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Spectral isoperimetric inequalities for Robin Laplacians

on 2-manifolds and unbounded cones

Magda Khalile and Vladimir Lotoreichik

Abstract. We consider the problem of geometric optimization of the lowest eigenvalue for the

Laplacian on a compact, simply-connected two-dimensional manifold with boundary subject to

an attractive Robin boundary condition. We prove that in the sub-class of manifolds with the

Gauss curvature bounded from above by a constant Kı � 0 and under the constraint of fixed

perimeter, the geodesic disk of constant curvature Kı maximizes the lowest Robin eigenvalue.

In the same geometric setting, it is proved that the spectral isoperimetric inequality holds for

the lowest eigenvalue of the Dirichlet-to-Neumann operator. Finally, we adapt our methods to

Robin Laplacians acting on unbounded three-dimensional cones to show that, under a constraint

of fixed perimeter of the cross-section, the lowest Robin eigenvalue is maximized by the circular

cone.

1. Introduction

The long history of spectral isoperimetric inequalities was initiated by Lord Rayleigh

in his book The theory of sound [36]. He conjectured that among membranes of same

area, that are fixed along their boundaries, the circular one has the lowest fundamental

frequency. This conjecture was proved in any dimension by Faber [17] and Krahn [26]

and is now known as Faber–Krahn inequality. Later on, the isoperimetric inequality

was extended to the case of Neumann boundary condition, and is sometimes referred

to as the reversed Faber–Krahn inequality as in that case the ball is the maximizer of

the first non-zero Neumann eigenvalue [41, 43].

Spectral optimisation for the Robin Laplacian is however quite a new topic of

growing interest; see the reviews [9, 29] for a list of existing results and numerous

challenging open problems, and the references therein. This could be explained as

the majority of the classical methods developed for Dirichlet and Neumann boundary

conditions either fail or should be modified in the Robin case due to the necessity to
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control the boundary term in the Rayleigh quotient. Moreover, the results and methods

heavily depend on the sign of the parameter in the Robin boundary condition. To

be more precise, for M � R
d being a bounded domain with a sufficiently smooth

boundary, and ˇ 2 R, let us consider the spectral problem

��u D �u; on M;

@�uC ˇu D 0; on @M;
(1.1)

where @�u stands for the outward normal derivative of the function u. It is proved,

for positive boundary parameters ˇ > 0, that the ball is the unique minimizer of the

lowest Robin eigenvalue of (1.1) under a fixed volume constraint [6, 10, 14]. For neg-

ative parameters ˇ < 0, it was first conjectured in [5] that among the class of smooth

bounded domains of same volume the ball should maximize the lowest eigenvalue

of (1.1). However, the conjecture was disproved in [22] in all space dimensions d � 2

by showing that the spherical shell yields a smaller lowest Robin eigenvalue than

the ball of the same volume provided that the negative Robin parameter is suffi-

ciently large by absolute value. This result was unexpected, because the ball is not

an optimizer of the lowest eigenvalue of the Laplacian, and the topic attracted since

then considerable attention [2,8,18,19,23,34,42]. It also gave rise to a new conjecture

in [2] stating that in two dimensions the inequality should hold under area constraint

in the class of simply-connected domains. On the contrary, under a fixed perimeter

constraint, some positive results were obtained. In particular, it is proved in [2] that

the disk maximizes the lowest Robin eigenvalue of (1.1), for any ˇ < 0, among all

planar domains with fixed perimeter. The result has then been extended to any space

dimensions d � 2 in [8], among the narrower class of convex domains. The isoperi-

metric optimization problem was also studied for domains in the form Dn xM, where

D is either a bounded convex domain in Rd (see [8]), or the whole Euclidean space

(D D R
d ) [27, 28]. Finally, one can observe that, while the majority of the above

results were obtained in the setting of domains with smooth boundaries, only a few

results are known for Lipschitz boundaries [8, 21, 25, 29].

In the present paper, we are concerned with the optimization of the lowest Robin

eigenvalue of (1.1), denoted by �ˇ .M/, when ˇ < 0, under a perimeter constraint.

We first go beyond the Euclidean setting and generalize the main result of [2] to

two-dimensional Riemannian manifolds (2-manifolds) with boundary. This new res-

ult can be viewed as the spectral analogue of the classical isoperimetric inequality

on 2-manifolds. To be more specific, consider M a C1-smooth, compact, simply-

connected 2-manifold with C 2-smooth boundary and assume that its Gauss curvature

is bounded from above by a constantKı � 0. Denote by B
ı the geodesic disk of con-

stant curvatureKı having the same perimeter as M. Then, the classical isoperimetric

inequality states that, under the additional assumption jMj, jBıj � 2�
Kı

if Kı > 0,
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there holds

jMj � jBıj;

where jMj and jBıj denote, respectively, the areas of M and B
ı. Under the same

assumptions, we are able to prove that

�ˇ .M/ � �ˇ .B
ı/; for all ˇ < 0; (1.2)

see Theorem 2.1. The analysis of this optimization problem relies on abstract

functional inequalities on 2-manifolds, whose proofs employ the method of parallel

coordinates [35, 38] and some geometric corollaries of the isoperimetric inequal-

ity [32]. We would like to emphasize that only a few recent results on the optimization

of Robin Laplacians are obtained in the setting of Riemannian manifolds. In [39],

related bounds on �ˇ .M/ in the spirit of the Hersh inequality are proved for com-

pact Riemannian manifolds in any dimension. For positive Robin parameters, ˇ > 0,

a spectral isoperimetric inequality for �ˇ .M/ in any dimension has been proved very

recently in [15] under certain constraints on the curvatures of both the manifold M

and its boundary @M. Due to the close connection between the Robin Laplacian and

the Dirichlet-to-Neumann map, we are able to obtain as a consequence an analogue

of (1.2) for the lowest eigenvalue of the Dirichlet-to-Neumann map, which is stated

in Proposition 3.12.

Second, we return back to the Euclidean setting and treat spectral optimization

for the Robin Laplacian on a special class of unbounded three-dimensional domains.

