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Abstract. The twistor space of the moduli space of solutions of Hitchin’s self-duality equa-
tions can be identified with the Deligne-Hitchin moduli space of λ-connections. We use
real projective structures on Riemann surfaces to prove the existence of new components
of real holomorphic sections of the Deligne-Hitchin moduli space. Applying the twistorial
construction we show the existence of new hyper-Kähler manifolds associated to any com-
pact Riemann surface of genus g ≥ 2. These hyper-Kähler manifolds can be considered as
moduli spaces of (certain) singular solutions of the self-duality equations.

1. Introduction

Hyper-Kählermanifolds have been introduced byCalabi in the late 1970’s. They are
Riemannian manifolds whose holonomies are contained in Sp(k), where 4k is the
dimension of the manifold. Compact examples of dimension 4 are classified (they
are either a 4-torus or a K3-surface), and non-compact examples in dimension 4 are
well-understood. Many examples of non-compact hyper-Kähler manifolds arise as
moduli spaces of solutions to certain gauge theoretic equations.Most relevant for us
are the moduli spacesMSD of solutions of Hitchin’s self-duality equations [10] on
a compact Riemann surface. The twistor space, the complex manifold parametrised
over the 2-sphere of compatible complex structures, ofMSD has a complex analytic
reincarnation as the Deligne-Hitchin moduli space of λ-connections on �, as was
first pointed out byDeligne, see [16]. In general, the twistor space of a hyper-Kähler
manifold makes it possible to reconstruct the hyper-Kähler manifold from complex
analytic data, e.g., the underlying smooth manifold is given as a component of the
space of real holomorphic sections of the twistor space [11]. Real sections in this
component are called twistor lines.Most important in the twistorial (re)construction
of hyper-Kähler metrics is the special type of the (holomorphic) normal bundle of
a twistor line: it is O(1)2k → CP1, and locally, the space of real holomorphic
section must be a real manifold of dimension 4k by Kodaira deformation theory.
Moreover, evaluation at different λ yield the complex structures and their Kähler
forms, see [11].
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In the case of the self-duality moduli space, the twistorial construction not only
parametrises the space of solutions. Real sections in the Deligne-Hitchin moduli
space also give rise to a complex-analytic construction of the solutions by loopgroup
factorisation methods [2, Theorem 3.6]. Simpson [14,16] [14] has asked the natural
question whether all real holomorphic sections are twistor lines, i.e., correspond to
solutions of the self-duality equations. In [9] and [2] it was shown that there exists
other real holomorphic sections besides the twistor lines. The class of counter-
examples in [9] are given by solutions of the self-duality equations away from
certain real curves on the given Riemann surface, while the examples constructed
in [2] correspond to harmonic maps into the Lorentzian-symmetric deSitter 3-space
SL(2,C)/SU(1, 1). The normal bundles of those real holomorphic sections have
not been computed so far.

The aim of the paper is to show the existence of new hyper-Kähler manifolds
associated to a Riemann surface of genus g ≥ 2. We start with a real projec-
tive structure on the Riemann surface �, i.e., a complex projective structure with
PSU(1, 1)-monodromy. We use the notation of [7], and the reader should be aware
that we do not consider RP2-structures. All real projective structure are obtained
by grafting [4,5,12] with respect to a collection of disjoint simple closed curves
up to isotopy [20]. The empty collection yields the self-duality moduli space. We
show that a real projective structure gives rise to a section of the Deligne-Hitchin
moduli space of �. This is analogous to uniformization of �, which corresponds
to the self-duality solution associated to the Higgs pair

(
S ⊕ S∗,

(
0 0
1 0

))
,

where S is a spin bundle on the Riemann surface. The main difference to the
case of uniformization is that the induced conformal metric of constant curvature
-1 develops singularities (along curves where the developing map of the projective
structure leaves the hyperbolic disc). In this regard, these real holomorphic sections
are similar to those constructed in [9], i.e., they are self-duality solutions away from
singularity curves on the Riemann surface. We next prove that the normal bundles
of the sections obtained from real projective structures are given by

O(1)6g−6 → CP1,

where g is the genus of �. Applying the twistorial construction [11] yields new
hyper-Kähler metrics on spaces of real holomorphic sections. These hyper-Kähler
manifolds can be considered as moduli spaces of (certain) singular solutions of
the self-duality equations, see Theorem 5. One of the advantages of the sections
obtained from real projective structures (compared to those constructed in [9]) is
that their construction is quite simple and allows for explicit computations. More-
over, they provide a convenient conjectural picture of the space of components of
real holomorphic sections of the Deligne-Hitchin moduli spaces, parametrised by
isotopy classes of finite collections of disjoint simple non-trivial curves on a given
Riemann surface, see Remark 9.
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2. Background material

In this sectionwe shortly introduce themain objects of interest in this paper, namely
Deligne-Hitchin moduli spaces and real projective structures obtained by grafting
of Riemann surfaces.

2.1. The Deligne-Hitchin moduli space

We recall basic facts about λ-connections and Deligne-Hitchin moduli spaces. For
more details we refer to [14,16] where we first learnt about λ-connections, and to
[2,9].

Definition 1. Let � be a compact Riemann surface, and V → � be a complex
vector bundle. A λ-connection is a triple

(λ, ∂̄, D)

where λ ∈ C, ∂̄ is a holomorphic structure on V and

D : �(V ) → �(KV )

is a first order linear differential operator satisfying

D( f s) = λ∂ f ⊗ s + f Ds

for all functions f and sections s, and

∂̄D + D∂̄ = 0.

A λ-connection (λ, ∂̄, D) for λ �= 0 gives rise to a flat connection

∂̄ + 1
λ
D.

