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1 Introduction

1.1 History and overview

Gauge theories are our best candidates for describing Nature at elementary scales. Out of
all such theories, maximally supersymmetric Yang-Mills theory in four dimensions (N = 4
SYM) takes on a special role. In a sense it is the most simple (possibly integrable) gauge
theory that can be formulated. Indeed it has been a long standing goal of theoretical physi-
cists to solve this particular theory analytically. While being a toy model, it is expected
that progress on this matter would have a drastic impact on our understanding of more
complex models of nature. It is therefore important to continue this pursuit and investigate
N = 4 SYM from every possible angle.
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A so far relatively unknown approach to supersymmetric field theories is referred to
as the Nicolai map. It is based on works from Nicolai, Dietz, Flume and Lechtenfeld [1–7]
from the 1980s. The Nicolai map is a transformation of the bosonic Yang-Mills fields that
relates the interacting theory at some coupling g to the free theory at zero coupling. It
allows one to compute quantum correlators in terms of a free, purely bosonic functional
measure, entirely bypassing the use of any anticommuting (Grassmann) variables. After a
pause of roughly 35 years there has recently been renewed interest on this matter starting
with the papers [8–11]. Shortly after, a general formula for the Nicolai map in terms of the
so-called coupling flow operator Rg was found in [12]. For theories that have an off-shell
superfield formalism the coupling flow operator can be constructed canonically. In these
cases, a general construction method for the Nicolai map in arbitrary gauges was developed
in [13] and independently in [14]. This framework has potential applications in all kinds of
supersymmetric theories, e.g. as recently investigated [15] in supermembrane and matrix
theory.

We should highlight that the Nicolai map and its coupling flow operator are (depending
on the theory) not necessarily unique. The original proof [1, 2] by Nicolai only shows that
there exists such a map. The non-uniqueness was seen most strikingly in [11], where it
was shown that there exist two distinct Nicolai maps in N = 1 D = 6 SYM (at least to
third order in the coupling). In fact, one of the main results of this work is that in case of
N = 4 SYM, there is a 15-dimensional ambiguity in the coupling flow operator. However,
by definition of the map, correlators are independent of the particular choice of the Nicolai
map (or coupling flow operator).

To this date, most works on Nicolai maps were restricted to N = 1 supersymmetry.
Only in [9] a Nicolai map for N = 4 SYM was deduced by dimensional reduction from
the map for N = 1 D = 10 SYM. In our work, we develop a more extensive framework
for dealing with N = 4 supersymmetry.1 Generally, we distinguish two possibilities for
obtaining Nicolai maps in N = 4 SYM. The first one is dimensional reduction from
ten to four dimensions, while the second one makes use of an N = 1 off-shell superfield
formalism for N = 4 SYM. The former approach treats all four supersymmetries on
an equal footing, whereas the latter singles out one of the supersymmetries. This leads
to an ambiguity in the coupling flow operator and the corresponding Nicolai map. We
explain this by an analysis of the R-symmetry of Rg. Essentially, the operator is subject
to SU(4) R-symmetry transformations and to a principle of superpositions with weight
one. This suggests a general description of the coupling flow operator in terms of an su(4)
R-symmetry freedom that incorporates the two before-mentioned results as special points
in the Lie algebra.

In section 2 we compare two formulations of the N = 4 SYM action and how they
are actually equivalent. We start with the N = 1 superfield formalism and then consider
dimensional reduction from N = 1 D = 10 SYM to N = 4 D = 4 SYM. In section 3 we
compare the two corresponding formulations of the coupling flow operator and place them

1Other theories with extended supersymmetry such as N = 2 D = 6 SYM could be described in an
analogous fashion.
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as special cases within a general R-symmetric understanding of the operator. In section 4
we investigate the resulting Nicolai maps. Finally, in section 5 we give our conclusions and
an outlook to possible future directions that this work may point at.

Due to the technical nature of this paper, we present many of the calculations in
detailed appendices A-E in order not to disrupt the common theme of our arguments.

