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Global existence in reaction–diffusion systems with mass control
under relaxed assumptions merely referring to cross-absorptive
effects

Johannes Lankeit and Michael Winkler

Abstract. We introduce a generalized concept of solutions for reaction–diffusion systems and prove their
global existence. The only restriction on the reaction function beyond regularity, quasipositivity and mass
control is special in that it merely controls the growth of cross-absorptive terms. The result covers nonlinear
diffusion and does not rely on an entropy estimate.

1. Introduction

Reaction–diffusion equations arise in various applications in chemistry and biol-
ogy (cf. [20, Ch. 2]) and form an important class of model problems in the study
of systems of parabolic equations (see [24, Ch. 33]). Already at the stage of basic
theories of solvability, a major challenge for the analysis of such systems consists in
the presence of commonly superlinear source terms. While the possibility of blow up
then is apparrent as long as suitably destabilizing reaction mechanisms are admitted
(cf. e.g. [13]), even the requirement of dissipation of mass—which is sufficient to
yield global existence and boundedness in the corresponding ODE systems—cannot
preclude its occurrence, as impressively demonstrated by the counterexamples in [22].
Global classical solutions have, accordingly, been searched for and found under certain
restrictive conditions.
In the context of boundary value problems for systems of the general form

∂t ui = di�umi
i + fi (u1, ..., uN ), i ∈ {1, ..., N }, (1.1)

in the linear diffusion case when m1 = ... = mN = 1 such results on global smooth
solvability cover settings where boundedness of the first among two components is a
priori known (from a sign of f1, cf. [18]), where the diffusion coefficients are close to
each other [2,5], or where sources exhibit subquadratic growth [4], and recently ideas
of [12] have successfully been extended to show global solvability for quadratic or
slightly superquadratic reaction functions [3,9,26].
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Another line of investigations pursues solutions in a weaker sense. Weak solutions
can be constructed if L1-bounds for the reaction terms fi (u) are known [19], or if
the reaction functions are at most quadratic [21]. For nonlinear diffusion of porous
medium type, the existence of weak solutions to (1.4) with Dirichlet boundary data is
shown in [15] under the assumptions that

⎧
⎨

⎩

fi ∈ W 1,∞
loc ([0,∞)N ) is such that

fi (s1, ...si−1, 0, si+1, ..., sN ) ≥ 0 for all (s1, ..., sN ) ∈ [0,∞)N

and i ∈ {1, ..., N },
(1.2)

that with some K ≥ 0 and a ∈ (0,∞)N we have

N∑

i=1

ai fi (s1, ..., sN ) ≤ K ·
( N∑

i=1

ai si + 1

)

for all (s1, ..., sN ) ∈ [0,∞)N

and i ∈ {1, ..., N }, (1.3)

and that either a priori L1-bounds for the reaction terms are known, or fi (s1, .., sN ) ≥
−C

(∑N
j=1 s

β j
j + 1

)
with βi < mi +1 for all i ∈ {1, . . . , N }. An analogous result has

been achieved for the corresponding Neumann problem in [14] with a different proof
and less restrictive conditions on the initial data, and in the cases when additionally
all mi are sufficiently large compared to maxi βi , higher regularity and convergence
of solutions were shown in [8].

The concept of renormalized solutions, that is, the idea that not u itself, but a
transformed quantity ρ(u) solves (a weak form) of the equation, makes it possible
to bypass even further restrictions on the form of the system. This concept has been
successfully introduced for the Boltzmann equation by DiPerna and Lions [7] and was
employed for reaction diffusion equations with quadratic reaction functions and linear
diffusion in [6]. The apparently most far-reaching application of this idea to reaction–
diffusion systems (with linear diffusion) can be found in [10], where essentially no
growth restriction on the fi is needed, but where the reaction function is supposed
to obey a certain entropy condition. The term in the definition of solutions for whose
treatment this entropy condition is essential arises from the choice of renormalization
functions ξ : [0,∞)N → Rwith compactly supported Dξ , which in particular depend
on all solution components simultaneously.

Main results. In the present manuscript, we intend to introduce an approach by
which it becomes possible to avoid any requirement of the latter type, and it turns
out that this can in fact be achieved by resorting to separate renormalization functions
for each component ui . Thereby, our main result, as stated in Theorem 1.1 below,
partially answers the open problem [10, p.585] to find a similar notion of solution
without requiring an entropy condition.
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Specifically, we shall be concerned with the Neumann problem
⎧
⎨

⎩

∂t ui = di�umi
i + fi (u1, ..., uN ), x ∈ �, t > 0, i ∈ {1, ..., N },

∂νu
mi
i = 0, x ∈ ∂�, t > 0, i ∈ {1, ..., N },

ui (x, 0) = u0i (x), x ∈ �, i ∈ {1, ..., N },
(1.4)

under the assumptions that (1.2) and (1.3) hold, and that
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

fi (s1, .., sN ) ≥ −φi (si ) ·
(

∑

j∈{1,...,N }
j �=i

s
β j
j + 1

)

for all (s1, ..., sN ) ∈ [0,∞)N

and i ∈ {1, ..., N },
with some nonnegative φi ∈ C1([0,∞)) such that φ′

i > 0 on (0,∞)

for i ∈ {1, ..., N }, and someβi > 0 such that βi < mi + 1 for all i ∈ {1, ..., N }.

(1.5)

Here we recall that the quasipositivity condition in (1.2) is important in order to
avoid negative concentrations, and that (1.3) is a slightly generalized mass dissipation
condition, and includes some stoichiometric coefficients a. In addition to this, (1.5)
signifies a growth condition for the negative parts of the reaction functions, where in
the special case of linear diffusion, subquadratic growth is admissible. It is important
to note, however, that this restriction only applies to the cross-absorptive effects: For
( fi )−, the possible growth with respect to the i-th argument remains unrestricted.
As for the initial data in (1.4), throughout this paper we shall suppose that

u0i , i ∈ {1, ..., N }, is a nonnegative function from Lr (�) with some
⎧
⎨

⎩

r ≥ 1 if n = 1,
r > 1 if n = 2,
r ≥ 2n

n+2 if n ≥ 3.
(1.6)

Postponing the precise description of the solution concept to be pursued here to Sect. 2,
let us introduce our main result obtained in this framework, and give a few examples
of its application.

Theorem 1.1. Let n ≥ 1 and N ≥ 1 and � ⊂ R
n a bounded domain with smooth

boundary, and suppose that d1, ..., dN andm1, ...,mN are positive, and that f1, ..., fN
belong toW 1,∞

loc ([0,∞)N ) and satisfy (1.3), (1.2) and (1.5) with some positive constant
K . Then given any u01, ..., u0N fulfilling (1.6), one can find nonnegative functions
ui ∈ Lmi+1

loc (� × [0,∞)) such that (u1, ..., uN ) is a generalized solution of (1.4) in
the sense of Definition 2.2.

Remark. (i) The required smoothness of the domain is not the focus of our inves-
tigation and could be weakened – in fact, already for the present construction,
C2+α regularity for some α ∈ (0, 1) – entering in the construction of classical
approximate solutions – would be sufficient.

(ii) Likewise, in order to avoid additional technicalitieswe do not investigate in detail
here whether covering less regular sources, such as e.g. merely continuous fi ,
i ∈ {1, ..., N }, might be possible at the cost of an additional approximation
argument in the context of the regularized versions (3.1) of (1.4) below.
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(iii) An interesting question left open here is how far the regularity requirements
in (1.6) could further be relaxed, so as to require integrability of (ui0)i∈{1,...,N }
only, for instance. As will become clear in the proof of Lemma 3.2 below, our
currently pursued strategy will crucially rely on (1.6) in order to appropriately
control certain initial data appearing in the course of a duality-based reasoning.