A λ-connection (λ, ∂̄, D) for λ = 0 gives rise to a Higgs pair

(∂̄,� = D).

A SL(2,C) λ-connections is defined on a rank 2 vector bundle V such that the
induced λ-connection on �2V is trivial. A SL(2,C) λ-connection is called stable
if there is no invariant line subbundle of non-negative degree and semi-stable if
there is no invariant line subbundle of positive degree. A λ-connection with λ �= 0
is automatically semi-stable.

Remark 1. In this paper we only consider stable SL(2,C) λ-connections, and we
do not state that assumption explicitly in the following. For all λ-connections which
will be constructed in the paper, stability holds for obvious reasons or can be proven
easily. We omit those proofs.
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We fix a topological trivialisation V = C
2, and consider the (complex) gauge

group

GC = {g : � → SL(2,C)}.
The gauge group GC naturally acts on the space of λ-connections. Restricting to
stable λ-connections, the quotient is a complex manifold of dimension 6g − 5

MHod = MHod(�) := {x = (λ, ∂̄, D) | x is a stable λ connection}/GC,

see [16]. This space is called the Hodge moduli space. Elements in the Hodge
moduli space are usually denoted by [λ, ∂̄, D] or by [λ, ∂̄, D]� to emphasise their
dependence on the Riemann surface �. The Hodge moduli space admits a natural
fibration to C.

For a Riemann surface � we denote by �̄ the complex conjugate Riemann
surface. The Deligne gluing is a complex analytic diffeomorphism

� : MHod(�)|C∗ → MHod(�̄)|C∗

defined by

[λ, ∂̄, D]� 	→ [ 1
λ
, 1

λ
D, 1

λ
∂̄]�̄ .

The Deligne-Hitchin moduli space is defined as

MDH := MHod(�) ∪� MHod(�̄).

The Deligne-Hitchin moduli space admits a natural fibration toCP1.The fiber over
λ = 0 is the (stable) Higgs bundle moduli space of �, the fiber over λ = 1 is the
moduli space of flat irreducible connections and the fiber over λ = ∞ is the moduli
space of (stable) Higgs bundles on �̄.

2.1.1. Automorphisms of MDH For every non-zero complex number t ∈ C
∗

there exists an automorphism t : MDH → MDH determined by

t[λ, ∂̄, D]� := [tλ, ∂̄, t D]�.

For t = −1 we denote this automorphism by N .

Denote the standard real structure on V = C
2 → � by ρ. For a given linear

differential operator A ∈ Dk(�, V ) we define its complex conjugate

Ā := ρ−1 ◦ A ◦ ρ = ρ ◦ A ◦ ρ ∈ Dk(�, V ).

With this terminology we obtain a real structure ρ on MDH defined by

ρ([λ, ∂̄, D]�) = [λ̄, ∂̄, D̄]�̄ .

The real involution covers

λ 	→ 1/λ̄.

Note that N and ρ commute, and hence give another real structure

τ = N ◦ ρ : MDH → MDH (1)

covering the antipodal involution λ 	→ −1/λ̄ of CP1. We remark that in higher
rank r > 2 there are different possible definitions of the real involution ρ, see the
discussion in [2, 1.6].
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2.1.2. The twistor interpretation Hitchin’s self-duality equations [10] on a Rie-
mann surface are

F∇+�+�∗ = 0 and ∂̄∇� = 0

for the (0, 1)-part ∂̄∇ of a unitary connection ∇ and � ∈ �(�, K End0(V )) and
where F denotes the curvature of a connection. It was shown by Hitchin that the
moduli space MSD of irreducible solutions to the self-duality equations mod-
ulo gauge transformations is a hyper-Kähler manifold with respect to a natural
L2-metric. The complex structures are induced by the Kobayashi-Hitchin corre-
spondence: Every stable Higgs pair determines a unique solution (up to gauge
transformations), giving the moduli space of solutions the complex structure I of
the Higgs bundle moduli space. On the other hand, every irreducible flat connec-
tion uniquely determines a solution of the self-duality equations [6], providing the
complex structure J on the moduli space of solutions. The complex structures I
and J anti-commute, and I , J and K = I J are Kähler with respect to a natural
L2-metric G.

The twistor space

P := M × CP1 → CP1

of a hyper-Kähler manifold (M,G, I, J, K ) is naturally equipped with the almost
complex structure

I(p,λ) :=
(
1 − |λ|2
1 + |λ|2 Ip + λ + λ̄

1 + |λ|2 Jp + i
λ − λ̄

1 + |λ|2 Kp, i

)
.

This structure turns out to be integrable, see [11]. It admits a real involution

τ̃ : P → P; (p, λ) 	→ (p,−λ̄−1)

covering the antipodal involution. A holomorphic section s of P → CP1 is called
τ̃ -real if

τ̃ (s(λ)) = s(−λ̄−1)

for all λ. The manifold M can be recovered as a component of the space of τ̃ -real
holomorphic sections of the holomorphic fibration P → CP1. In fact, for every
p ∈ M

sp : CP1 → P; λ 	→ (p, λ)

provides a τ̃ -real holomorphic section, and locally, there cannot be any other τ̃ -real
holomorphic section [11]. Moreover, the Riemannian metric G can be recovered
from the twistor space. Consider the Kähler forms ωI , ωJ and ωK with respect to
I, J and K , respectively. Then,

ωλ := (ωJ + iωK ) + 2λωI − λ2(ωJ − iωK )

defines a holomorphic section

ωλ ∈ H0(P;�2,0T ∗F ⊗ O(2)),
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where O(2) denotes the pullback of O(2) → CP1, and T F → P is the vertical
bundle of the fibration P → CP1. The Riemannian metric G is obtained from ωλ

by evaluating derivatives of families of sections [11].