1.2 Basics of the Nicolai map

To begin with, we recall the essentials of the Nicolai map, without specializing to a particu-
lar theory. Any supersymmetric theory can be expressed in terms of bosonic and fermionic
(potentially including ghost) fields. Usually the latter appear quadratically so that they
can be integrated out, giving a nonlocal functional determinant. The resulting action can
be written as

Sg[φ] = Sb
g [φ] + ~ Sf

g[φ] , (1.1)

with coupling constant g and local, nonlocal parts of the action Sb
g , Sf

g respectively. Here, φ
stands for the bosonic field content of the theory, i.e. for N = 4 SYM we have φ = (Aµ, ϕi)
with the gauge field Aµ and six real scalars ϕi. Expectation values2 of bosonic observables
X[φ] in the theory (1.1) are given by

〈X[φ]〉g =
∫
Dφ exp

{ i
~
Sg[φ]

}
X[φ] . (1.2)

The Nicolai map is a (nonlinear and nonlocal) field transformation

Tg : φ(x) 7→ φ′(x; g, φ) , (1.3)

invertible at least as a formal power series in g, with the defining property

〈X[φ]〉g = 〈X[T−1
g φ]〉0 ∀X , (1.4)

that connects the interacting theory at coupling g with the free theory (g = 0). We stress
again that the map Tg is not necessarily unique. However, since we construct all maps
from the defining relation (1.4), correlators do not depend on the choice of the particular
map. Taking the derivative of (1.4) with respect to the coupling gives

∂g〈X[φ]〉g = 〈(∂g +Rg[φ])X[φ]〉g , (1.5)

which defines the infinitesimal version of the Nicolai map, the so-called coupling flow op-
erator

Rg[φ] =
∫

dx
(
∂gT

−1
g ◦ Tg

)
φ(x) δ

δφ(x) =:
∫

dx K[φ; x] δ

δφ(x) , (1.6)

with kernel K. By setting X[φ] = Tgφ in (1.4), one can quickly derive [16] the relation

(∂g +Rg[φ])Tgφ = 0 . (1.7)
2By the vanishing of the vacuum energy in supersymmetric theories, we have the normalization 〈1〉g = 1.
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This is a well-known differential equation solved by the path-ordered exponential

Tg φ = −→P exp
{
−
∫ g

0
dh Rh[φ]

}
φ , (1.8)

which was first found in [12]. This shows that the knowledge of Rg completely captures
the analytic g-dependence of the Nicolai map, allowing its perturbative construction. It is
the main objective of this work to find the explicit and most general form of Rg for N = 4
SYM.

Next, we note the characteristic properties3 of the Nicolai map and the corresponding
infinitesimal properties for the coupling flow operator. Writing (1.4) in terms of path
integrals and collecting powers of ~, one finds

Sb
0 [Tgφ] = Sb

g [φ] and Sf
0[Tgφ]− i tr ln δTgφ

δφ
= Sf

g[φ] , (1.9)

the ‘free-action’ and ‘determinant-matching’ conditions respectively. For gauge theories,
we have the additional property that the chosen gauge fixing function G(φ) is a fixed point
of the Nicolai map. From (1.5), it is straightforward to deduce [16] the corresponding
infinitesimal conditions

(∂g +Rg[φ])Sb
g [φ] = 0 and (∂g +Rg[φ])Sf

g[φ] =
∫

dx δK[φ; x]
δφ(x) , (1.10)

as well as the gauge condition

(∂g +Rg[φ])G(φ) = 0 . (1.11)

For completeness, although it will not be relevant to the rest of this work, we include
here a few general remarks on regularization and renormalization. Since the Nicolai map
itself only consists of tree graphs, regularization is not required at this stage. Only in the
end, when computing correlators in the free theory with (1.4), one has to contract trees
with each other. This generates loops (but interestingly, none of them purely fermionic)
that have to be regularized. In the case of N = 1 SYM this technique and the subsequent
renormalization are successfully carried out in the paper [7] from 1985, for example red-
eriving the universality of the gauge coupling to 1-loop order. The computational effort
of this method as opposed to the traditional Feynman diagram approach is practically
comparable.

1.3 Conventions and notation

In this paper, we work in four- and sometimes ten-dimensional Minkowski space equipped
with the mostly plus metric

ηµν = diag(−1, +1, +1, +1) , ηΣΘ = diag(−1, +1, . . . , +1) (1.12)
3Which were originally used as the defining conditions of the Nicolai map, but can be traded for the

single relation (1.4).
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respectively, where lowercase Greek indices run from 0 to 3 and uppercase Greek indices run
from 0 to 9. For the four-dimensional spinor algebra, we adopt the conventions from [17],
including the chiral basis for the gamma matrices

γµ =
(

0 σµ

σ̄µ 0

)
, γ5 = γ0γ1γ2γ3 =

(
−i 0
0 i

)
, (1.13)

with sigma matrices

σ0 =
(
−1 0
0 −1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (1.14)

and σ̄0 = σ0, σ̄1,2,3 = −σ1,2,3. The gamma matrices satisfy the Clifford algebra {γµ, γν} =
−2ηµν . In this basis, the chiral projectors P± take the form