Application #1. A first application of Theorem 1.1 addresses the system

⎧
⎪⎪⎨

⎪⎪⎩

∂t ui = di�u
mi
i + (pi − qi ) ·

(

k2
∏N

j=1 u
q j
j − k1

∏N
j=1 u

p j
j

)

, x ∈ �, t > 0, i ∈ {1, ..., N },
∂νu

mi
i = 0, x ∈ ∂�, t > 0, i ∈ {1, ..., N },

ui (x, 0) = u0i (x), x ∈ �, i ∈ {1, ..., N },
(1.7)

which describes a general reversible reaction of the form

p1U1 + p2U2 + · · · + pnUn
k1�
k2

q1U1 + q2U2 + · · · + qNUN ,

and for which we obtain the following.

Proposition 1.2. Let N ≥ 2, and suppose that k1 > 0 and k2 > 0, and that for
i ∈ {1, ..., N }, di > 0, mi > 0, pi ≥ 1 and qi ≥ 1 are such that for some a ∈ (0,∞)N

N∑

i=1

ai pi =
N∑

i=1

aiqi , (1.8)

and that

∑

j∈{1,...,N }
j �=i

p j

m j + 1
< 1 for all i ∈ {1, ..., N } such that pi > qi (1.9)

as well as

∑

j∈{1,...,N }
j �=i

q j

m j + 1
< 1 for all i ∈ {1, ..., N } such that pi < qi . (1.10)

Then for any choice of u01, ..., u0n complying with (1.6), the problem (1.7) admits a
generalized solution in the sense of Definition 2.2.

Proof of Proposition 1.2. Writing fi (s1, ..., sN ) := (pi − qi ) ·
(
k2

∏N
j=1 s

q j
j − k1

∏N
j=1 s

p j
j

)
for i ∈ {1, ..., N } and (s1, ..., sN ) ∈ [0,∞)N , we see that (1.2) is fulfilled

and (1.3) follows since
∑N

j=1 ai fi ≡ 0 due to (1.8). Moreover, if e.g. i ∈ {1, ..., N } is
such that pi > qi , then (1.9) enables us to pick numbers θ j > 1, j ∈ {1, ..., N } \ {i},



J. Evol. Equ. Global existence in reaction–diffusion systems Page 5 of 23 14

such that p jθ j < m j + 1 for all j ∈ {1, ..., N } \ {i} and ∑
j �=i

1
θ j

< 1. An application
of Young’s inequality thus shows that for any such i ,

fi (s1, ..., sN ) ≥ −(pi − qi )k1s
pi
i ·

∏

j �=i

s
p j
j

≥ −(pi − qi )k1s
pi
i ·

( ∑

j �=i

s
p j θ j
j + 1

)

for all (s1, ..., sN ) ∈ [0,∞)N ,

and complementing this by a similar reasoning for all i ∈ {1, ..., N } for which pi < qi ,
we readily obtain that (1.5) holds and Theorem 1.1 becomes applicable so as to yield
the claim. �

Proposition 1.2 corresponds to [15, Remark 2.10], where the existence of weak solu-
tions is proved. The main difference is that there the summation in (1.9) and (1.10)
extends over all j ∈ {1, . . . N }.
For linear diffusion, weak solutions of (1.7) have been found in [23] if the reaction

functions grow at most quadratically or if the diffusion coefficients are sufficiently
close to each other. The same article also deals with their exponential convergence.

Application #2. A second application of our general theory is concerned with the
variant of (1.7) given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t u1 = d1�um1
1 + uβ1

1 g2(u2) − g1(u1)u
β2
2 , x ∈ �, t > 0,

∂t u2 = d2�um2
2 − uβ1

1 g2(u2) + λg1(u1)u
β2
2 , x ∈ �, t > 0,

∂νu
m1
1 = ∂νu

m2
2 = 0, x ∈ ∂�, t > 0,

u1(x, 0) = u01(x), u2(x, 0) = u02(x), x ∈ �,

(1.11)

and underlines the mildness of the assumptions in Theorem 1.1 by admitting widely
arbitrary growth of the main ingredients g1 and g2 appearing herein:

Proposition 1.3. Let d1 > 0, d2 > 0,m1 > 0, m2 > 0 and λ ∈ [0, 1], let β1 ∈
[1,m1 + 1) and β2 ∈ [1,m2 + 1), and let g1 ∈ C1([0,∞)) and g2 ∈ C1([0,∞))

be such that g1(0) = g2(0) = 0 and that g1 and g2 are positive on (0,∞). Then for
any pair (u01, u02) satisfying (1.6), there exists a generalized solution of (1.11) in the
spirit of Definition 2.2.

Proof of Proposition 1.3. Taking any nonnegative φi ∈ C1([0,∞)) such that φ′
i > 0

and φi ≥ gi on (0,∞) for i ∈ {1, 2}, one can readily verify that for

f1(s1, s2) := sβ1
1 g2(s2) − g1(s1)s

β2
2 and f2(s1, s2) := −sβ1

1 g2(s2) + λg1(s1)s
β2
2 ,

(s1, s2) ∈ [0,∞)2,

we have

f1(s1, s2) + f2(s1, s2) = −(1 − λ)g1(s1)s
β2
2 ≤ 0 for all (s1, s2) ∈ [0,∞)2
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as well as

f1(s1, s2) ≥ −g1(s1)s
β2
2 ≥ −φ1(s1)s

β2
2 for all (s1, s2) ∈ [0,∞)2

and, similarly,

f2(s1, s2) ≥ −φ2(s2)s
β1
1 for all (s1, s2) ∈ [0,∞)2.

The assumptions βi < mi + 1, i ∈ {1, 2}, therefore warrant applicability of Theo-
rem 1.1 with the intended result. �

Let us remark that since inProposition1.3not only f1+ f2 ≤ 0, but alsoλ f1(s1, s2)+
f2(s1, s2) = (λ − 1)sβ1

1 g2(s2) ≤ 0 for (s1, s2) ∈ [0,∞)2, [15, Cor. 2.11] could be
applied to the variant of (1.11) involving homogeneous Dirichlet boundary conditions
(cf. [15, Remark 2.12]) so as to yield weak solutions for any L1-initial data; said
corollary, however, requires that m1,m2 < 2.

Application #3. We shall next briefly address

⎧
⎪⎪⎨

⎪⎪⎩

∂t u1 = d1�um1
1 + k2u

q1
1 uq22 − k1u

p1
1 u p2

2 , x ∈ �, t > 0,
∂t u2 = d2�um2

2 − k2u
q1
1 uq22 + k1u

p1
1 u p2

2 , x ∈ �, t > 0,
∂νu

m1
1 = ∂νu

m2
2 = 0, x ∈ ∂�, t > 0,

u1(x, 0) = u01(x), u2(x, 0) = u02(x), x ∈ �,

(1.12)

for which without imposing any smallness condition on q2 nor p1 we obtain the
following.

Corollary 1.4. Let k1, k2, d1, d2,m1 andm2 bepositive, and let p1 ≥ 1, p2 ≥ 1, q1 ≥
1 and q2 ≥ 1 be such that

q1 < m1 + 1 and p2 < m2 + 1.

Then for all (u01, u02) fulfilling (1.6), the problem (1.12) possesses a generalized
solution in the sense of Definition 2.2.