Remark 2. For M = MSD , the moduli space of solutions of the self-duality equa-
tions, ωλ=0 is the natural symplectic form on the moduli space of Higgs bundles,
while ωλ=1 is the Goldman symplectic form on the deRham moduli space of flat
connections.

A solution (∇,�) of the self-duality equations gives rise to its associated family
of flat connections

λ ∈ C
∗ 	→ ∇ + λ−1� + λ�∗,

or likewise, to the holomorphic section

λ ∈ C 	→ [λ, ∂̄∇ + λ�∗, λ∂∇ + �]�
of the Deligne-Hitchin moduli space. In turns out that these sections are τ -real [16],
see also [2].

Theorem 1. (Deligne, Simpson, [16]) The twistor space P → CP1 of the moduli
spaceMSD of solutions to the self-duality equations on a compact Riemann surface
� is naturally biholomorphic to the Deligne-Hitchin moduli space via

(∇,�, λ) ∈ P = MSD × CP1 	→ [λ, ∂̄∇ + λ�∗, λ∂∇ + �]� ∈ MHod ⊂ MDH

such that τ̃ and τ coincide.

2.1.3. Invariants of sections of the Deligne-Hitchin moduli spaces In [2] sev-
eral invariants for holomorphic sections s : CP1 → MDH have been defined. In
particular, a section s is called admissible if it admits a lift

λ 	→ ∇ + λ−1� + λ�

to a C∗-family of flat connections such that (∂̄∇ ,�) and (∂∇ , �) are stable Higgs
pairs on � and �̄, respectively. Note that any section s admits a lift of the form

λ ∈ C
∗ 	→ λ−1� + ∇ + λ�1 + λ2�2 + ...

with a stable Higgs pair (∂̄∇ ,�). Also note that �k, k ∈ N, are endomorphism-
valued 1-forms and not necessarily of type (1, 0). The lift of a τ -real holomorphic
section yields a (holomorphic) family of SL(2,C)-valued gauge transformations

λ ∈ C
∗ 	→ g(λ) ∈ GC

satisfying

∇−λ̄−1 = ∇λ.g(λ) (2)



Real projective structures on Riemann surfaces... 247

as a consequence of the reality condition. By irreducibility of the connections

g(−λ̄−1)g(λ) = ±Id, (3)

and the sign ± is an invariant of the section s. Note that the sign might change
if we would allow GL(2,C)-valued gauge transformations. A τ -real holomorphic
section is called positive or negative depending on the sign in (3). Twistor lines in
the Deligne-Hitchin moduli space are admissible negative sections. In [2] admis-
sible positive τ -real holomorphic sections of Deligne-Hitchin moduli spaces have
been constructed, and in [9] non-admissible negative τ -real holomorphic sections
of Deligne-Hitchin moduli spaces have been constructed. The following theorem
holds:

Theorem 2. [2] An admissible τ -real holomorphic section of a Deligne-Hitchin
moduli space is either a twistor line or positive.

2.2. Real projective structures

Projective structures on Riemann surfaces, Schwarzian derivatives and opers are
classical in the theory of Riemann surfaces. We shortly recall some basic facts,
mainly to fix notations. For more details the reader might consult [3,7,20].

A projective structure on a Riemann surface is given by an atlas (Uα, zα)α∈U
whose transition functions are given by Moebius transformations, i.e., they satisfy

zβ ◦ z−1
α (z) = az + b

cz + d

for some (constant)
(
a b
c d

)
∈ GL(2,C)

(depending on α, β ∈ U). While we stick to the notations of [7], in [20] a projective
structure is called a complex projective structure or a CP1-structure.

Obviously, CP1 is equipped with a projective structure, and a surface of genus
1 is equipped with a complex structure via flat conformal coordinates. A natural
projective structure on any compact Riemann surface of genus g ≥ 2 is given by
uniformization: The constant curvature−1metric provides a developingmap to the
hyperbolic discH2 ⊂ CP1 which is equivariant with respect to PSU(1, 1)-valued
Moebius transformations.

A projective structure on a compact Riemann surface can be described by a
flat SL(2,C)-connection of a special form. Let ∇ be a flat SL(2,C)-connection on
V = C

2 → � such that its induced holomorphic structure ∂̄∇ admits a holomorphic
sub-line bundle S of maximal possible degree (g − 1), g being the genus of �.
Take a complementary C∞-bundle S∗ ⊂ V , and decompose

∇ =
(∇S ψ

ϕ ∇S∗

)
(4)
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with respect to V = S ⊕ S∗. As S is a holomorphic subbundle ϕ is a (1, 0)-form.
Flatness implies that

ϕ ∈ H0(�, K (S∗)2)

and ϕ �= 0 if g ≥ 2 because S has positive degree. Hence, S is a spin bundle, i.e.,
S2 = K as a holomorphic line bundle, and ϕ is a nowhere vanishing section which
is identified with a constant. The choice of the spin bundle S corresponds to the
choice of a lift of the PSL(2,C)-representation to a SL(2,C)-representation.

Definition 2. A flat SL(2,C)-connection of the form (4) on a compact Riemann
surface is called oper.

The projective atlas corresponding to an oper ∇ is obtained as follows: Consider
two linear independent parallel sections of ∇

�1 =
(
x1
y1

)
, �2 =

(
x2
y2

)

on an open setU ⊂ �. Consider the projections of the sections to V/S = S∗. They
are holomorphic sections of S∗ as V → V/S is holomorphic. With respect to the
decomposition V = S ⊕ S∗ they are given as y1 and y2. The quotient z = y1/y2 is
a holomorphic map to CP1, and taking different parallel sections

�̃1 = a�1 + b�2 �̃2 = c�1 + d�2

(with ad − bc = 1) amounts into

z = y1/y2 	→ ay1 + by2
cy1 + dy2

= az + b

cz + d
,

a Moebius transformation. Because ϕ is nowhere vanishing z is not branched, i.e.,
z is a local (holomorphic) diffeomorphism. We obtain a projective atlas.