P+ = 1
2(1 + iγ5) =

(
1 0
0 0

)
, P− = 1

2(1− iγ5) =
(

0 0
0 1

)
. (1.15)

We often use the standard Feynman slash notation

/a = γµaµ , (1.16)

with the exception that the slashed script letters /A and /D have a related but distinct
meaning that is defined in the main text. We additionally define the antisymmetric

γµν = 1
2(γµγν − γνγµ) (1.17)

and generally antisymmetrize indices with weight one, indicated by square brackets, e.g.

a[µbν] = 1
2(aµbν − aνbµ) . (1.18)

All of our fields are in the adjoint representation of the gauge group which we take to be
SU(nc) with real antisymmetric structure constants fabc such that

fabcfabd = ncδ
cd , (1.19)

where color indices run from 1 to n2
c − 1, which we often leave implicit. For example, we

write the non-abelian field-strength tensor Fµν in two equivalent notations

Fµν = ∂µAν − ∂νAµ + gAµ ×Aν ⇐⇒ F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν , (1.20)

and the covariant derivative

Dµ = ∂µ + gAµ× ⇐⇒ (Dµ . . .)a = ∂µ(. . .)a + gfabcAbµ(. . .)c . (1.21)

We sum over implicit color indices of products, e.g.

FµνF
µν = F aµνF

aµν , (1.22)
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Name Representation Range Alphabet

R-symmetry 4 of SU(4) 1 to 4 1st half of uppercase Latin (A,B,C, . . .)
R-symmetry (broken) 3 of SU(3) 1 to 3 2nd half of uppercase Latin (I, J,K, . . .)
R-symmetry 6 of SU(4) ∼= SO(6) 1 to 6 2nd half of lowercase Latin (i, j, k, . . .)
Color Adjoint of SU(nc) 1 to n2

c − 1 1st half of lowercase Latin (a, b, c, . . .)
Lorentz (4-dim.) Spin 1 of SO(1, 3) 0 to 3 2nd half of lowercase Greek (µ, ν, ρ, . . .)
Lorentz (10-dim.) Spin 1 of SO(1, 9) 0 to 9 uppercase Greek (Σ,Θ,Γ, . . .)
Spinor Spin 1

2 1 to 4 1st half of lowercase Greek (α, β, γ, . . .)

Table 1. Types of indices used in this paper. Color and spinor indices are often left implicit.

except when we write an explicit cross product, e.g.

ϕ ψ×λ = fabcϕaψbλc . (1.23)

Further, e.g. when writing down Nicolai maps to second order, we often adopt from section
4 of [10] the shorthand notations for multiplying quantities in color and position space. This
means that all objects are multiplied as color matrices or vectors, and integration kernels
are convoluted with insertions of bosonic fields Aµ or ϕi for µ = 0, 1, 2, 3 and i = 1, . . . , 6.
For example, we would write in two equivalent notations the expression

∂ρCϕi∂µCAρ×ϕi ⇐⇒
∫

d4y d4z ∂ρC(x−y) (fabcϕbi)(y) ∂µC(y−z) (f cdeAdρ)(z)ϕei (z) ,
(1.24)

with the scalar propagator C = �−1. We often summarize the bosonic fields in the symbol

AΓ = (Aµ, ϕi) . (1.25)

An overview over the various types of indices to be used in the following can be found in
table 1.

Lastly, we recall the definitions of the basic building blocks of the coupling flow operator
in N = 1 D = 4 SYM [13], since these also appear in the more complicated N = 4 case.
The free gaugino and ghost propagators S0 and G0 which will be used for the perturbative
expansion of their full versions are given by

S0 = /∂
−1 = −/∂C , G0 =

(
∂G(A )
∂Aµ

∂µ

)−1

, (1.26)

respectively with the gauge fixing function G(A ). An object that appears often in the
context of the Nicolai map is the free projector

Π ν
µ = δ ν

µ − ∂µG0
∂G(A )
∂Aν

, (1.27)

which we often extend to capital greek indices

Π Σ
Γ = δ Σ

Γ − ∂ΓG0
∂G(A )
∂AΣ

, (1.28)
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with the understanding that in the reduced four-dimensional theory ∂3+i = 0 for i =
1, . . . , 6. Among all possible gauges, the Landau gauge G(A ) = ∂µAµ takes on a special
role, since in that case G0 ≡ C so that Π ν

µ equals the standard transversal projector

q ν
µ = δ ν

µ − ∂µC∂ν . (1.29)