Namely, we consider an unbounded cone ƒm � R
3 with C 2-smooth cross-section

m � S
2, where S

2 denotes the unit sphere in R
3. It has been proved, see e.g., [7],

that the Robin Laplacian is well defined on this class of unbounded domains. The

main motivation to study Robin Laplacians on cones comes from the fact that these

operators play an important role in the spectral asymptotic behaviour of Robin Lapla-

cians acting on non-smooth Euclidean domains with conical singularities [7, 31]. In

this paper, we are interested in the optimization of the lowest eigenvalue of (1.1),

when M is replaced by ƒm, under a fixed perimeter constraint on the cross-section

m. We are able to prove that the circular cone yields the maximum of the lowest Robin

eigenvalue on unbounded cones with simply-connected C 2-smooth cross-sections of

fixed perimeter, see Theorem 2.2 for a precise statement. The technique employed in

the proof strongly relies on the dilation invariance of the cones, which allows us to

reduce the study to the level of cross-sections, and again apply the method of parallel

coordinates.
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2. Main results

2.1. Two-dimensional manifolds

Our first main objective is to generalize the spectral isoperimetric inequality [2, The-

orem 2] for the lowest Robin eigenvalue to a class of two-dimensional Riemannian

manifolds with boundary. Let .M; g/ be a (C1-)smooth compact two-dimensional,

simply-connected Riemannian manifold with C 2-smooth boundary @M, equipped

with a smooth Riemannian metric g. Such a manifold M is diffeomorphic to the

Euclidean disk and, in particular, its Euler characteristic is equal to 1. We denote by

dV the area-element on M while the arc-element of @M is denoted by d� . With a

slight abuse of notation, the area of M and its perimeter will be respectively denoted

by

jMj WD
Z

M

dV and j@Mj WD
Z

@M

d�:

LetKW M ! R be the Gauss curvature on M and let the constantKı � 0 be such that

sup
x2M

K.x/ � Kı: (2.1)

In the following we denote by Nı the two-dimensional Riemannian manifold without

boundary of constant non-negative curvature Kı. Note that, depending on Kı, the

manifold Nı can be identified with: the sphere of radius 1=
p
Kı, if Kı > 0 and the

Euclidean plane, if Kı D 0.

As usual, r and �� stand, respectively, for the gradient and the positive Laplace-

Beltrami operator on M, which are defined through the metric g in local coordinate

charts. The L2-space .L2.M/; .�; �/L2.M// and the L2-based first-order Sobolev space

H 1.M/ D ¹u 2 L2.M/W jruj 2 L2.M/º are defined in the standard way. For the

coupling constant ˇ < 0, we consider the sesquilinear form

hˇ;MŒu� WD
Z

M

jruj2 dV C ˇ

Z

@M

juj2 d�; dom hˇ;M WD H 1.M/:

It is semibounded and closed and hence defines a unique self-adjoint operator in

L2.M/, the Robin Laplacian on M, denoted by Hˇ;M and acting as

Hˇ;Mu WD ��u;
domHˇ;M WD ¹u 2 H 1.M/W�u 2 L2.M/; @�uj@M C ˇuj@M D 0º;

where � denotes the outer unit normal to the boundary. It is worth to remark that

the Neumann trace @�uj@M should be understood in a weak sense; cf. [3, Section 2].

Thanks to compactness of the embeddingH 1.M/ ,! L2.M/, the operator Hˇ;M has
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a compact resolvent and we denote by �ˇ .M/ its lowest eigenvalue. Applying the

min-max principle to Hˇ;M, see e.g., [37, Section XIII.1], its lowest eigenvalue can

be characterized by

�ˇ .M/ D inf
u2H 1.M/n¹0º

hˇ;MŒu�

kuk2
L2.M/

: (2.2)

The variational characterisation (2.2) implies that �ˇ .M/ < 0 for all ˇ < 0.

Our main result in this setting is as follows.

Theorem 2.1. Let the manifolds M and Nı be as above, and let B
ı � Nı be a

geodesic disk. Assume that j@Mj D j@Bıj. In the case Kı > 0, assume additionally

that jMj; jBıj � 2�
Kı

. Then there holds

�ˇ .M/ � �ˇ .B
ı/; for all ˇ < 0:

The proof of this result is given in Section 3.3. The min-max principle allows us to

reduce the problem to a comparison between the Rayleigh quotient of Hˇ;M evaluated

on a proper test-function and the Rayleigh quotient of Hˇ;Bı evaluated on its ground-

state. The key-step is the construction of the proper test-function which is made by

a transplantation from B
ı to M of the ground-state of Hˇ;Bı . The comparison of

the Rayleigh quotients relies on functional isoperimetric inequalities on 2-manifolds

proved in Proposition 3.9 using the method of parallel coordinates and the geometric

isoperimetric inequality recalled in Section 3.1. The idea of this construction is remin-

iscent of that in [2,8,22,35]. We also point out that spectral isoperimetric inequalities

under additional constraints on the curvature go back to [12, 13] in the setting of the

Dirichlet Laplacian on a manifold.

As mentioned above, this result was already known in the Euclidean case, i.e.,

K � Kı D 0, and proved in the more general setting of C 2-smooth domains without

the assumption of simply-connectedness, see [2, Theorem 2]. Within our method,

the latter assumption cannot be dropped out as we need, for technical reasons, to

consider manifolds with Euler characteristic being equal to one. However, the neces-

sity of assuming simply-connectedness in the non-Euclidean setting remains an open

question. On the contrary, the additional assumption jMj; jBıj � 2�
Kı

whenKı > 0 is

necessary. We construct in Section 3.4 a counterexample if this assumption is dropped.

In order to characterize the case of equality in Theorem 2.1, a different technique is

needed. We leave open the question of whether �ˇ .M/ D �ˇ .B
ı/ implies M D B

ı.