Proof of Corollary 1.4. With g1(s) = k1s p1 , g2(s) = k2sq2 , β1 = q1, β2 = p2, this
immediately results from Proposition 1.3. �

Application #4. As final example, let us consider the generalized Lotka–Volterra
system

⎧
⎪⎨

⎪⎩

∂t ui = di�umi
i + γi ui + ∑N

j=1 ai j u
βi j
j u

β j i
i , x ∈ �, t > 0, i ∈ {1, ..., N },

∂νu
mi
i = 0, x ∈ ∂�, t > 0, i ∈ {1, ..., N },

ui (x, 0) = u0i (x), x ∈ �, i ∈ {1, ..., N },
, (1.13)

which does not obey the typical entropy condition (that is required for the renormalized
solutions in [10] and for classical solvability e.g. in [26]). In [9], global classical
solutions are shown to exist for the classical Lotka–Volterra system (βi j = 1 for all
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i, j) with linear diffusion. If mi = 1 for all i and βi j = β for all i, j , then the result
of [9] covers 2β < 2 + ε (for sufficiently small ε ∈ (0, 1), see [9, Step 1, (7)]).

Within the generalized solvability framework considered here, the following con-
sequence of Theorem 1.1 shows that here actually the entire range β < 2 can be
exhausted.

Proposition 1.5. Let N ≥ 2, di > 0, mi > 0 and γi ∈ R for i ∈ {1, . . . , N }, and
suppose that for i, j ∈ {1, ..., N } the numbers ai j ∈ R and βi j > 0 are such that
ai j + a ji ≤ 0, and that

if i �= j and ai j < 0, then βi j < mi + 1. (1.14)

Then for all initial data u01, ..., u0n as in (1.6), (1.13) has a generalized solution in
the sense of Definition 2.2.

Proof of Proposition 1.5. With fi (s) = γi si+∑N
j=1 ai j s

βi j
j s

β j i
i , i ∈ {1, . . . , N }, (1.2)

is clearly satisfied. As

N∑

i=1

fi (s) =
N∑

i=1

γi si +
N∑

i=1

N∑

j=1

ai j s
βi j
j s

β j i
i ≤

N∑

i=1

γi si +
∑

i< j

(ai j s
βi j
j s

β j i
i

+ a ji s
β j i
i s

βi j
j ) ≤ max

i
γi

N∑

i=1

si

due to the fact that aii ≤ 0 for all i ∈ {1, ..., N }, we see that also (1.3) holds. Finally,

fi (s) ≥ γi si +
∑

j∈{1,...,N }
ai j<0

ai j s
βi j
j s

β j i
i

≥ −
(

|γi | + |aii |sβi i
i +

∑

j∈{1,...,N }\{i}
ai j<0

|ai j |sβi j
j

)(

si +
N∑

j=1

s
β j i
i

)

≥ −φi (si )

(

1 +
∑

j∈{1,...,N }\{i}
ai j<0

s
βi j
j

)

for all s = (s1, ..., sN ) ∈ [0,∞)N if we set φi (si ) = max{|γi |, |ai j | | j ∈ {1, . . . N }} ·
(1+ sβi i )

i (si +∑N
j=1 s

β j i
i ) for any such s, so that, according to (1.14), (1.5) is fulfilled

and Theorem 1.1 is applicable. �

2. Solution concept

The first step toward the design of our solution concept is concerned with an appro-
priate supersolution feature required in each of the equations making up (1.4):
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Definition 2.1. Suppose that for i ∈ {1, ..., N }, u0i : � → R and ui : �× (0,∞) →
R are measurable and nonnegative. Then (u1, ..., uN ) will be called a renormalized
supersolution of (1.4) if for every ρ ∈ C∞([0,∞)) fulfilling ρ‘ ∈ C∞

0 ([0,∞)) ,
ρ‘ ≤ 0 and ρ′′ ≥ 0, with

P(1)
i (s) :=

∫ s

0
σ

mi−1
2

√
ρ′′(σ )dσ and P(2)

i (s):=
∫ s

0
σmi−1ρ′(σ )dσ,

s ≥ 0, i ∈ {1, ..., N }, (2.1)

we have

ρ′(ui ) fi (u1, ..., uN ) ∈ L1
loc(� × [0,∞)) and∇P(1)

i (ui ) ∈ L2
loc(� × [0,∞);Rn)

for all i ∈ {1, ..., N }, (2.2)

and if moreover

−
∫ ∞

0

∫

�

ρ(ui )ϕt −
∫

�

ρ(u0i )ϕ(·, 0) ≤ −dimi

∫ ∞

0

∫

�

ϕ|∇P(1)
i (ui )|2

+d1mi

∫ ∞

0

∫

�

P(2)
i (ui )�ϕ

+
∫ ∞

0

∫

�

ρ′(ui ) fi (u1, ..., uN )ϕ (2.3)

for all i ∈ {1, ..., N } and each nonnegative ϕ ∈ C∞
0 (� × [0,∞)) fulfilling ∂νϕ = 0

on ∂� × (0,∞).

Remark. (i) In the above situation, both integrals on the left of (2.3) as well as the
second integral on the right-hand side therein exist due to the readily verified
fact that ρ and P(2)

i , i ∈ {1, ..., N }, are bounded on [0,∞).
(ii) The supersolution property in [15, Prop. 3.6] is obtained upon the choice of

ρ(x) = x (inadmissible in Definition 2.1), integration by parts in the integral
involving P(2)

i (and addition of a corresponding integrability requirement) and,
finally, exchange of ≤ by ≥ (resulting from the change of sign of ρ′).

(iii) The reason for dealing with supersolutions, that is, an inequality instead of an
equality in (2.3), lies in the treatment of the integral containing |∇P(1)

i (ui )|2,
which will be estimated by means of lower semicontinuity, cf. (3.28).

(iv) The definition of P(1)
i , crucial in making use of the comparatively weak limit

information for gradients, c.f. iii), contains
√

ρ′′, thereby causing the requirement
ρ′′ ≥ 0 – and, consequently, due to compact support of ρ′ also ρ′ ≤ 0 –, whereas
comparable definitions in other systems only ask for the renormalization to be
smooth with compactly supported derivative.

As discussed in several previous related approaches toward generalized solvability
on the basis of supersolution features of the above flavor [28,29], supplementing



J. Evol. Equ. Global existence in reaction–diffusion systems Page 9 of 23 14

Definition 2.1 by a mere requirement on mass control is already sufficient to create a
notion of solvability which within classes of suitably smooth functions indeed reduces
to classical ones (see, e.g, [17] and [27] for detailed reasonings in this regard):

Definition 2.2. By a generalized solution of (1.4) we mean a vector (u1, ..., uN ) of
nonnegative measurable functions on�× (0,∞) such that (u1, ..., uN ) is a renormal-
ized supersolution of (1.4) in the sense of Definition 2.1, that with some a ∈ (0,∞)N

u1, ..., uN and
N∑

i=1

ai fi (u1, ..., uN ) belong to L1
loc(� × [0,∞)), (2.4)

and that
∫

�

( N∑

i=1

aiui (·, t)
)

≤
∫

�

( N∑

i=1

aiu0i

)

+
∫ t

0

∫

�

( N∑

i=1

ai fi (u1, ..., uN )

)

for a.e. t > 0. (2.5)

3. Approximate systems

In order to construct such solutions through an essentially standard type of approx-
imation, for ε ∈ (0, 1) we consider
⎧
⎪⎪⎨

⎪⎪⎩

∂t uiε = di�(uiε + ε)mi + fi (u1ε, ..., uNε)