The latter splits the Yang-Mills fields into transversal and longitudinal components

Aµ = AT
µ +AL

µ , AT
µ = q ν

µ Aν , AL
µ = (δ ν

µ −q ν
µ )Aν = ∂µC ∂ ·A , (1.30)

where we abbreviate ∂ ·A = ∂µAµ. In arbitrary gauges (or outside of the gauge hypersurface
of the Landau gauge), it is helpful to define the ‘conjugate’ Yang-Mills field

A∗µ := AT
µ −AL

µ = Aµ − 2∂µC∂ ·A , (1.31)

although for the most part in this work, we restrict ourselves to the Landau gauge hyper-
surface, where A = A∗.

2 N = 4 SYM action

A common formulation of the N = 4 SYM invariant action (without a topological term4)
is [18]

Sinv =
∫

d4x

{
− 1

4F
µνFµν −

1
2DµϕiDµϕi −

i
2 χ̄A

/DP+χA − i
2

¯̃χA /DP−χ̃A

− ig tiAB ¯̃χAP+ϕi × χB + ig tiABχ̄AP−ϕi × χ̃B −
g2

4 (ϕi × ϕj)2
}
,

(2.1)

in terms of Weyl spinors χA, χ̃A where χ̃A = C(χ̄A)T with the charge conjugation operator
C in four dimensions. All fields are in the adjoint representation of the gauge group, with
color indices left implicit. Here, χA transforms as a 4 under the global SU(4) ∼= SO(6) R-
symmetry, while χ̃A transforms as a 4̄. The indices i = 1, 2, . . . , 6 label the six bosonic fields
ϕi that transform as a 6. Furthermore, the coefficients tiAB = (tiAB)∗ are the structure
constants of the R-symmetry, or in other words Clebsch-Gordon coefficients that couple
two 4’s to a 6 [19]. They allow us to define anti-symmetric complex scalars

ϕAB = tiABϕi , ϕAB = tiABϕi = (ϕAB)∗ (2.2)

and will be specified explicitly when we construct the action below. In this work, we find
it advantageous to work with Majorana spinors instead of Weyl spinors. To that aim, we
define

ψA = P+χA + P−χ̃A , ψ̄A = χ̄AP− + ¯̃χAP+ . (2.3)

With Cγ5 = γ5C, it is straightforward to check that ψA = C(ψ̄A)T, which shows that ψA are
indeed Majorana spinors. A slight complication with this definition is that we need to be

4Which we neglect here for simplicity but could be included in a future analysis. It is expected to lead
to an additional chiral freedom in our theory.
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careful with R-symmetry transformations, since ψA transforms neither as a 4 nor a 4̄. We
emphasize this point, because in this Majorana formulation, the position of the R-symmetry
indices does not indicate the transformation properties of the corresponding quantities.
When translating objects from the Weyl formulation to the Majorana formulation, index
positions on the two sides of the equation do not match up. Hence, one generally has
to remember the R transformation properties from the Weyl formulation. However, the
Majorana formulation allows us to write the action in the more compact form

Sinv =
∫

d4x

{
−1

4F
µνFµν −

1
2DµϕiDµϕi −

i
2 ψ̄A

(
/DδAB + gΦA

B×
)
ψB − g2

4 (ϕi × ϕj)2
}
,

(2.4)
with

ΦA
B = 2

[
tiABP+ − tiABP−

]
ϕi ≡ (ci)ABϕi , (2.5)

where we have defined a matrix-valued field ΦA
B that is obtained from the scalars ϕi

through contraction with matrix-valued coefficients (ci)AB. We further often use the short-
hand

/DA
B = /DδAB + gΦA

B × . (2.6)

In the following two subsections, we show how the action (2.4) is obtained from an N = 1
superfield formalism and from dimensional reduction, respectively.

2.1 N = 1 superfield formalism

It is well established that N = 4 SYM does not have a formulation in which all four
supersymmetries are realized off-shell. However, it is possible to single out one of the
supersymmetries to construct an N = 4 action using an N = 1 superfield formalism [19].
The field content resides in one vector superfield V and three chiral superfields ΦI

V = (Aµ, λ, D) , ΦI = (φI , ψI , FI) with I = 1, 2, 3 . (2.7)

All fields are in the adjoint representation of the gauge group. The propagating degrees
of freedom are the vector field Aµ, four Weyl- (or equivalently Majorana-) spinors ψA
(A = 1, 2, 3, 4, with λ = ψ4) and three complex scalars φI . Further, there is one real scalar
auxiliary field D and three complex scalar auxiliary fields FI . In terms of superfields, the
N = 4 Lagrangian density in Weyl notation is the last component5 of a superfield:

L = 1
g2nc

tr
[

1
16
(
WαWα

∣∣
θθ

+ h.c.
)

+ e−2V Φ†Ie
2V ΦI

∣∣
θθθ̄θ̄

+ i
√

2
3!
(
εIJKΦI [ΦJ ,ΦK ]

∣∣
θθ

+ h.c.
)]
,

(2.8)
where . . . |θθ denotes the θθ-component of a given superfield and so on. The trace is over
color space. We have also introduced the non-abelian supersymmetric field strength Wα

and its conjugate

Wα = −1
4D̄D̄e−2V Dαe2V , W̄ α̇ = −1

4DDe−2V D̄α̇e2V , (2.9)

5Recall that θ2θα = 0 and θ̄2θ̄α̇ = 0.
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in chiral superspace, with the superspace covariant derivatives Dα, D̄α̇. Note that the
coupling only appears as an overall factor 1/g2 in front of (2.8). One recovers the usual
dependence on the coupling by rescaling V → gV and ΦI → gΦI . Given the various
superspace expansions, it is straightforward to obtain the Lagrangian explicitly in terms
of components. The details on the computations that lead to the following results can be
found in appendix A. We find for the Lagrangian in the Majorana basis

g2L =− 1
4FµνF

µν − i
2 λ̄γ

µDµλ+ 1
2D

2 − 1√
2
εIJK

(
FIφJ×φK + F †I φ

†
J×φ

†
K

)
−Dµφ

†
ID

µφI −
i
2 ψ̄Iγ

µDµψI + F †I FI + 1√
2
εIJK

(
φI ψ̄JP+×ψK + φ†I ψ̄JP−×ψK

)
−
√

2
(
ψ̄IP−λ×φI + ψ̄IP+λ×φ†I

)
− iφ†ID×φI ,

(2.10)
and for the supersymmetry transformations

δαφI =
√

2(ψ̄IP+)α ,
δαφ

†
I =
√

2(ψ̄IP−)α ,
δα(P+ψI)β = −i

√
2(P+γµ)βα(DµφI)−

√
2(P+)βαFI ,

δα(P−ψI)β = −i
√

2(P−γµ)βα(Dµφ
†
I)−

√
2(P−)βαF †I ,

δαFI = −i
√

2(Dµψ̄Iβ)(γµP−)βα − 2φI×(λ̄P−)α ,
δαF

†
I = −i

√
2(Dµψ̄Iβ)(γµP+)βα − 2φ†I×(λ̄P+)α ,

δαAν = −i(λ̄γν)α ,
δαD = −i(Dµλ̄β)(γ5γ

µ)βα ,

δαλβ = −1
2(γµν)βαFµν +D(γ5)βα .

(2.11)

The decisive advantage of the superfield formalism is that we can deduce the penultimate
component6 of the superfield in (2.8). It reads

∆̊α = 1
4

∫
d4x

{
−Dγ5λ−

1
2Fµνγ

µνλ+ 2εIJK
[
P+ψIφJ×φK + P−ψIφ†J×φ

†
K

]
+ 2iγ5φ

†
Iλ×φI

+ i
√

2
[
γµP−ψIDµφI + γµP+ψIDµφ

†
I

]
−
√

2
[
P+ψIF

†
I + P−ψIFI

]}
α

.

(2.12)
The superfield structure now enables us to write the invariant action as a supervariation

Sinv =
∫

d4x L = 1
2g2 δα∆̊α , (2.13)

which will be the central ingredient in the canonical construction of the coupling flow
operator later on. To find the on-shell invariant action, we first need to insert the equations
of motion for the auxiliary fields

D = −iφ†I×φI , FI = 1√
2
εIJKφ

†
J×φ

†
K , (2.14)

6That is, the components with one less power of θ and θ̄ than maximal for the respective contributions.
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resulting in

Sinv = 1
g2

∫
d4x

{
−1

4F
µνFµν−Dµφ

†
ID

µφI−
i
2 ψ̄A

/DψA

+ 1√
2
εIJK

(
φI ψ̄JP+×ψK+φ†I ψ̄JP−×ψK

)
−
√

2
(
ψ̄IP−λ×φI+ψ̄IP+λ×φ†I

)
+ 1

2(φ†I×φI)
2− 1

2εIJKεILM (φJ×φK)(φ†L×φ
†
M )
}
.