2.2. Unbounded three-dimensional conical domains

Our second main objective is to prove a spectral isoperimetric inequality for the lowest

discrete Robin eigenvalue on unbounded three-dimensional cones.
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Let m � S
2 be a simply-connected, C 2-smooth domain with jmj < 2� , where

S2 denotes the unit sphere in R3. We equip S2 with the canonical Riemannian metric

induced by the embedding S
2 ,! R

3. The associated unbounded three-dimensional

coneƒm � R
3 and its boundary @ƒm are defined in the spherical coordinates

.r; '; �/ 2 RC � Œ0; 2�/ �
h

��
2
;
�

2

i

as the Cartesian products

ƒm WD RC � m and @ƒm WD RC � @m: (2.3)

For the boundary parameter ˇ < 0, we consider the Robin Laplacian Hˇ;ƒm
act-

ing in the Hilbert space L2.ƒm/, and defined as the unique self-adjoint operator in

L2.ƒm/ associated with the closed and semibounded sesquilinear form

hˇ;ƒm
Œu� WD

Z

ƒm

jruj2 dx C ˇ

Z

@ƒm

juj2 d�; dom hˇ;ƒm
WD H 1.ƒm/; (2.4)

where d� is the surface measure on @ƒm, see e.g., [7, Lemma 5.2]. Notice that, as

the domain ƒm is unbounded, the essential spectrum of Hˇ;ƒm
is no longer empty,

and we need, in particular, to add some assumptions on the cross-section m to ensure

the existence of the discrete spectrum. In the following, assume that

j@mj < 2� and jmj < 2�: (2.5)

For simple geometric reasons, the second assumption in (2.5) on m excludes the pos-

sibility for R3 n ƒm to be convex. Hence, we conclude from [33, Theorem 1 and

Corollary 8] that

Specess.Hˇ;ƒm
/ D Œ�ˇ2;1/ and # Specdisc.Hˇ;ƒm

/ D 1:

Applying the min-max principle [37, Section XIII.1] to the operator Hˇ;ƒm
, the lowest

eigenvalue �ˇ .ƒm/ can be characterized by

�ˇ .ƒm/ D inf
u2H 1.ƒm/n¹0º

hˇ;ƒm
Œu�

kuk2
L2.ƒm/

: (2.6)

The following result states that the circular cone is a maximizer for the lowest

Robin eigenvalue among all cones with fixed perimeter of the cross-section.

Theorem 2.2. Let m � S
2 be a C 2-smooth, simply-connected domain and b � S

2

be a geodesic disk such that j@mj D j@bj < 2� and jmj; jbj < 2� . Then, one has

�ˇ .ƒm/ � �ˇ .ƒb/; for all ˇ < 0:
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As the lowest eigenvalue of Robin Laplacians acting on circular cones can be

explicitly computed, see Lemma 4.2, we have the following reformulation of The-

orem 2.2.

Corollary 2.3. For all ˇ < 0,

j@mj2�ˇ .ƒm/ � �4�2ˇ2;

where m � S2 is a C 2-smooth, simply-connected domain satisfying, in addition,

j@mj < 2� and jmj < 2� . Here the equality is attained on circular cones.

The proof of Theorem 2.2 is given in Section 4.2. The idea consists in reducing

the problem to the same functional isoperimetric inequalities as in Proposition 3.9,

but now on the level of cross-sections. This reduction rests upon the invariance of

the cones under dilations. Contrary to the case of 2-manifolds, the strict inequalities

j@mj D j@bj < 2� and jmj; jbj < 2� are needed in the assumptions of Theorem 2.2.

Indeed, assuming that j@bj D 2� and jbj D 2� , the problem becomes trivial as the

associated cone ƒb is the half-space and one can see by separation of variables that

the spectrum of Hˇ;ƒb
is then purely essential.

This result is reminiscent of the one obtained in [16, Theorem 1.3] in the setting

of ı-interactions supported on conical surfaces. However, the technique employed

here is significantly different from the one used in [16]. In the latter paper, the spec-

tral problem was first reformulated as a boundary integral equation by means of

the Birman–Schwinger-type principle. Exactly the same technique seems not to be

applicable any more for the Robin Laplacian, as the required Green’s function is not

explicitly known, to the best of our knowledge.

3. A spectral isoperimetric inequality on 2-manifolds

3.1. Geometric isoperimetric inequalities on 2-manifolds

We stick to the notation introduced in Section 2.1 and first recall some well-known

results. For p; q 2 M, we denote by d.p; q/ the Riemannian distance between p and

q, namely the infimum of the lengths of all piecewise smooth curves between p and

q. We denote by B�.p/ the metric disk of radius � > 0 and center p 2 M,

B�.p/ WD ¹x 2 MW d.p; x/ < �º:

Occasionally, we drop the center and simply write B�. A curve  2 M will be called

a geodesic if it is a minimizing curve between two endpoints with respect to the

Riemannian distance. For p 2 M we denote by expp the so-called exponential map

defined on a neighborhood of the origin of the tangent space of M at p denoted
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by TpM. For a sufficiently small neighborhood of the origin, the exponential map is a

diffeomorphism onto its image. The injectivity radius of a point p 2 M is then defined

by

inj.p/ WD sup¹" > 0W exppjB.0;"/ is a diffeomorphism onto its imageº;

where B.0; "/ � TpM is the metric disk centered at 0 and having radius " > 0. We

call geodesic disk the image expp.B.0; �// � M for any � < inj.p/. It is well known,

see, e.g., [30, Corollary 6.11], that geodesic disks are in fact metric disks, i.e., the

geodesic disk expp.B.0; �// is a metric disk in M of center p and radius �. Recall

that in a geodesic disk B�.p/ � M there is a unique geodesic between p and any

x 2 B�.p/.

Let us now discuss the classical isoperimetric inequality on two-dimensional man-

ifolds and its corollaries, see e.g., the review paper [32] for more details. The proof of

the isoperimetric inequality for 2-manifolds relies, in particular, on the comparison of

the area of geodesic disks, respectively, in M and Nı, the 2-manifold with constant

curvature Kı � 0. This result will be of interest for us in Section 3.2 and is stated in

the following lemma.

