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1 Introduction

The analysis of the finite size spectra of two-dimensional vertex models and the corre-
sponding (1 + 1)-dimensional quantum spin chains has long been used e.g. to identify the
effective field theories describing the low energy behaviour of correlated many-body systems
in the presence of strong quantum fluctuations. Recent studies of (super) spin chains re-
lated to network models for quantum Hall transitions, the anti-ferromagnetic Potts model,
intersecting loops or two-dimensional polymers have shown that the continuum descrip-
tions may involve conformal field theories (CFTs) with a non-compact target space leading
to a continuous component to the spectrum of conformal weights in the thermodynamic
limit [1–8].

In this paper we study the Z2-staggered six-vertex model with anisotropy 0 < γ < π/2
and staggering parameter γ < α < π − γ. At the ‘self-dual’ point, α = π/2, this model
is equivalent to the critical anti-ferromagnetic Potts model [9]. At low energies it can
be described effectively in terms of the SL(2,R)k/U(1) sigma model, a CFT on the two-
dimensional Euclidean black hole background [10–12], at level k = π/γ [4, 13–16]: for
periodic boundary conditions the observed finite size spectrum of the lattice model and
the density of states in the continua emerging in the thermodynamic limit have been found
to agree with what is known for this CFT. Moreover, the quantum number describing the
states in the continuum has been related to a conserved quasi-momentum operator in the
lattice model. The construction of this operator relies on the existence of the staggering
of the vertex model in the vertical direction: the two-row transfer matrix of the periodic
model generating conserved quantities such as the Hamiltonian factorizes into a product
of two commuting single-row transfer matrices taken at spectral parameters shifted by the
staggering parameter. The quasi-momentum operator, on the other hand, is obtained in
an expansion of the ratio of these single-row operators.
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More recently, the effect of boundary conditions on the spectrum of this model has
been studied: at the self-dual point the staggered six-vertex model has been shown to
be related to the R-matrix of the D(2)

2 affine Lie algebra [17]. This has motivated the
construction of a D

(2)
2 spin chain with a particular choice of integrable open boundary

conditions which also possesses a continuous spectrum of conformal weights related to the
Euclidean black hole CFT [18]. Similar to the periodic case, the transfer matrix of this D(2)

2
model can be factorized into products of transfer matrices of the six-vertex model [19]. This
procedure maps the boundary terms of the D(2)

2 chain to Uq(sl(2)) quantum group invariant
open boundary conditions of the six-vertex model [20, 21]. In the latter formulation an
integrable model with these boundary conditions can be extended to generic values of
the staggering parameter α. Furthermore, it allows for the definition of an analog of the
quasi-momentum operator for the open boundary model. This turns out to be particularly
useful for the identification of states from the discrete part of the CFT spectrum which
are not present in the periodic model (although these states do appear under a twist, see
e.g. [5, 16, 22]).

Below we recall the construction of the double-row transfer matrix of the inhomoge-
neous six-vertex model with quantum group invariant boundary conditions and its Bethe
ansatz solution for Z2-staggered inhomogeneities ±iα/2. Introducing the same staggering
in the auxiliary direction, we obtain commuting four-row transfer matrices, pairs of which
can be related by a duality transformation changing the staggering parameter as α→ π−α.
As for the periodic staggered six-vertex model another family of commuting integrals of
motion is generated by a quotient of the double-row transfer matrices. Representative mem-
bers of these families are the Hamiltonian and the so-called quasi-momentum operator of
the staggered XXZ spin chain constructed in section 3. The Temperley-Lieb representa-
tion of the Hamiltonian and its relation to other models in certain limiting cases is shown.
Based on our numerical diagonalization of the Hamiltonian and the quasi-momentum op-
erator for small lattice sizes, we identify the solutions of the Bethe equations relevant for
the low energy part of the spectrum. Using the root density formalism [23] the ground
state of the system in the thermodynamic limit is characterized. For the analysis of the
finite size spectrum, we solve the Bethe equations numerically for large system sizes. This
uncovers the role of the quasi-momentum in the characterization of the continuous part of
the conformal spectrum and the emergence of discrete states as the anisotropy γ is varied.
The paper ends with a summary of our findings.

2 Definition of the model

We use the following convention for the R-matrix for the XXZ-model,

R(u) =


sinh (u+ iγ) 0 0 0

0 sinh (u) sinh (iγ) 0
0 sinh (iγ) sinh (u) 0
0 0 0 sinh (u+ iγ)

 . (2.1)
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This four by four matrix can be interpreted as an operator on V1 ⊗ V2, Vj ∼ C2. The
parameter γ measures the anisotropy of the model. The R-matrix has the following prop-
erties

R(0) = sinh(iγ)P , (2.2a)

PR(u)P = R(u) , (2.2b)

RT (u) = R(u) , (2.2c)

R(u)R(−u) = 1
2(cos(2γ)− cosh(2u))1 =: ρ(u)1 , (2.2d)

Rt1(u)Rt1(−u− 2iγ) = 1
2(cos(2γ)− cosh(2u+ 2iγ))1 = ρ(u+ iγ)1 , (2.2e)

where P denotes the permutation operator. In addition, the R-matrix satisfies the Yang-
Baxter equation (YBE)

R2,3(v)R1,3(u)R1,2(u− v) = R1,2(u− v)R1,3(u)R2,3(v), (2.3)

where the subscripts indicate the factors of V1 ⊗ V2 ⊗ V3 where the R-matrices act non-
trivially. Based on the R-matrix, we can construct a monodromy matrix T (u, {δj}) de-
pending on the spectral parameter u and a set of parameters {δj}, which are called the
inhomogeneities:

T0(u, {δj}) = R0,2L(u− δ2L)R0,2L−1(u− δ2L−1) . . . R0,1(u− δ1) . (2.4)

Each R-matrix acts on the auxiliary space V0 ∼ C2 and one of the quantum spaces Vj ∼ C2

represented by the second index j = 1, . . . , 2L. The YBE (2.3) and the fact that it just
depends on the difference of its parameters ensure that the monodromy matrix T is a
representation of the Yang-Baxter algebra with commutation relations defined by the RTT -
relation

R1,2(u− v)T1(u)T2(v) = T2(v)T1(u)R1,2(u− v) (2.5)

for arbitrary values of the inhomogeneities δj .
While the above is enough to define an integrable model with periodic boundary con-

ditions, to study open boundary conditions, one needs two K-matrices related to the R-
matrix of the periodic model via the so-called reflection algebras [24]

R1,2(u− v)K1,−(u)R1,2(u+ v)K2,−(v) = K2,−(v)R1,2(u+ v)K1,−(u)R1,2(u− v) ,
R1,2(−u+ v)Kt1

1,+(u)R1,2(−u− v− 2iγ)Kt2
2,+(v) = Kt2

2,+(v)R1,2(−u− v− 2iγ)Kt1
1,+(u)R1,2(−u+ v) .