1 + ε
∑N

j=1 | f j (u1ε, ..., uNε)|
, x ∈ �, t > 0, i ∈ {1, ..., N },

∂νuiε = 0, x ∈ ∂�, t > 0, i ∈ {1, ..., N },
uiε(x, 0) = u0iε(x), x ∈ �, i ∈ {1, ..., N },

(3.1)

where
⎧
⎨

⎩

(u0iε)ε∈(0,1) ⊂ C1(�) is such that u0iε ≥ 0 for all i ∈ {1, ..., N }, that
u0iε → u0i in L1(�) and a.e. in � as ε ↘ 0 for all i ∈ {1, ..., N }, and that
supε∈(0,1) ‖u0iε‖Lr (�) < ∞

(3.2)

with r ≥ 1 taken from (1.6).
Due to boundedness of the reaction term therein and nondegeneracy of the diffusion,

by [1, Theorems14.4 and14.6] (for local existence) and [16,TheoremsV.7.3 andV.7.2]
(for a priori bounds ensuring extensibility to globally defined solutions), for each fixed
ε ∈ (0, 1) the problem (3.1) indeed admits a global classical solution

uiε ∈ C0(� × [0,∞)) ∩ C2,1(� × (0,∞)) for all i ∈ {1, . . . , N },
which, moreover, is nonnegative.

General assumption. Throughout the sequel, we shall suppose that the assumptions
of Theorem 1.1 and (3.2) are satisfied, and given ε ∈ (0, 1) we let (u1ε, ..., uNε)

denote the global classical solution of (3.1).



14 Page 10 of 23 J. Lankeit and M. Winkler J. Evol. Equ.

The following basic observation concerning L1-boundedness of these solutions is
a fairly immediate consequence of (1.3).

Lemma 3.1. For all T > 0 there exists C(T ) > 0 such that for all i ∈ {1, ..., N } and
any ε ∈ (0, 1) we have

‖uiε(·, t)‖L1(�) ≤ C(T ) for all t ∈ (0, T ). (3.3)

Proof. By integrating in (3.1), we see that since ∂νuiε = 0 on ∂� × (0,∞), due to
(1.3) we have

d

dt

N∑

i=1

ai

∫

�

uiε =
∫

�

1

1 + ε
∑N

j=1 | f j (u1ε, ..., uNε)|
·

N∑

i=1

ai fi (u1ε, ..., uNε)

≤
∫

�

1

1 + ε
∑N

j=1 | f j (u1ε, ..., uNε)|
· K

{ N∑

i=1

aiuiε + 1

}

≤ K
N∑

j=1

ai

∫

�

uiε + K |�| for all t > 0 and ε ∈ (0, 1),

because uiε ≥ 0 for all i ∈ {1, ..., N }. By an ODE comparison, this shows that

N∑

i=1

ai

∫

�

uiε ≤
{ N∑

i=1

ai

∫

�

u0iε + |�|
}

· eK t for all t > 0 and ε ∈ (0, 1)

and hence, again by nonnegativity of uiε for i ∈ {1, ..., N }, establishes (3.3) due to
(3.2). �
The following estimate rests on a duality-based reasoning inspired by a correspond-

ing argument from [15]. An important difference is given by the change of boundary
conditions:Where [15] dealt with Dirichlet boundary data and thus could use the solu-
tion of Poisson’s equation as test function, the non-invertibility of the Laplacian with
homogeneous Neumann boundary data leads us to employ the solution of a Helmholtz
equation instead. An alternative approach of working with the Neumann Laplacian
after subtracting the mean value has been followed in [14], but it seems unclear how
far strategies of this type can be applied so as to successfully cover the present setting.

Lemma 3.2. For all T > 0 there exists C(T ) > 0 such that for all i ∈ {1, ..., N },
∫ T

0

∫

�

umi+1
iε ≤ C(T ) for all ε ∈ (0, 1). (3.4)

Proof. Following [15, Proof of Theorem 2.7], we first observe that according to (3.1)
and (1.3), writing

wε(·, t) := e−Kt ·
N∑

i=1

aiuiε(·, t)

and zε(·, t) :=
∫ t

0
e−Ks ·

{ N∑

i=1

aidi (uiε + ε)mi

}
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for ε ∈ (0, 1) and t ≥ 0, we have

∂twε = e−Kt�

{ N∑

i=1

aidi (uiε + ε)mi

}

+ e−Kt
N∑

i=1

ai fi (u1ε, ..., uNε)

1 + ε
∑N

j=1 | f j (u1ε, ..., uNε)|

−Ke−Kt
N∑

i=1

aiuiε

≤ e−Kt�

{ N∑

i=1

aidi (uiε + ε)mi

}

+ Ke−Kt in � × (0,∞) for all ε ∈ (0, 1)

and hence

wε(·, t) ≤ wε(·, 0) + �zε(·, t) + 1 in � for all t > 0 and ε ∈ (0, 1), (3.5)

because
∫ t
0 Ke−Ksds = 1− e−Ks ≤ 1 for all t > 0. Upon multiplication by ∂t zε ≥ 0

and integration over�×(0, T ) for T > 0, as in [15] we obtain that since zε(·, 0) ≡ 0,

∫ T

0

∫

�

wε∂t zε ≤
∫

�

wε(·, 0)zε(·, T ) − 1

2

∫

�

|∇zε(·, T )|2 +
∫

�

zε(·, T )

≤
∫

�

(
wε(·, 0) + 1

)
zε(·, T ) for all ε ∈ (0, 1), (3.6)

where the right-hand side is now estimated in a way slightly deviating from that in [15]
due to the different boundary conditions considered here. In fact, by nonnegativity of
wε the inequality in (3.5) implies that for each fixed T > 0 and arbitrary ε ∈ (0, 1),

{−�zε(·, T ) + zε(·, T ) ≤ wε(·, 0) + 1 + zε(·, T ) in � and
∂νzε(·, T ) = 0 on ∂�,

so that since the Helmholtz operator −� + 1 admits a comparison principle under
homogeneous Neumann boundary conditions, we obtain that

zε(·, T ) ≤ zε in �, (3.7)

where zε denotes the solution of
{−�zε + zε = wε(·, 0) + 1 + zε(·T ) in �,

∂νzε = 0 on ∂�.

Now without loss of generality assuming that the number r ≥ 1 in (1.6) satisfies
r < 2, we take r ′ ∈ (2,∞] such that 1

r + 1
r ′ = 1, and employ a Sobolev embedding

theorem and elliptic regularity theory [11] to find c1 > 0 and c2 > 0 such that for all
ε ∈ (0, 1),

‖zε‖Lr ′ (�)
≤ c1‖zε‖W 2,r (�) ≤ c2‖wε(·, 0) + 1 + zε(·, T )‖Lr (�)

≤ c2‖wε(·, 0) + 1‖Lr (�) + c2‖zε(·, T )‖Lr (�), (3.8)
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because the restrictions on r in (1.6) warrant that 2 − n
r ≥ − n

r ′ if n ≥ 3, and that
2 − n

r > 0 if n ≤ 2. Here we note that according to Lemma 3.1 we know that if we
let θ ∈ (0, 1) small enough such that θmi ≤ 1 for all i ∈ {1, ..., N }, then we can find
c3(T ) > 0 fulfilling

∫

�

zθε (·, T ) ≤ T θ sup
t∈(0,T )

∫

�

{ N∑

i=1

aidi (uiε(·, t) + ε)mi

}θ

≤
{
NT max

i∈{1,...,N } aidi
}θ

max
i∈{1,...,N } sup

t∈(0,T )

∫

�

(uiε(·, t) + ε)θmi

≤
{
NT max

i∈{1,...,N } aidi
}θ

max
i∈{1,...,N } sup

t∈(0,T )

∫

�

(uiε(·, t) + 1)

≤ c3(T ) for all ε ∈ (0, 1),

whence using that then θ < 1 < r < 2 < r ′ we may invoke Hölder’s and Young’s
inequality to see that with λ = ( 1

θ
− 1

r )/(
1
θ

− 1
r ′ ) ∈ (0, 1) and some c4 > 0 we have

c2‖zε(·, T )‖Lr (�) ≤ c2‖zε(·, T )‖λ

Lr ′ (�)
‖zε(·, T )‖1−λ

Lθ (�)

≤ 1

2
‖zε(·, T )‖Lr ′ (�)

+ c4‖zε(·, T )‖Lθ (�)

≤ 1

2
‖zε(·, T )‖Lr ′ (�)

+ c
1
θ

3 (T )c4 for all ε ∈ (0, 1).