(2.15)

Note that in this expression, the scalars are represented by three complex fields φI . In
order to get to the formulation (2.4), we need to replace these by six real fields ϕi by a
suitable identification

φI = 1√
2

(ϕI+3 + iϕI) , φ†I = 1√
2

(ϕI+3 − iϕI) , (2.16)

giving

Sinv = 1
g2

∫
d4x

{
−1

4F
µνFµν −

1
2DµϕiDµϕi −

i
2 ψ̄A

/DψA

+ 1
2εIJK

(
ψ̄IϕJ+3×ψK − ψ̄IϕJγ5×ψK

)
+ ψ̄IϕI+3×λ+ ψ̄IϕIγ5×λ−

1
4(ϕi × ϕj)2

}
,

(2.17)
where for the potential term the Jacobi identity in color space was used. From this expres-
sion we can read off the coefficients (ci)AB from (2.5)

(cI)J4 = iδIJγ5 , (cI+3)J4 = iδIJ14 , (cI)JK = iεIJKγ5 , (cI+3)JK = −iεIJK14 ,

(2.18)
wich are anti-symmetric under exchange of A and B and all others are zero. We will show in
section 2.2 that these exactly match the coefficients obtained from dimensional reduction.

To conclude this subsection, we note two results that will be used for the canonical
construction of the coupling flow operator in section 3.1. The susy-transformations of the
six real scalars are

δαϕi = −iψ̄J(ci)J4 , (2.19)

and the penultimate superfield component in terms of the six real scalars and with the
auxiliary fields integrated out can be brought to the compact form

∆α = 1
4

∫
d4x

{
−1

2Fµνγ
µνλ− (Φ4

A)† /DA
Bψ

B + 1
2(Φ4

A)†ΦA
B×ψB

}
. (2.20)

2.2 Dimensional reduction

As an alternative to the construction via the N = 1 superfield formalism, an on-shell
action of N = 4 D = 4 SYM can be obtained by dimensional reduction from N = 1
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D = 10 SYM [18]

S(10) = 1
g2

∫
d10x

{
−1

4F
ΣΘFΣΘ −

i
2 λ̄ ΓΣ DΣ λ

}
, (2.21)

where capital greek indices label the ten-dimensional representation of the Lorentz group
and ΓΣ are the ten-dimensional gamma matrices. We reduce the gauge field as

AΣ = (Aµ, ϕi) , (2.22)

which leads to the reduction of the Yang-Mills term

− 1
4F

ΣΘFΣΘ −→ −1
4FµνF

µν − 1
2DµϕiDµϕi −

1
4(ϕi × ϕj)2 . (2.23)

For the Dirac term, we write the gamma matrices as

Γµ = 18 ⊗ γµ , ΓAB =
(

0 ρAB

ρAB 0

)
⊗ iγ5 , A,B = 1, 2, 3, 4 , (2.24)

with antisymmetric 4× 4-matrices

(ρAB)CD = δACδBD − δADδBC , (ρAB)CD = 1
2εABFG(ρFG)CD = εABCD . (2.25)

It is convenient to define antisymmetric

ϕI4 = 1
2(ϕI + iϕI+3) , ϕAB = 1

2ε
ABCDϕCD = (ϕAB)∗ . (2.26)

In the literature one often finds a factor 1√
2 in front of the first equation in (2.26). In

order to match the coefficients from our previous analysis, we prefer to chose a normaliza-
tion 1

2 instead. Note that this explicitly determines the Clebsch-Gordon coefficients tiAB
from (2.2) to be

(tI)J4 = 1
2δIJ = (tI)J4 , (tI+3)J4 = i

2δIJ = −(tI+3)J4 ,

(tI)JK = 1
2εIJK = (tI)JK , (tI+3)JK = − i

2εIJK = −(tI+3)JK .
(2.27)

For a matching of the bosonic and fermionic degrees of freedom, the spinor λ has to be a
Majorana-Weyl-spinor, which can be realized in the structure

λ = (P+χ1, . . . ,P+χ4,P−χ̃1, . . . ,P−χ̃4)T , with χ̃A = Cχ̄A T , (2.28)

where C is the charge conjugation operator in four dimensions. We find that the Dirac
term becomes

− i
2 λ̄ ΓΣ DΣ λ −→ − i

2 ψ̄A
/D
A
B ψB , (2.29)

with the shorthand (2.6), the Majorana-spinors (2.3) and

ΦA
B = (ci)ABϕi =

[
(ρCD)ABP+ − (ρCD)ABP−

]
ϕCD = 2

[
tiABP+ − tiABP−

]
ϕi . (2.30)

It is easy to verify that the coefficients (ci)AB defined this way are equivalent to those
found in the superfield formalism (2.18).
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3 Coupling flow operator

In this section we construct the coupling flow operator (1.5) first via the canonical con-
struction 3.1 and then via dimensional reduction 3.2. Reconciling the two approaches, we
propose a unified framework for the operator in 3.3.