(2.6)
Here we take the reflection matrix K− to be

K−(u) =
(
eu 0
0 e−u

)
, (2.7)
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and use the X-isomorphism [24] of the reflection algebras to construct the second one as
K−(−u− iγ). For notational reasons, we define the matrix

K+(u) =
(
e−u 0
0 eu

)
. (2.8)

The R-matrix and the K-matrices allow the construction of a family of commuting opera-
tors for arbitrary inhomogeneities δj [24]

τ(u) = tr0
(
K0,+

(
u+ iγ

2

)
T0

(
u− iγ

2 , {δj}
)
K0,−

(
u− iγ

2

)
T−1

0

(
−
(
u− iγ

2

)
, {δj}

))
,

0 = [τ(u), τ(v)] , ∀u, v ∈ C
(2.9)

which act on the Hilbert space H = ⊗2L
j=1Vj . We will refer to τ(u) as the double-row

transfer matrix depending on the spectral parameter u. Due to the boundary matrices’
particular choice, the double-row transfer matrix commutes with the generators of the
algebra Uq(sl(2)) on H [21]:

Sz = 1
2
(
σz1 + · · ·+ σz2L

)
, X± =

2L∑
j=1

e±δje
iγ
2
∑j−1

i=1 σ
z
i σ±j e

− iγ2
∑2L

i=j+1 σ
z
i . (2.10)

In this study, we will restrict to a Z2-staggering, meaning that

δ2j−1 = iα

2 = −δ2j , j = 1, . . . , L , (2.11)

where we call α the staggering parameter. For the Z2-staggering, the double-row transfer
matrix τ(u) becomes in terms of the R-matrices

τ(u) = cτ tr0
(
K0,+

(
u+ iγ

2

)
R0,2L

(
u+ iα

2 −
iγ

2

)
. . . R0,1

(
u− iα

2 −
iγ

2

)
×K0,−

(
u− iγ

2

)
R1,0

(
u+ iα

2 −
iγ

2

)
. . . R2L,0

(
u− iα

2 −
iγ

2

))
,

(2.12)

where we picked up the factor

cτ =
(
ρ

(
−u+ iγ

2 + iα

2

)
ρ

(
−u+ iγ

2 −
iα

2

))−L
, (2.13)

due to the evaluation of the inverse monodromy matrix using the unitarity relation (2.2d).
Introducing the pictorial representations of the K-matrices and the R-matrix displayed in
figure 1, we can represent the double-row transfer matrix graphically in figure 2a.

The double-row transfer matrix (2.12) can be diagonalized by means of the algebraic
Bethe ansatz. The Bethe equations and the eigenvalues of the transfer matrix have been
derived in [21]. Note that our normalization of the transfer matrix (2.12) differs from the
one used in [21], where it is multiplied by the quantum determinant of the monodromy
matrix

q det(T (−u)) = sinhL
(
iα

2 −
iγ

2 − u
)

sinhL
(
iα

2 + 3iγ
2 − u

)
× sinhL

(
− iα2 −

iγ

2 − u
)

sinhL
(
− iα2 + 3iγ

2 − u
)
.

(2.14)
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u(K+)βα(u) =

β

α

u, (K−)βα(u) =, Rγδαβ(u) = u
α γ

β

δ

Figure 1. R-matrix and K-matrices in graphical notation.
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iα
2

u− iγ
2

2L 2L− 1 2L− 2 2L− 3 2 1

(a)
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2
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2 + iγ
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2 −
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2
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u+ iα
2 + iγ

2

u− iγ
2 + iα u− iγ

2 u− iγ
2 + iα u− iγ

2

u− iγ
2 u− iγ

2 + iα

u− iγ
2 + iα u− iγ

2

u+ iα
2 −

iγ
2

2L 2L− 1 2L− 2 2L− 3 2 1

(b)

Figure 2. (a) The double row transfer matrix τ(u). The horizontal lines correspond to the auxiliary
space V0, while the vertical lines represent the quantum spaces Vj as labeled underneath. (b)
Graphical representation of the four-row transfer matrix T (u) with two auxiliary spaces. Observe
the staggering in the horizontal and vertical direction.

Taking this normalization difference into account, the eigenvalues of (2.12) in the sector
with Sz = L−M read

Λ(u) = sinh(2u+ iγ)
sinh(2u) sinh2L

(
u+ i(α+ γ)

2

)
sinh2L

(
u− i(α− γ)

2

)

× 1
q det(T (−u))

M∏
m=1

sinh(u− vm − iγ) sinh(u+ vm − iγ)
sinh(u− vm) sinh(u+ vm)
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+ sinh(2u− iγ)
sinh(2u) sinh2L

(
u+ i(α− γ)

2

)
sinh2L

(
u− i(α+ γ)

2

)

× 1
q det(T (−u))

M∏
m=1

sinh(u− vm + iγ) sinh(u+ vm + iγ)
sinh(u− vm) sinh(u+ vm) (2.15)

and the Bethe roots vm, m = 1, . . . ,M , satisfy the Bethe equationssinh
(
vm + iγ−iα

2

)
sinh

(
vm + iγ+iα

2

)
sinh

(
vm − iγ−iα

2

)
sinh

(
vm − iγ+iα

2

)
2L

=
M∏
k=1
k 6=m

sinh(vm − vk + iγ) sinh(vm + vk + iγ)
sinh(vm − vk − iγ) sinh(vm + vk − iγ) .

(2.16)

Similar to the periodic case [2], we introduce a vertical staggering by multiplying two
transfer matrices with arguments differing by iα. This procedure leads to the four-row
transfer matrix

T (u) = τ

(
u+ iα

2

)
τ

(
u− iα

2

)
, (2.17)

shown in figure 2b. By construction τ(u) and T (u) commute for different arguments. The
four-row transfer matrix T (u) allows a duality transformation regarding the staggering
parameter α. The spectrum of T (u) is invariant under the transformation D which sends
α→ π − α. Concretely, the D-transformed transfer matrix D (T (u)) is similar to T (u):

D (T (u)) =
(

L∏
i=1

σz2j

)
C(α)T (u)C−1(α)

(
L∏
i=1

σz2j

)
, (2.18)

where C(α) is given as a product of local operators

C(α) =
L∏
i=1

c2i−1,2i(α) with ci,j(α) = Pi,jRi,j(iα) . (2.19)

For the case α = π/2 the transformation D becomes the identity and so the transfer matrix
T (u) is invariant under the action of

(∏L
i=1 σ

z
2j

)
C(α). Hence, an additional symmetry arises

for this choice of α and we will refer to the parameter subspace {(α = π/2, γ)|γ ∈ (0, π/2)}
as the self dual line or as the self-dual point regarding the parameter interval of α. The
general duality (2.18) can also be seen on the level of the Bethe equations (2.16). If we
perform the duality transformation and the following redefinition of the Bethe roots

α→ π − α ,

vk → vk + iπ

2 ,
(2.20)

solutions of (2.16) are mapped to solutions of (2.16). This can be easily seen by taking into
account another symmetry transformation of the Bethe equations: given a solution {vk},
the transformed set

vk → vk + iπ vk ∈ Ω

– 6 –
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for an arbitrary subset Ω of the Bethe roots {vk} also solves (2.16). Furthermore, changing
the sign of arbitrary many Bethe roots vk → −vk still yields a solution of (2.16). Hence, one
can restrict the solutions of (2.16) to the strip region

{
vk ∈ C|Re(vk)≥ 0,−π

2 < Im(vk)≤ π
2
}

in the complex plane.
Using the unitarity relation (2.2d), it is straightforward to show that the four-row

transfer matrix (2.17) is proportional to the identity operator for the spectral parameter
u = u0 := iγ/2, see figure 3a. Note that the expansion of T (u) around u0 yields a family
of commuting operators including the Hamiltonian (3.2) constructed below which are even
under the duality transformation (2.18). This family can be complemented by considering
the quotient of two double-row transfer matrices, τ(u− iα/2)/τ(u+ iα/2). For u = u0 and
using the explicit form of τ(u), we can express this operator quotient as a product of the
operators ci,j(−α) defined in (2.19):

τ
(
u− iα

2

)
τ
(
u+ iα

2

)
∣∣∣∣∣∣
u= iγ

2

=
[(

L∏
i=1

c2i−1,2i(−α)
)
K−,1

(
− iα2

)(L−1∏
i=1

c2i,2i+1(−α)
)

× tr0
(
c0,2L(−α)K+,0

(
iγ − iα

2

)) 1
ρ(iα)L

]2
cos(2γ)− cos(2α)
cos(4γ)− cos(2α)

=
[(

L∏
i=1

c2i−1,2i(−α)
)

exp
{
− iα2 σ

z
1

}(L−1∏
i=1

c2i,2i+1(−α)
)

exp
{
iα

2 σ
z
2L

}]2

× i2 sin2(α− 2γ)
ρ(iα)2L

cos(2γ)− cos(2α)
cos(4γ)− cos(2α) .

