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Abstract
On the seven dimensional Euclidean sphere S

7 we compare two subriemannian struc-
tures with regards to various geometric and analytical properties. The first structure is
called trivializable and the underlying distributionHT is induced by a Clifford module
structure of R

8. More precisely,HT is rank 4, bracket generating of step two and gen-
erated by globally defined vector fields. The distribution HQ of the second structure
is of rank 4 and step two as well and obtained as the horizontal distribution in the
quaternionic Hopf fibration S

3 ↪→ S
7 → S

4. Answering a question in: Markina and
Godoy Molina (Rev Mat Iberoam 27(3), 997–1022, 2011) we first show thatHQ does
not admit a global nowhere vanishing smooth section. In both cases we determine
the Popp measures [20], the intrinsic sublaplacians �T

sub and �
Q
sub and the nilpotent

approximations. We conclude that both subriemannian structures are not locally iso-
metric and we discuss properties of the isometry group. By determining the first heat
invariant of the sublaplacians it is shown that both structures are also not isospectral
in the subriemannian sense.
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1 Introduction

Let (M,H, 〈·, ·〉)be a subriemannianmanifold, i.e.M is a smooth connectedorientable
manifold endowed with a bracket generating subbundleH of the tangent bundle T M .
Moreover, 〈·, ·〉 denotes a family of inner products on H which smoothly vary with
the base point. From a geometric point of view one is led to the problem of defining
and classifying subriemannian structures of specific types on a given manifold (e.g.
up to local subriemannian isometries) or, to compare them with regards to various
of their geometric properties, e.g. [6, 11, 18, 28, 29, 31]. Any regular subriemannian
structure on M induces a hypoelliptic sublaplacian �sub, [2, 4, 7, 8, 10, 14, 16, 17,
21, 22]. Which intrinsically is defined based on the Popp measure construction [2, 3,
5, 26]. From an analytical point of view one may study the diffusion on M generated
by the heat operator induced by �sub [3, 7, 20, 31–34]. Which geometric data can
be recovered from such analytically defined objects? Extending a classical problem
in Riemannian geometry and in the case of a compact manifold M , one may ask
whether two non-isometric subriemannian structures are isospectral with respect to
their induced sublaplacians (e.g. see [13] for affirmative examples).

In the special case of a Euclidean sphere M = S
N of dimension N typical methods

(depending on N ) of installing a subriemannian geometry on M use a Lie group struc-
ture (N = 3), a contact structure (N odd), a principle bundle structure such as the Hopf
fibration S

2n+1 → CP
n (N odd) or the quaterionic Hopf fibration, S

4n+3 → HP
n ,

CR-geometry or a suitable number of canonical vector fields in [1] (N = 3, 7, 15).
In the lowest dimensional case N = 3 all these structures essentially coincide as was
pointed out in [29].

The present paper contributes with concrete examples to the above analysis. We
compare two subriemannian structures onM = S

7 and, in particular, essentially extend
results in [10]. Therein the authors have shown that the N -dimensional Euclidean
sphere S

N carries a trivializable subriemannian structure induced by a Cliffordmodule
structure of R

N+1 only in dimensions N = 3, 7, 15. Moreover, in this paper the
spectrum of a corresponding second order differential operator (in [10] it is called
sublaplacian) has been studied. However, it should be pointed out that this sublaplacian
differs from the intrinsic one which we consider here by a first order term.

We recall the construction of a bracket generating trivial rank-k distribution on a
sphere of dimension N = 3, 7, 15: Consider a family of (N + 1) × (N + 1) skew-
symmetric real matrices A1, . . . , Ak such that

Ai A j + A j Ai = −2δi j for i, j = 1, . . . , k.

Then a collection of k linear vector fields on S
N that are orthonormal at each point of

the sphere can be defined in global coordinates of R
N+1 by:

X(Al) :=
N+1∑

i, j=1

(Al)i j x j
∂

∂xi
, (l = 1, . . . , k).
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According to the results in [10] the rank k distribution

H := span{X(Al) : l = 1, . . . , k} ⊂ TS
N

is trivial as a vector bundle by definition. Moreover, H is bracket generating of step
two only for particular choices of N and k. Whereas in the case N = 3 and N = 15
a trivializable bracket generating distribution H � TS

N of the above kind must
have rank two and rank eight, respectively, there are three trivializable subriemannian
structures on S

7 of rank 4, 5 and 6. For N = 3 such a subriemannian structure on S
3

is isometric to the one induced by the well-known Hopf fibration, see [29].

S
1 ↪→ S

3 → S
2

Under some geometric aspects the above trivializable SR structures on S
7 have been

studied in [9]. More precisely, the authors analyzed the corresponding geodesic flow
and constructed a family of normal subriemannian geodesics (i.e. locally length min-
imizing curves induced from the geodesic equations).

In the present paper, we analyze a trivializable subriemannian structure on S
7 of

rank 4 and we compare it with the quaternionic contact structure of rank 4 on S
7

induced by the quaternionic Hopf fibration [30]

S
3 ↪→ S

7 → S
4.

Answering a question in [29]wefirst show that the horizontal distribution in the quater-
nionic Hopf fibration is not trivial. It does not even admit a single global nowhere
vanishing smooth section. In fact, this follows from results in topological K-theory
in [27]. We show that the so-called tangent groups i.e. local approximations of the
trivializable subriemannian structure on S

7 may change from point to point. As a
consequence the subriemannian isometry group cannot act transitively on S

7. Further-
more, the trivializable distribution is of elliptic type (see [31] for a definition) inside
an open dense subset. Hence, by a result of Montgomery in [31], it follows that the
subriemannian isometry group is finite dimensional with dimension bounded by 21.

We calculate the Popp measures on S
7 induced by the trivializable and quater-

nionic contact structures, respectively, and we determine the intrinsic sublaplacians.
Moreover, by applying recent results due to de Verdiére et al. [22] combined with an
explicit form of the subelliptic heat kernel on step two nilpotent Lie groups in [14,
17] we compute the first heat invariants appearing in the small-time asymptotics of
the heat trace associated to the intrinsic sublaplacians. Based on these data we can
show that the subriemannian structures (quaternionic contact and trivializable) on S

7

are neither locally isometric nor isospectral with respect to the intrinsic sublaplacians.
Finally, we mention that an explicit form of the heat kernel (i.e. fundamental solu-

tion to the heat operator) of the intrinsic sublaplacian induced from the trivializable
subriemannian structure is unknown. Since the corresponding subriemannian isometry
group does not act transitively on S

7 it would be not sufficient to only calculated it at
a fixed point. This is in contrast to the quaternionic contact structure. In the latter case
the isometry group acts transitively and the subelliptic heat kernel has been obtained
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explicitly in [8]. Moreover, the explicit form of the heat kernel has been used in [8]
to obtain some of the heat invariants, i.e. in this case the analysis does not rely on the
approximation methods in Sect. 8.

The paper is organized as follows: Sect. 2 provides basic concepts and definitions
in subriemannian geometry. In Sects. 3 and 4 we recall the construction of two dif-
ferent subriemannian structures on S

7 and we list some of their properties. Then we
compute the Popp volume induced by these structures in Sect. 5. In Sect. 6 we show
that the tangent groups of S

7 endowed with the trivializable subriemannian structure
may change from point to point and that this structure is not locally isometric to the
quaternionic contact structure. The type of the trivializable structure is determined
in Sect. 7 and this allows us to obtain a bound on the dimension of the isometry
group. In Sect. 8 we compute the first heat invariants in the small-time asymptotics
of the heat trace by using an approximation method in [19, 22]. Comparing both we
show that the above subriemannian structures on S

7 are not isospectral with respect
to the sublaplacians. In Sect. 9 we consider the (non-intrinsic) sublaplacian �̃T

sub on
S
7
T induced by the standard measure on S

7. In Theorem 9.3 we prove the inclusion

σ(�
Q
sub) ⊂ σ(�̃T

sub) of spectra where �
Q
sub denotes the sublaplacian corresponding to

the quarternionic contact structure. However, we mention that both operators are not
isospectral. Section 9 extends former results in [10].

2 Subriemannian Geometry

We start recalling basic definitions in subriemannian geometry [3, 20, 31–34].
A subriemannian manifold (shortly: SR manifold) is a triple (M,H, 〈·, ·〉) where

(a) M is a connected smooth manifold of dimension n.
(b) H is a smooth distribution of constant rank k < n which we may identify with the

sheaf of smooth vector fields tangent to H (horizontal vector fields). We assume
that H is bracket generating, i.e. if we set for j ≥ 1

H1 := H and H j+1 := H j + [H,H j ],

then for each q ∈ M there is p ∈ N such that Hp
q = TqM .

(c) 〈·, ·〉 is a fiber inner product on H, i.e.

〈·, ·〉q : Hq ×Hq −→ R

is an inner product for all q ∈ M and it smoothly varies with q ∈ M .

We call a subriemannian manifold (M,H, 〈·, ·〉) regular, if for all j ≥ 1 the dimen-
sion ofH j

q does not depend on the point q ∈ M . Furthermore, a regular SR manifold
M is said to be of step r if r is the smallest integer such that Hr = T M .

In this work we only consider regular subriemannian manifolds of step 2. Therefore
we recall the required concepts only in this case.

A local frame {X1, . . . , Xm, Xm+1, . . . , Xn} is called adapted, if the vector fields
X1, . . . , Xm form a local orthonormal frame of (H, 〈·, ·〉).
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Given two subriemannian manifolds (M,H, 〈·, ·〉) and (M ′,H′, 〈·, ·〉′), we call a
map φ : M → M ′ horizontal if its differential maps H toH′, i.e. φ∗(H) ⊆ H′.

Definition 2.1 φ is called (local) subriemannian isometry if it is a horizontal (local)
diffeomorphism such that φ∗ : (H, 〈·, ·〉) → (H′, 〈·, ·〉′) becomes an isometry.

To every regular subriemannian manifold M of step 2, a family of graded 2-step
nilpotent Lie algebras

gM := H⊕
(
H2/H

)

is associated with Lie brackets induced by the Lie brackets of vector fields on M [31].
Note that the defined Lie brackets respect the above grading, i.e.