2.2.1. Grafting Grafting of projective structures was introduced by Maskit [12],
Hejhal [4] and Sullivan-Thurstan [5]. Our short description follows Goldman
[20]. Grafting yields projective structures whose monodromy is in PSL(2,R) ∼=
PSU(1, 1). Following Faltings [7] and Takhtajan [17] they are called real projec-
tive structures here. In [20], a real projective structure is a RP(2)-structure on the
surface. The reader should be aware of the distinction.

For the construction of a real projective structure we consider the Fuchsian
representation of a Riemann surface �̃ and fix its developing map to H

2 ⊂ CP1.
Consider a simple closed curve in �̃ which is not null-homotopic. In its homotopy
class there is a unique (oriented) geodesic γ (with respect to the constant curva-
ture -1 metric). Via the developing map γ is mapped to a part of a circle. The
corresponding circle C intersects the boundary at infinity of the hyperbolic disc
at two points, one being the starting point S and the other being the end point E
with respect to the orientation of the geodesic. The monodromy of the Fuchsian
representation along γ is given by an element A ∈ SU(1, 1), unique up to sign,
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Fig. 1. The annulus obtained from the Moebius transformation A

for which E is an attractive fixed point and S is a repelling fixed point. The sign
depends on the lift of the Fuchsian representation to a SL(2,C)-representation.

The transformation A ∈ SU(1, 1) yields a torus T with a flat projective structure
as follows: Consider a circle C1 which intersects both circles, C and the boundary
at infinity S1, perpendicularly, see Fig. 1. It is mapped by A to a circleC2 = A(C1).

The circles C1 and C2 bound an annulus An, and gluing the boundary circles C1
and C2 via A gives a torus T with a complex projective structure. A fundamental
piece of the developing map of this projective structure is the annulus An.

The torus T can be glued to �̃ as follows: the geodesic arc ofC contained inH2

intersects the annulus An in a curve which projects to a closed curve γ̃ on T . The
torusT admits ametric of constant negative curvature−1 away from the intersection
of its developing map with the boundary at infinity of H2, and γ̃ is a geodesic.
Denote by |T | the annulus with two boundary components obtained by gluing two
copies of γ̃ to the open annulus T \ γ̃ . There are open tubular neighbourhoods of
γ in �̃ and γ̃ in T which are isometric. This isometry can be used to glue the torus
and �̃ to obtain a closed Riemann surface � of the same genus by replacing the
set γ ⊂ �̃ by |T |. Moreover, � has a projective structure induced from �̃ and
T . This projective structure has the same monodromy as the original projective
structure on �̃. In particular, the monodromy is PSU(1, 1)-valued, and we obtain a
real projective structure. Note that (the developing map of) the projective structure
on � induces a curvature -1 metric away from a singularity set. The singularity set
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is given by two distinct closed smooth curves both homotopic to γ (considered as
a curve in �).

The above procedure is called grafting along γ. We can glue the torus multiple
times, yielding yet another Riemann surface equipped with a projective structure.
The monodromy is still the Fuchsian monodromy of the initial Riemann surface
�̃. Similarly, we can apply grafting to the new Riemann surface � along a dis-
joint geodesic (with respect to the -1 curvature metric, disjoint from the singularity
set). Altogether, starting with a isotopy class C of simple not null-homotopic dis-
joint curves on �̃, and applying the grafting construction repetitively to the closed
curves yields a new Riemann surface with a projective structure with SU(1, 1)-
monodromy.

Remark 3. Note that the topological information of C is still transparent after the
grafting. In fact, the proof of the main theorem in [20] uses the decomposition of�
into connected components on which the induced Riemannian metric of constant
curvature -1 is non-singular. The components are separated by closed curves on �

which yield the information of C.

Remark 4. It was shown by Tanigawa [18] that grafting (with respect to an isotopy
class C of simple not null-homotopic disjoint curves on the underlying topological
surface) yields a homeomorphism of the Teichmüller space to itself. In particular,
on any given Riemann surface �, there exists infinitely many projective structures
with monodromy in PSU(1, 1). The different real projective structures on a given
Riemann surface � are uniquely determined by the choice of topological data C,

i.e., by Goldman’s result [20] every real projective structure arises from grafting in
this way, and the isotopy class C can be recovered from the real projective structure
from the set of points where the (equivariant) developing map of the projective
structure intersects the boundary S

1 = ∂H2 ⊂ CP1 at infinity.

Remark 5. Real projective structures on a compact Riemann surface have been
recently identified [19] with eigenfunctions of the quantised Hamiltonians of the
SL(2,C) Hitchin system.

3. Real holomorphic sections via real projective structures

In this section we explain how real projective structures on � give rise to real
holomorphic sections of the Deligne-Hitchin moduli space MDH (�). We then
figure out some important properties of these sections.

Let� be a compact Riemann surface of genus g equipped with a real projective
structure obtained by grafting along C. After the choice of a spin bundle S, the
projective structure is given by a flat SL(2,C)-connection ∇ on � with SU(1, 1)
monodromy. The underlying holomorphic structure ∂̄∇ admits S as a holomorphic
subbundle. The oper ∇ differs from the uniformization connection ∇Fuchs (for
which the lift from PSL(2,C) to SL(2,C) is determined by the same spin bundle
S) by a holomorphic quadratic differential q ∈ H0(�, K 2). With respect to the
induced SU(1, 1)-structure of the uniformization and the induced decomposition
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V = S ⊕ S∗ into (complementary) orthogonal subbundles the uniformization oper
is

∇Fuchs =
(∇S ϕ∗

ϕ ∇S∗

)
(5)

where

ϕ = 1 ∈ H0(�, KK−1),

ϕ∗ is the adjoint with respect to the metric with constant curvature −1. Then, ∇ is
given (after a gauge transformation) as

∇ =
(∇S ϕ∗ + q

ϕ ∇S∗

)
.

