Then γi,1 divides X l−k −1 and Xpr+s −1.
However, l − k ≤ ai+1 < p and γi1 must divide X − 1. This contradicts the
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definition of γi,1 in Lemma 11. Hence, Akl = 0 for k �= l. We have shown that
the elements of CG(x, y) have the form

L ⊕
r⊕

i=0

ai+1⊕

j=1

Lij

where L ∈ GL(a0, q) and each Lij is a polynomial in Mi. In particular, CG(x, y)
is a direct product of a p′-group and an abelian group. Consequently, CG(x, y)
is p-nilpotent.

Now let G := SL(n, q). If p � q − 1, then the p-base of GL(n, q) constructed
above already lies in G. Thus, we may assume that p | q − 1. Then e = 1
and a0 = 0 with the notation above. We now have the polynomials γi,k with
i = 0, . . . , r and k = 1, . . . , p − 1 ≤ ϕ(ps) at our disposal. Let Mi,k be the
companion matrix of γi,k. Define

xi := diag(Mi,1, . . . ,Mi,ai+1)

for i = 0, . . . , r. Then the minimal polynomial of x := diag(x0, . . . , xr) ∈
GL(n, q) has degree n and therefore CGL(n,q)(x) is abelian by Lemma 12. Let
i ≥ 0 be minimal such that ai+1 > 0. We replace the block Mi,1 of x by the
companion matrix of Xpi −1. Then, by Lemma 11, the minimal polynomial of
x still has degree n. Moreover, x has at least one block B of size 1×1. We may
modify B such that det(x) = 1. After doing so, it may happen that B occurs
twice in x. In this case, CG(x) ≤ GL(2, q) × H where H is abelian. Then the
matrix

y :=

⎧
⎪⎨

⎪⎩

(
0 −1
1 0

)

⊕ 1n−2 if p = 2,

diag(M0,1,M
−1
0,1 , 1n−2) if p > 2

lies in CG(x) and CG(x, y) is abelian. Hence, {x, y} is a p-base of G. �

Proposition 13 can probably be generalized to classical groups. The next
result completes the proof of Theorem 4.

Proposition 14. Let S be a sporadic simple group and G ∈ {S, S.2}. Then G
has a commutative p-base of size 2 for every prime p.

Proof. If p4 does not divide |G|, then the claim follows from Lemma 7. So we
may assume that p4 divides |G|. From the character tables in the Atlas [2],
we often find p-elements x ∈ G such that CG(x) is already a p-group. In this
case, we found a p-base of size 1 and we are done. If G admits a permutation
representation of “moderate” degree (including Co1), then the claim can be
shown directly in GAP [3]. In the remaining cases, we use the Atlas to find
p-elements with small centralizers:

• G = Ly, p = 2: There exists an involution x ∈ G such that CG(x) =
2.A11. By the proof of Proposition 10, there exists y ∈ A11 such that
CA11(y) is a 2-group. We identify y with a preimage in CG(x). Then
CG(x, y) is a 2-group.



16 B. Sambale Arch. Math.

• G = Ly, p = 3: Here we find x ∈ G of order 3 such that CG(x) = 3.McL.
Since McL contains a 3-element y such that CMcL(y) is a 3-group, the
claim follows.

• G = Th, p = 2: There exists an involution x ∈ G such that CG(x) =
21+8
+ .A9. As before, we find y ∈ CG(x) such that CG(x, y) is a 2-group.

• G = M , p = 5: There exists a 5-element x ∈ G such that CG(x) =
C5 × HN . Since there is also a 5-element y ∈ HN such that CHN (y) is
a 5-group, the claim follows.

• G = M , p = 7: In this case there exists a radical subgroup Q ≤ G such
that CG(Q) = Q ∼= C7 × C7 by Wilson [9, Theorem 7] (this group was
missing in the list of local subgroups in the Atlas). Any generating set of
Q of size 2 is a desired p-base of G.

• G = HN.2, p = 3: There exists an element x ∈ G of order 9 such
that |CG(x)| = 54. Clearly, we find y ∈ CG(x) such that CG(x, y) is
3-nilpotent. �

Finally, we consider a special case of Conjecture 6.

Proposition 15. Let F be a saturated fusion system on a p-group P of order
at most p4. Then F has a base of size 2.

Proof. Recall that A := OutF (P ) is a p′-group and there is a well-defined
action of A on P by the Schur–Zassenhaus theorem. If F is the fusion system
of the group P�A, then the claim follows from Halasi–Podoski [5] as before. We
may therefore assume that P contains an F-essential subgroup. In particular,
P is non-abelian. Let Q < P be a maximal subgroup of P containing Z(P ).
The fusion system CF (Q) on CP (Q) = Z(Q) is trivial by definition. Hence, we
are done whenever Q is generated by two elements.

It remains to deal with the case where |P | = p4 and all maximal subgroups
containing Z(P ) are elementary abelian of rank 3. Since two such maximal
subgroups intersect in Z(P ), we obtain that |Z(P )| = p2 and |P ′| = p by
[7, Lemma 1.9] for instance. By the first part of the proof, we may choose
an F-essential subgroup Q such that Z(P ) < Q < P . Let A := AutF (Q).
Since Q is essential, P/Q is a non-normal Sylow p-subgroup of A (see [1,
Proposition I.2.5]). Moreover, [P,Q] = P ′ has order p. By [7, Lemma 1.11],
there exists an A-invariant decomposition

Q = 〈x, y〉 × 〈z〉.
We may choose those elements such that Δ := {xz, y} � Z(P ). Then CP (Δ) =
Q and CA(Δ) = 1. Let ϕ : S → T be a morphism in C := CF (Δ) where
S, T ≤ Q. Then ϕ extends to a morphism ϕ̂ : S〈Δ〉 → T 〈Δ〉 in F such that
ϕ̂(x) = x for all x ∈ 〈Δ〉. Hence, if S ≤ 〈Δ〉, then ϕ = id. Otherwise, S〈Δ〉 = Q
and ϕ̂ ∈ CA(Δ) = 1 since morphisms are always injective. In any case, C is
the trivial fusion system and Δ is a base of F . �
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