(2.21)
Compared to corresponding operator in the periodic model [4] we see that the quantum
group invariant boundaries are adding phase shifts on the quantum spaces related to the
boundary, similar as in the presence of a twist in the periodic case [13]. The operator (2.21)
can be represented graphically in figure 3b.

3 The Hamiltonian limit

By expanding T around u0, we can define a local Hamiltonian [24]:

d
duT (u)|u=u0 = aH + b, (3.1)

where a and b are constants given by

a =− 2i(cos(4γ)− cos(2α))
cos(2α)− cos(2γ) ,

b =− 2i cot(γ)(cos(2α) + 4 cos(2γ)− 3 cos(4γ)− 2)
cos(2α)− cos(2γ)

− 2i cot(γ)(cos(4γ)− cos(2α))((1− 2L) cos(2α) + (4L− 3) cos(2γ)− 2L+ 2)
(cos(2α)− cos(2γ))2 .

– 7 –
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−iα −iα
− iα

2 + iγ

−iα −iα

−iα

−iα

− iα
2

iα iα

iα
2 + iγ

iα iα

iα

iα

iα
2

2L 2L− 1 2L− 2 2L− 3 2 1
(a)

2L 2L− 1 2L− 2 2L− 3 2L− 4 3 2 1

−iα −iα −iα −iα
−iα −iα −iα

−iαiα

(b)

Figure 3. (a) The transfer matrix T (2.17) evaluated at u0 = iγ/2, where many R-matrices become
proportional to the permutation operator. Using the unitarity condition (2.2d) for the vertices in
the second and third row, then between the first and fourth row one obtains the identity operator in
the bulk. For the right boundary, one notes that the weights of the K−-matrices differ by a minus
sign, leading to the identity operator if one takes the explicit form of K− in (2.7) into account.
The left boundary will simplify to a loop-diagram, giving also the identity when evaluated using
the explicit form of K+ (2.8). (b) Graphical representation of τ

(
u− iα

2
)
/τ
(
u+ iα

2
)
evaluated at

u0, eq. (2.21). The tiny crosses stand for the operator insertion of exp [±iασz/2].

The defined Hamiltonian reads in terms of the Pauli-matrices σαj :

H = − 1
2 sin(γ)ρ(iα)

−2 sin2(γ)
2L−1∑
j=1

cos(γ)σzjσzj+1 + 2 cos(α)(σ+
j σ
−
j+1 + σ−j σ

+
j+1)

+ cos(γ) sin2(α)
2L−2∑
j=1

σzjσ
z
j+2 + 2(σ+

j σ
−
j+2 + σ−j σ

+
j+2)

+ sin(α) sin(2γ)
2L−2∑
j=1

(−1)j+1σzjσ
+
j+1σ

−
j+2 + (−1)jσzjσ−j+1σ

+
j+2

+ sin(α) sin(2γ)
2L−2∑
j=1

(−1)j+1σ+
j σ
−
j+1σ

z
j+2 + (−1)jσ−j σ

+
j+1σ

z
j+2

– 8 –
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+ sin(γ) sin(2α)
2L−2∑
j=1

(−1)j+1σ−j σ
z
j+1σ

+
j+2 + (−1)jσ+

j σ
z
j+1σ

−
j+2

+ cos(γ) sin2(α)(σz1σz2 + σz2L−1σ
z
2L)

+i(sin(α) cos(2γ)− sin(α)e2iα)(σ+
1 σ
−
2 + σ+

2L−1σ
−
2L)

−i(sin(α) cos(2γ)− sin(α)e−2iα)(σ−1 σ
+
2 + σ−2L−1σ

+
2L)

+2ρ(iα) sinh(iγ)(σz1 − σz2L)

+ cos(γ)(L cos(2α) + (1− 2L) cos(2γ) + L− 1)

 . (3.2)

We see that the Hamiltonian is indeed local since its maximal interaction range amounts
to three neighboring lattice sites. Due to the particular choice of the constants a, b the
energy takes a simple form in terms of the Bethe roots {vj}

E =
M∑
j=1

ε0(vj), (3.3)

where the bare energies ε0 are given as in the periodic case [14]:

ε0(x) = − 2 sin(α− γ)
cosh(2x)− cos(α− γ) + 2 sin(α+ γ)

cosh(2x)− cos(α+ γ) . (3.4)

The Hamiltonian (3.2) takes a particularly simple form when written in terms of the
generators ei,i+1 of the Temperley-Lieb (TL) algebra

e2
i,i+1 = −2 cos(γ)ei,i+1 ,

ei,i+1ei+1,i+2ei,i+1 = ei,i+1 ,

ei+1,i+2ei,i+1ei+1,i+2 = ei+1,i+2 ,

ei,i+1ej,j+1 = ej,j+1ei,i+1 , |i− j| > 1 .

(3.5)

Employing the vertex representation of the Temperley-Lieb generators

ej,j+1 = (1C2)⊗j−1 ⊗


0 0 0 0
0 −e−iγ 1 0
0 1 −eiγ 0
0 0 0 0

⊗ (1C2)⊗2L−j−1 , (3.6)

one can express the Hamiltonian (3.2) as

Uodd
H (iα)HUodd

H (−iα) = − 1
sin(γ)ρ(iα)

2L−1∑
j=1

2ρ(iα)ej,j+1

+ sin(α)
2L−1∑
j=2

sin(α+ (−1)j+1γ)ej,j+1ej−1,j

+ sin(α)
2L−1∑
j=2

sin(α+ (−1)jγ)ej−1,jej,j+1

 ,

(3.7)
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where Uodd
H (iα) is the rotation of the spin variables on the odd lattice sites by −iα in the

x, y-spin plane:

Uodd
H (iα)σ±2j−1U

odd
H (−iα) = e∓iασ±2j−1 , j = 1, . . . , L. (3.8)

Using (2.15) the eigenvalues of the other conserved quantities of the model can be
expressed in terms of the Bethe roots. One particular important quantity is the so-called
quasi-momentum, which is related to the quotient of transfer matrices (2.21) by:

K = log

τ
(
u− iα

2

)
τ
(
u+ iα

2

)
∣∣∣∣∣∣

u= iγ
2

= 2 log
[

1
ρ(iα)L

(
L∏
i=1

c2i−1,2i(−α)
)
e−iα/2σ

z
1

(
L−1∏
i=1

c2i,2i+1(−α)
)
eiα/2σ

z
2L

]

+ 2 log
[
i sin(α− 2γ)

]
+ log

[cos(2γ)− cos(2α)
cos(4γ)− cos(2α)

]
.

(3.9)

The eigenvalues K of the quasi-momentum operator K can be expressed by the Bethe roots

K = log

Λ
(
u− iα

2

)
Λ
(
u+ iα

2

)
∣∣∣∣∣∣

u= iγ
2

=
M∑
i=1

k0(vi) + log
[sin(2γ − α)

sin(2γ + α)

]
+ (2L− 1) log

[sin(γ − α)
sin(γ + α)

]
,

(3.10)

where the bare quasi-momentum k0(u) takes the form:

k0(u) = 2 log
[cosh(2u)− cos(α+ γ)

cosh(2u)− cos(α− γ)

]
. (3.11)

Note that the energy E (3.3) is invariant under the duality transformation (2.20) while the
quasi-momentum changes the sign K → −K.