3.1 From the canonical construction

The basic procedure of the following construction is exactly the same as in the N = 1
case (see e.g. [13]). We merely have more fields to take into account. In order to fix the
redundant degrees of freedom of the gauge theory, following the Faddeev-Popov procedure
we add a gauge fixing term Sgf with gauge fixing function G(Ã ) and ghost fields ˜̄C, C̃ to
the full action SSUSY. We use the on-shell invariant action (2.17), so that

SSUSY[Ã, ϕ̃, ψ̃, ˜̄ψ, C̃, ˜̄C] = Sinv[Ã, ϕ̃, ψ̃, ˜̄ψ] + Sgf [Ã, ϕ̃, C̃, ˜̄C] ,

Sinv = 1
g2

∫
d4x

{
−1

4 F̃
µνF̃µν −

1
2D̃µϕ̃iD̃µϕ̃i −

i
2
˜̄
ψA /̃D

A
Bψ̃

B − 1
4(ϕ̃i × ϕ̃j)2

}
,

Sgf = 1
g2

∫
d4x

{
− 1

2ξG(Ã, ϕ̃)2 + g ˜̄C∂G(Ã, ϕ̃)
∂Ãµ

D̃µC̃ + g ˜̄C∂G(Ã, ϕ̃)
∂ϕ̃i

ϕ̃i × C̃
}
,

(3.1)

where we emphasize that the fields are in the (canonical or geometric) scaling where the
coupling only occurs as an overall factor 1/g2 (and one factor of g multiplying two ghost
terms) by explicitly putting tildes on all scaled quantities. The usual dependence on the
coupling is recovered after rescaling all fields with an appropriate power of g (i.e. Ã = gA,
ϕ̃ = gϕ). In this scaling we can write the g derivative of the action as a supervariation up
to a Slavnov variation,7

∂gSSUSY = − 1
g3
{
δα∆α −

√
g s∆gh

}
, (3.2)

with the superfield component

∆α = 1
4

∫
d4x

{
−1

2 F̃µνγ
µν λ̃− (Φ̃4

A)† /̃DA

Bψ̃
B + 1

2(Φ̃4
A)†Φ̃A

B×ψ̃B
}
, (3.3)

the ghost contribution
∆gh =

∫
d4x

{ ˜̄C G(Ã, ϕ̃)
}
, (3.4)

the supervariations (2.11) and the BRST (or Slavnov) variations

sÃµ = √g D̃µC̃ , sλ̃ = √g λ̃× C̃ , s
˜̄
λ = √g ˜̄λ× C̃ ,

sD̃ = √g D̃ × C̃ , sC̃ = −
√
g

2 C̃ × C̃ , s ˜̄C = 1
√
g

1
ξ
G(Ã, ϕ̃) ,

sϕ̃i = √g ϕ̃i × C̃ , sψ̃I = √g ψ̃I × C̃ , sF̃ = √g F̃I × C̃ .

(3.5)

7Strictly, this should be written with the auxiliary fields still present, but since we can integrate them
out after the construction, we leave them implicit here.
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An intermediate scaled coupling flow operator is given by [4, 6]

R̃[Ã ] = −i ∆α[Ã ] δα + i
√
g

∆gh[Ã ] s− 1
√
g

∆α[Ã ]
(
δα∆gh[Ã ]

)
s , (3.6)

where we introduced the shorthand Ã = (Ãµ, ϕ̃i) and the contractions indicate either
gaugino or ghost propagators.8 The calculation can be found in appendix B. After rescaling
the fields Ã = gA according to the scheme developed in [12], the final expression for the
coupling flow operator is

←
Rg [A ] = 1

8

←−
δ

δAΓ
P Σ

Γ tr
{
(CΣ)4

AS
A
B /A B

C × /A ∗C4
}
+
←−
δ

δAΓ
Π Σ

Γ AΣG
∂G(A )
∂Aν

AL
ν , (3.7)

acting to the left to comply with the implicit color index and position argument structure
(adopting the notation in section 4 of [10]). Note that this has the exact same structure as
the result for N = 1 D = 4 SYM [13], only with the additional R-symmetry indices. We
now give a detailed account of the various quantities involved. First of all, an object that
appears very frequently is