In view of (3.7) and the nonnegativity of zε, (3.8) thus implies that

‖zε(·, T )‖Lr ′ (�)
≤ ‖zε‖Lr ′ (�)

≤ c2‖wε(·, 0) + 1‖Lr (�)

+1

2
‖zε(·, T )‖Lr ′ (�)

+ c
1
θ

3 (T )c4 for all ε ∈ (0, 1),

so that in (3.6) we can use the Hölder inequality to estimate
∫

�

(
wε(·, 0) + 1

)
zε(·, T ) ≤ ‖wε(·, 0) + 1‖Lr (�)‖zε(·, T )‖Lr ′ (�)

≤ ‖wε(·, 0) + 1‖Lr (�) ·
{
2c2‖wε(·, 0) + 1‖Lr (�) + 2c

1
θ

3 (T )c4
}

for all ε ∈ (0, 1). As supε∈(0,1) ‖wε(·, 0)‖Lr (�) is finite according to the hypothesis
(3.2), (3.6) thereby entails the existence of c5(T ) > 0 such that

∫ T

0

∫

�

e−2Kt ·
{ N∑

i=1

di (uiε + ε)mi

}

·
{ N∑

i=1

uiε

}

≤ c5(T ) for all ε ∈ (0, 1),

from which (3.4) readily follows. �
We next rely on (1.5) in deriving the following estimates for gradients and re-

action terms. Testing (3.1) by − 1
φi (uiε)

, namely, enables us to successfully combine
(1.5) with (3.4). In order to obtain a bound for, e.g., | fi (u1ε, ..., uNε)| instead of
|− 1

φi (uiε)
fi (u1ε, ..., uNε)|, we here restrict our attention to sets of the form {uiε ≤ M},

where | − 1
φi (uiε)

| can be estimated from below by a positive constant.
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Lemma 3.3. Let M > 0 and T > 0. Then one can find C(M, T ) > 0 such that
∫ T

0

∫

�

χ{uiε≤M}(uiε + ε)mi−1|∇uiε|2 ≤ C(M, T )

for all i ∈ N and ε ∈ (0, 1) (3.9)

and
∫ T

0

∫

�

χ{uiε≤M}
| fi (u1ε, ..., uNε)|

1 + ε
∑N

j=1 | f j (u1ε, ..., uNε)|
≤ C(M, T )

for all i ∈ N and ε ∈ (0, 1). (3.10)

Proof. For fixed i ∈ {1, ..., N }, we take φi ∈ C1([0,∞)) as in (1.5) and define

�i (s) := −
∫ s+1

1

dσ

φi (σ )
, s ≥ 0.

Then since φi is nondecreasing, we have

0 ≥ �i (s) ≥ −c1i s for all s ≥ 0 (3.11)

with c1i := 1
φi (1)

> 0, and moreover �′
i (s) = − 1

φi (s+1) , s ≥ 0, satisfies

0 ≤ −�′
i (s) ≤ 1

φi (s)
for all s ≥ 0. (3.12)

Now using (3.1), for ε ∈ (0, 1) and t > 0 we compute

d

dt

∫

�

�i (uiε) =
∫

�

�′
i (uiε) ·

{

dimi∇ ·
(
(uiε + ε)mi−1∇uiε

)

+ fi (u1ε, ..., uNε)

1 + ε
∑N

j=1 | f j (u1ε, ..., uNε)|
}

= −dimi

∫

�

(uiε + ε)mi−1�′′
i (uiε)|∇uiε|2

+
∫

�

�′
i (uiε) · fi (u1ε, ..., uNε)

1 + ε
∑N

j=1 | f j (u1ε, ..., uNε)|
,

so that splitting fi = | fi | − 2( fi )−, upon further integration we find that

dimi

∫ T

0

∫

�

(uiε + ε)mi−1�′′
i (uiε)|∇uiε|2

+
∫ T

0

∫

�

|�′
i (uiε)| · | fi (u1ε, ..., uNε)|

1 + ε
∑N

j=1 | f j (u1ε, ..., uNε)|
=

∫

�

�i (u0iε) −
∫

�

�i (uiε(·, T ))

+2
∫ T

0

∫

�

|�′
i (uiε)| · ( fi (u1ε, ..., uNε))−

1 + ε
∑N

j=1 | f j (u1ε, ..., uNε)|
for all T > 0,

(3.13)
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because �′
i is nonpositive. Now on the right-hand side of (3.13) we use (1.5) to see

that thanks to (3.12),

2
∫ T

0

∫

�

|�′
i (uiε)| · ( fi (u1ε, ..., uNε))−

1 + ε
∑N

j=1 | f j (u1ε, ..., uNε)|
≤ 2

∫ T

0

∫

�

|�′
i (uiε)| · φi (uiε)

·
{ ∑

j �=i

u
β j
jε + 1

}

≤ 2
∑

j �=i

∫ T

0

∫

�

u
β j
jε + 2|�|T

for all T > 0,

whence recalling Lemma 3.2 we obtain c2i (T ) > 0 such that for all ε ∈ (0, 1),

2
∫ T

0

∫

�

|�′
i (uiε)| · ( fi (u1ε, ..., uNε))−

1 + ε
∑N

j=1 | f j (u1ε, ..., uNε)|
≤ c2i (T ). (3.14)

As
∫

�

�i (u0iε) −
∫

�

�i (uiε(·, T )) ≤ c1i

∫

�

uiε(·, T ) for all T > 0

by (3.11), in viewofLemma3.1we thus conclude from(3.13) that there exists c3i (T ) >

0 with the property that

dimi

∫ T

0

∫

�

(uiε + ε)mi−1�′′
i (uiε)|∇uiε|2 +

∫ T

0

∫

�

|�′
i (uiε)|

· | fi (u1ε, ..., uNε)|
1 + ε

∑N
j=1 | f j (u1ε, ..., uNε)|

≤ c3i (T ) (3.15)

for all ε ∈ (0, 1). Noting that for fixed M > 0 and any i ∈ {1, ..., N } the numbers

c4i := min
s∈[0,M] �

′′
i (s) = min

s∈[0,M]
φ′
i (s + 1)