We end this section by discussing some limiting cases of the Hamiltonian. It has re-
cently been shown by Robertson et al. [17] that the transfer matrices of the staggered
six-vertex model at the self-dual point α = π/2 can be mapped to that of a spin chain con-
structed from the twisted quantum algebra D(2)

2 with suitably chosen integrable boundary
conditions.1 In fact the transfer matrices of the D(2)

2 model with both closed and open
boundary conditions have been shown to factorize into the product of transfer matrices
based on the R-matrix (2.1) considered in the present paper [19]. For α = π/2 the Hamil-
tonian (3.7)

Uodd
H

(
iπ

2

)
HUodd

H

(
− iπ2

)
= − 2

sin(2γ)

2L−1∑
j=1

2 cos(γ)ej,j+1 +
2L−1∑
j=2

ej,j+1ej−1,j + ej−1,jej,j+1

 ,
(3.12)

1Such a relation has been observed in ref. [25] before within the analysis of the spectra of these models
with periodic boundary conditions.
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u− iγ
2 − iα u− iγ

2 u− iγ
2 − iα u− iγ

2

u− iα
2 + iγ

2

u− iγ
2 u− iγ

2 − iα u− iγ
2 u− iγ

2 − iα

u− iγ
2 − iα u− iγ

2

u− iγ
2 u− iγ

2 − iα

u− iα
2 −

iγ
2

u− iγ
2 u− iγ

2 + iα u− iγ
2 u− iγ

2 + iα

u+ iα
2 + iγ

2

u− iγ
2 + iα u− iγ

2 u− iγ
2 + iα u− iγ

2

u− iγ
2 u− iγ

2 + iα

u− iγ
2 + iα u− iγ

2

u+ iα
2 −

iγ
2

2u− iγ−2u− iγ

2L 2L− 1 2L− 2 2L− 3 2 1

Figure 4. Graphical representation of the swapped four-row transfer matrix for the relation of
the D(2)

2 -model. The resulting new KNew-matrices (red boxes) acting on the enlarged unit cells
can be related to the ones of the D(2)

2 -model via the spectral shift u → −u + iγ
2 and some gauge

transformations see (3.13).

(or (3.2) in the spin-formulation) reduces via a suitable parameter identification to the
open integrable D(2)

2 spin chain with boundary matrices from refs. [26, 27]. This model has
recently been studied in [18, 19]. Inserting a crossing relation into the four-row transfer
matrix (2.17) and using the YBE to rearrange R-matrices as in figure 4, theD(2)

2 K-matrices
in the vertex representation can be expressed in terms of those of the staggered six-vertex
model for the self-dual case α = π/2 by a suitable shift in the spectral parameter, i.e.:

K−
D

(2)
2

(u) = G0̄

(
iπ

2

)
B(u)K−,0̄

(
−u+ iπ

4

)
R0̄0(−2u)K−,0

(
−u− iπ

4

)
P0̄0B(u)G0̄

(
− iπ2

)
× csch(2u+ iγ),

(3.13)
where we used the transformations

G(u) = diag(1, eu) , B(u) = diag(eu, 1, 1, e−u) . (3.14)

Note that the transformation B(u) has recently been used to prove the Uq(Bn−p)×Uq(Bp)
invariance of models based on the D(2)

n+1 K-matrices [27].
Finally, we note that the staggered model can be related to another well-known model

in the limit γ → 0. In this case, the Hamiltonian becomes, up to an overall scale factor
unitary equivalent to the one of the ferromagnetic XXX Heisenberg chain with periodic
boundary conditions for all staggering parameters α (see [18] for the self-dual case):

lim
γ→0

sin(γ)Uodd
H (iα)HUodd

H (−iα) =− 1
2

2L−2∑
j=1

σzjσ
z
j+2 + 2(σ+

j σ
−
j+2 + σ−j σ

+
j+2)

− 1
2
(
σz1σ

z
2 + 2

(
σ+

1 σ
−
2 + σ−1 σ

+
2

))
− 1

2
(
σz2L−1σ

z
2L + 2

(
σ+

2L−1σ
−
2L + σ−2L−1σ

+
2L

))
+ L .

(3.15)
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4 Numerical study of small number of lattice sites

As a basis for our study of the finite size spectrum of the staggered six-vertex model
using its Bethe ansatz solution we have numerically diagonalized the Hamiltonian (3.2)
and the quasi-momentum K (3.9) for small lattices with L unit cells. The quantum group
symmetry of the system with our choice of boundary conditions allows to decompose its
Hilbert space

(
C2)⊗2L into a direct sum of sectors spanned by Uq(sl(2)) states with total

spin S = 0, 1, . . . , L.
From our numerics we find that majority of the spectrum has real energies although we

also find complex ones. Since the latter come with large real parts, we expect that they do
not play a role at low energies. In figures 5a–5c we present the real parts of the eigenenergies
as a function of the anisotropy γ for L = 3 and 4 and different values of the staggering
parameter. Surprisingly, we find the spin of the model’s ground state (GS) depends on the
anisotropy parameter: ground state crossings are observed at certain rational fractions of
γ/π. For the small lattices which are accessible to the numerical diagonalization we find
as an approximate rule that the ground state has Uq(sl(2)) spin SGS = 1, 2, . . . , L − 1 for
anisotropies

π

2(SGS + 1) . γ .
π

2SGS , (4.1)

(we will confirm that these inequalities become exact for larger systems through our Bethe
ansatz analysis below). For 0 ≤ γ . π/2L the ground state is in the sector with max-
imum SGS = L, matching our observation that the Hamiltonian (3.2) becomes that of
the ferromagnetic Heisenberg chain in the limit γ → 0. Hence the Uq(sl(2)) is maximal
spontaneously broken in this range of γ. This is different from the periodic model, where
the ground state is a unique state with total Sz = 0 for all anisotropies [2].

Furthermore, we find that the eigenvalues of the quasi-momentum operator may trans-
mute from real into purely imaginary ones when the anisotropy γ is lowered. The lower
γ, the more energy levels acquire a purely imaginary quasi-momentum. Such a transmu-
tation has been found to be related to the appearance of discrete states in the spectrum
of conformal weights of a staggered superspin chain based on a deformation of the algebra
sl(2|1) [22].

The above analysis has been carried out for small lattice sizes only. However, we will
see how the same results appear when using the root density formalism valid for all lattice
sizes.

5 The root density approach for the ground state

To proceed with our studies, we have to identify the Bethe root configurations describing
the low energy states. We have solved the Bethe equations (2.16) for small lattice sizes
and compared the resulting energies (3.3) and quasi-momenta with the results from the
direct diagonalization of the last section. We find that the Bethe states parameterized by
M = L−S Bethe roots always realize the highest-weight state in a given spin-S multiplet.

Moreover, this allows to identify the configurations of the Bethe roots, which corre-
spond to the low-energy regime of the spin-chain. For this regime, renormalization trajec-
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π/6π/8 π/4 π/3π/5 π/2
γ

-5.0

0.0

5.0

E

S=0
S=1
S=2
S=3

(a)

π/6π/8 π/4 π/3π/5 4π/90

γ

-5.0

0.0

5.0

R
e
(E

)

S=0
S=1
S=2
S=3

(b)

π/6π/8 π/4 π/3π/5 π/2
γ

0.0

-2

2

-4

-6

R
e
(E

)

 S=0
 S=1
 S=2
 S=3
 S=4

(c)

Figure 5. (a) Spectrum of the Hamiltonian for L = 3 and α = π/2, which is completely real
for this choice of parameters. The solid lines indicate levels with real quasi-momentum, while the
dashed ones represent a purely imaginary quasi-momentum. The colours indicate the quantum
number S, i.e. the highest Sz of the multiplet leading to the displayed energy level. (b) Real part
of the spectrum of the model with staggering α = 9π/4 and L = 3. Notation as used in figure 5a.
(c) Real part of the spectrum of the self-dual model α = π/2 for L = 4. Same Notation as in 5a.
We see a new ground state crossing appearing at γ = π/8 in comparison to the L = 3 case.

tories can be defined by fixing the deviation of the pattern of Bethe roots from that for
the ground state.