[H,H] ⊆ H2/H and [H,H2/H] = [H2/H,H2/H] = 0.

Hence, gM is a smooth family of Carnot Lie algebras. We call gM(q) = gMq the
nilpotent approximation of (M,H, 〈·, ·〉) at q ∈ M [31].

For every q ∈ M , the tangent group GM(q) of M at q is the unique connected,
simply connected nilpotent Lie group corresponding to the Lie algebra gM(q). Note
that the isomorphic type of gM(q) may change from point to point. In particular, the
Lie groups GM(q) might be non-isomorphic at different q ∈ M .

On a 7-dimensional manifold there is a particular class of distributions called ellip-
tic. Such distributions are interesting from a geometric point of view because the
induced geometry has always a finite dimensional symmetry group. In the following
we briefly recall how they are defined (see [31] for more details). LetH be a co-rank
3, bracket generating distribution of step two on a 7-dimensional manifold M and let
us consider the so-called curvature (linear) bundle map of H

F : �2H −→ T M/H (2.1)

defined by F(X ,Y ) = −[X ,Y ] mod H for X ,Y ∈ H. Write H⊥ ⊂ T ∗M for the
bundle of covectors that annihilate H. We consider now the dual curvature map ω:

ω := F∗ : H⊥ −→ �2H∗. (2.2)

SinceH is bracket generating, the curvature map is onto. Furthermore, the real vector
space �4H∗ is 1-dimensional, hence the squared dual curvature map

ω2 : H⊥ −→ �4H∗

λ 
−→ ω(λ) ∧ ω(λ)

is a quadratic form on the 3-dimensional space H⊥ with values in the 1-dimensional
vector space�4H∗. We say thatH is elliptic if this quadratic form has signature (3, 0)
or (0, 3). Note that we do not have a canonical choice of an element in �4H∗ and
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hence, the signature is only defined up to a sign±. In general, we say thatH is of type
(r , s) if this quadratic form has signature (r , s) or (s, r).

IfH is of elliptic type then it was proven in [31] that the symmetry group is always
finite-dimensional and themaximal dimension of such group is realized byS

7 endowed
with the quaternionic contact structure.

On a subriemannian manifold M (not necessarily regular) the definition of a sub-
laplacian requires the choice of a smooth measure μ on M [2, 5, 22]. We denote by
divμ the divergence operator associated with the measure μ defined by

LXμ = divμ(X)μ

for every smooth vector field X on M . Then we can associate to μ a sublaplacian
�

μ
sub defined as the hypoelliptic, second order differential operator [2, 25]:

�
μ
sub f := −divμ (∇H f ) for f ∈ C∞(M).

Here ∇H denotes the horizontal gradient with respect to the metric 〈·, ·〉 onH, which
is defined at q ∈ M by the properties:

∇H(ϕ) ∈ Hq and 〈∇H(ϕ), v〉q = dϕ(v), v ∈ Hq , ϕ ∈ C∞(M).

Locally, the sublaplacian �
μ
sub has the expression (see [5]):

�
μ
sub = −

(
m∑

i=1

X2
i + divμ(Xi )Xi

)
, (2.3)

where X1, . . . , Xm denotes a local frame of the distributionH.
Since the subriemannian manifold M is assumed to be regular, there is a canonical

choice of smooth measure on M called Popp measure μ = P. The sublaplacian �P
sub

defined from the Popp measure then is called the intrinsic sublaplacian [2, 5, 31].
Note that the sublaplacian is positive and if the manifold M endowed with the

subriemannian distance is complete, then �
μ
sub is essentially selfadjoint on C∞

0 (M)

with unique selfadjoint extension on L2(M, μ) (see [22, 33, 34]). Therefore the heat
semigroup

(
e−

t
2�

μ
sub

)

t>0

is a well-defined one-parameter family of bounded operators on L2(M, μ). In the
following, we denote by Kt (·, ·) the heat kernel of the operator e− t

2�
μ
sub which is

smooth due to the hypoellipticity of �
μ
sub [25].

We recall the following formula for the small-time asymptotic expansion of the
heat kernel on the diagonal [16, 21, 22]: for all N ∈ N and q ∈ M ,

Kt (q, q) = 1

t Q(q)/2

(
c0(q)+ c1(q)t + · · · + cN (q)t N + o(t N )

)
as t → 0,
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which also holds in a non-regular situation and for an arbitrary smoothmeasureμ in the
definition of the sublaplacian. Moreover, under the assumption that the subriemannian
manifold is regular, the functions ci are smooth in a neighbourhood of q. Here Q ≡
Q(q) is constant and it coincides with the Hausdorff dimension of the metric space
(M, d) where d is the subriemannian distance (Carnot–Carathéodory distance) on
M , see [31].

3 Quaternionic Hopf Structure

Let H � R
4 denote the quaternionic space

H := {x + yi+ zj+ ωk : x, y, z, ω ∈ R},

where i2 = j2 = k2 = −1 and ij = −ji = k, jk = −kj = i and ki = −ik = j.
For n ≥ 0, we consider the (n + 1)-dimensional quaternionic space H

n+1 as a left
H-module with the hermitian form:

〈p, q〉H :=
n∑

l=0

pl · ql

for p = (p0, . . . , pn), q = (q0, . . . , qn) ∈ H
n+1. The real part of this hermitian form,

which we denote by 〈·, ·〉, is the usual real inner product on H
n+1 corresponding to

the identification H
n+1 ∼= R

4(n+1).
Let us consider the sphere S

7 embedded into H
2 as the set of elements of norm 1:

S
7 = {q = (q0, q1) ∈ H

2 : ‖q0‖2H + ‖q1‖2H = 1} where ‖q0‖2H = 〈q0, q0〉H.

There is a natural diagonal left action of S
3 on S

7 which induces the quaternionic Hopf
fibration:

S
3 ↪→ S

7 → S
4

The quaternionic Hopf distributionHQ is the corank 3 connection of this S
3-principal

bundle. It is given by the orthogonal complement to the following orthonormal vector
fields induced by the left-multiplication with curves (et l)t∈R, where l = i, j,k:

Vi(q) = −y0∂x0 + x0∂y0 − ω0∂z0 + z0∂ω0 − y1∂x1 + x1∂y1 − ω1∂z1 + z1∂ω1

Vj(q) = −z0∂x0 + ω0∂y0 + x0∂z0 − y0∂ω0 − z1∂x1 + ω1∂y1 + x1∂z1 − y1∂ω1

Vk(q) = −ω0∂x0 − z0∂y0 + y0∂z0 + x0∂ω0 − ω1∂x1 − z1∂y1 + y1∂z1 + x1∂ω1

at each q = (x0, y0, z0, ω0, x1, y1, z1, ω1) ∈ S
7 and with respect to the standard

Riemannian metric of S
7.

As is well-known the quaternionic Hopf distributionHQ is bracket generating [11,
29, 30]. Moreover, if we endow HQ with the pointwise inner product obtained by
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restriction from the standard Riemannian metric we obtain a subriemannian structure
on S

7 which we call quaternionic contact structure. In the following, we write S
7
Q for

the sphere S
7 endowed with this subriemannian structure.

Note that S
7
Q can also be considered as a quaternionic contact manifold as follows.

Let ηi, ηj, ηk denote the dual frame of the frame Vi, Vj, Vk. Then the quaternionic
Hopf distributionHQ is locally given by

HQ =
⋂

l∈{i,j,k}
ker(ηl).

Furthermore, if we denote by Ii, Ij, Ik the left-multiplications by i, j,k, then it is
known that {Il : l ∈ {i, j,k}} are almost complex structures satisfying the quaternionic
relations compatible with the metric on HQ , i.e.

2〈IlX ,Y 〉 = dηl(X ,Y )

for X ,Y ∈ HQ and l ∈ {i, j,k}.
Recall that the symplectic group Sp(2) is the subgroup of H-linear elements of the

orthogonal group O(8) which preserve the quaternionic inner product. Note that this
is a subgroup of the group of all subriemannian isometries I(S7

Q) of S
7
Q . Hence, by

representing elements of Sp(2) as 2×2 matrices whose rows build an H-orthonormal
basis of H

2, we see that Sp(2) (and hence I(S7
Q)) acts transitively on S

7.

The tangent bundle of the sphere S
7 and the orthogonal complement of the quater-

nionic Hopf distribution HQ in TS
7 are both trivial as vector bundles. Hence it is

natural to ask whetherHQ is trivial itself or whetherHQ admits at least one globally
defined and nowhere vanishing smooth vector field. In fact, this question was posed
as an open problem in [29,p. 1018] and will be answered below.

Given a globally defined smooth tangent vector field X on S
7, we consider it as a

smooth function X : S
7 −→ H

2 such that

〈q, X(q)〉 = 0 for all q ∈ S
7.

Definition 3.1 Let X be a globally defined tangent vector field on S
7. We call X a

quaternionic vector field on S
7 if 〈q, X(q)〉H = 0 for all q ∈ S

7.

The next lemma states that the quaternionicHopf distribution is precisely the quater-
nionic tangent space of the sphere:

Lemma 3.2 Globally defined horizontal vector fields on S
7 are the quaternionic vector

fields.

Proof By definition, a vector field X on S
7 is horizontal if and only if for all q ∈ S

7:

〈q, X(q)〉 = 〈Vi(q), X(q)〉 = 〈Vj(q), X(q)〉 = 〈Vk(q), X(q)〉 = 0.
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Note that the components of the vector fields Vi, Vj and Vk at a point q coincide
with the components of iq, jq and kq. A straightforward calculation shows that for
p, q ∈ H

2:

〈p, q〉H = 〈p, q〉 + i〈ip, q〉 + j〈jp, q〉 + k〈kp, q〉.

This implies that X is horizontal if and only if 〈q, X(q)〉H = 0 for all q ∈ S
7, i.e. X

is horizontal if and only if X is a quaternionic vector field. ��
Now we recall the following quaternionic version of Adam’s theorem in [1, 26]

on the maximal dimension of a trivial subbundle of the tangent bundle of a sphere.
Theorem 3.3 below was proven in [27] from methods in topological K -theory.