φ2
i (s + 1)

and

c5i := min
s∈[0,M] |�

′
i (s)| = 1

φi (M + 1)

are both positive according to our hypotheses on φi and φ′
i , from (3.15) we readily

infer (3.9) and (3.10) if we letC(M, T ) := max
{
maxi∈{1,...,N } c3i (T )

dimi c4i
, maxi∈{1,...,N }

c3i (T )
c5i

}
, for instance. �

While the bound in Lemma 3.2 is sufficient for concluding relative compactness of
{uiε | ε ∈ (0, 1)} in some weak topology, we are additionally interested in possible
pointwise convergence of uiε j along some sequence (ε j ) j∈N ↘ 0. We thus strive to
derive a suitable strong compactness property in L2(�× (0, T )), at least of a power of
uiε which has been cut off at large values so as to ensure accessibility to the estimates
of Lemma 3.3.
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Lemma 3.4. Given ζ ∈ C∞
0 ([0,∞)), for i ∈ {1, ..., N } let ρi (s) := sκi ζ(s), s ≥ 0,

where κi := max{mi+1
2 , 2}. Then

(
ρi (uiε)

)

ε∈(0,1)
is relatively compact in L2(� × (0, T )) for all T > 0. (3.16)

Proof. Let us first make sure that for each T > 0,
(
ρi (uiε)

)

ε∈(0,1)
is bounded in L2((0, T );W 1,2(�)). (3.17)

To see this,we note that due to the compactness of supp ρi it is clear that (ρi (uiε))ε∈(0,1)

is bounded in L∞(� × (0,∞)). Therefore, (3.17) results upon the observation that if
we fix M > 0 such that ζ ≡ 0 on (M,∞), then by Young’s inequality and (3.9) we
see that for all T > 0 there exists c1(T ) > 0 such that
∫ T

0

∫

�

|∇ρi (uiε)|2 =
∫ T

0

∫

�

(ρ′
i (uiε))

2|∇uiε|2

=
∫ T

0

∫

�

(
κi u

κi−1
iε ζ(uiε) + uκi

iεζ
′(uiε)

)2|∇uiε|2

≤ 2κ2
i ‖ζ‖2L∞((0,∞))

∫ T

0

∫

�

χ{uiε≤M}u2κi−2
iε |∇uiε|2

+2‖ζ ′‖2L∞((0,∞))

∫ T

0

∫

�

χ{uiε≤M}u2κiiε |∇uiε|2

≤ 2κ2
i ‖ζ‖2L∞((0,∞))M

2κi−mi−1
∫ T

0

∫

�

χ{uiε≤M}umi−1
iε |∇uiε|2

+2‖ζ ′‖2L∞((0,∞))M
2κi−mi+1

∫ T

0

∫

�

χ{uiε≤M}umi−1
iε |∇uiε|2

≤ c1(T ) for all ε ∈ (0, 1),

where we have used that 2κi − mi + 1 ≥ 2κi − mi − 1 ≥ 0 by hypothesis.
We next fix any integer k ≥ 1 such that k > n, and claim that then for all T > 0,

(
∂tρi (uiε)

)

ε∈(0,1)
is bounded in L1

(
(0, T ); (Wk,2(�))�

)
. (3.18)

To verify this in quite a straightforward manner, we pick ψ ∈ C∞(�) and use (3.1)
to see that for each t > 0 and any ε ∈ (0, 1),

∣
∣
∣
∣

∫

�

∂tρi (uiε(·, t)) · ψ

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

�

ρ′
i (uiε)ψ ·

{

dimi∇ ·
(
(uiε + ε)mi−1∇uiε

)
+ fi (u1ε, ..., uNε)

1 + ε
∑N

j=1 | f j (u1ε, ..., uNε)|
}∣
∣
∣
∣

=
∣
∣
∣
∣ − dimi

∫

�

(uiε + ε)mi−1ρ′′
i (uiε)|∇uiε|2ψ − dimi

∫

�

(uiε + ε)mi−1ρ′
i (uiε)∇uiε · ∇ψ

+
∫

�

ρ′
i (uiε) · fi (u1ε, ..., uNε)

1 + ε
∑N

j=1 | f j (u1ε, ..., uNε)|
· ψ

∣
∣
∣
∣
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≤ dimi‖ρ′′
i ‖L∞((0,∞)) ·

{ ∫

�

χ{uiε≤M}(uiε + ε)mi−1|∇uiε|2
}

· ‖ψ‖L∞(�)

+dimi ·
{∫

�

χ{uiε≤M}(uiε + ε)mi−1|∇uiε|2 + |�| sup
s≥0

(s + ε)mi−1|ρ′
i (s)|2

}

‖∇ψ‖L∞(�)

+‖ρ′
i‖L∞((0,∞)) ·

{ ∫

�

χ{uiε≤M}
| fi (u1ε, ..., uNε)|

1 + ε
∑N

j=1 | f j (u1ε, ..., uNε)|
}

· ‖ψ‖L∞(�), (3.19)

where finiteness of both ‖ρ′‖L∞((0,∞)) and ‖ρ′′
i ‖L∞((0,∞)) is asserted by our restriction

that κi ≥ 2. Here we observe that in the case mi ≥ 1 we have

(s + ε)mi−1|ρ′
i (s)|2 ≤ (M + 1)mi−1‖ρ′

i‖2L∞((0,∞)),

whereas if mi < 1 then

(s + ε)mi−1|ρ′
i (s)|2 ≤ smi−1|ρ′

i (s)|2

= smi−1 ·
∣
∣
∣κi s

κi−1ζ(s) + sκi ζ ′(s)
∣
∣
∣
2

≤ 2κ2
i s

2κi+mi−3ζ 2(s) + 2s2κi+mi−1|ζ ′(s)|2
≤ 2κ2

i M
2κi+mi−3‖ζ‖2L∞((0,∞)) + 2M2κi+mi−1‖ζ ′‖2L∞((0,∞)),

because again by definition of κi , we have 2κi + mi − 1 ≥ 2κi + mi − 3 ≥ 0. As
furthermore Wk,2(�) ↪→ W 1,∞(�) due to our restriction that k > n, from (3.19) we
thus infer the existence of c2 > 0 such that for all t > 0 and any ε ∈ (0, 1),

∥
∥
∥∂tρi (uiε(·, t))

∥
∥
∥

(Wk,2(�))�
≤ c2

∫

�

χ{uiε≤M}(uiε + ε)mi−1|∇uiε|2 + c2

+c2

∫

�

χ{uiε≤M}
| fi (u1ε, ..., uNε)|

1 + ε
∑N

j=1 | f j (u1ε, ..., uNε)|
,

which in light of (3.9) and (3.10) establishes (3.18) upon a time integration.
We finally only need to combine (3.17) with (3.18) to conclude that (3.16) is a conse-
quence of an Aubin-Lions type lemma ([25, Cor. 4]). �
Based on this compactness statement, we may conclude the existence of a limit

object.