Regarding the ground states, we find in the entire regime of anisotropies 0 < γ < π/2
that the root configurations consist of two types of Bethe roots, either completely real or
with an imaginary part π/2:

v0
m = xm , m = 1, 2, 3, . . . ,M0 ,

v
π
2
n = yn + iπ

2 , n = 1, 2, 3, . . . ,M
π
2 .

(5.1)
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This observation enables us to study the model further in the root density formalism [23]:
plugging (5.1) into the Bethe equations (2.16) we obtain equations for their yet undeter-
mined real parts, xm and yn. By taking the logarithm, we obtain the following coupled
equations:

2πIxm = −2Lφ
(
xm,

γ−α
2

)
− 2Lφ

(
xm,

α+ γ

2

)
+

M0∑
k=1, 6=m

φ (xm−xk, γ)

+
M0∑

k=1, 6=m
φ (xm +xk, γ)−

M
π
2∑

k=1
ψ (xm− yk, γ)−

M
π
2∑

k=1
ψ (xm + yk, γ) , m = 1, . . . ,M0 ,

2πIyn = 2Lψ
(
yn,

γ−α
2

)
+ 2Lψ

(
yn,

α+ γ

2

)
−

M0∑
k=1

ψ (yn−xk, γ)

−
M0∑
k=1

ψ (yn +xk, γ) +
M

π
2∑

k=1, 6=m
φ (yn− yk, γ) +

M
π
2∑

k=1, 6=m
φ (yn + yk, γ) , n = 1, . . . ,M

π
2 .

(5.2)
Here we have introduced the quantum numbers Ix,ym ∈ N characterizing the different
branches of the logarithm and further have defined

φ(x, y) = 2 arctan (tanh(x) cot(y))
ψ(x, y) = 2 arctan (tanh(x) tan(y)) .

The solutions of these equations become dense on the whole real lines in the thermodynamic
limit L → ∞ with M0,π2 /L fixed. This allows to describe the distributions of the Bethe
roots for the ground state by two densities. The coupled linear integral equations fixing
these densities can be derived by the doubling procedure of the Bethe roots (see e.g. [28])
and are given by:

ρx(x) = σx0 (x) + τx0 (x)
L

+
∫ ∞
−∞

dx′K0(x− x′)ρx(x′) +
∫ ∞
−∞

dx′K1(x− x′)ρy(x′) +O
( 1
L2

)
,

ρy(x) = σy0(x) + τy0 (x)
L

+
∫ ∞
−∞

dx′K1(x− x′)ρx(x′) +
∫ ∞
−∞

dx′K0(x− x′)ρy(x′) +O
( 1
L2

)
.

(5.3)
The driving terms and the integral kernels are given by the following expressions, where
the prime denotes the derivative in respect to the first argument:

σx0 (x) = − 1
π
φ′
(
x,
γ − α

2

)
− 1
π
φ′
(
x,
α+ γ

2

)
,

σy0(x) = 1
π
ψ′
(
y,
γ − α

2

)
+ 1
π
ψ′
(
y,
α+ γ

2

)
,

τx0 (x) = − 1
π
φ′(2x, γ)− 1

2πφ
′(x, γ) + 1

2πψ
′(x, γ) ,

τy0 (x) = − 1
π
φ′(2x, γ)− 1

2πφ
′(x, γ) + 1

2πψ
′(x, γ) ,

K0(x) = 1
2πφ

′(x, γ) , K1(x) = − 1
2πψ

′(x, γ) .

(5.4)
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Note that for α = π/2, the driving terms coincide, reflecting the self-duality of the model
for this value of the staggering parameter. The integral equations can be solved order by
order in 1/L by Fourier transformation. We obtain the results for the first two orders:

σx(x) =
2 sin

(
π(α−γ)
π−2γ

)
π − 2γ

1
cosh

(
2πx
π−2γ

)
− cos

(
π(α−γ)
π−2γ

) ,
σy(x) =

2 sin
(
π(α−γ)
π−2γ

)
π − 2γ

1
cosh

(
2πx
π−2γ

)
+ cos

(
π(α−γ)
π−2γ

) ,
τx(x) = τy(x) = 1

4π

∫ ∞
−∞

dωeiωx
sinh

(
3γ−π

4 ω
)

sinh
(γω

4
)

cosh
(

2γ−π
4 ω

) .
(5.5)

Note that σx(x)↔ σy(x) under the duality transformation α→ π−α, cf. (2.20). Further-
more, the staggering has to be restricted to values γ < α < π − γ for the bulk parts of the
root densities to be positive [25]. From these densities we compute the number of Bethe
roots describing the ground state and obtain:

2M0
GS + 1
L

= 2 · π − α− γ
π − 2γ + 1

L

(3
2 −

π

2γ

)
+O

( 1
L2

)
,

2M
π
2

GS + 1
L

= 2 · α− γ
π − 2γ + 1

L

(3
2 −

π

2γ

)
+O

( 1
L2

)
.

(5.6)

The individual numbers of Bethe roots are α and γ dependent. With the above expression
and the fact that all Bethe states are highest weight states, we can compute the sector S in
which the ground state is realized. The surface contribution would imply a non-zero spin
−1

2 + π
2γ of the ground state which is independent of the staggering α but is non-integer

due to the explicit γ dependence. This can be resolved by rounding the number of Bethe
roots (5.6) and the resulting ground state spin SGS to the nearest integer number, giving

SGS =
[
−1

2 + π

2γ

]
, (5.7)

where the brackets indicate the rounding. Inverting this relation we obtain a range of
anisotropies γ for which the ground state is realized in the sector with spin SGS:

π

2SGS + 2 < γ <
π

2SGS . (5.8)

This formula refines the approximate rule (4.1), which we have conjectured based on our
numerical investigations of small systems above. The minor differences between (5.8) and
the numerically observations for small lattices can be interpreted as a result of the excessive
influence of the boundary terms for small L. Note that (5.7) tends to infinity as γ → 0
reflecting the relation to the ferromagnetic XXX Heisenberg chain in this limit. This
generalizes our findings regarding the spontaneously broken Uq(sl(2)) symmetry from small
system sizes to general L.
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While the spin S = L −
(
M0

GS +M
π
2

GS

)
of the ground state is independent of α, the

difference or the ratio of the numbers M0,π2
GS of the corresponding Bethe roots does depend

on the staggering parameter: from the bulk contributions to (5.6) we obtain

dNGS = M0
GS −M

π
2

GS = L
π − 2α
π − 2γ , (5.9)

2M0
GS + 1

2M
π
2

GS + 1
= π − α− γ

α− γ
+O

( 1
L

)
. (5.10)

Hence, by varying α, crossings between different spin-S states may be induced. To realize
the corresponding root configurations on a given lattice the numbers of roots should be
commensurate with L, i.e. have a rational ratio and a simple scaling of the difference of
the number of Bethe roots for the bulk contribution. This is achieved by fixing α as

α = pγ + q(π − γ)
p+ q

, (5.11)

where p and q are positive integers and relatively prime to each other [14]. With that
condition, one would obtain the following expression for the ratio and difference between
the two types of roots

2M0
GS + 1

2M
π
2

GS + 1
= p

q
+O

( 1
L

)

M0
GS −M

π
2

GS = L
p− q
p+ q

.

(5.12)

Note that by setting p = q = 1, which corresponds to the self-dual case α = π/2, the
numbers of the two types of Bethe roots become the same for all γ, corresponding to the
additional degeneracy of the spectrum.

Knowing the ground state densities (5.5) the bulk and boundary contributions to
the expectation values of the conserved quantities in the thermodynamic limit can be
calculated: being bulk quantities, the energy density and the Fermi velocity agree with
those of the periodic model [14]

e∞ = −2
∫ ∞
−∞

dω
sinh

(γω
2
) (

sinh
(
πω
2 −

ωγ
2
)

cosh
(
ωπ
2 − αω

)
− sinh

(γω
2
))

sinh
(
ωπ
2
)

sinh
((

π−2γ
2

)
ω
) , vF = 2π

π − 2γ ,

(5.13)

while the surface contribution to the energy reads

f∞ = −
∫ ∞
−∞

dω
cosh

(
1
4(π − 2α)ω

)
sinh

(
1
4(3γ − π)ω

)
cosh

(γω
4
)

cosh
(

1
4(π − 2γ)ω

)
sinh

(
πω
4
) − 4 sin(2γ)

cos(2α)− cos(2γ) .