Lemma 3.1 ([32, Corollary, p. 10]). Let M be a smooth, compact, simply-connected

2-manifold with C 2-smooth boundary, having the Gauss curvature K bounded from

above by a constantKı � 0, and let Nı be a 2-manifold of constant curvatureKı. If

B� � M denotes a geodesic disk of radius � > 0 and B
ı
� � Nı the geodesic disk of

the same radius, then

jB�j � jBı
� j:

The isoperimetric inequality on 2-manifolds is as follows.

Theorem 3.2 ([32, Section I.B]). Let M be a smooth, compact, simply-connected

2-manifold with C 2-smooth boundary, having the Gauss curvature K bounded from

above by a constantKı � 0. Then, the following inequality holds:

j@Mj2 � 4�jMj �KıjMj2;

in which the equality is attained if and only if K � Kı and M is a geodesic disk.

The study of the monotony of the quadratic polynomial f .x/ D 4�x � Kıx2

gives the following useful corollaries.

Corollary 3.3. Let M be as in Theorem 3.2 and B
ı be a geodesic disk of constant

curvatureKı � 0. Assume that jMj D jBıj. Then the inequality j@Mj � j@Bıj holds,

where the equality is attained if and only if K � Kı and M is a geodesic disk.
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We remark that the isoperimetric inequality under fixed area constraint in the

above corollary holds also if M is a finite union of disjoint smooth compact simply-

connected 2-manifolds with C 2-smooth boundaries having the same bound on the

Gauss curvature. We also point out that C 2-smoothness of the boundary of M can be

relaxed.

Corollary 3.4. Let M be as in Theorem 3.2 and Bı be a geodesic disk of constant

curvature Kı � 0. Assume that j@Mj D j@Bıj. If Kı > 0, assume in addition that

jMj; jBıj � 2�
Kı

. Then the inequality jMj � jBıj holds, where the equality is attained

if and only if K � Kı and M is a geodesic disk.

A geodesic circle on the sphere encloses two geodesic disks. When Kı > 0, the

corollary above states that the isoperimetric inequality holds for the “smaller” one

contained in the hemisphere as 2�
Kı

is precisely the area of the hemisphere of radius

1=
p
Kı.

3.2. Geometric and analytic properties of parallel coordinates

In what follows, .M; g/ denotes a smooth compact, simply-connected Riemannian

2-manifold with C 2-smooth boundary. The parameter Kı is defined via (2.1). Recall

also that B
ı is a geodesic disk in the manifold Nı of constant Gauss curvatureKı � 0.

For the sake of brevity, we set Aı WD jBıj. We also assume that the two conditions

below hold:

a. L WD j@Mj D j@Bıj;
b. max¹jMj; Aıº � 2�

Kı
, if Kı > 0.

According to Corollary 3.4 we immediately have

jMj � Aı: (3.1)

For a point x 2 M we introduce �@M.x/, the Riemannian distance between x and the

boundary @M, i.e.,

�@M.x/ WD min
y2@M

d.x; y/:

The function �@M is Lipschitz continuous and we have jr�@Mj D 1 a.e. in M; cf. [38,

Section 2]. The subset Cut.M/ � M, where the function �@M is not differentiable,

has zero measure and is called the cut-locus. Furthermore, we introduce the in-radius

of M by

RM WD max
x2M

�@M.x/: (3.2)

The in-radius of M is the radius of the largest metric disk that can be inscribed into

M. In what follows, the respective disk in M will be denoted by BRM
. We point out
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that such a disk can be non-unique. Due to the assumptions made on M and B
ı we

can compare their in-radii.

Lemma 3.5. Under the assumptions (a) and (b) there holds

RM � RBı :

Proof. We will proceed by reductio ad absurdum and suppose that RM > RBı .

Let us first consider the case Kı D 0. The manifold M has thus a non-positive

Gauss curvature and the Cartan–Hadamard theorem yields that any two points are

connected by a unique geodesic, i.e., in that case all the metric disks are geodesic. In

particular, BRM
� M is a geodesic disk. Due to Lemma 3.1 we obtain the inequality

jBRM
j � Aı, which contradicts (3.1).

If Kı > 0, we need to control locally the injectivity radius of M to be able to

conclude that BRM
is a geodesic disk. By [11, Theorem 2.5.4], two situations are

allowed:

1. eitherRM< �p
Kı

and for x2M such that �@M.x/DRM it holds inj.x/DRM;

2. orRM � �p
Kı

and then there exists a point x 2 M for which we simultaneously

have �@M.x/ � �p
Kı

and inj.x/ � �p
Kı

.

Assume that we are in the situation (2). Then, the 2-manifold M contains a geodesic

disk of radius �p
Kı

which implies by Lemma 3.1 that

jMj � jB �p
Kı

j � jBı
�p
Kı

j D 4�

Kı
;

where B �p
Kı

� M and B
ı

�p
Kı

� Nı are geodesic disks of radius �p
Kı

. This con-

tradicts assumption (b). Hence, only the situation (1) is possible, i.e., the largest disk

inscribed into M is a geodesic disk and we get again a contradiction to inequality (3.1)

using Lemma 3.1.

Let us consider the following auxiliary functions:

LMW Œ0; RM� ! RC; LM.t/ WD j¹x 2 MW �@M.x/ D tºj;
AMW Œ0; RM� ! Œ0; jMj�; AM.t/ WD j¹x 2 MW �@M.x/ < tºj:

(3.3)

Clearly, LM.0/ D L and AM.RM/ D jMj. The value AM.t/ is simply the area of

the sub-domain of M, which consists of the points located at the distance less than t

from its boundary @M. We can define similarly the same functions associated to the

geodesic disk B
ı on the manifold Nı of constant curvature Kı � 0 and we have the

explicit formulae:
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Kı D 0 Kı > 0

LBı.t / D 2�.RBı � t / 2�
sin.

p
Kı.RBı � t //p

Kı

ABı .t / D Aı � �.RBı � t /2 Aı � 2� 1 � cos.
p
Kı.RBı � t //
Kı

It will also be convenient to introduce the subset M.t/ � M defined by

M.t/ WD ¹x 2 MW �@M.x/ > tº; (3.4)

and we trivially have jMj D jM.t/j C AM.t/. We remark that M.t/ need not always

be connected. The analytic properties of the functions in (3.3) have been studied in [4,

20, 24, 38] and we summarize some of them in the proposition below.