Theorem 3.3 [27] For n ≥ 1, the sphere S
4n+3 admits a nowhere vanishing and

globally defined quaternionic vector field if and only if n ≡ −1 mod 24.

By combining this result with Lemma 3.2 we obtain:

Corollary 3.4 The quaternionic Hopf distributionHQ on S
7 does not admit a nowhere

vanishing and globally defined vector field (section of the bundle). In particular, the
distributionHQ is not trivial.

4 Trivializable Subriemannian Structure

In the following we recall the definition of a second remarkable subriemannian
structure on S

7, called trivializable subriemannian structure [9, 10]. According to
[10,Theorem 4.4] such structures only exist on the spheres S

3, S
7 and S

15.
By K(n)withK ∈ {R, C, H}we denote the space of all n×n-matrices with entries

in K. Let A1, . . . , Am ∈ R(8) be a family of skew-symmetric real matrices that fulfill
the anti-commutation relation:

Ai A j + A j Ai = −2δi j for i, j = 1, . . . ,m. (4.1)

Then a collection of m linear vector fields X(A1), . . . , X(Am) on S
7 orthonormal

at each point (canonical vector fields) can be defined in global coordinates of R
8 by:

X(Ak) :=
8∑

i, j=1

(Ak)i j x j
∂

∂xi
for k = 1, . . . ,m.

Due to the representation theory of Clifford algebras, the maximal numberm of matri-
ces in R(8) such that the relations (4.1) hold is m = 7. We recall the following
properties of the above linear vector fields on spheres.

Lemma 4.1 [10] Let A1, . . . , A7 ∈ R(8) be any collection of matrices with (4.1). For
i = 1, . . . , 7 we set

X j := X(A j ).
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Then it holds:

(1) For i, j = 1, . . . , 7 with i �= j :

[Xi , X j ] = −X([Ai , A j ]) = −2X(Ai A j ).

(2) All higher Lie brackets [Xi1[Xi2 , [Xi3 , . . . ]]] are contained in

span
{
Xi , [X j , Xk] : i, j, k = 1, . . . , 7

}
.

(3) Let i1, i2, i3, i4 ∈ {1, . . . , 7} be distinct numbers. The rank-4 distribution H on
S
7 generated by the vector fields {Xi1, Xi2 , Xi3 , Xi4} is bracket generating of step

two.

Remark 4.2 Let {A(1)
1 , . . . , A(1)

4 } and {A(2)
1 , . . . , A(2)

4 } be two families of skew-
symmetric and anti-commuting matrices in R(8). Then it was shown in [10] that
there is C ∈ O(8) such that

A(1)
i = C−1A(2)

i C for i = 1, . . . , 4.

Therefore, if we define the following bracket generating distributions:

H(k) := span{X(A(k)
i ) : i = 1, . . . , 4} for k = 1, 2,

then the subriemannian structures (S7,H(k), 〈·, ·〉) for k = 1, 2 are isometric, i.e.
the above defined trivializable subriemannian structure on S

7 is, up to subriemannian
isometries, independent of the choice of linear vector fields induced by the Clifford
module structure of R

8 and spanning the distribution.

In the following we give an explicit family of skew-symmetric and anti-commuting
matrices which will serve as a model for the study of a trivializable subrieman-
nian structure on S

7 induced by matrices which fulfill the relations (4.1). Consider
A4, A5, A6, A7 ∈ H(2) defined by:

A4 : =
(

0 1
−1 0

)
, A5 :=

(
i 0
0 −i

)
, A6 :=

(
j 0
0 −j

)

A7 : =
(
k 0
0 −k

)
. (4.2)

One easily verifies that {A4, A5, A6, A7} ⊂ H(2) are anti-commuting and skew-
symmetric with respect to the standard inner product on H

2.
By representing the left-multiplication by i, j, k on H ∼= R

4 via the standard basis
of R

4 in form of 4×4-skew symmetric matrices we may regard A j with j = 4, . . . , 7
as skew-symmetric elements in R(8).

Lemma 4.3 There are three skew-symmetric matrices A1, A2, A3 ∈ R(8) such that
{A j : j = 1, . . . , 7} ⊂ R(8) are anti-commuting and skew-symmetric.
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Proof Consider the following skew-symmetric real matrices:

B1 :=

⎛

⎜⎜⎝

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎞

⎟⎟⎠ , B2 :=

⎛

⎜⎜⎝

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞

⎟⎟⎠ , B3 :=

⎛

⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

⎞

⎟⎟⎠ .

Note that B1 (resp. B2 and B3) corresponds to the right quaternionic multiplication by
k (resp. j and −i). Now we define for i = 1, 2, 3:

Ai :=
(

0 Bi
Bi 0

)
.

In the above sense we may think of quaternions l ∈ {i, j,k} as elements in R(4). A
straightforward calculation shows that the following relations hold:

[Bi , l] = 0 for l ∈ {i, j,k} and i = 1, 2, 3

and

Bi B j + Bj Bi = −2δi j for i, j ∈ {1, 2, 3}.

By a direct calculation based on these relations it follows that A1, . . . , A7 have the
desired properties. ��

We consider the following trivializable distribution on S
7:

HT := span{X(Ai ) : i = 1, 2, 3, 4},

and we denote by S
7
T the trivializable subriemannian manifold (S7,HT , 〈·, ·〉) where

〈·, ·〉 denotes the restriction of the standard Riemannian metric on S
7 to the trivial

bundle HT .

Remark 4.4 According to Corollary 3.4, the quaternionic Hopf structure S
7
Q does not

admit globally defined and nowhere vanishing horizontal vector fields and hence it
cannot be isometric (as a subriemannian manifold) to the trivializable structure S

7
T .

We will see that both structures not even are locally isometric.

5 The PoppMeasures

Recall that the Popp measure on S
7 is a smooth measure which intrinsically can be

assigned to a given regular subriemannian structure (see [2, 5, 12, 31]). In the present
section we determine the Popp measures PQ and PT on S

7 corresponding to the
quaternionic and the trivializable subriemannian structure, respectively.

Let X1, . . . , X4 be a local orthonormal frame for the distribution HQ . Then an
adapted frame for S

7
Q is given by F = [X1, . . . , X4, Vi, Vj, Vk]. According to
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[5,Theorem 1] the Popp measure PQ for the quaternionic subriemannian structure
can be expressed in the form:

PQ(z) = 1√
det BQ(z)

η1 ∧ . . . ∧ η7, z ∈ S
7. (5.1)

Here BQ(z) is a certain matrix which is obtained from the adapted structure con-
stants of the geometric structure and η1, . . . , η7 denotes the dual basis to the frame F
(see [5] for more details).

Since the vector fields X1, . . . , X4, Vi, Vj, Vk are orthonormal with respect to the
standard Riemannian metric on S

7, the volume form

dσ := η1 ∧ · · · ∧ η7

is the standard volume form on S
7.

Lemma 5.1 The Popp volume PQ for the quaternionic structure equals the standard
volume form dσ up to a constant factor.

Proof According to (5.1) we can write

PQ(z) = f (z)dσ(z)

with a nowhere vanishing function f ∈ C(S7). We know that the symplectic group
Sp(2) is a subgroup of the isometry group I(S7

Q). But Sp(2) is also a subgroup ofO(8)

which is the isometry group of S
7 with respect to the standard Riemannian metric.

It follows that the Popp volume PQ [5,Proposition 7] and the standard volume dσ

are invariant under Sp(2), and therefore f must be also invariant under the action of
Sp(2). Now, the assumption follows from the fact that Sp(2) acts transitively on S

7.
��

Contrary to the quaternionic Hopf structure, we do not have enough information
about the isometry group of the trivializable structure S

7
T to conclude in a similar

way. Therefore, we compute the Popp volume PT directly using the adapted structure
constants. An adapted frame for the trivializable structure is given globally by the
orthonormal vector fields X1, . . . , X7 defined from thematrices A1, . . . , A7 in Lemma
4.3. According to [5,Theorem 1] the Popp measure can be written as

PT (z) = 1√
det BT (z)

dσ(z),

where BT (z) = (Bkl
T (z))7k,l=5 is the 3× 3 matrix function on S

7 with coefficients

Bkl
T (z) =

4∑

i, j=1

bki j (z)b
l
i j (z), z ∈ S

7.
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For i, j = 1, . . . , 4 and k = 5, 6, 7 the functions bki j (z) are defined by:

bki j (z) = 〈[Xi , X j ](z), Xk(z)〉 = −2〈Ai A j z, Akz〉 for z ∈ S
7. (5.2)

In (5.2) we have used the notation 〈·, ·〉 for the Euclidean inner product on R
8 and

its restriction to the sphere, respectively. In the following, we write ‖A‖HS for the
Hilbert–Schmidt norm of A ∈ R(8).

Lemma 5.2 The Popp measure PT with respect to the trivializable subriemannian
structure S

7
T is given by

PT (z) = g(z)dσ,

where

g(z) :=
[
16(1− 2‖x‖2‖y‖2)

]−3/2
for z = (x, y) ∈ S

7 ⊂ R
8.

Proof We introduce the following notations:

Ai := A5, Aj := A6, Ak := A7 and A8 := I d.

Let l ∈ {5, 6, 7} and z = (x, y) ∈ S
7. Using the fact that the skew-symmetric and

anti-commuting matrices A1, . . . , A7 lie in O(8) and that {A1z, . . . , A8z} forms an
orthonormal basis of R

8, we can write:

Bll
T (z) = 4 ·

4∑

i, j=1

〈
Al Ai z, A j z

〉2

= 4 ·
⎛

⎝‖Al‖2HS −
8∑

i=5

8∑

j=1

〈
Al Ai z, A j z

〉2 −
4∑

i=1

8∑

j=5

〈
Al Ai z, A j z

〉2
⎞

⎠

= 4 ·
⎛

⎝‖Al‖2HS −
8∑

i=5

‖Al Ai z‖2︸ ︷︷ ︸
=1

−
4∑

i=1

7∑

j=5

〈
Al Ai z, A j z

〉2
⎞

⎠ .