(5.14)

Similarly, we obtain an expression for the value of quasi-momentum of the ground state in
the thermodynamic limit

Kthermo = Lk∞ + ks + log
[sin(2γ − α)

sin(2γ + α)

]
+ (2L− 1) log

[sin(γ − α)
sin(γ + α)

]
+O

( 1
L

)
, (5.15)
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where the bulk k∞ and surface ks contributions read

k∞ = 4
∫ ∞
−∞

dω
sinh

(ωγ
2
)

sinh
(
πω
2 − αω

)
sinh

(
π−γ

2 ω
)

ω sinh
(
ωπ
2
)

sinh
(
π−2γ

2 ω
) , (5.16)

ks = 2
∫ ∞
−∞

dω
sinh

(
3γ−π

4 ω
)

cosh
(γω

4
)

sinh
(
π−2α

4 ω
)

ω sinh
(
ωπ
4
)

cosh
(

2γ−π
4 ω

)
− log

(cos(α+ γ)− 1
cos(α− γ)− 1

)
− log

(cos(α+ γ) + 1
cos(α− γ) + 1

)
. (5.17)

Having these explicit expressions, we can identify the effective field theory describing the
low-energy regime of the spin-chain for large system sizes by studying the finite size spec-
trum. Due to the criticality of the model and the open boundary condition, we expect
that the field theory is a boundary conformal field theory (BCFT). The scaling dimensions
of the BCFT in the finite strip geometry formulation of the BCFT can be accessed by
calculating the energy E(n,d)(L) of a state in the finite lattice. The explicit relationship is
given by [29, 30]

E(n,d)(L) = Le∞ + f∞ + πvF
L

(
− c

24 + hn + d

)
, (5.18)

where c is the central charge of the CFT, hn the conformal weight of the corresponding
primary field and d is the level of the descendants. Note here, since the true central charge
and the true scaling dimensions appear in (5.18) as a sum, the spectrum of the lattice
model provides only the effective central charge and effective conformal weights by the
formulae

ceff = −24L
πvF

∆E0 ,

hneff = L

πvF
∆En ,

(5.19)

where ∆En is the energy gap of a state with energy En in respect to thermodynamic ground
state:

∆En = E(n,0)(L)− Le∞ − f∞ . (5.20)

6 Analysis of the finite size spectrum

6.1 Continuous part

To determine the (effective) scaling dimensions, one needs to take low lying excitations
above the ground state into account. We find that most root configurations describing the
low energy regime are still given by (5.1) but with different quantum numbers S and dN
as compared to the ground state (5.8), (5.9). Hence, the low-lying excited states can be
described in the framework of the root density formalism analogously as already done for
the ground state. However, the integral boundaries of the linear integral equation for the
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excited states will differ from those of the ground state representing the different values of
quantum numbers S, dN .

For the model considered in this paper with two branches of excitations and the same
Fermi velocity the resulting finite size energies can be expressed in terms of these quantum
numbers as [31–34] (for the particular case of open boundary conditions see [28, 35])

E(L) = Le∞ + f∞ + πvF
L

{1
2∆ ~MT

(
ZZ>

)−1
∆ ~M

}
+ o

(
L−1

)
, (6.1)

where

∆ ~M =

M0 −M0
GS

M
π
2 −M

π
2

GS

 , Z = lim
x→∞

(
ξ11(x) ξ12(x)
ξ21(x) ξ22(x)

)
.

We recall that S = L−M0−M
π
2 is the Sz-quantum number of the Bethe state, i.e. highest

weight state in the corresponding spin-S multiplet, and dN = M0 −M
π
2 is the difference

in the number of Bethe roots of the two different types (5.1). ξ is the so-called dressed
charge matrix defined by linear integral equations similar to (5.3):

ξ11(x) = 1 +
∫ ∞
−∞

dx′K0(x− x′)ξ11(x′) +
∫ ∞
−∞

dx′K1(x− x′)ξ21(x′) ,

ξ21(x) =
∫ ∞
−∞

dx′K1(x− x′)ξ11(x′) +
∫ ∞
−∞

dx′K0(x− x′)ξ21(x′) ,

ξ12(x) =
∫ ∞
−∞

dx′K0(x− x′)ξ12(x′) +
∫ ∞
−∞

dx′K1(x− x′)ξ22(x′) ,

ξ22(x) = 1 +
∫ ∞
−∞

dx′K1(x− x′)ξ12(x′) +
∫ ∞
−∞

dx′K0(x− x′)ξ22(x′) .

(6.2)

By means of the Wiener-Hopf method one finds that [34]

(
ZZ>

)
=

1−
∫∞
−∞ dxK0(x) −

∫∞
−∞ dxK1(x)

−
∫∞
−∞ dxK1(x) 1−

∫∞
−∞ dxK0(x)

−1

giving

E(L) = Le∞ + f∞ + πvF
L

(
− 1

12 + γ

4π

(
2S + 1− π

γ

)2
+ 1

4
(dN − dNGS)2

Z̃2
D

+ nph

)
, (6.3)

where dNGS has been defined in (5.9), nph is the number of particle-hole excitations in the
vicinity of the Fermi points and

Z̃D = lim
ω→0

(
1−

∫ ∞
−∞

dx eiωx (K0(x)−K1(x))
)−1

.

We note that Z̃D diverges in the limit ω → 0 as a consequence of the degeneracy of the
integral kernel in (6.2). This is a characteristic feature in several lattice models with a
continuous spectrum of scaling dimensions emerging in the continuum limit, see e.g. [1–
3]: as a consequence of this singularity the penultimate term in (6.3) does not contribute
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to the finite size scaling for any finite dN − dNGS in the limit L → ∞. For large but
finite L one finds that the energy gaps between states with different dN − dNGS van-
ish as 1/L(logL)2, forming a continuum in the thermodynamic limit. As in the periodic
model we find that these logarithmic corrections are determined in terms of the eigenval-
ues of the quasi-momentum operator: to bring the logarithmic corrections in the scaling
dimensions under control we introduce the continuous quantum number s based on the
difference between the quasi-momentum of the renormalization trajectory and the one of
the thermodynamic ground state

s = π − 2γ
4πγ (K −Kthermo)

= π − 2γ
4πγ

(
M∑
i=1

k0(vi)− Lk∞ − ks

)
. (6.4)

As in the periodic model the variable s can be related to the deviation of the quantum
number dN from the one of the ground state dNGS (note that s is real for root configura-
tions (5.1)):

dN − dNGS = 2s
π

(
log

(
L

L0

)
+B(s)

)
, (6.5)

where L0 is a non-universal length, which depends on the anisotropy γ, while B(s) is
the density of states in the continuum. For the quantum group invariant open boundary
case we have checked this identification numerically for levels in the spin sectors with
several S = SGS and corresponding anisotropies γ from eq. (5.8) on the self-dual line. For
γ . π/2S, i.e. close to the right boundary of these intervals, we find that the quotient
(dN − dNGS)/s for different dN (and L) collapse to a single line ∝ logL with slope 2/π
independent of γ, as predicted by (6.5), see figure 6a. On the other hand, for values of
γ & π/(2S+ 2), i.e. close to the transition SGS → SGS + 1, we observe a splitting into lines
for different values of dN , although still with slope 2/π for sufficient large system sizes L,
see figure 6b. In section 6.2 below we will see that the resulting modification of the density
of states B(s) in (6.5) can be attributed to the transmutation of levels near the bottom of
the continuous part of the spectrum into discrete states. We emphasize, however, that this
does not affect the quality of the parameterization of the logarithmic corrections to scaling
in the continuum part of the spectrum, see figures 8, 9 and 10 below.