Proposition 3.6 ([38, Propoposition A.1] and [4, Chapter I, Section 3.6]). Let the

functions AM and LM be as in (3.3). Then the following hold:

i. AM is Lipschitz continuous and increasing and LM is differentiable almost

everywhere;

ii. A0
M
.t/ D LM.t/ > 0 for almost every t 2 Œ0; RM�;

iii. L0
M
.t/ �

R

M.t/K.x/ dV.x/� 2� for almost every t 2 Œ0; RM�.

Note that jM.t/j � jBı.t/j by (3.1) for t D 0 and this inequality turns out to

persist for t > 0. Namely, we have the following statement.

Lemma 3.7. Let the sets M.t/ and Bı.t/ be defined as in (3.4). Then the following

inequality jM.t/j � jBı.t/j holds for almost every t 2 Œ0; RM�.

Proof. Define the function r W Œ0; RM� ! RC so that

jBı
r.t/j D jM.t/j; (3.5)

where B
ı
r.t/

is the geodesic disk of radius r.t/ � 0 on the manifold Nı of constant

Gauss curvatureKı. Due to Proposition 3.6 (i), the function r is Lipschitz continuous

and by the co-area formula we have

d

dt
jBı

r.t/j D r 0.t/j@Bı
r.t/j;

for almost every t 2 Œ0; RM�. Thus, differentiating (3.5) with the help of Proposi-

tion 3.6 (ii) one has

j@M.t/j D � d

dt
jM.t/j D �r 0.t/j@Bı

r.t/j; a.e. in Œ0; RM�:
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Corollary 3.3 and the discussion after it give

r 0.t/ D �j@M.t/j
j@Bı

r.t/
j � �1;

and integrating the above inequality one obtains

r.t/ � r.0/� t: (3.6)

By definition (3.5) of the radius r and (3.1), we have jBı
r.0/

j D jM.0/j D jMj � Aı,

which implies, in particular, that r.0/ � RBı . Replacing this inequality in (3.6), we

finally get that r.t/� RBı � t , whereRBı � t is simply the radius of B
ı.t/, and this

concludes the proof.

The following lemma will be the main ingredient in the proof of the isoperimetric

functional inequalities of Proposition 3.9.

Lemma 3.8. For almost every t 2 Œ0; RM� there holds

A0
M
.t/ � A0

Bı.t/:

Proof. The function LM defined in (3.3) may not be continuous. Nevertheless, it is

proved in [24, Corollary 6.1] that for any t 2 Œ0; RM� there holds

LM.t/ �LM.0/ �
t

Z

0

L0
M
.s/ ds:

Using Proposition 3.6 (iii), this gives

LM.t/ � LC
t

Z

0

Z

M.s/

K.x/ dV.x/ ds � 2�t:

Applying Lemma 3.7 with the inequality K � Kı 2 Œ0;1/, one has

LM.t/ � LCKı

t
Z

0

jBı.s/j ds � 2�t: (3.7)

It is straightforward to notice that when Kı D 0 the right-hand side of the above

inequality is equal to LBı.t/. If Kı > 0, using the explicit formula

jBı.s/j D 2�
1 � cos.

p
Kı.RBı � s//

Kı
;
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we can compute the right-hand side of (3.7) and get

LM.t/ � LCKı

t
Z

0

jBı.s/j ds � 2�t

D LC 2�
�

t C sin.
p
Kı.RBı � t//� sin.

p
KıRBı/p

K0

�

� 2�t D LBı.t/:

Hence, for anyKı � 0 the inequality (3.7) becomes

LM.t/ � LBı.t/; for a.e. t 2 Œ0; RM�:

The equality in Proposition 3.6 (ii) concludes the proof.

Let  2 C1.Œ0; RBı �/ be an arbitrary real-valued function. Due to the proper-

ties of AM given in Proposition 3.6, there exist continuous and almost everywhere

differentiable functions �MW Œ0; jMj� ! R and �Bı W Œ0; Aı� ! R satisfying

 jŒ0;RM� D �M ıAM and  D �Bı ı ABı : (3.8)

Consider the test-functions

uM WD  ı �@M D �M ı AM ı �@M;

uBı WD  ı �@Bı D �Bı ı ABı ı �@Bı :

In the following proposition we show functional isoperimetric inequalities, which are

satisfied by the above test-functions.

Proposition 3.9. Let  2 C1.Œ0; RBı �/ be an arbitrary real-valued function and

let the functions uM and uBı be associated to  as above. Then uM 2 H 1.M/,

uBı 2 H 1.Bı/ and the following properties hold:

i. kuMkL2.M/ � kuBıkL2.Bı/;

ii. kruMkL2.MIC2/ � kruBıkL2.BıIC2/;

iii. kuMj@MkL2.@M/ D kuBı j@BıkL2.@Bı/.

Proof. Smoothness of  , Lipschitz continuity of �@M; �@Bı and Proposition 3.6 (i)

imply that uM 2 H 1.M/ and uBı 2 H 1.Bı/. Employing the parallel coordinates

together with the co-area formula, see [38, (30)] for more details, we have

kruMk2
L2.MIC2/

D
RM
Z

0

j�0
M
.AM.t//j2.A0

M
.t//3 dt:
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Using (3.8), and applying further Lemmas 3.5 and 3.8, one obtains

kruMk2
L2.MIC2/

D
RM
Z

0

j 0.t/j2A0
M
.t/ dt �

RBı
Z

0

j 0.t/j2A0
Bı.t/ dt

D
RBı
Z

0

j�0
Bı.ABı.t//j2.A0

Bı.t//
3 dt D kruBık2

L2.BıIC2/
: (3.9)