Furthermore, a straightforward calculation shows that for l �= m ∈ {i, j,k}:

|〈AlAi z, Amz〉| = 2|〈Bi x, (l ·m)y〉| for i = 1, . . . , 4.

Here B1, B2 and B3 are the matrices defined in Lemma 4.3 and B4 := I d.
We assume that x �= 0. Since {‖x‖−1Bi x : i = 1, . . . , 4} is an orthonormal basis

of H ∼= R
4 it follows that for l,m ∈ {i, j,k}:

4∑

i=1

〈AlAi z, Amz〉2 = 4‖x‖2‖(l ·m)y‖2 = 4‖x‖2‖y‖2.
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Equality also holds in the case x = 0. Therefore, we find for l = 5, 6, 7:

Bll
T (z) = 4(4− 8‖x‖2‖y‖2) = 16(1− 2‖x‖2‖y‖2).

For l �= m ∈ {5, 6, 7} it holds:

1

4
Blm
T (z) =

4∑

i1,i2=1

〈
Al Ai1 z, Ai2 z

〉 〈
Am Ai1 z, Ai2 z

〉

=
⎛

⎝
8∑

i1,i2=1

−
8∑

i1=5

8∑

i2=1

−
4∑

i1=1

8∑

i2=5

⎞

⎠ 〈
Al Ai1 z, Ai2 z

〉 〈
Am Ai1 z, Ai2 z

〉

=
8∑

i1=1

〈
Am Ai1 z, Al Ai1 z

〉
︸ ︷︷ ︸

=0

−
8∑

i1=5

〈
Am Ai1 z, Al Ai1 z

〉
︸ ︷︷ ︸

=0

−
4∑

i1=1

8∑

i2=5

〈
Al Ai1 z, Ai2 z

〉 〈
Am Ai1 z, Ai2 z

〉
.

Since the matrices A1, . . . , A7 are anti-commuting, it follows that

〈
Al Ai1 z, Ai2 z

〉 〈
Am Ai1 z, Ai2 z

〉 = 0 for i2 ∈ {l,m}.

Hence we can write with i2 ∈ {5, 6, 7}\{l,m} and i2 ∈ {i, j,k} defined by Ai2 = Ai2 :

1

4
Blm
T (z) = −

4∑

i1=1

〈
Al Ai1 z, Ai2 z

〉 〈
Am Ai1 z, Ai2 z

〉

= −4
∑

Q∈{I ,B1,B2,B3}
〈Qx, (l · i2)y〉 〈Qx, (m · i2)y〉

= −4 〈(l · i2)y, (m · i2)y〉
= −4 〈ly,my〉 = 0.

We obtain:

BT (z) = 16(1− 2‖x‖2‖y‖2) · Id ∈ R(3) (5.3)

and therefore, the Popp measure PT has the form:

PT (z) =
[
16(1− 2‖x‖2‖y‖2)

]− 3
2
dσ.

��
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6 The Nilpotent Approximation

Let z = (x, y) ∈ S
7 ⊂ R

8. Since X1, . . . , X7 is an adapted orthonormal frame for
S
7
T , the tangent algebra at z for S

7
T is the Carnot algebra of step 2 given by

gz = Hz ⊕ Vz � R
7, (6.1)

where

Hz : = span{Xi (z) : i = 1, . . . , 4},
Vz : = span{Xk(z) : k = 5, 6, 7}.

For i, j = 1, . . . , 4 the Lie brackets are given by:

[Xi (z), X j (z)] :=
7∑

k=5

〈[Xi , X j ], Xk〉z Xk(z).

Note that the inner product 〈·, ·〉z onHz induces an inner product on the first layer of
the graded Lie algebra gz , i.e. gz is a Carnot Lie algebra.

In the following, we need a technical lemma on the local comparison of two sub-
riemannian manifolds. First, we recall the definition of a nonsingular Carnot algebra,
see [23, 24] for more details.

Let g = g1 ⊕ g2 be a Carnot algebra of step 2, i.e.

[g1, g1] = g2 and [gi , g j ] = {0} for i + j > 2.

We assume that an inner product 〈·, ·〉 on g1 is given. Then every element Z ∈ g∗2
induces a representation map JZ : g1 −→ g1 defined by

〈JZ X ,Y 〉 := Z([X ,Y ]) for X ,Y ∈ g1.

Definition 6.1 We say that the Carnot algebra (g, 〈·, ·〉) is nonsingular, if for all Z ∈
g∗2\{0}, the induced map JZ is invertible. Otherwise, (g, 〈·, ·〉) is called singular.

Note that if ϕ : (g, 〈·, ·〉) → (g′, 〈·, ·〉′) is a Lie algebra isomorphism which pre-
serves the inner products (i.e. an isometry), then (g′, 〈·, ·〉′) will be nonsingular (resp.
singular) if and only if (g, 〈·, ·〉) is. Hence we obtain:
Lemma 6.2 Let (M,H, g) and (M ′,H′, g′) be step two subriemannian manifolds
which near a point x ∈ M are locally isometric by φ : M → M ′. If the nilpotent
approximation of M at x ∈ M is nonsingular, then so is the nilpotent approximation
of M ′ at φ(x).
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By considering S
7
Q as a quaternionic contact manifold, it is easy to see that its

tangent algebra can be identified at every point with the quaternionic Heisenberg Lie
algebra, which, in particular, is non-singular. For the trivializable subriemannian struc-
ture on S

7, the situation is completely different. As we will see, its tangent algebra
can be different from point to point.

Let α, β, γ ∈ R and consider the vertical vector field

Z := αX5(z)+ βX6(z)+ γ X7(z) ∈ Vz .

By declaring the vectors X5(z), X6(z), X7(z) to be orthonormal, we obtain an inner
product on Vz which again is denoted by 〈·, ·〉. This induces an identification of V∗z
with Vz so that we can write for JZ : Hz −→ Hz :

〈JZ X ,Y 〉z = 〈Z , [X ,Y ]〉z for X ,Y ∈ Hz .

Let A(α, β, γ ) denote the following element of H:

A(α, β, γ ) := αi+ βj+ γk.

Then a straightforward calculation shows that:

〈Z , [X1(z), X2(z)]〉z = 2〈A(α, β, γ )x, B3x〉 − 2〈A(α, β, γ )y, B3y〉 = a − d

〈Z , [X1(z), X3(z)]〉z = −2〈A(α, β, γ )x, B2x〉 + 2〈A(α, β, γ )y, B2y〉 = −b + e

〈Z , [X1(z), X4(z)]〉z = 2〈A(α, β, γ )x, B1x〉 + 2〈A(α, β, γ )y, B1y〉 = c + f

〈Z , [X2(z), X3(z)]〉z = 2〈A(α, β, γ )x, B1x〉 − 2〈A(α, β, γ )y, B1y〉 = c − f

〈Z , [X2(z), X4(z)]〉z = 2〈A(α, β, γ )x, B2x〉 + 2〈A(α, β, γ )y, B2y〉 = b + e

〈Z , [X3(z), X4(z)]〉z = 2〈A(α, β, γ )x, B3x〉 + 2〈A(α, β, γ )y, B3y〉 = a + d.

Hence, with respect to the basis {Xi (z) : i = 1, . . . , 4}, the operator JZ can be
represented by a skew-symmetric matrix of the form:

⎛

⎜⎜⎝

0 d − a b − e −c − f
a − d 0 −c + f −b − e
−b + e c − f 0 −a − d
c + f b + e a + d 0

⎞

⎟⎟⎠ (6.2)

with a, b, c, d, e, f ∈ R as above.
Note that the matrix in (6.2) has the determinant:

(a2 + b2 + c2 − d2 − e2 − f 2)2.

By using the following identity for ω ∈ R
4 :

〈A(α, β, γ )ω,Cω〉2+〈A(α, β, γ )ω, Dω〉2+〈A(α, β, γ )ω, Eω〉2=(α2 + β2 + γ 2)‖ω‖4,
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we calculate the determinant of JZ :

det(JZ ) = 16(‖x‖2 − ‖y‖2)2(α2 + β2 + γ 2)2.

Hence, if ‖x‖ �= ‖y‖, then the operator JZ is invertible for all Z ∈ Vz\{0}.
Lemma 6.3 Let z = (x, y) ∈ S

7
T . Then the tangent algebra of S

7
T at z is nonsingular

if and only if ‖x‖ �= ‖y‖.
Using Lemmas 6.2 and 6.3 we conclude that S

7
Q and S

7
T are not locally isometric

at the singular points (x, y) ∈ S
7 where ‖x‖ = ‖y‖. We can even show a stronger

result:

Theorem 6.4 The subriemannian manifolds S
7
Q and S

7
T are not locally isometric

around any point of S
7. Furthermore, the isometry group I(S7

T ) of the trivializable
subriemannian structure does not act transitively on S

7.

Proof We show the result by comparing some local invariants which can be defined
as follows. Consider the tangent Lie algebra gz = HT ⊕H2

T /HT of S
7
T at some fixed

point z = (x, y). Then gz carries a canonical inner product 〈·, ·〉ind constructed in [5]
which extends the inner product onH and such thatHT andH2

T /HT are orthogonal.
The restriction of this inner product to H2

T /HT � Vz has the following expression
(see the proof of Theorem 1 in [5]):

〈Z1, Z2〉ind =
〈
(α1, β1, γ1)

t , B−1
T (z)(α2, β2, γ2)

t
〉

for Z j = α j X5(z)+β j X6(z)+ γ j X7(z) ∈ Vz where j = 1, 2. Here 〈·, ·〉 denotes the
Euclidean inner product on R

3 and B−1
T is the inverse of the (3× 3)-matrix in (5.3).

By the above calculation together with the expression of BT (z) we observe that the
eigenvalues of JZ only depend on the norm ‖Z‖ind (and the point z). Hence, a local
invariant κT (z) can be defined as

κT (z) := det(JZ )

‖Z‖2ind
for Z �= 0.