The subleading corrections in (6.5), in particular the density of states B(s), provide
additional information for the description of the low energy behavior of the system by
means of an effective field theory. A reliable determination of B(s), however, requires the
use of methods allowing the analysis of systems which are significantly larger than what is
possible in the approach used here, e.g. based on the formulation of the spectral problem in
terms of non-linear integral equations as in [13, 14]. While we do not address this problem
here let us note that the identification (6.4) of the continuous quantum number s with the
eigenvalues of the quasi-momentum operator is an essential condition for further progress
in this direction.
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Figure 6. (dN − dNGS)/s vs. log(L) on the self-dual line α = π/2. Different symbols indicate
different combinations of S and γ as labeled in the legend. (a) Collapse of data for spin-S states
and anisotropies γ . π/2S corresponding to the continuous part of the conformal spectrum with
different dN (encoded by coloring: black dN = 1, red dN = 2, green dN = 3, blue dN = 4 and
magenta dN = 5). (b) Lifting of this degeneracy w.r.t. dN for the states in the S = 1-continuum
for anisotropy γ = 23π/80 & π/4, where the ground state crosses into the S = 2 sector.

Comparing (6.3), written in terms of quantum number s, with the prediction (5.18)
we find the effective conformal weights corresponding to levels in the sector with spin S

to be

heff = − 1
12 + γ

4π

(
2S + 1− π

γ

)2
+ γs2

π − 2γ + nph, s ∈ R . (6.6)

The ground state of the lattice model is realized in the sector with spin S = SGS(γ),
eq. (5.7), and s = 0. This leads to the effective central charge [18]

ceff = 2− 6γ
π

(
2SGS(γ) + 1− π

γ

)2
= 2− 24γ

π

(
frac

(
π

2γ

)
− 1

2

)2
, (6.7)

where frac
(
π
2γ

)
denotes the fractional part of π

2γ . The cusps due to the fractional part(
frac

(
π
2γ

)
− 1

2

)
of the effective central charge are a consequence of the ground state cross-

ings occurring at integer values of π/2γ in the staggered six-vertex model, see figure 7.
The emergence of a continuous spectrum, parameterized by the quantum number s, in the
thermodynamic limit is shown in figures 8, 9 and 10 where we have computed the effective
conformal weights heff from the finite size energies using (5.19) and, using the Bethe ansatz
results for s, from (6.6) for various anisotropies γ and staggering α in the spin sector con-
taining the ground state. Extrapolation of the finite size data to L → ∞ by means of a
rational function of 1/ logL shows that various levels with dN 6= dNGS converge to the
bottom of the corresponding continuum (given by the Bethe state with dN = dNGS).

Motivated by previous studies we interpret these results in the context of the
SL(2,R)/U(1) black hole CFT at level k: this model has been found to describe the con-
tinuum limit of the staggered six-vertex model for periodic boundary conditions [4, 13, 14]
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Figure 7. The effective central charge (6.7) of the staggered spin chain as a function of the
anisotropy is represented as the solid black line. Dashed colored lines are plots of (6.7) in sectors
with given spin S, crosses represent the effective central charges ceff obtained from the Bethe ansatz
solutions for large L. Vertical lines represent the ground state crossings.

and, at the self-dual point, for open boundary conditions in the D(2)
2 -formulation [18]. The

central charge cBH and conformal weights hBH of the primary fields in the black hole CFT
are given by [11, 12]

cBH = 2 + 6
(k − 2) , hBH = (n+ wk)2

4k − J(J − 1)
k − 2 with J = 1

2 + is̃, s̃ ∈ R+
0 , (6.8)

where the integers n and w label the momentum and winding in the compact direction of
the semi-infinite cigar-shaped target space of the CFT while is̃ = J−1/2 is the momentum
along the uncompactified direction. The resulting effective conformal weights are

hBH
eff = − 1

12 + (n+ wk)2

4k − 1
k − 2

(
J − 1

2

)2
+ d , (6.9)

where d describes the level of descendant. The identification of the studied spin chain as
a lattice regularization of the black hole CFT can be made by comparing (6.9) with (6.6)
leading to the following correspondence2

k = π

γ
, n = −2S − 1, w = 1,

(
J − 1

2

)2
= (is)2, d = nph. (6.10)

The appearance of a non-vanishing winding number w in the open boundary model is a
consequence of the boundary conditions (2.7), (2.8) which lead to an effective twist for

2Note s as defined in (6.4) can have either sign and its relation to J − 1/2 can be fixed up to this sign
only. Similarly, we could replace (n,w)→ (−n,−w). Here we follow the convention used in ref. [18].
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Figure 8. Spectrum of conformal weights for the self-dual model (i.e. dNGS = 0): for each
S = 1, 2, 3 we have chosen two values of the anisotropy in the intervals (5.8) S is the spin of the
ground state. Black symbols are the effective scaling dimensions obtained from eq. (5.19) using the
finite size energies obtained from the solution of the Bethe equations. Red symbols represent the
scaling dimensions obtained from (6.6) using the Bethe ansatz results for the quasi-momentum s.
Note that the latter provide an excellent parameterization of the logarithmic corrections via the
continuous variable s for all γ values considered (e.g. in the top-right figure for the parameters used
in figure 6b showing the lifting of the degeneracy of (6.5) w.r.t. dN).
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Figure 9. Similar as figure 8, but for anisotropies where the ground state is found in the sectors
S = 7, 8, 10.

the propagating modes in the spin chain. Note that, as expected from the presence of the
continuous quantum number s, this is a non-rational CFT. The Virasoro vacuum is not
normalizable which is reflected by the fact that the identity field with hBH = 0 appears
neither in the spectrum of conformal weights (6.8) nor in the discrete part of the spectrum
discussed in the following section.

6.2 Discrete part

In the black hole CFT, besides the continuous scaling dimensions (6.8) with J = 1
2 + is̃ for

real s̃ considered above, there exists also a set of conformal weights with discrete values
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Figure 10. Similar as figure 8 but for values of α away from the self-dual point (∆N = dN−dNGS).

J , related to bound states localized near the tip of the cigar-shaped target space of the
model [11, 12, 36]. For the corresponding states to be normalizable and to guarantee non-
negative conformal weights the possible values of J are restricted to obey the following two
conditions [11, 12]:

1
2 < J <

(k − 1)
2 , J = |kw| − |n|2 − `, ` = 0, 1, 2 . . . . (6.11)

From the first of these conditions we expect that a discrete state with fixed J is realized in
the spin-chain spectrum for anisotropies γ ranging from 0 to some root of unity. Specifically,
a discrete state with given J may be realized for anisotropies

0 < γ <
π

2J + 1 . (6.12)

The discrete CFT states and their realization conditions can also be related to the quasi-
momentum of the Bethe state. In our study of the continuous part of the spectrum above
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Figure 11. Pattern of Bethe roots leading to an imaginary quasi-momentum. The configura-
tions are obtained by following configurations given as (5.1) with dN as indicated by lowering the
anisotropy. One the left, we have an odd number of Bethe roots and so one root lies on the line
iπ/4, while the rest is paired. On the right, we have an even number of roots, hence, the pairing
works.

we found that the Bethe states are parameterized by root configurations (5.1) resulting in
real eigenvalues for the quasi-momentum. However, as seen in the study of small lattice
sizes, the quasi-momentum can also change from real values to purely imaginary ones
when the anisotropy γ is lowered. On the level of Bethe roots, this translates into a
root pattern changing from (5.1) to more complicated complex configurations: the real
parts of one or more of the roots diverge as the anisotropy approaches from above certain
rational multiples of π. Reducing the anisotropy further these roots reappear in the finite
domain with different imaginary parts. Depending on the state considered this process may
be repeated several times until the root configuration acquires the following remarkable
pattern: for states parameterized by an even number M of Bethe roots they come in pairs
vj , v̄j mirrored at the line iπ/4

vj = xj + iyj , v̄j = xj + i

(
π

2 − yj
)

with xj , yj ≥ 0 j = 1, 2 . . . M2 .