Following the same steps we also get

kuMk2
L2.M/

D
RM
Z

0

j�M.AM.t//j2A0
M
.t/ dt D

RM
Z

0

j .t/j2A0
M
.t/ dt

�
RBı
Z

0

j .t/j2A0
Bı.t/ dt D

RBı
Z

0

j�Bı.ABı.t//j2A0
Bı.t/ dt

D kuBık2
L2.Bı/

: (3.10)

Let us focus on the traces of uM and uBı . It is easy to see that for any p 2 @M and

any q 2 @Bı we have uM.p/ D uBı.q/ D  .0/. Hence, we obtain

kuMj@Mk2
L2.@M/

D kuBı j@Bık2
L2.@Bı/

D Lj .0/j2:

3.3. Proof of Theorem 2.1

The proof relies on the min-max principle and consists in comparing the Rayleigh

quotients of Hˇ;M and Hˇ;Bı with the aid of Proposition 3.9. For a geodesic disk

B
ı of constant Gauss curvature Kı the first Robin eigenvalue �ˇ .B

ı/ is simple and

also negative, provided that ˇ < 0. Moreover, an associated eigenfunction, denoted

by uBı , is C1-smooth, by standard elliptic regularity, and radial with respect to the

geodesic polar coordinates, with the pole being the center of Bı; cf. Appendix A.

Hence, there exists a real-valued 2 C1.Œ0;RBı �/ such that uBı D ı �@Bı . In the

following we use the notation uM WD  ı �@M . Proposition 3.9 implies hˇ;MŒuM� �
hˇ;Bı ŒuBı � < 0 and kuMkL2.M/ � kuBıkL2.Bı/. Hence, the min-max principle yields

�ˇ .M/ � hˇ;MŒuM�

kuMk2
L2.M/

� hˇ;Bı ŒuBı �

kuBık2
L2.Bı/

D �ˇ .B
ı/:

3.4. A counterexample based on weak-coupling

In this section we show that the additional assumption jMj; jBj � 2�
Kı

when Kı > 0
in Theorem 2.1 is necessary. The idea is to find a counter-example on the sphere and
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to prove that, similarly to the geometric isoperimetric inequality, the spectral isoperi-

metric inequality holds only for domains contained in the hemisphere. To this aim we

assume that M � S
2. In that case, Kı D 1 and Nı D S

2. Let M � S
2 be such that

jMj > 2� and j@Mj < 2� . Assume also that M is not a geodesic disk. Furthermore,

let B
ı � S

2 be the geodesic disk withL WD j@Bıj D j@Mj and jBıj � 2� . Hence, we

obviously have jMj > jBıj. Since j@.S2 n M/j D j@Mj and jS2 n Mj < 2� , Corol-

lary 3.4 yields that jS2 n Mj < jBıj and hence also jMj > jS2 n B
ıj.

Before getting to the conclusion, let us recall some basic properties of the function

R� 3 ˇ 7! �ˇ .M/

that can be found, e.g., in [9]. The eigenvalue �ˇ .M/ is simple and analytic in the

parameter ˇ, and thus one can compute in the standard way its first derivative at

ˇ D 0,
� d

dˇ
�ˇ .M/

�ˇ

ˇ

ˇ

ˇD0
D j@Mj

jMj ; (3.11)

cf. [1, Lemma 2.11] where the computation is made for ˇ > 0 in the Euclidean setting

and can be easily adapted to ˇ <0 and lifted up to manifolds. Using the formula (3.11)

we get

lim
ˇ!0�

�ˇ .M/� �ˇ .B
ı/

jˇj D L
� 1

jBıj � 1

jMj

�

> 0;

lim
ˇ!0�

�ˇ .M/� �ˇ .S
2 n B

ı/

jˇj D L
� 1

jS2 n Bıj � 1

jMj

�

> 0:

Hence, for ˇ < 0 with sufficiently small absolute value, the inequalities �ˇ .M/ >

�ˇ .B
ı/ and �ˇ .M/ > �ˇ .S

2 n B
ı/, opposite to the one in Theorem 2.1, hold.

3.5. An application to the Dirichlet-to-Neumann map

In this section, we prove a counterpart of the inequality in Theorem 2.1 for the lowest

eigenvalue of the Dirichlet-to-Neumann map. For � < 0, the Dirichlet-to-Neumann

map, denoted by D�;M, is defined in L2.@M/ by

D�;M' D @�uj@M;

domD�;M WD
®

' 2 L2.@M/W there exists u 2 H 1.M/ such that

��u D �u with u D ' on @M

and @�uj@M exists in L2.@M/
¯

;

see e.g., [3]. Here again, the equation ��u D �u and the Neumann trace @�uj@M

should be understood in the weak sense. It has been proved in, e.g., [3, Section 2]

that the operator D�;M is self-adjoint in L2.@M/, non-negative, and has a compact
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resolvent. We denote by ��.M/ its lowest eigenvalue. This eigenvalue is sometimes

referred to as the lowest Steklov-type eigenvalue [18]. Remark that ��.M/ > 0 when

� < 0 while the first Steklov eigenvalue satisfies �0.M/ D 0, and the optimization

problem is trivial in that case.

The next lemma contains a relation between the spectra of the Robin Laplacian

and the Dirichlet-to-Neumann map and provides two of its consequences.

Lemma 3.10 ([3, Theorem 3.1, Proposition 3]). Let M be a smooth, compact, simply-

connected 2-manifold with C 2-smooth boundary. Then, the following properties hold:

i. �� 2 Spec.D�;M/ if and only if � 2 Spec.H�;M/, for all � < 0.

ii. R� 3 � 7! �� .M/ is strictly increasing;

iii. R� 3 � 7! ��.M/ is strictly decreasing.

The next result is a direct consequence of the previous lemma and gives the link

between �� .M/ and ��.M/.

Corollary 3.11. For any � < 0 and � < 0, there holds ��.M/ D �� if and only if

�� .M/ D �.

Proof. Assume that ��.M/ D �� ; then by Lemma 3.10 (i) we have � 2 Spec.H�;M/

and thus �� .M/ � �. Suppose for a moment that �0 WD �� .M/ < �. Then, one has

�� 2 Spec.D�0;M/ and hence ��0.M/ � ��.M/. It contradicts the monotonicity of

� 7! ��.M/ stated in Lemma 3.10 (iii).