Remark 6. We aremainly interested in the case that q �= 0. This case corresponds to
non-trivial topological data C, and the SU (1, 1)-structure of ∇ differs from that of
∇Fuchs . In particular, S∗ ⊂ V is not the orthogonal complement of S with respect
to the indefinite hermitian metric induced by the flat SU(1, 1)-connection ∇.

3.1. Construction of real sections

Consider the family of gauge transformations (parametrised by λ ∈ C
∗)

g(λ) :=
(
1 0
0 λ

)
(6)

with respect to the C∞-decomposition V = S ⊕ S∗, and the family of flat connec-
tions

∇λ := ∇.g(λ) =
(∇S 0

0 ∇S∗

)
+ λ−1

(
0 0
ϕ 0

)
+ λ

(
0 ϕ∗ + q
0 0

)
.

We directly see that

λ ∈ C 	→ [λ, ∂̄∇λ

, λ∂∇λ]� (7)

defines a section s of MDH → CP1 over C ⊂ CP1. Over C∗ ⊂ C ⊂ CP1 the
section is also given by

λ 	→ [λ, ∂̄∇ , λ∂∇]�. (8)

Lemma 1. Let ∇ be a oper with SU(1, 1)-monodromy. Then, the section in (7)
extends holomorphically to λ = ∞. The extension is τ -real.
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Proof. We have that SU(1, 1) and SL(2,R) are conjugate. Therefore, and because
∇ has SU(1, 1)-monodromy, there exists a SL(2,C)-gauge transformation h such
that

∇ = ∇.h.

Over C∗ the section is given by (8). Thus, we have

τ(s(λ)) = τ([λ, ∂̄∇ , λ∂∇]�)

= [−λ̄, ∂̄∇ ,−λ̄∂∇]�̄
= [−λ̄, ∂∇ .h,−λ̄∂̄∇ .h]�̄
= [−λ̄−1, ∂̄∇ .h,−λ̄−1∂∇ .h]�
= [−λ̄−1, ∂̄∇ ,−λ̄−1∂∇]� = s(−λ̄−1)

(9)

for all λ ∈ C
∗. This shows that the holomorphic section is τ -real over C∗. As the

section extends holomorphically to λ = 0, it follows from τ -reality that the section
also extends holomorphically to λ = ∞. ��
Note that image of the section constructed in Lemma 1 is contained in the smooth
part of the Deligne-Hitchin moduli space.

Definition 3. A section of the form (7) for an oper ∇ with real monodromy is
called grafting section. It is called the uniformization section if it is given by the
uniformization oper ∇Fuchs .

Theorem 3. Agrafting section is a τ -real negative holomorphic section. It is admis-
sible if and only if it is the uniformization section. Sections corresponding to dif-
ferent grafting data C and C̃ are different.

Proof. We have already seen in Lemma 1 that a grafting section s is τ -real. Due to
the SU(1, 1)-structure there exists a λ-independent SL(2,C)-gauge transformation
h such that

∇ = ∇.h.

Wehave h̄h = ±Id. If h̄h = −Id,∇ would be a flat SU(2) connection. Because∇ is
an irreducibleSU(1, 1)-connectionwe therefore have h̄h = Id.Using∇λ = ∇.g(λ)

for g as in (6) we obtain

∇−λ̄−1 = ∇λ.g−1(λ)hg(−λ̄−1).

Therefore

g̃(λ) := ig−1(λ)hg(−λ̄−1) (10)

satisfies

g̃(−λ̄−1)g̃(λ) = Id
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(see also [2, Lemma 2.15] for the simple computation), and

ĝ(λ) := λg̃(λ)

is a C∗-family of SL(2,C)-valued gauge transformations such that

∇−λ̄−1 = ∇λ.ĝ(λ)

and

ĝ(−λ̄−1)ĝ(λ) = −Id.

Hence, s is negative by definition.
The uniformization section is given by a particular solution of the self-duality

equations. Hence, the uniformization section is admissible. Conversely, consider
a grafting section s, and assume it is admissible. By [2, Theorem 3.6] the section
corresponds to a solution of the self-duality equations. Therefore, it is a twistor
line. As the twistor line through a point in the Deligne-Hitchin moduli space is
unique, and because the uniformization section and the grafting section coincide at
λ = 0, s must be the uniformization section. Finally, if two sections are obtained
by different graftings, the monodromies of their flat connections (at λ = 1) are
different. Therefore the sections are different. ��
Remark 7. The extension of the C∗-orbit 8 to λ = 0 is a special instance of Simp-
son’s construction [15]. If the holomorphic bundle ∂̄∇ underlying a flat connection
∇ with SL(2,R)-monodromy is stable, theC∗-orbit yields a τ -real positive section.

3.2. Real holomorphic sections and singular solutions of the self-duality
equations

In [2] it was shown that an admissible negative τ -real holomorphic section is given
by a solution of Hitchin’s self-duality equations. The idea of proof is as follows:
Take a lift of the section s given by a C∗ family of flat connections

∇λ = λ−1� + ∇ + . . .

where (∂̄∇ ,�) is a stable Higgs pair. As s is negative τ -real, there exists a family
of SL(2,C) gauge transformations g(λ) satisfying (2) and (3) for the minus sign.
Because s is admissible, for every p ∈ � the loop λ 	→ gp(λ) is in the open big
cell, hence admits a factorisation into a positive and a negative loop (see [13] for
details about loop groups or [9] for a short summary of relevant material). Using a
normalisation (for example given by the reality condition), we have a splitting

g(λ) = g+(λ)g−(λ)

globally on �. It can be seen easily that

∇λ.g+(λ)
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is the associated family of a solution to the self-duality equations (for an appropriate
hermitian metric), see [2, Theorem 3.6] for details.