Using the quaternionic contact structure of S
7
Q , the same invariant can be defined for

S
7
Q and we find κQ(z) = 162 for all z ∈ S

7. If the structures S
7
T and S

7
Q were locally

isometric, then the constructed invariants would be equal. However,

det(JZ ) = 162(1− 2‖x‖2‖y‖2)(‖x‖2 − ‖y‖2)‖Z‖2ind
for all Z ∈ H2

T /HT � Vz . Therefore, the expression of κT is

κT (z) = 162(1− 2‖x‖2‖y‖2)(‖x‖2 − ‖y‖2)2 for z = (x, y) ∈ S
7.

A straightforward calculation shows that κT = κQ if and only if x = 0 or y = 0. We
conclude that the structures S

7
T and S

7
Q cannot be locally isometric. ��
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7 On the Type of Distributions

We have seen that the tangent algebras of S
7
T are nonsingular outside the set

S := {z = (x, y) ∈ S
7 : ‖x‖ = ‖y‖}.

In the following we show that the trivializable distribution HT fails to be elliptic on
this singular set S.

Recall that the curvature map (2.1) of the distributionHT is defined by

F : �2HT −→ TS
7/HT

(X ,Y ) 
−→ F(X ,Y ) := −[X ,Y ] mod HT .

The dual curvature map ω in (2.2) is then given as the dual map, i.e.

ω : H⊥
T −→ �2H∗

T

λ 
−→ ω(λ),

with

ω(λ)(X ∧ Y ) := −λ([X ,Y ]) for all X ,Y ∈ HT .

Using the standard Riemannian metric on S
7, we identifyH⊥

T with

V := span{〈X j , ·〉 : j = 5, 6, 7}.

The distribution HT is generated by globally defined vector fields X1, . . . , X4 and
this induces a specific horizontal form, namely

ηHT := η1 ∧ . . . ∧ η4 ∈ �4H∗
T ,

where η1, . . . , η4 denotes the frame dual to X1, . . . , X4. Now the dual curvature map
ω induces a family parametrized over M of real quadratic forms Q := ω2/ηHT on
H⊥

T � V defined by:

ω2 : H⊥
T −→ �4H∗

T

λ 
−→ ω(λ) ∧ ω(λ) = Q(λ)ηHT .

In the following lemma we compute the quadratic form Q for the trivializable subrie-
mannian structure on S

7.

Lemma 7.1 Let λ =∑7
l=5 λl Xl ∈ V � H⊥

T . Then the quadratic form Q is given by

Q(λ) = 2
7∑

k,l=5

(
bl12b

k
34 + bl14b

k
23 − bl13b

k
24

)
λlλk,
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where for i, j = 1, . . . , 4 the coefficients bki j have been defined in (5.2).

Proof We identify V � λ � 〈λ, ·〉 ∈ H⊥
T in the above definition of ω(λ). For any

X =∑4
i=1 αi Xi and Y =∑4

j=1 β j X j ∈ HT it holds:

ω(λ)(X ∧ Y ) = −〈λ, [X ,Y ]〉

= −
4∑

i, j=1

αiβ j 〈λ, [Xi , X j ]〉

= −
∑

1≤i< j≤4
(αiβ j − α jβi )〈λ, [Xi , X j ]〉

= −
∑

1≤i< j≤4
〈λ, [Xi , X j ]〉ηi ∧ η j (X ,Y ).

Hence the dual curvature map ω is given by:

ω(λ) = −
∑

1≤i< j≤4
〈λ, [Xi , X j ]〉ηi ∧ η j ,

with

〈λ, [Xi , X j ]〉 =
7∑

l=5

bli jλ
l .

A straightforward calculation shows now that

ω(λ)2 =
⎛

⎝2
7∑

k,l=5

(
bl12b

k
34 + bl14b

k
23 − bl13b

k
24

)
λlλk

⎞

⎠ ηHT .

��
We set for k, l ∈ {5, 6, 7}:

T lk := bl12b
k
34 + bk12b

l
34 + bl14b

k
23 + bk14b

l
23 − bl13b

k
24 − bk13b

l
24.

Using similar arguments as for the computation of the Popp volume for S
7
T , we find

that the off-diagonal symbols T lk vanish and that

T 11 = T 22 = T 33 = 2(‖x‖2 − ‖y‖2).

Hence, it follows that the quadratic form Q for the trivializable structure S
7
T is given

explicitly by

Q(λ) = 2
7∑

l=5

(‖x‖2 − ‖y‖2)(λl)2.
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Corollary 7.2 The trivializable distribution HT on S
7 is of elliptic type on the open

dense subset {(x, y) ∈ S
7 : ‖x‖ �= ‖y‖}. Otherwise, it is of type (0, 0).

It was shown in [31] that every distribution of elliptic type on a 7-dimensional mani-
fold has a finite dimensional symmetry group of maximal dimension 21. Furthermore,
the sphere S

7
Q equipped with the quaternionic Hopf distribution HQ has a symmetry

group ofmaximal dimension. The trivializable structure onS
7 is everywhere elliptic on

S
7 except on S which is a closed submanifold of S

7 of dimension 6. If φ : S
7
T −→ S

7
T

is a diffeomorphism preserving the distributionHT , then by Lemmas 6.2 and 6.3, the
submanifold S must be invariant under φ and hence φ restricts to a diffeomorphism
S
7\S −→ S

7\S preserving the everywhere elliptic distribution HT on S
7\S. Hence

the symmetry group of S
7
T is also finite dimensional with dimension bounded by 21.

In the following, by giving a 3-dimensional family of subriemannian isometries of
S
7
T , we show that the isometry group I(S7

T ) has dimension greater than or equal to 3.
Let x = (x0, x1, x2, x3) ∈ S

3 and consider the following matrix

C :=

⎛

⎜⎜⎝

x0 x1 x2 x3
x3 −x2 x1 −x0
−x2 −x3 x0 x1
−x1 x0 x3 −x2

⎞

⎟⎟⎠ ∈ O(4).

Then the following relations hold:

B3C = CB1, CB3 = −B1C and CB2 = B2C . (7.1)

Let us define the following block matrix in O(8):

U :=
(

0 C
CB1 0

)
.

Then based on the relations (7.1) and the commutation relations of the matrices Bj (s.
Lemma 4.3) we have:

U A1 = A4U and U A j = A j−1U for j = 2, 3, 4.

In particular, this implies that U defines a subriemannian isometry of S
7
T .

8 Small Time Asymptotics of the Heat Kernel

An analysis of the intrinsic sublaplacian induced by the quaternionic Hopf structure
on S

4n+3 was done in [8]. In particular, the first heat invariants c0 and c1, i.e. the first
two coefficients in the small time asympotic expansion of the heat trace, have been
explicitly calculated. In the general setting of subriemannian manifolds, a powerful
method in the analysis of a sublaplacian is given by the so-called nilpotent approxima-
tion. The idea consists in an approximation of the subriemannian manifold at a given
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point by a nilpotent Lie group endowed with a left-invariant subriemannian structure.
In the following, we briefly recall the relevant concepts. For more details we refer to
[15, 19, 22].

Let (M,H, 〈·, ·〉) be a step two regular subriemannian manifold and by

{X1, . . . , Xm, Xm+1, . . . , Xn}

we denote a local adapted frame at q ∈ M . A system of local coordinates

ψ : M ⊃ Uq −→ R
n = R

m ⊕ R
n−m

is called linearly adapted at q if

ψ(q) = 0 and ψ∗(Hq) = R
m .

In a system of linearly adapted coordinates at q, we have a notion of nonholonomic
orders "ord" corresponding to the natural dilations δλ : R

n → R
n defined for λ > 0

by

δλ(x1, . . . , xm, xm+1, . . . , xn) := (λx1, . . . , λxm, λ2xm+1, . . . , λ
2xn).

More precisely, we set:

ord(xi ) :=
{
1 if 1 ≤ i ≤ m,

2 if m + 1 ≤ i ≤ n

and

ord

(
∂

∂xi

)
:=

{
−1 if 1 ≤ i ≤ m,

−2 if m + 1 ≤ i ≤ n.

Furthermore, every smooth vector field X on R
n has an expansion near 0 of the form:

X � X (−2) + X (−1) + · · · ,

where X (l) is a polynomial vector field of order l, i.e. homogeneous of order l with
respect to the dilations δλ. A straightforward calculation shows the following behaviour
of the order function under Lie brackets of homogeneous vector fields (see also [15]):

ord[X ,Y ] ≥ ord(X)+ ord(Y ).

In the following we need a special class of linearly adapted coordinates called privi-
leged coordinates. These are linearly adapted coordinates at q such that every vector
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field ψ∗(Xi ) for 1 ≤ i ≤ m, has an expansion near 0 where all the homogeneous
terms have orders greater than −1:

ψ∗(Xi ) � X (−1)
i + X (0)

i + · · · . (8.1)

An example of privileged coordinates at q ∈ M is given by the so-called canonical
coordinates of the first kind defined as the inverse of the local diffeomorphism:

(x1, . . . , xn) 
−→ exp (x1X1 + · · · + xn Xn)(q).

Here X1, . . . , Xn is an adapted local frame at q.
Note that the vector fields X (−1)

1 , . . . , X (−1)
n on R

n generate a graded step two
nilpotent Lie algebra g̃(q) isomorphic to the tangent Lie algebra gM(q) at q (see
[19]). Let us denote by (G̃(q), ∗) the induced step two nilpotent Lie group defined as
follows. As a manifold we take G̃(q) = gM(q) and the group law is defined by

ξ1 ∗ ξ2 := ξ1 + ξ2 + 1

2
[ξ1, ξ2] for ξ1, ξ2 ∈ G̃(q).

Definition 8.1 Given a smooth measure μ on M , its nilpotentization at q is a measure
μ̂q on G̃(q) defined in the chart ψ by

μ̂q := lim
ε→0

1

εQ
δ∗ε μ.

Here δ∗ε μ means the pull-back of μ along δε and the convergence is understood in
the weak-∗-topology ofCc(M)′. Moreover, Q denotes the Hausdorff dimension of the
regular SR manifold M . Due to the regularity assumption of the SR manifold M , the
measure μ̂q is in fact a left-invariant measure on G̃(q) which is nilpotent and hence
unimodular. Therefore the measure μ̂q is a Haar measure on G̃(q) (see [22]).