(6.13)

If the number M of Bethe roots is odd there appears an additional root with imaginary
part π/4, i.e.

vj = xj + iyj , v̄j = xj + i

(
π

2 − yj
)
, vM = x+ iπ

4

with xj , yj , x ≥ 0 , j = 1, 2 . . . M − 1
2 .

(6.14)

Examples of such root configurations for spin-1 states on lattices with L = 40 (41) sites,
i.e.M = 39,M = 40, evolving from the (5.1) with dN = M0−M

π
2 = 1 and 2, respectively,

as γ is lowered are shown in figure 11.
Following the transmutation of configurations (5.1) to (6.13), (6.14) under the variation

of γ for small values of dN we are able to observe what happens to the scaling dimensions
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Figure 12. Effective scaling dimensions vs. anisotropy γ for the self-dual model, α = π/2, of
size L = 40, 41 derived for the lowest states in the S = 1 sector, showing the transmutations of
continuous states into discrete ones. The black shaded area represents the continuum of levels
starting at the spin-SGS = 1 ground state. Grey shading indicates the continua in the spin SGS > 1
sectors, which overlap with each other and the spin-SGS = 1 one. The lower edge of the continua
corresponds to ceff (6.7) up to the factor of−24. Blue symbols denote the effective scaling dimensions
obtained from finite size data (5.19) corresponding to weights from the continuous part with S = 1
of the CFT spectrum given in terms of root configurations (5.1) with different dN . Red and green
symbols depict the continuation of the corresponding states (same symbol shape) to anisotropies
where the Bethe root patterns change to (6.13) or (6.14) and the quasi-momentum s becomes
imaginary. Red (green) solid lines are the effective scaling dimensions (6.9) of the primary fields
from the discrete part of the CFT spectrum with n = −3, w = 1 and J = (k− 3)/2 ((k− 5)/2) for
k = π/γ. Dashed lines are their continuation to anisotropies γ > π/(2J+1) where the corresponding
operators in the CFT become non-normalizable.

when the quasi-momentum changes from real to imaginary: as discussed above the scaling
dimensions corresponding to spin-1 states are in the continuous part of the spectrum (6.6)
for anisotropies π/4 < γ < π/2 where they are separated by finite size gaps ∼ (dN/ logL)2.3

As γ is reduced further the lowest levels approach the lower bound of the S = 1 continuum,
leaving it when the quasi-momentum becomes purely imaginary, see figure 12 for the lowest
states in this spin sector. Specifically we find that the finite size energies of the states with
dN = 1, 2 (dN = 3, 4), realized for even and odd lattice sizes L respectively, lead to the
conformal weights (6.9) of the black hole CFT with J = (k−3)/2 ((k−5)/2) in the regime
where s ∈ iR.

It turns out that the finite size formula (6.6) continues to hold for purely imaginary s:
in this case J = 1

2 + is has to be an element of the discrete set (6.11). In the CFT sector
3In the limit γ → π/2 one observes a crossover to a linear dependence on 1/ logL. This can be understood

from the fact that the staggered six-vertex model at γ = π/2 coincides with the integrable OSp(2|2) model
which is in a different universality class [37, 38].
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with quantum numbers (n,w) = (−2S − 1, 1) for the compact degree of freedom this leads
to the following condition on the allowed imaginary values of s in the lattice model (as
mentioned above the sign of s is not fixed by (6.10)):

s` = ±i
(
π

2γ − S − 1− `
)
, ` = 0, 1, 2, · · · < π

2γ − S − 1 . (6.15)

Note that this implies that the thresholds for the appearance of discrete levels of the black
hole CFT resulting from the unitarity condition (6.11) coincide with the anisotropies (5.8)
where the spin of the ground state in the lattice model changes. This prediction can be
compared with our numerically findings for the S = 1 states with J = (k−3)/2−`, ` = 0, 1,
considered in figure 12: their quasi-momentum, once it becomes imaginary, is expected to
match the condition above for ` = 0, 1, i.e.

s`=0 = ±i
(
π

2γ − 2
)

for γ < π

4 ,

s`=1 = ±i
(
π

2γ − 3
)

for γ < π

6 .
(6.16)

Our numerical data show that the change from real to imaginary quasi-momentum takes
place at or slightly below these values of γ. Overall, i.e. up to finite size corrections near
these thresholds, eqs. (6.16) match our results for the quantum number s obtained for
system sizes L = 40 and 41, see figure 13. We presume that this transmutation of low-
lying levels from the continuous part of the spectrum into discrete ones is the origin of the
modification of the density of states B(s) for small s close to these anisotropies observed
in the previous section.

Therefore, the expression for the effective scaling dimensions (6.6) as obtained from the
finite size analysis of the staggered vertex model correctly describes both the continuous
and the discrete part of the spectrum of the SL(2,R)/U(1) sigma model at level k via the
identifications (6.10).

7 Summary

Starting from the six-vertex model with quantum group invariant boundary conditions we
have constructed an integrable anisotropic Z2-staggered spin-1/2 chain. The Uq(sl(2))-
symmetry of the model is spontaneously broken: in contrast to the periodic chain where
the lowest state is always in the sector with Sz = 0, the ground state of the open chain has
non-zero spin depending on the anisotropy γ, becoming completely polarized for sufficiently
small γ (γ → 0 in the thermodynamic limit).

For the self-dual choice of the staggering, i.e. α = π/2, this model is equivalent to the
D

(2)
2 -spin chain with integrable boundary conditions studied in refs. [18, 19]. This model

has been identified as a lattice regularization of the SL(2,R)k/U(1) sigma model whose
non-compact degrees of freedom lead to a continuous spectrum of conformal weights in
the thermodynamic limit. We find that, similar as in the staggered six-vertex model with
periodic boundary conditions [14], this identification can be extended to the entire range
of staggering parameters γ < α < π − γ.
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Figure 13. Real (blue symbols) and imaginary (red and green symbols) part of the quasi-
momentum s vs. anisotropy γ for the spin S = 1 states considered in figure 12. The solid red
and green lines depict the quasi-momentum given by the CFT predictions via (6.16). Dashed lines
are obtained by continuation of the CFT data into the region where the unitarity condition (6.11)
is violated. Note that s ≡ 0 for the dN = 0 state.

As in previous studies of the periodic model [4, 13, 14] the formulation as a staggered
model facilitates the definition of a conserved quasi-momentum operator K (3.9). Unlike
the Hamiltonian (3.2) and the other conserved quantities generated by the four-row transfer
matrix (2.17) the quasi-momentum is odd under the duality transformation. The eigenval-
ues of this operator allow to distinguish states corresponding to the levels in the continuous
(discrete) part of the spectrum of the sigma model (see also [22]): already for the very small
systems that have been diagonalized numerically the corresponding quasi-momenta are real
(imaginary), respectively. Moreover, the eigenvalues of the quasi-momentum can be related
to the momentum along the non-compact direction of the semi-infinite cigar-shaped tar-
get space of the black hole CFT. As a consequence they determine the amplitudes of the
strong logarithmic corrections to scaling of the states leading to the continua and reflect
the appearance of the quantized discrete states in the spectrum of the lattice model. An
open problem is the calculation of the density of states in the continuous part of the CFT
spectrum from the finite size data for the vertex model and in particular the effect of the
ground state crossings between sectors with different Uq(sl(2)) spin. We expect that this
calculation is facilitated by the relation (6.4) between the continuous quantum number s in
the CFT and the quasi-momentum K for the Bethe states, see refs. [13, 14] for the periodic
chain.
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