Assume now that �� .M/D �, then by Lemma 3.10 (i) we have �� 2 Spec.D�;M/

and thus ��.M/ � �� . Suppose for a moment that � 0 WD ���.M/ > � . Then, one

has � 2 Spec.H� 0;M/ and �� 0.M/ � �� .M/. It contradicts the monotonicity of � 7!
�� .M/ stated in Lemma 3.10 (ii).

The isoperimetric inequality for the Dirichlet-to-Neumann map on 2-manifolds is

as follows.

Proposition 3.12. Let M be a smooth, compact, simply-connected 2-manifold with

C 2-smooth boundary and Gauss curvature bounded by above by a constant Kı � 0,

and Nı be the 2-manifold of constant curvatureKı. Let B
ı � Nı be a geodesic disk.

Assume that j@Mj D j@Bıj. If Kı > 0, assume additionally that jMj; jBıj � 2�
Kı

.

Then there holds

��.M/ � ��.B
ı/; for all � < 0:

Proof. Let � < 0 be fixed and set � WD ���.B
ı/, � 0 WD ���.M/. Corollary 3.11

yields �� .B
ı/ D �� 0.M/ D �. Applying Theorem 2.1, we get

�� .M/ � �� .B
ı/:



Spectral isoperimetric inequalities for Robin Laplacians 699

Hence, we conclude from Lemma 3.10 (ii) that � � � 0.

4. The Robin Laplacian on cones

4.1. Ground-state of Robin Laplacians on circular cones

In what follows we stick to the notation introduced in Section 2.2. Recall that the

cross-section m � S
2 satisfies the assumptions (2.5) and that the associated cone

ƒm � R
3 is defined in (2.3). Upon having identified S

2 and the product Œ0; 2�/ �
Œ��

2
; �

2
�, the domain ƒm can alternatively be characterized in the Cartesian coordin-

ates x WD .x1; x2; x3/ 2 R
3 as

ƒm D ¹.r cos � cos'; r cos � sin'; r sin �/ 2 R
3W r 2 RC; .'; �/ 2 mº:

The point xnp with the spherical coordinate .1; 0; �
2
/ is called the north pole of S

2.

By invariance of ƒm under isotropic scaling one can show, using the change of

variables x 7! ˇx in the form (2.4), that the operator Hˇ;ƒm
is unitarily equivalent to

ˇ2
H�1;ƒm

for all ˇ < 0. Hence, it suffices to work out the case ˇ D �1 and in what

follows we introduce the shorthand notation

Hƒm
WD H�1;ƒm

; hƒm
WD h�1;ƒm

; �.ƒm/ WD ��1.ƒm/: (4.1)

Let b � S
2 be a geodesic disk on S

2 (i.e., spherical cap) such that L WD j@bj D
j@mj < 2� and jbj < 2� . For the sake of definiteness, we always assume that b is

centered at the north pole xnp 2 S
2. As shown in [31, Section 5], the first eigenpair

of Hƒb
can be computed explicitly. In order to keep the presentation self-contained,

let us recall the proof of this simple result. We first need some basic properties of the

one-dimensional self-adjoint Robin Laplacian defined in L2.RC/ as

Bˇf D �f 00; domBˇ WD ¹f 2 H 2.RC/W f 0.0/ D f̌ .0/º; ˇ 2 R: (4.2)

Lemma 4.1 ([31, Example 2.4]). Let the self-adjoint operator Bˇ be as in (4.2) with

ˇ < 0. Then

i. Specess.Bˇ / D Œ0;1/;

ii. Bˇ has a unique simple eigenvalue �1.Bˇ / WD �ˇ2 and, in particular,

Z

RC

jf 0.t/j2 dt C ˇjf .0/j2 � �ˇ2

Z

RC

jf .t/j2 dt for all f 2 H 1.RC/:

(4.3)

The following proposition provides a characterisation for the ground-state of Hƒb
.



M. Khalile and V. Lotoreichik 700

Proposition 4.2. Let b � S
2 be a geodesic disk of perimeter L WD j@bj < 2� and

centered at the north pole xnp 2 S2. Then, the first eigenvalue of Hƒm
is given by

�.ƒb/ D �.2�
L
/2 and

ub.x/ WD exp
�

�2�x3

L

�

(4.4)

is an associated eigenfunction.

Proof. Denote by .r; �; z/ 2 RC � S
1 � R the cylindrical coordinates in R

3 and by

˛ 2 .0; �
2
/ the geodesic radius of b. Then, one can write for any u 2 H 1.ƒb/,

hƒb
Œu� D

1
Z

0

2�
Z

0

�

1
Z

r cot ˛

�

j@ruj2 C j@�uj2
r2

C j@zuj2
�

dz � ju.r; �; r cot˛/j2
sin˛

�

r d� dr:

Using the one-dimensional inequality (4.3) we have

1
Z

r cot ˛

j@zuj2 dz � ju.r; �; r cot˛/j2
sin˛

� � 1

sin2 ˛

1
Z

r cot ˛

juj2 dz;

and plugging it into the expression for hƒb
Œu� above, we get

hƒb
Œu� � � 1

sin2 ˛
kuk2

L2.ƒb/
:

On the other hand, evaluating the form hƒb
on the H 1-function

ub.r; �; z/ D exp
�

� z

sin ˛

�

;

we immediately obtain hƒb
Œub� D � 1

sin2 ˛
kuk2

L2.ƒb/
. In order to conclude the proof

it remains to notice that sin˛ D L
2�

.

4.2. Proof of Theorem 2.2

In the following we denote by d�m and d�b the 2-dimensional surface measures

on m and b and by d�m and d�b the respective 1-dimensional measures on their

boundaries @m and @b. We make use of the function �@m introduced in Section 3.2,

which denotes the distance to the boundary @m while Rm defined in (3.2) is the in-

radius of m.