Lemma 3.5. There exist (ε j ) j∈N ⊂ (0, 1) and nonnegative functions u1, ..., uN de-
fined on�× (0,∞) such that ε j ↘ 0 as j → ∞, and such that for all i ∈ {1, ..., N },

uiε → ui a.e. in � × (0,∞) (3.20)

and

uiε → ui in L p
loc(� × [0,∞)) for all p ∈ [1,mi + 1) (3.21)

as well as

uiε ⇀ ui in Lmi+1
loc (� × [0,∞)) (3.22)

as ε = ε j ↘ 0.
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Proof. In Lemma 3.4 choosing ζ = ζl , with ζl ∈ C∞
0 ([0,∞)) satisfying ζl ≡ 1 in

[0, l] for l ∈ N, by means of a straightforward extraction procedure relying on the
relative compactness of {u2iεζl(uiε) | ε ∈ (0, 1)} in L2(� × (0, T )) for any T > 0
we obtain (ε j ) j∈N ⊂ (0, 1) and u = (u1, ..., uN ) : � × (0,∞) → R

N such that for
all i ∈ {1, ..., N } we have ui ≥ 0 and uiε → ui a.e. in � × (0,∞) as ε = ε j ↘ 0.
Since for each i ∈ {1, ..., N } and all T > 0 we know from Lemma 3.2 that (uiε)ε∈(0,1)

is bounded in Lmi+1(� × (0, T )), and that hence (u p
iε)ε∈(0,1) is uniformly integrable

over � × (0, T ) for all p ∈ [1,mi + 1), by reflexivity of Lmi+1(� × (0, T )) and the
Vitali convergence theorem we readily infer that on passing to a further subsequence
if necessary we can also achieve simultaneous validity of (3.21) and (3.22). �

Our next goal is to show that the functions just constructed actually form a solution.
We begin by confirming that they enjoy a renormalized supersolution property in the
style of Definition 2.1. The most crucial ingredient in our verification of this – and
actually the reason for dealing with supersolutions – becomes apparent in (3.28),
which is enlisted to control the integral involving the gradient (of P(1)

i (u)) from above
by means of lower semicontinuity.

Lemma 3.6. Let u1, ..., uN be as given by Lemma 3.5. Then u = (u1, ..., uN ) forms
a renormalized supersolution of (1.4) in the sense of Definition 2.1.

Proof. We fix i ∈ {1, ..., N } and a nonincreasing convex ρ ∈ C∞([0,∞)) such that
ρ′ ∈ C∞

0 ([0,∞)), and use (3.1) to see that for all nonnegative ϕ ∈ C∞
0 (� × [0,∞))

such that ∂ϕ
∂ν

= 0 on ∂� × (0,∞), we have

−
∫ ∞

0

∫

�

ρ(uiε)ϕt −
∫

�

ρ(u0iε)ϕ(·, 0) = +
∫ ∞

0

∫

�

∂tρ(uiε)ϕ

=
∫ ∞

0

∫

�

ρ′(uiε)ϕ ·
{

dimi∇ ·
(
(uiε + ε)mi−1∇uiε

)

+ fi (u1ε, ..., uNε)

1 + ε
∑N

j=1 | f j (u1ε, ..., uNε)|
}

= −dimi

∫ ∞

0

∫

�

(uiε + ε)mi−1ρ′′(uiε)|∇uiε|2ϕ

−dimi

∫ ∞

0

∫

�

(uiε + ε)mi−1ρ′(uiε)∇uiε · ∇ϕ

+
∫ ∞

0

∫

�

ρ′(uiε) · fi (u1ε, ..., uNε)

1 + ε
∑N

j=1 | f j (u1ε, ..., uNε)|
· ϕ

= −dimi

∫ ∞

0

∫

�

|∇P(1)
iε (uiε)|2ϕ + dimi

∫ ∞

0

∫

�

P(2)
iε (uiε)�ϕ

+
∫ ∞

0

∫

�

ρ′(uiε) · fi (u1ε, ..., uNε)

1 + ε
∑N

j=1 | f j (u1ε, ..., uNε)|
· ϕ for all ε ∈ (0, 1),

(3.23)
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where we have set

P(1)
iε (s) :=

∫ s

0
(σ + ε)

mi−1
2

√
ρ′′(σ )dσ

and P(2)
iε (s) :=

∫ s

0
(σ + ε)mi−1ρ′(σ )dσ, s ≥ 0, (3.24)

for i ∈ {1, ..., N } and ε ∈ (0, 1). Here we note that if we take M > 0 and T > 0 large
enough fulfilling supp ρ′ ⊂ [0, M] and suppϕ ⊂ � × [0, T ], then for all ε ∈ (0, 1),

∫ ∞

0

∫

�

∣
∣
∣
√

ϕ∇P(1)
iε (uiε)

∣
∣
∣
2 ≤ ‖ρ′′‖L∞((0,∞))‖ϕ‖L∞(�×(0,∞))

∫ T

0

∫

�

χ{uiε≤M}(uiε + ε)mi−1|∇uiε|2,

whence again employing Lemma 3.3 we infer that with (ε j ) j∈N as provided by
Lemma 3.5, we can find a subsequence (ε jk )k∈N such that

√
ϕ∇P(1)

iε (uiε) ⇀ z in L2(� × (0,∞);Rn) as ε = ε jk ↘ 0 (3.25)

for some z ∈ L2(�×(0,∞);Rn). On the other hand, since (3.24) entails that P(1)
iε →

P(1)
i in L∞

loc([0,∞)) as ε ↘ 0, with P(1)
i given by (2.1), and since moreover

|P(1)
iε (s)| ≤ ‖ρ′′‖

1
2
L∞((0,∞))

∫ M

0
(σ + ε)

mi−1
2 dσ

= ‖ρ′′‖
1
2
L∞((0,∞)) · (M + ε)

mi+1
2 − ε

mi+1
2

mi+1
2

≤ ‖ρ′′‖
1
2
L∞((0,∞)) · 2(M + 1)

mi+1
2

mi + 1
for all s ≥ 0 and ε ∈ (0, 1),

(3.26)

from (3.20) and the dominated convergence theorem it follows that

P(1)
iε (uiε) → P(1)

i (ui ) in L1(� × (0, T )) as ε = ε j ↘ 0. (3.27)

Therefore, a standard argument shows that in (3.25) we must have z = √
ϕ∇P(1)

i (ui )
a.e. in Xδ = {ϕ > δ} for all δ > 0 (where (3.27) and (3.25) enable us to pass to
the limit in the definition of the weak gradient of P(1)

iε (uiε): − ∫

Xδ
P(1)
i (ui )∇ψ ←

− ∫

Xδ
∇ψP(1)

iε (uiε) = ∫

Xδ
ψ∇P(1)

iε (uiε) → ∫

Xδ
ψ z√

ϕ
for each ψ ∈ C∞

0 (Xδ)), and

hence actually
√

ϕ∇P(1)
iε (uiε) ⇀

√
ϕ∇P(1)

i (ui ) in L2
loc(�× (0,∞)) as ε = ε jk ↘ 0,

so that by lower semicontinuity of the norm in L2(� × (0,∞)) with respect to weak
convergence,

dimi

∫ ∞

0

∫

�

|∇P(1)
i (ui )|2ϕ ≤ lim inf

ε=ε jk↘0

{

dimi

∫ ∞

0

∫

�

|∇P(1)
iε (uiε)|2ϕ

}

. (3.28)
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Next addressing the integrals in (3.23) exclusively containing zero-order expressions
with respect to uiε, we first observe that clearly

|ρ(s)| ≤ ‖ρ′‖L∞((0,∞)) · M + |ρ(0)| for all s ≥ 0,

and that furthermore, by (3.24), similarly to (3.26) we can estimate

|P(2)
iε (s)| ≤ ‖ρ′‖L∞((0,∞))

∫ M

0
(σ + ε)mi−1dσ

≤ ‖ρ′‖L∞((0,∞)) · (M + 1)mi

mi
for all s ≥ 0 and ε ∈ (0, 1).