If a τ -real negative holomorphic section is not admissible, then (for a lift ∇λ

and the corresponding gauge satisfying (2) and (3)) the loop λ 	→ gp(λ) is not in
the big cell for all p ∈ �. Assume that gp is contained in the big cell for all p ∈ U
in an open dense subset U ⊂ �, and intersects the first small cell transversely on
� \ U . Then the equivariant harmonic map to hyperbolic 3-space corresponding
to the solution of the self-duality equations defined on U (by the above procedure)
extends smoothly through the boundary at infinity S2 of H3, and yields a smooth
map

f : � → H
3 ∪ S2 ∪ H

3 = S3,

see [9, 5].

Lemma 2. Let s be a grafting section s. For p ∈ � the corresponding loop g̃p
in (10) is in the big cell if Sp and S#p do not coalesce, where S#p is the orthogonal
bundle of S with respect to the indefinite hermitian metric. This happens on an open
dense subset U ⊂ �.

Proof. Recall the construction of the section of theDeligne-Hitchinmoduli space in
Sect. 3.1. Instead of taking the complementary line bundle S∗ = ker�of S provided
by uniformization, we can aswell use a different complementary line bundle L of S.

Define g as in (6) butwith respect to S⊕L .This construction clearly yields the same
section of the Deligne-Hitchin moduli space. The two families of flat connections
provided by two different choices of complementary line bundles differ by a family
of SL(2,C) gauge transformations which holomorphically extends to λ = 0.

Consider a point p ∈ � where Sp and S#p do not coalesce. Consider a com-
plementary line bundle L of S which coincides with S# in a open neighbourhood
U of p. A short computation then shows that the corresponding map g̃ in (10) is
g̃ = λ−1δ for some δ : U → SL(2,C). Thus ĝq(λ) = λg̃q(λ) is in the big cell for
all q ∈ U .

Note that S = S# cannot hold globally on � because otherwise S would be a
parallel subbundlewith respect to∇, which is a contradiction. The second statement
of the lemma follows from the fact that S and S# are real analytic subbundles. ��
This lemma shows that a grafting section gives rise to a solution of the self-duality
equations on an open dense subset U ⊂ �. In particular, we obtain an equivariant
harmonic map into H3 defined on the universal covering of U .

Proposition 1. The (equivariant) harmonic mapwith singularities given by a graft-
ing section is given by the developing map of the corresponding real projective
structure.

Proof. A grafting section has nilpotent Higgs field. Thus, the (equivariant) har-
monic map corresponding to the solution of the self-duality equation on the open
dense subsetU ⊂ � provided by the previous lemma is a (equivariant) conformally
parametrised minimal surface. In particular, it extends to a (equivariant) Willmore
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surface [9, 5]. Moreover, the Hopf differential of the surface does vanish, as a con-
sequence of the fact that ∇λ are gauge equivalent for all λ ∈ C

∗. In [3] it is shown
that for vanishing Hopf differential, the developing map of the projective structure
is equal to the (equivariant) Willmore immersion, and the proposition follows. ��
Remark 8. Theprevious proposition tells us that the loop g̃ in (10) is not contained in
the big cell exactly at those pointswhich aremapped to the boundary circle at infinity
S1 ofH2 ⊂ CP1 via the developing map of the real projective structure. Moreover,
it can be shown shown that g̃ in (10) intersects the first small cell transversely,
compare with [9, Section 5].

3.3. Normal bundles of grafting sections

The next goal is to compute the normal bundle of a grafting section. We first recall
the deformation theory of irreducible flat connections ∇. The exterior differential
d∇ induces a complex

0 → �0(�,End0(V )) → �1(�,End0(V )) → �2(�,End0(V )) → 0.

The tangent space at ∇ of the deRham moduli space of flat irreducible connections
is naturally identified with the first cohomology group

T[∇]MdR = H1(�, d∇) := ker(d∇ : �1 → �2)/im(d∇ : �0 → �1).

For an irreducible unitary flat connection the space H1(�, d∇) can be identified
with the space of harmonic sl(2,C)-valued 1-forms �, i.e., d∇� = d∇ ∗ � = 0.
The space of harmonic 1-forms equals the direct sum of the space of Higgs fields
with respect to ∂̄∇ and of the space of anti-Higgs fields with respect to ∂∇ . In the
case of a oper connection, the underlying holomorphic structure is unstable and
admits trace-free endomorphisms 0 �= X ∈ �(�,End0(V )) with

∂̄X = 0.

By irreducibility of ∇
d∇X = ∂∇X �= 0

is non-trivial, and by flatness of ∇ it is holomorphic, i.e.,

∂∇X ∈ H0(�, KEnd0(V )) (11)

is a Higgs field. Therefore, not every harmonic 1-form yields a non-trivial tangent
direction of the deRhammoduli space. The following lemma shows that for an oper
connection ∇ with real monodromy every tangent vector

� ∈ T[∇]MdR = H1(�, d∇)

can be represented by special harmonic 1-forms, i.e., the direct sum of a nilpotent
Higgs field with a nilpotent anti-Higgs field. Denote by

Q := {� ∈ H0(�, KEnd0(V ), ∂̄∇) | det� = 0}
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and

Q̄ := {� ∈ H0(�̄, K�̄End0(V ), ∂∇) | det� = 0}
the space of nilpotent Higgs fields respectively anti-Higgs fields. Recall the form
(5). Thus ∂̄∇ is upper triangular with respect to V = S ⊕ S∗. A direct computation
using thatϕ∗ gives a nontrivial element in H1(�, K−1) shows that everyHiggs field
of (V, ∂̄∇) must be upper triangular as well. Thus, Q consists of upper triangular
Higgs fields with respect to V = S⊕ S∗. In particularQ is a vector space modelled
on the space of holomorphic quadratic differentials, and its dimension is 3g − 3,
where g is the genus of�. Analogusly, Q̄ is also a vector space of dimension 3g−3.