Let x WD .r;';�/ 2 b be a point in the geodesic disk b written in spherical coordin-

ates. With our convention one has � D �
2

� Rb C �@b.x/. As the eigenfunction ub
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defined in (4.4) does not depend on the '-variable in spherical coordinates, there

exists, for any fixed r > 0, a function  r 2 C1.Œ0; Rb�/ satisfying

ub.r; x/ D  r .�@b.x//; .r; x/ 2 RC � b:

As a test function we use

um.r; x/ WD  r .�@m.x//; .r; x/ 2 RC � m:

Applying the inequalities in Proposition 3.9 (i) and (ii), with M D m and Bı D b,

slice-wise for each fixed r > 0, we get

krumk2
L2.ƒmIC3/

D
1

Z

0

Z

m

jrumj2r2 d�m dr

D
1

Z

0

Z

m

�

j@rumj2 C jrS2umj2
r2

�

r2 d�m dr

�
1

Z

0

Z

b

�

j@rubj2 C jrS2ubj2
r2

�

r2 d�b dr D krubk2
L2.ƒbIC3/

;

(4.5)

where r is the gradient on R
3 and rS2 is the gradient on S

2. Applying the inequality

in Proposition 3.9 (i) in the same manner we get

kumk2
L2.ƒm/

D
1

Z

0

Z

m

jumj2r2 d�m dr �
1

Z

0

Z

b

jubj2r2 d�b dr D kubk2
L2.ƒb/

:

(4.6)

Employing Proposition 3.9 (iii) we find

kumj@ƒm
k2

L2.@ƒm/
D

1
Z

0

Z

@m

jumjƒm
j2r d�m dr

D
1

Z

0

Z

@b

jubjƒb
j2r d�b dr D kubj@ƒb

k2
L2.@ƒb/

:

(4.7)

Note that the inequality (4.5) and the equality (4.7) yield

hƒm
Œum� � hƒb

Œub� < 0: (4.8)
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Using the variational characterization of �.ƒm/ in (2.6) and the inequalities (4.6)

and (4.8) one obtains

�.ƒm/ � hƒm
Œum�

kumk2
L2.ƒm/

� hƒb
Œub�

kubk2
L2.ƒb/

D �.ƒb/:

A. Ground-state of a geodesic disk of constant curvature

Let Bı be a geodesic disk of constant curvature Kı 2 Œ0;1/. The geodesic polar

coordinates with the pole at the center of Bı are the analogue of the usual Euclidean

polar coordinates whenKı > 0. Let p 2 B
ı be written as .r; �/ in the geodesic polar

coordinates. The coordinate r measures the length of the unique geodesic  con-

necting the center of Bı and p while � corresponds to the unique geodesic passing

through p and orthogonal to  , see [40, Section 4-3] for a rigorous definition. The

next lemma summarizes some properties of the geodesic polar coordinates.

Lemma A.1 ([40, Section 4-3]). On a 2-manifold with constant curvature Kı � 0,

the metric gpol takes the form

gpol D dr2 C h.r/ d�2;

where the function h has the form

i. h.r/ WD r2, if Kı D 0,

ii. h.r/ WD sin2.
p

Kır/
Kı

, if Kı > 0.

We are now able to show that the first Robin eigenvalue on a geodesic disk of

constant curvature is simple and that the corresponding eigenfunction is radially sym-

metric. Let � > 0 and Bı
� be a geodesic disk of constant curvature Kı and radius �.

We introduce the following L2-space on B
ı
� ,

L2
pol.B

ı
�/ WD L2..0; �/ � Œ0; 2�/I h 1

2 .r/ dr d�/;

and also the associated first-order Sobolev space

H 1
pol.B

ı
�/ WD ¹v 2 L2

pol.B
ı
�/W jrpolvj 2 L2

pol.B
ı
�/º;

where rpol stands for the gradient in the geodesic polar coordinates. By change of

variables, one can write the Robin form on Bı
� in geodesic polar coordinates as

h
pol
ˇ;Bı

�
Œv� WD

2�
Z

0

�
Z

0

�

j@rvj2 C j@�vj2
h.r/

�

h
1
2 .r/ dr d� C ˇh

1
2 .�/

2�
Z

0

jv.�; �/j2 d�;
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with dom h
pol
ˇ;Bı

�
D H 1

pol.B
ı
�/. Let us define the following complete family of ortho-

gonal projections in the Hilbert space L2
pol.B

ı
�/ via

.…mv/.r; �/ WD eim�

2�

2�
Z

0

v.r; �/e�im� d�; m 2 Z:

Upon an obvious identification, this family induces the orthogonal decomposition of

the Hilbert space L2
pol.B

ı
�/,

L2
pol.B

ı
�/ '

M

m2Z

L2..0; �/I h 1
2 .r/ dr/;

and the respective decomposition of the operator Hˇ;Bı
�
,

Hˇ;Bı
�

'
M

m2Z

H
Œm�

ˇ;Bı
�
;

where the operator HŒm�

ˇ;Bı
�
, m 2 Z, represents the quadratic form

h
Œm�

ˇ;Bı
�
Œ � WD

�
Z

0

�

j 0.r/j2 C m2j .r/j2
h.r/

�

h
1
2 .r/ dr C ˇh

1
2 .�/jj .�/j2;

dom h
Œm�

ˇ;Bı
�

WD ¹ W ; 0; m h� 1
2 2 L2..0; �/I h 1

2 .r/ dr/º:

It is clear that h
Œ0�

ˇ;Bı
�

is the smallest among the above forms in the sense of the order-

ing. Moreover, one can prove by standard arguments that the ground-state of HŒ0�

ˇ;Bı
�

is

simple. Furthermore, we obtain from the min-max principle that the lowest eigenvalue

H
Œ0�

ˇ;Bı
�

is strictly less than that of HŒm�

ˇ;Bı
�

for anym ¤ 0. We conclude that the ground-

state of Hˇ;Bı
�

corresponds to the ground-state of the self-adjoint fiber operator HŒ0�

ˇ;Bı
�

and thus is simple and radially symmetric.
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