Therefore, three applications of the dominated convergence theorem on the basis of
(3.20) and (3.2) show that if we take P(2)

i from (2.1) then

∫ ∞

0

∫

�

ρ(uiε)ϕt →
∫ ∞

0

∫

�

ρ(ui )ϕt (3.29)

and
∫

�

ρ(u0iε)ϕ(·, 0) →
∫

�

ρ(u0i )ϕ(·, 0) (3.30)

as well as

dimi

∫ ∞

0

∫

�

P(2)
iε (uiε)�ϕ → dimi

∫ ∞

0

∫

�

P(2)
i (ui )�ϕ (3.31)

as ε = ε j ↘ 0, the latter because in addition obviously P(2)
iε → P(2)

i in L∞
loc([0,∞))

as ε ↘ 0.
Finally, in the crucial rightmost summand in (3.23) containing the reactive contri-

bution, we once more rewrite fi = | fi | − 2( fi )− and note that fixing any δ > 0 such
that (1 + δ)β j ≤ m j + 1 for all j ∈ {1, ..., N } \ {i}, again relying on (1.5) we can
estimate

∫ T

0

∫

�

∣
∣
∣
∣ρ

′(uiε) · ( fi (u1ε, ..., uNε))−
1 + ε

∑N
j=1 | f j (u1ε, ..., uNε)|

· ϕ

∣
∣
∣
∣

1+δ

≤
∫ T

0

∫

�

|ρ′(uiε)|1+δ ·
{

φi (uiε)

(∑

j �=i

u
β j
jε + 1

)}1+δ

· ϕ1+δ

≤
{
‖ρ′‖L∞((0,∞)) · ‖φi‖L∞((0,M)) · ‖ϕ‖L∞(�×(0,∞))

}1+δ

·N 1+δ ·
(∑

j �=i

∫ T

0

∫

�

u
(1+δ)β j
jε + |�|T

)

for all ε ∈ (0, 1). In view of Lemma 3.2, by positivity of δ this implies uniform

integrability of
(
ρ′(uiε) · ( fi (u1ε,...,uNε))−

1+ε
∑N

j=1 | f j (u1ε,...,uNε)| ·ϕ
)

ε∈(0,1)
over�× (0, T ) and hence
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entails, when combined with (3.20), that

−2
∫ ∞

0

∫

�

ρ′(uiε) · ( fi (u1ε, ..., uNε))−
1 + ε

∑N
j=1 | f j (u1ε, ..., uNε)|

· ϕ

→ −2
∫ ∞

0

∫

�

ρ′(ui )( fi (u1, ..., uN ))−ϕ (3.32)

as ε = ε j ↘ 0. Since apart from that, by nonnegativity of both −ρ′ and ϕ we can
invoke Fatou’s lemma to see that, again thanks to (3.20),

−
∫ ∞

0

∫

�

ρ′(ui )| fi (u1, ..., uN )|ϕ

≤ lim inf
ε=ε j↘0

{

−
∫ ∞

0

∫

�

ρ′(uiε) · | fi (u1ε, ..., uNε)|
1 + ε

∑N
j=1 | f j (u1ε, ..., uNε)|

· ϕ

}

, (3.33)

upon collecting (3.28)–(3.33) we altogether conclude from (3.23) that

dimi

∫ ∞

0

∫

�

|∇P(1)
i (ui )|2ϕ −

∫ ∞

0

∫

�

ρ′(ui )| fi (u1, ..., uN )|ϕ

≤ lim inf
ε=ε jk↘0

{

dimi

∫ ∞

0

∫

�

∣
∣
∣∇P(1)

iε (uiε)|2ϕ

−
∫ ∞

0

∫

�

ρ′(uiε) · | fi (u1ε, ..., uNε)|
1 + ε

∑N
j=1 | f j (u1ε, ..., uNε)|

· ϕ

}

= lim inf
ε=ε jk↘0

{∫ ∞

0

∫

�

ρ(uiε)ϕt +
∫

�

ρ(u0iε)ϕ(·, 0)

+dimi

∫ ∞

0

∫

�

P(2)
iε (uiε)�ϕ

−2
∫ ∞

0

∫

�

ρ′(uiε) · ( fi (u1ε, ..., uNε))−
1 + ε

∑N
j=1 | f j (u1ε, ..., uNε)|

· ϕ

}

=
∫ ∞

0

∫

�

ρ(ui )ϕt +
∫

�

ρ(u0i )ϕ(·, 0)

+dimi

∫ ∞

0

∫

�

P(2)
i (ui )�ϕ − 2

∫ ∞

0

∫

�

ρ′(ui )( fi (u1, ..., .uN ))−ϕ,

which is equivalent to the desired inequality (2.3). The integrability requirements in
(2.2) are evident by-products of the above considerations. �

But also the subsolution property encoded in (2.5) is fulfilled:

Lemma 3.7. The function u = (u1, ..., uN ) from Lemma 3.5 satisfies (2.4) and (2.5)
of Definition 2.2.

Proof. According to (3.21), we can pick a null set N ⊂ (0,∞) such that with (ε j ) j∈N
taken from Lemma 3.5, for each t ∈ (0,∞)\ N we have uiε(·, t) → ui (·, t) in L1(�)
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for all i ∈ {1, ..., N } and hence

∫

�

N∑

i=1

aiuiε(·, t) →
∫

�

N∑

i=1

aiui (·, t) (3.34)

as ε = ε j ↘ 0, where a ∈ (0,∞)N is taken from (1.3). We next let Fε(s1, ..., sN ) :=
∑N

i=1
ai fi (s1,...,sN )

1+ε
∑N

j=1 | f j (s1,...,sN )| and F(s1, ..., sN ) := ∑N
i=1 ai fi (s1, ..., sN )

for (s1, ..., sN ) ∈ R
N and ε ∈ (0, 1), and then obtain from (1.3) that

(
Fε(u1ε, ..., uNε)

)

+ ≤ K
N∑

i=1

aiuiε + K in � × (0,∞) for all ε ∈ (0, 1).

In view of (3.21) applied to p := 1, a version of the dominated convergence theorem
thus ensures that

∫ t

0

∫

�

(
Fε(u1ε, ..., uNε)

)

+ →
∫ t

0

∫

�

F+(u1, ..., uN )

for all t > 0 as ε = ε j ↘ 0, (3.35)

because clearly
(
Fε(u1ε, ..., uNε)

)

+ → F+(u1, ..., uN ) a.e. in � × (0,∞) as ε =
ε j ↘ 0 by (3.20). Since from (3.1) we know that for all t > 0 and ε ∈ (0, 1) we have

∫

�

N∑

i=1

aiuiε(·, t) +
∫ t

0

∫

�

(
Fε(u1ε, ..., uNε)

)

− =
∫

�

N∑

i=1

aiu0iε

+
∫ t

0

∫

�

(
Fε(u1ε, ..., uNε)

)

+,

where by (3.20) also
(
Fε(u1ε, ..., uNε)

)

− → F−(u1, ..., uN ) a.e. in � × (0,∞) as

ε = ε j ↘ 0, and where
∫

�

∑N
i=1 aiu0iε → ∫

�

∑N
i=1 aiu0i as ε ↘ 0 due to (3.2),

invoking Fatou’s lemma we infer by means of (3.34) and (3.35) that

∫

�

N∑

i=1

aiui (·, t) +
∫ t

0

∫

�

F−(u1, ..., uN ) ≤
∫

�

N∑

i=1

aiu0i

+
∫ t

0

∫

�

F+(u1, ..., uN ) for all t ∈ (0,∞) \ N .

For any such t , this firstly implies that F(u1, . . . , uN ) belongs to L1(� × (0, t)), and
secondly entails that (2.5) holds. �

The previous two lemmata already demonstrate that u is a generalized solution in the
sense of Definition 2.2:

Proof of Theorem 1.1. We take u1, ..., uN as given by Lemma 3.5 and then only need
to combine Lemma 3.6 with Lemma 3.7. �
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