Lemma 3. Let ∇ be an oper with real monodromy. Then the natural map

Q ⊕ Q̄ → H1(�, d∇) = ker(d∇ : �1 → �2)/im(d∇ : �0 → �1)

is an isomorphism.

Proof. Higgs fields and anti-Higgs fields are clearly closed with respect to d∇ , so
we have a well-defined map Q ⊕ Q̄ → H1(�, d∇). As the dimension is 6g − 6
for both spaces it remains to show that this map is injective. As elements of Q are
(1, 0)-forms on X and elements of Q̄ are (0, 1)-forms on X the map Q ⊕ Q̄ →
ker(d∇ : �1 → �2) is injective. Let

� ∈ Q ⊕ Q̄

be in the kernel of the map Q ⊕ Q̄ → H1(�, d∇), i.e., there exists

X ∈ �(�,End0(V ))

with

� = d∇X.

We claim that � = 0. For any endomorphism A and any endomorphism-valued
1-formωwe denote by A# andω# the adjoint endomorphism and the adjoint 1-form
with respect to the indefinite hermitian metric. We decompose

� = �+ + �−

into its hermitian symmetric part �+ = 1
2 (� + �#) and skew hermitian part

�− = 1
2 (� −�#)with respect to the indefinite hermitian metric, and analogously

X = 1
2 (X + X#) + 1

2 (X − X#) =: X+ + X−.

Note that for � ∈ Q⊕ Q̄ also �# ∈ Q⊕ Q̄. Moreover, since ∇ is unitary with
respect to the indefinite hermitian metric, we obtain

d∇(X#) = (d∇X)# = �# ∈ Q ⊕ Q̄.
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This gives

d∇X± = �± ∈ Q ⊕ Q̄,

and it suffices to prove the claim for �± ∈ Q ⊕ Q̄.
We consider �− only, the proof for �+ works completely analogously. Con-

sider the Higgs field

� := (�−)(1,0) = ∂∇X− ∈ Q.

Then we have

�# = −(�−)(0,1) = −∂̄∇X− ∈ Q̄,

and integration yields

∫
�

tr(� ∧ �#) = −
∫

�

tr(∂∇X− ∧ ∂̄∇X−) = −
∫

�

dtr(X−∂̄∇X−) = 0.

For a non-degenerate indefinite hermitian metric on a vector space of dimension 2
every non-vanishing nilpotent endomorphism A satisfies

tr(AA#) ≥ 0 (12)

with equality if and only if the kernel of A is a null-line. By construction of the
oper ∇ with real monodromy and by Remark 8, the fibers of the kernel bundle of
� (given by the holomorphic line bundle S) are null exactly where the developing
map of the real projective structure crosses the boundary of the hyperbolic disc.
This is a subset of measure 0, therefore

∫
�

tr(� ∧ �#) = 0

holds if and only if � = 0. Thus, �− = 0 and analogously �+ = 0 proving the
lemma. ��

In the SL(2,C)-case, the normal bundle of a holomorphic section s : CP1 →
MDH is a holomorphic vector bundle overCP1 of rank 6g−6. For the uniformiza-
tion section (as for all twistor lines), the normal bundle is

O(1)6g−6 → CP1,

which is fundamental for the twistor approach to hyperKähler manifolds [11].

Theorem 4. The normal bundle N of a grafting section on a Riemann surface �

of genus g is

O(1)6g−6 → CP1.
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Proof. We first construct a (holomorphic) bundle homomorphism

H : O(1) ⊗ (Q ⊕ Q̄) → N .

Then we show that H is an isomorphism of holomorphic bundles.
Consider

0 �= Q ∈ H0(�, K 2),

which determines a non-zero element inQ. OverC the grafting section is given by

s(λ) = [λ,

(
∂̄ S λϕ∗
0 ∂̄ S∗

)
, λ

(
∂ S λq

λ−1ϕ ∂ S∗

)
]�.

Consider the infinitesimal deformation

sQt (λ) = [λ,

(
∂̄ S λϕ∗
0 ∂̄ S∗

)
, λ

(
∂ S λq

λ−1ϕ ∂ S∗

)
+ t

(
0 Q
0 0

)
]�.

By Lemma (3) this gives a non-vanishing holomorphic section sQ of the normal
bundle of s over C. Note that over C∗ this normal field is given by

sQt (λ) = [λ,

(
∂̄ S ϕ∗
0 ∂̄ S∗

)
, λ

(
∂ S q
ϕ ∂ S∗

)
+ tλ−1

(
0 Q
0 0

)
]�. (13)

We want to analyse the behaviour of this normal bundle section at λ = ∞.

Likewise, we can start with an element

Q̄ =
(
x y
z −x

)
∈ Q̄,

where x ∈ �(�, K̄ ), y ∈ �(�, K̄ K ) and z ∈ �(�, K̄ K−1). We do the analogous
construction to obtain a holomorphic normal field of s over CP1 \ {0}, and want
to study its behaviour at λ = 0. By comparing with (13), this normal field is over
C

∗ given by

s Q̄t (λ) = [λ,

(
∂̄ S ϕ∗
0 ∂̄ S∗

)
+ tλ2

(
x y
z −x

)
, λ

(
∂ S q
ϕ ∂ S∗

)
]�.