Nowwe recall the relation between the first heat invariant c0 and the nilpotentization
of the subriemannianmanifoldM . Aswasmentioned in Sect. 2, the heat kernel Kt (·, ·)
has an asymptotic expansion on the diagonal as t → 0 of the form:

Kt (q, q) = 1

t Q/2

(
c0(q)+ c1(q)t + · · · + cN (q)t N + o(t N )

)

for all N ∈ N and q ∈ M . Here the (locally defined) smooth coefficients ci (q) are
called heat invariants of the SR manifold M .

Let K G̃(q)
t denote the heat kernel of the sublaplacian

�
G̃(q)
sub = −

m∑

i=1

(
X (−1)
i

)2
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on G̃(q) with respect to the Haar measure μ̂q . According to the results in [22] the first
heat invariant c0 is given by:

c0(q) = K G̃(q)
t (1, 0, 0). (8.2)

In general, calculating the remaining heat invariants c1, c2, . . . with the help of the
nilpotentization is rather complicated. However, in the special case where the hori-
zontal frame is μ-divergence free, the sublaplacian �

μ
sub is a sum of squares, i.e

�
μ
sub = −

m∑

i=1

X2
i

and the formula for c1 simplifies to (see the proof of Theorem A in [22])

c1(q) =
∫ 1

0

∫

R
n
K G̃(q)
s (0, ξ)Y

(
K G̃(q)
1−s (ξ, 0)

)
dξds, (8.3)

where Y is a second order differential operator acting with respect to the variable
ξ ∈ R

n . More precisely, it is given by

Y :=
m∑

i=1

X (−1)
i X (1)

i + X (1)
i X (−1)

i + X (0)
i X (0)

i .

For the trivializable subriemannian structure on S
7 we have two choices of a natural

smooth measure. The first one is the measure induced by the standard Riemannian
metric on S

7 which we denote by dσ and the second one is the Popp measurePT . The
sublaplacian with respect to the Popp measure can be expressed as (see [2, 5]):

�T
sub = −

4∑

i=1

(
X2
i + divPT (Xi )Xi

)
.

Here {X1, . . . , X4} denotes the globally defined orthonormal frame ofHT . We recall
that by Lemma 5.2 the Popp measure is given by

PT (z) = g(z)dσ(z) where g(z) =
(
16(1− 2‖x‖2‖y‖2)

)− 3
2
, z = (x, y).

Therefore, using the fact that X1, . . . , X4 are Killing vector fields and hence σ -
divergence free and by using the formula

divPT (X) = divσ (X)+ X(log g)

for a smooth vector field X on M , we see that

divPT (Xi ) = Xi (h) for i = 1, . . . , 4
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with

h(z) := −3

2
log (1− 2‖x‖2‖y‖2) for z = (x, y) ∈ S

7.

Hence we have the following formula:

Lemma 8.2 The intrinsic sublaplacian�T
sub on the trivializable SRmanifoldS

7
T acting

on C∞(S7) is given by:

�T
sub = −

4∑

i=1

(
X2
i + Xi (h)Xi

)
.

Remark 8.3 A different choice of the anti-commuting skew-symmetric matrices A j

leads to a subriemannian structure onS
7 (with intrinsic sublaplacian�T ′

sub) equivalent to
S
7
T (Remark 4.2). Furthermore, a subriemannian isometry preserves the Popp measure

[5] and hence, the intrinsic sublaplacians�T ′
sub and�T

sub are unitary equivalent. The last
fact can be also directly seen from the representation of the intrinsic sublaplacian in
[5,Corollary 2] and the representation of BT in (5.3). In particular, both sublaplacians
have the same spectrum, i.e. the spectrum of the trivializable subriemannian structure
on S

7 does not depend on the specific choice of the anti-commuting skew-symmetric
matrices A j .

In the following we use the nilpotent approximation to compute the first heat invari-
ant for the trivializable subriemannian structure endowed with the Popp measure. For
this, let z ∈ S

7 be fixed. Since X1, . . . , X7 is an adapted frame for S
7
T at z, the inverse

of the local diffeomorphism

φ−1 : (u1, . . . , u7) 
−→ exp (u1X1 + · · · + u7X7)(z)

defines a system of local adapted coordinates at z. Because the adapted frame is a
frame of linear vector fields, i.e.

Xi (z) = Ai z for i = 1, . . . , 7 and z ∈ S
7,

the integral curve γ (t) of the vector field u1X1+· · ·+u7X7 with u = (u1, . . . , u7) ∈
R
7 and starting at z can be explicitly calculated as:

γ (t) = cos (‖u‖t)z + sin (‖u‖t)
‖u‖ Auz,

where

Au :=
7∑

i=1

ui Ai and ‖u‖ =
√
u21 + · · · + u27.
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Hence φ−1 is given by:

φ−1(u) = cos (‖u‖)z + sin (‖u‖)
‖u‖ Auz for u ∈ R

7.

We recall that by the anti-commutation relations (4.1) of the matrices A1, . . . , A7, the
matrix Au fulfills the identity:

A2
u = −‖u‖2Id for all u ∈ R

7.

Now, let w ∈ S
7\{−z} and let us consider the following equation in u ∈ B(0, π) :=

{u ∈ R
7 : ‖u‖ < π}:

w = cos (‖u‖)z + sin (‖u‖)
‖u‖ Auz. (8.4)

Again by using the relations (4.1) we can write:

〈w, z〉 = cos (‖u‖) and 〈w, Ai z〉 = sin(‖u‖)
‖u‖ ui ,

for i = 1, . . . , 7. Hence Eq. (8.4) has the unique solution u ∈ B(0, π) given by:

ui = arccos (〈w, z〉)√
1− 〈w, z〉2 〈w, Ai z〉 for i = 1, . . . , 7. (8.5)

We summarize the above calculations in:

Lemma 8.4 Canonical coordinates of the first kind at z ∈ S
7 are given by

φ : S
7\{−z} −→ B(0, π)

w 
−→ φ(w) = u,

and φ(z) = 0, where u is given by (8.5).

Next, we compute the expansion of the horizontal vector fields X1, . . . , X4 near 0
in the chart φ. Let us define the following smooth functions on [0, π [:

F(u) := 1

‖u‖2 −
cot (‖u‖)
‖u‖ and G(u) := ‖u‖ cot (‖u‖),

with F(0) := 1
3 and G(0) := 1.

Then a straightforward computation shows that the pushforwards of the horizontal
vector fields X1, . . . , X4 by φ are given on B(0, π) by:

(Xi )∗ =
7∑

j=1

ai j
∂

∂u j
,
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where the functions ai j with bkik in (5.2) are defined by:

ai j (u) := G(u)δi j + F(u)uiu j + 1

2

7∑

k=1

bki j (z)uk . (8.6)

For ε > 0 small, consider the anisotropic expansion of Xi around 0:

X ε
i := εδ∗ε (Xi )∗ � X (−1) + εX (0)

i + ε2X (1)
i + · · · ,

where X (l)
i is the homogeneous part of Xi of order l.

Lemma 8.5 For i = 1, . . . , 4, it holds:

X (−1)
i = ∂

∂ui
+ 1

2

7∑

j=5

4∑

k=1

bki j uk
∂

∂u j
,

X (0)
i = 1

2

4∑

j=1

4∑

k=1

bki j uk
∂

∂u j
+ 1

2

7∑

j=5

7∑

k=5

bki j uk
∂

∂u j
,

X (1)
i = 1

2

4∑

j=1

7∑

k=5

bki j uk
∂

∂u j
+ 1

3

7∑

j=1

uiu j
∂

∂u j
− 1

3

4∑

k=1

u2k
∂

∂ui
.

Furthermore, for l ≥ 2:

X (l)
i = G(l+1)(u)

∂

∂ui
+

7∑

j=1

F (l−1)(u)uiu j
∂

∂u j
,

where F (l)(u) (resp. G(l)(u)) denotes the homogeneous part of weight l in the
anisotropic expansion of F (resp. G).

Proof According to (8.6) we only need to compute the expansion of ai j near 0. We
recall that the function u 
−→ ui for i = 1, . . . , 4 (resp. i = 5, . . . , 7) has order 1
(resp. 2). Also the vector field ∂

∂ui
for i = 1, . . . , 4 (resp. i = 5, . . . , 7) has order −1

(resp. −2). The third term of (8.6):

1

2

7∑

k=1

bki j (z)uk =
1

2

4∑

k=1

bki j (z)uk

︸ ︷︷ ︸
order 1

+1

2

7∑

k=5

bki j (z)uk

︸ ︷︷ ︸
order 2

give us only homogeneous terms of order less than 2. Furthermore, a straightforward
calculation shows that for ε → 0:

F(δε(u)) � 1

3
+
∑

l≥1
F (l)(u)εl
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G(δε(u)) � 1− 1

3

4∑

j=1

u2jε
2 +

∑

l≥3
G(l)(u)εl .

Here F (l)(u) and G(l)(u) are homogeneous polynomials in u of order l. By arranging
homogeneous terms in the expression (8.6) and writing

X (l)
i =

4∑

j=1

a(l+1)
i j (u)

∂

∂u j
+

7∑

j=5

a(l+2)
i j (u)

∂

∂u j
,

where a(l)
i j denotes the homogeneous term of ai j of order l, we obtain the result. ��

Note that Lemma 8.5 not only holds for the trivializable subriemannian structure
defined by the specific matrices A1, . . . , A7 from Lemma 4.3, but also for arbitrary
skew-symmetric matrices with relations (4.1).

Remark that only the first three homogeneous terms in the anisotropic expansion of
Xi encode the geometric data (bki j ) of our subriemannian manifold S

7
T . The remain-

ing homogeneous terms are completely given by the functions F and G, which are
independent of the chosen matrices A1, . . . , A7.

The tangent group of S
7
T at z is isomorphic to the unique simply connected nilpotent

Lie group G̃(z) corresponding to the Lie algebra generated by the vector fields:

X (−1)
1 , . . . , X (−1)

4 .

By definition, the nilpotentization of the Popp measure at z is the Haar measure P̂z
T

on G̃(z) � R
7 given in global exponential coordinates u1, . . . , u7 by:

P̂z
T = g(z)du1 ∧ · · · ∧ du7.