Hence, over C the normal section is given by

s Q̄t (λ) = [λ,

(
∂̄ S λϕ∗
0 ∂̄ S∗

)
+ tλ2

(
x λy

λ−1z −x

)
, λ

(
∂ S λq

λ−1ϕ ∂ S∗

)
]�. (14)

From (14), the normal bundle section sQ̄ given by the variation s Q̄t extends holo-
morphically to λ = 0 with a zero of order at least 1. Analogously, or by using
the SU(1, 1)-structure, we see that the normal field obtained by sQt gives a section
which extends holomorphically to ∞ with a zero of order at least 1. We obtain
a 6g − 6 dimensional space (parametrised by Q ⊕ Q̄) of holomorphic sections.
Because of Lemma 3, the evaluation at λ spans Nλ for all λ ∈ C

∗. We claim that
the section given by elements in Q respectively Q̄ have first order zeros at λ = ∞
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respectively λ = 0. In fact, this follows by another application of Lemma 3: The
space of Higgs fields � is the direct sum of Q and the image of the space of holo-
morphic trace-free endomorphisms under the map ∂∇ , as can be deduced from
Riemann-Roch and (11). Assume

� =
(
x y
z −x

)
∈ Q̄

satisfies ∫
�

Qz = 0

for all Q ∈ H0(�, K 2). Then,
∫
tr(� ∧�) = 0 for every holomorphic Higgs field

�, and Serre-duality implies that � is in the image of ∂̄∇ . By Lemma 3 � = 0.
We have a well-defined holomorphic bundle homomorphism via

H : O(1) ⊗ (Q ⊕ Q̄) → N , (a + bλ)(Q ⊕ Q̄) 	→ (a + bλ)sQ + (aλ−1 + b)sQ̄ .

ThemapH is an isomorphism overC∗.We have already deduced fromSerre duality
that the pairing

(Q, Q̄) 	→
∫

�

Qz

is a duality, where z is the lower left entry (with respect to S ⊕ S∗) of the nilpotent
anti-Higgs field determined by Q̄. Hence, H is an isomorphism at λ = 0 as well.
Finally, the SU(1, 1)-symmetry shows thatH is an isomorphism at λ = ∞ as well.

��

4. Hyper-Kähler components

We are now able to state and prove our main theorem:

Theorem 5. For a real projective structure P on a Riemann surface there exists
a 6g − 6-dimensional manifold MP of real holomorphic sections of the Deligne-
Hitchin moduli space. Moreover, MP is equipped with a hyper-Kähler metric.

There exists a neighbourhood U of sP ∈ MP , such that every section s ∈ U
gives rise to a solution of the self-duality equation away from a singularity set S.
The set S is given by a collection of smooth simple curves in� which are homotopic
to the singular curves of the constant curvature -1 metric associated to P.

Proof. The first part of the theorem is an application of [11, Theorem 3.3] using
Theorem 4: it remains to show that the induced hyper-Kähler metric is positive
definite. Since our construction is local it is sufficient to compute the induced
bilinear form at a grafting section. By Theorem 4 and its proof, a complex tangent
vector X to the space of holomorphic sections at the grafting section is given by

X = (P0 + P1λ, Q0 + Q1λ) (15)
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with

P0, P1 ∈ Q̄ and Q0, Q1 ∈ Q.

As in [11], the twisted symplectic form induces a complex bilinear form gC on the
space of holomorphic sections. In the case of the Deligne-Hitchin moduli space
and X as in (15), it is given by

gC(X, X) = 2i
∫

�

tr(−Q1 ∧ P0 + Q0 ∧ P1),

see [10, Equation 6.2] and also [8, 2 and 4]. Using the definition of τ in (1), a tangent
vector X as in (15) is real, i.e. a tangent vector to the space of real holomorphic
sections, if and only

Q1 = −P#
0 and P1 = Q#

0.

Using (12) we get analogous to the proof of Lemma 3

gC(X, X) ≥ 0

for real tangent vectors X with equality if and only if X = 0.Therefore, the induced
bilinear form on the space of real sections is positive definit at a grafting section.
By continuity, this also holds on a suitable local neighbourhood – denoted byMP

– of the grafting section in the space of real holomorphic sections. By [11, Theorem
3.3], we obtain a (Riemannian) hyper-Kähler metric on MP .

The second part of the theorem follows from the discussion in Sect. 3.2 together
with the following facts:

– Te choice of lifts of sections s can be done in a smooth way (depending on s)
locally;

– By irreducibility, the gauges satisfying (2) depend smoothly on s;
– Being in the big cell (respectively being in the union of the big cell and the first
small cell) is an open condition.

The singularity set of the solution of the self-duality equation is given by the set
of points p ∈ � where the gauge satisfying (2) is not in the big cell. By the above
bullet points and because of Lemma 2 and Proposition 1, this happens along curves
which are homotopic to the singular curves of the constant curvature -1 metric
provided by the real projective structure P . ��
Remark 9. We cannot prove that the components of real holomorphic sections asso-
ciated to different real projective structures are different. If the singularity locus
of the self-duality solutions associated to a real holomorphic section would be an
invariant of its component of real holomorphic sections these spaces would actually
be different.

In [1], an energy functional E on the space of holomorphic sections of the Deligne-
Hitchin moduli space has been defined. It takes real values on real holomorphic
sections. Moreover, by [1, Theorem 3.13] this energy is a Kähler potential for the
hyper-Kählermetric constructed inTheorem5.For a grafting section s,E(s) = 1−g
where g is the genus of the surface.
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