Here g(z) denotes the density appearing in Lemma 5.2. In order to compute the first

heat invariant c0 we need to derive the heat kernel K G̃(z)
t of the sublaplacian

�̂z
sub :=

4∑

i=1

(
X (−1)
i

)2

on G̃(z) � R
7 with respect to the Haar measure P̂z

T . This explicitly is obtained by
the Beals–Gaveau–Greiner formula for the sublaplacian on general step two nilpotent
Lie groups in [14, 17], which we recall next. For α, β ∈ G̃(z) it holds:

K G̃(z)
t (α, β) = 1

(2π t)5

∫

R
3
e−

ϕ(τ, α−1 ∗ β)
t W (τ )

dτ

g(z)
, (8.7)
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where the action function ϕ = ϕ(τ, α) ∈ C∞(R3 × G̃(z)) and the volume element
W (τ ) ∈ C∞(R3) are given as follows: put α = (a, b) ∈ R

4 × R
3, then

ϕ(τ, α) = ϕ(τ, a, b) = √
i〈τ, b〉 + 1

2

〈√
i Jτ/2 coth

(√
i Jτ/2

)
· a, a

〉
,

W (τ ) =
{
det

√
i Jτ/2

sinh
√
i Jτ/2

}1/2

,

where 〈b, b′〉 =
3∑

k=1
bkb′k denotes the Euclidean inner product on R

3.

Next, we compute the eigenvalues of the representationmaps JZ , for Z ∈ Vz � R
3.

Lemma 8.6 Let z = (x, y) ∈ S
7 and Z ∈ Vz . Then the eigenvalues of JZ are

±2i(‖x‖2 ± ‖y‖2)‖Z‖.

Proof According to (6.2) the characteristic polynomial P(λ) of JZ is given by:

P(λ) = λ4 + 8(1− 2‖x‖2‖y‖2)‖Z‖2λ2 + 16(1− 4‖x‖2‖y‖2)‖Z‖4.

Hence, a straightforward calculation shows that the roots of P(λ) are exactly

±2i(‖x‖2 ± ‖y‖2)‖Z‖.

��
Theorem 8.7 The first heat invariant cT0 of the trivializable subriemannian structure
on S

7 is given by

cT0 (z) = 1

(2π)5g(z)

∫

R
3

‖τ‖
sinh ‖τ‖ ·

(‖x‖2 − ‖y‖2)‖τ‖
sinh (‖x‖2 − ‖y‖2)‖τ‖dτ

for z = (x, y) ∈ S
7.

Proof Let z = (x, y) ∈ S
7 and Z ∈ Vz . By Lemma 8.6, the eigenvalues of the

skew-symmetric operator JZ are ±2i(‖x‖2 ± ‖y‖2)‖Z‖. We assume that z fulfills:

‖x‖ �= ‖y‖ and x �= 0.

Such points form a dense subset in S
7 and therefore, due to the smoothness of the local

assignment z 
−→ cT0 (z) (see [22]) we only need to compute cT0 (z) at such points.
The advantage of considering such points is that the eigenvalues of the map JZ for all
Z ∈ Vz , are simple. Hence the expression of the function W (τ ) take the form:

det

(
i Jτ /2

sinh (i Jτ /2)

)
=

( ‖τ‖
sinh ‖τ‖

)2 (
(‖x‖2 − ‖y‖2)‖τ‖

sinh ((‖x‖2 − ‖y‖2)‖τ‖)
)2

.
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Hence, by (8.2) and (8.7), we can write:

cT0 (z) = 1

(2π)5

∫

R
3

√

det

(
i Jτ /2

sinh i Jτ /2

)
dτ

g(z)

= 1

(2π)5g(z)

∫

R
3

‖τ‖
sinh ‖τ‖ ·

(‖x‖2 − ‖y‖2)‖τ‖
sinh (‖x‖2 − ‖y‖2)‖τ‖dτ.

��
Remark 8.8 At points z = (x, y) ∈ S

7 with x = 0 or y = 0, a straightforward
computation using the representation (6.2) shows that the maps JX5 , JX6 and JX7

fulfill the quaternionic relations and hence the tangent groups of the subriemannian
manifolds S

7
T and S

7
Q are isometric. Furthermore, to compute the first heat invariant at

z we only need to know the subriemannian structure at this point and hence it follows
that at these points the first heat invariants coincide:

cQ0 (z) = cT0 (z).

Also it is not hard to see that the infimum of cT0 (z) over S
7 is attained at these points

and therefore we can write

inf{cT0 (z) : z ∈ S
7} = ĉQ0 . (8.8)

Here ĉQ0 denotes the value of the constant function z 
−→ cQ0 (z) which will be calcu-
lated explicitly below.

We remark that the remaining heat invariants c1, c2, . . . might not be equal at these
special points. In fact, in order to compute these numbers we have to take into account
the local behavior of the corresponding subriemannian structures at such points.

As a corollary we prove now that the subriemannian manifolds S
7
T and S

7
Q are not

isospectral with respect to the intrinsic sublaplacians:

Corollary 8.9 Let S7
T and S

7
Q be considered with the induced Popp measures. Then the

intrinsic sublaplacians �T
sub and �

Q
sub are not isospectral.

Proof By considering the subriemannian manifold S
7
Q as a quaternionic contact man-

ifold and using the quaternionic relations of the almost complex structures Il for
l ∈ {i, j,k}, we see that the Popp measure is given by, (see Lemma 5.1):

PQ(z) = 1

(16)3/2
dσ(z).

Furthermore, the nilpotent approximation of S
7
Q at z ∈ S

7 is isomorphic to the standard

quaternionic Heisenberg group. Hence the first heat invariant of S
7
Q is given by

cQ0 (z) = 163/2

(2π)5

∫

R
3

( ‖τ‖
sinh ‖τ‖

)2

dτ for z ∈ S
7.
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We set

cT0 − cQ0

:= 1

(2π)5

∫

S
7

∫

R
3

‖τ‖
sinh ‖τ‖

(
(‖x‖2 − ‖y‖2)‖τ‖

sinh ((‖x‖2 − ‖y‖2)‖τ‖) −
‖τ‖

sinh ‖τ‖
)
dτdσ(z).

(8.9)

Note that the function u 
−→ u/ sinh (u) is even, smooth and monotone decreasing on
the interval [0,∞[. This shows that the integrand in (8.9) is a non-negative function
on S

7 × R
3 and non-vanishing on an open dense subset. Therefore cT0 > cQ0 and the

subriemannian manifolds S
7
Q and S

7
T cannot be isospectral. ��

9 Sublaplacian Induced by the StandardMeasure

If we consider the subriemannian manifold S
7
T endowed with the standard volume dσ ,

then the corresponding sublaplacian �̃T
sub will be a sum of squares:

�̃T
sub = −

4∑

i=1

X2
i . (9.1)

Here Xi = X(Ai ) for i = 1, . . . , 4 with A j defined in (4.2) and Lemma 4.3 denotes
the system of linear vector fields generating the distribution HT of S

7
T . According to

[25] the operator (9.1) is subelliptic, positive and with discrete spectrum consisting
of eigenvalues. We recall that a part of this spectrum has been determined in [10].
Moreover, Corollary 5.4 of [10] implies that a different choice of the generating anti-
commuting skew-symmetric matrices A j leads to a sublaplacian which is unitary
equivalent to (9.1) and therefore has the same spectrum. Hence, when studying the
spectrum of the trivializable subriemannian structure, we can restrict ourselves to a
specific choice of the generators of a Clifford algebra (s. Remarks 4.2 and 8.3).

In this section a relation between the spectrum of �̃T
sub and the spectrum of

the sublaplacian induced by the quaternionic Hopf fibration will be shown. Since
the orthogonal complement of the quaternionic distribution HQ is spanned by the
(divergence-free) orthonormal vector fields Vi, Vj, Vk, the sublaplacian induced by
the quaternionic Hopf fibration has the following formula by (2.3)

�
Q
sub = �

S
7 + V 2

i + V 2
j + V 2

k .

Here

�
S
7 = −

7∑

j=1

X(A j )
2
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denotes the Laplace–Beltrami operator on S
7 with respect to the standard metric. Note

that the vector field Vl with l ∈ {i, j,k} can be considered as a canonical vector field
associated to a diagonal block matrix, i.e.

Vl = X(Cl) with Cl :=
(
l 0
0 l

)
∈ R(8).

Note also that

Ci = A6A7, Cj = A7A5 and Ck = A5A6.

Via the inclusion S
3 ⊂ (H, ∗) and for l ∈ {i, j,k} consider the vector fields:

Wl f (z) = d

dt |t=0
f
(
et l ∗ z

)
where f ∈ C∞(S3).

Note that X5 = Wi(x)−Wi(y) (resp. Vi = Wi(x)+Wi(y)) and similar for X6 and
X7 (resp. Vj and Vk), replacing i with j and k, respectively. By the same formula W�

can be interpreted as a (linear) vector field on R
4 ∼= H. A direct calculation using the

decomposition (x, y) ∈ S
7 ⊂ R

4 × R
4 ⊂∼= H

2 and the form of the matrices in (4.2)
shows:

�̃T
sub = �

S
7 −�

S
3 ⊗ I − I ⊗�

S
3 − 2B (9.2)

�
Q
sub = �

S
7 −�

S
3 ⊗ I − I ⊗�

S
3 + 2B. (9.3)

Here�
S
3 = −∑

l∈{i,j,k} W 2
� denotes theLaplace–Beltrami operator onS

3 with respect
to the standard metric and

B :=
∑

l∈{i,j,k}
Wl ⊗Wl. (9.4)

The tensor product notation A ⊗ C means that an operator A acts with respect to the
variable x and C with respect to y. Note that B in (9.4) vanishes on smooth functions
f (x, y) = f̃ (x) and g(x, y) = g̃(y)which only depend on x and y ofR4, respectively.
Therefore, �̃T

sub and �
Q
sub act in the same way on functions g and f of the above type.

Remark 9.1 With our previous notation we may write Wl ⊗Wl with l ∈ {i, j,k} as an
operator product:

Wl ⊗Wl = X

(
l 0
0 0

)
X

(
0 0
0 l

)
. (9.5)

WithU ∈ O(R8) consider the composition operator VU f := f ◦U for f ∈ C∞(S7).
For an arbitrary matrix A ∈ R(8) one easily checks:

(X(A) ◦ VU f ) (q) = (U Aq)t (grad f )t (Uq), q ∈ S
7. (9.6)
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Let g ∈ S
3 ⊂ H act on S

7 via right-multiplication as follows

g · (x, y)t := (x, y ∗ g)t ,

which extends by the same formula to an isometry Ug ∈ O(R8). Since left- and
right-multiplication commute we obtain from (9.6):

[
X

(
0 0
0 l

)
, VUg

]
=

[
X

(
l 0
0 0

)
, VUg

]
= 0.

From (9.5) we conclude that VUg for all g ∈ S
3 commutes with the operator B and

therefore it commutes with �
Q
sub and �̃T

sub. In particular, the above action leaves the
heat kernels of both operators invariant.

We write ω = (ω1, ω2) ∈ R
4 × R

4 and by KQ
t (ω, np) we denote the heat kernel

of �
Q
sub at the north pole np = (1, 0, . . . , 0)t ∈ S

7 ⊂ R
8. It follows from the previous

remark and the fact that the right-multiplication by g ∈ S
3 acts transitively on S

3 that
KQ
t (ω, np) =: k̃Qt (ω1) only depends on ω1 ∈ R

4. Note that this fact as well can be
seen from the explicit heat kernel expression in [8]. Therefore:

�̃T
subK

Q
t (·, np) = �

Q
subK

Q
t (·, np) = − d

dt
KQ
t (·, np). (9.7)

Choose an orthonormal system [φ� : � ∈ N] of L2(S7) = L2(S7, σ ) consisting of
smooth eigenfunctions of �̃T

sub with corresponding eigenvalues λ� ≥ 0. We obtain an
expansion of the heat kernel:

KQ
t (ω, np) =

∞∑

�=1

c�(t)φ�(ω) =
∞∑

�=1

c�(t)φ�(ω1, 0),

which converges in C∞(S7). From (9.7) one concludes that c′�(t)+ λ� · c�(t) = 0 for
each � ∈ N. Hence there are constants γ� such that:

c�(t) = γ�e
−λ�t where t > 0.

Moreover, for all � ∈ N:

φ�(np) = lim
t↓0

∫

S
7
φ�(ω)KQ

t (ω, np)dσ(ω) = lim
t↓0 c�(t) = γ�.

Let KT
t (ω, np) denote the heat kernel of �̃T

sub. From our calculation we conclude:

KQ
t (ω, np) =

∞∑

�=1

e−λ�tφ�(ω)φ�(np). (9.8)
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On the other hand, we can choose an orthonormal basis [ψ� : � ∈ N] of L2(S7)

consisting of eigenfunctions of�Q
sub with corresponding eigenvalue sequence (μ�)�∈N.

We write:

KQ
t (ω, np) =

∞∑

�=1

e−μ�tψ�(ω)ψ�(np) =
∞∑

�=1

e−μ̃�t��(ω). (9.9)

On the right hand side we have used the definition:

��(ω) :=
∑

j s.t.
μ j=μ̃�

ψ j (ω)ψ j (np),

where 0 ≤ μ̃1 < μ̃2 < μ̃3 . . . denotes the sequence of distinct eigenvalues of �
Q
sub in

increasing order. We write m(μ) for the multiplicity of an eigenvalue μ of �
Q
sub.

Lemma 9.2 For � ∈ N the sum
∑

μ j=μ̃�
|ψ j (x)|2 ≡ ‖��‖2L2(S7)

is constant on S
7 and

m(μ�) = vol(S7)‖��‖2L2(S7)
�= 0.

Proof Since {ψ�}� is an orthonormal basis of L2(S7) we have:

‖��‖2L2(S7)
=

∑

j s.t.
μ j=μ̃�

|ψ j (np)|2.

Consider the subriemannian isometry group I(S7
Q). Recall that Sp(2) ⊂ I(S7

Q) and

Sp(2) acts transitively on S
7 (see the proof of Lemma 5.1). For all g ∈ Sp(2) we

define the unitary operator Vg on L2(S7) by composition, i.e. Vg f := f ◦ g for all
f ∈ L2(S7). Note that

[
�

Q
sub, Vg

]
= 0

and put ψ
g
� := Vgψ� = ψ� ◦ g. Then {ψg

� }� defines an orthonormal basis of L2(S7)

consisting of eigenfunctions of �
Q
sub corresponding to the sequence (μ�)� of eigen-

values, as well. It follows for all g ∈ H :

‖��‖2L2(S7)
=

∑

j s.t.
μ j=μ̃�

|ψ j ◦ g(np)|2.
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Since Sp(2) acts transitively on S
7 we conclude that the finite sum below is constant

on S
7 with value:

∑

j s.t.
μ j=μ̃�

|ψ j (x)|2 ≡ ‖��‖2L2(S7)
, (x ∈ S

7). (9.10)

Hence:

m(μ̃�) = #
{
j : μ j = μ̃�

} =
∫

S
7

∑

j s.t.
μ j=μ̃�

|ψ j (x)|2dσ(x) = vol(S7)‖��‖2L2(S7)
.

This proves the assertion. ��

Lemma 9.2 implies that in each eigenspace of �
Q
sub there is an element ψ such that

ψ(np) �= 0. As usual let σ(A) denote the spectrum of an operator A and put:

� :=
{
λ ∈ σ

(
�̃T

sub

)
: ∃ φ ∈ ker

(
�̃T

sub − λ
)
such that φ(np) �= 0

}
.

Consider the following subset of distinct eigenvalues:

�dist :=
{̃
λ� ∈ � : λ̃1 < λ̃2 < . . .

} ⊂ σ
(
�̃T

sub

)
.

From (9.8) and (9.9) we have for all t > 0:

∞∑

�=1

e−̃λ�t��(ω) =
∞∑

�=1

e−μ̃�t��(ω), (9.11)

where for each λ̃� ∈ �dist:

��(ω) :=
∑

j s.t.
λ j =̃λ�

φ j (ω)φ j (np).

Note that ��(np) �= 0 by definition of �.

Theorem 9.3 We have the inclusion of spectra � = σ(�
Q
sub) ⊂ σ(�̃T

sub).

Proof Assume that μ̃1 �= λ̃1. Without loss of generality assume that λ̃1 < μ̃1. Then

0 �= �1(np) =
∞∑

�=1

e−(μ̃�−̃λ1)t��(np)−
∞∑

�=2

e−(̃λ�−̃λ1)t��(np).
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Since the right hand side tends to zero as t → ∞ we obtain a contradiction. Hence
λ̃1 = μ̃1 and

�1(np) = �1(np) = m(μ1).

Therefore

∞∑

�=2

e−̃λ�t��(np) =
∞∑

�=2

e−μ̃�t��(np),

and proceeding inductively in this way we obtain the result. ��
Remark 9.4 The spectrum σ

(
�

Q
sub

)
is known explicitly, see [8]. Moreover, the mul-

tiplicities of eigenvalues λ ∈ � with respect to the operators �
Q
sub and �̃T

sub may not
coincide. The statement in Theorem 9.3 generalizes results in [10] where a (smaller)
part of the spectrum σ(�̃T

sub) has been calculated.

Since the first heat invariant c̃T0 (z) of �̃T
sub at the point z is given by the heat

kernel of the nilpotent approximation at that point with respect to the nilpotentized
standard measure, the expression of c̃T0 (z) can be obtained from that of cT0 (z) and by
considering the density of the Popp measure PT with respect to the standard measure
dσ . By Lemma 5.2, this density is exactly g and therefore, the nilpotentization of the
standard measure has the (constant) density g(z)−1 with respect to the nilpotentization
of the Popp measure. Hence, we obtain

c̃T0 (z) = g(z)cT0 (z)

= 1

(2π)5

∫

R
3

‖τ‖
sinh ‖τ‖ ·

(‖x‖2 − ‖y‖2)‖τ‖
sinh (‖x‖2 − ‖y‖2)‖τ‖dτ.

for z = (x, y) ∈ S
7. Now, using the same arguments as in the proof of Corollary 8.9, it

follows that the operators �
Q
sub and �̃T

sub are not isospectral, as well, i.e. the inclusion
of spectra in Theorem 9.3 is strict or they have the same spectrum but the eigenvalues
have different multiplicities.

Since the sublaplacian �̃T
sub is a sum-of-squares operator, using the vector fields

X (−1)
i , X (0)

i , X (1)
i (i = 1, . . . , 4) from Lemma 8.9 and the expression (8.3) we can

obtain a formula for the second heat invariant c̃T1 which shows how this quantity
depends on the geometric data (bki j ). But due to the small symmetry group of the
trivializable SR structure (it does not act transitively) the calculation is complicated
and we omit it here.

10 Open Problems

Finally, we mention some open problems which have been left in the analysis of the
trivializable subriemannian manifold S

7
T .
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(1) What is the significance of the second heat invariant cT1 for the trivializable subrie-
mannian structure onS

7?We recall that in the framework of Riemannian geometry,
the second heat invariant can be interpreted as integrals of curvature tensors over
the manifold. Furthermore, for contact subriemannian structures on 3-dimensional
manifolds an interpretation of the second heat invariant in terms of certain curva-
ture terms has given by Barilari in [4].

(2) Derive an explicit formula for the heat kernel of the sublaplacian �T
sub on S

7
T and

on S
15
T equipped with the rank eight trivializable subriemannian structure of step

two in [10]. In case of the quaternionic contact structure such a formula is known
and can be found in [8].

(3) What is the dimension of the subriemannian isometry group I(S7
T )?

(4) As is known, the Carnot–Carathéodory distance on S
7
T appears in the exponent of

the off-diagonal small time asymptotics of the subelliptic heat kernel of �T
sub. Can

one (at least locally) obtain formulas or estimates on d via a heat kernel analysis?
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