(CΣ)AB =
{
δABγµ for Σ = µ = 0, 1, 2, 3
(ci)AB for Σ = 3 + i = 4, 5, . . . , 9 . (3.8)

With the shorthands

DΓ = (Dµ , gϕi× ) , /DA
B = DΣ(CΣ)AB = /DδAB + gΦA

B× , (3.9)

we can compactly express the gaugino and ghost propagators SAB , G, defined by

ψA(x)ψ̄B(y) = −SAB (x, y; A ) , /DA
C S

C
B (x, y; A ) = δABδ(x− y) , (3.10)

and
iC(x)C̄(y) = G(x, y; A ) , ∂G(A )

∂AΓ
DΓ G(x, y; A ) = δ(x− y) , (3.11)

respectively. Further we have

/A A
B = A Σ(CΣ)AB = /AδAB + ΦA

B , /A
∗A

B := /A
∗
δAB + (ΦA

B)† , (3.12)

where A∗ is the conjugate gauge field (1.31). The second term in (3.7) also explicitly
contains the longitudinal part of the gauge field AL

µ (1.30). Lastly, we have the natural
generalization (c.f. [13]) of the covariant projector

P Σ
Γ = δ Σ

Γ −DΓG
∂G(A )
∂AΣ

, (3.13)

and its free version
Π Σ

Γ = P Σ
Γ
∣∣
g=0 . (3.14)

8Note that the coupling flow acts on observables X[Ã ] and δαÃΣ contains a gaugino field, whereas s ÃΣ

contains a ghost field.
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3.2 From dimensional reduction

Since the ten-dimensional theory does not have an off-shell formalism, the operator cannot
be constructed canonically in any gauge. However, for the Landau gauge, an expression
for Rg was derived and shown to satisfy all necessary conditions in all the critical [18]
dimensions D = 3, 4, 6, 10 [10]. Hence, in the following we restrict to the Landau gauge
hypersurface, so there will be no distinction between A and A∗ since AL = 0. We start
with the formula for the coupling flow operator in N = 1 D = 10 SYM:

Rg[A ] = 1
32

←−
δ

δAΓ
P (10) Σ

Γ tr(32)
{

ΓΣS
(10) /A × /A

}
, (3.15)

where the trace is over 32× 32 spinor space and

/A = ΓΣAΣ . (3.16)

We now apply the same scheme for dimensional reduction that we have used to reduce the
action in section 2.2. It is easy to establish that P (10) Σ

Γ −→ P (4) Σ
Γ under dimensional

reduction from ten to four dimensions. We can relate S(10) and S(4) ≡ S by dimensional
reduction. When leaving out the superscript indicating the number of dimensions, we
always mean the four-dimensional object. In ten dimensions, the 32 × 32 matrix S(10) is
given by the contraction

S(10) = −λλ̄ . (3.17)

With the dimensional reduction of the spinor λ (2.28) and our definition of the four-
dimensional Majorana spinors (2.3), we can decompose the 32× 32 matrix as

S(10) =
(

(P+SABP−)αβ (P+SABP+)αβ
(P−SABP−)αβ (P−S B

A P+)αβ

)
, (3.18)

where each block is a 16 × 16 matrix with ‘inner’ indices A, B and ‘outer’ indices α, β,
all ranging from one to four. Due to the chiral projectors, the position of the indices A, B
matches the R-symmetry transformation properties, i.e. upper indices transform as a 4 and
lower indices as a 4̄. We can interpret S(10) as an 8 × 8 matrix with 4 × 4 matrix-valued
entries and take a partial trace in the 8×8 matrix space so that we are left with a trace over
4×4 matrices (over the outer indices). Using the representation of Gamma matrices (2.24)
and bosonic fields (2.26), we further write /A in the same block notation as

/A = ΓΣAΣ =
(

/Aαβδ
A
B (iγ5)αβϕAB

(iγ5)αβϕAB /Aαβδ
B

A

)
. (3.19)

When multiplying two block matrices, we simply have to contract inner with inner indices
and outer with outer indices. This leads to

/A × /A =
(

( /A× /A)αβδAB + (14)αβϕAC×ϕCB 2( /Aiγ5)αβ × ϕAB
2(iγ5 /A)αβ × ϕAB ( /A× /A)αβδ B

A + (14)αβϕAC×ϕCB

)
.

(3.20)
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In order to perform the partial trace, one multiplies the block matrices in (3.15) and then
takes the trace over the blocks. For example, a simple contribution would be

tr(32)
{

Γµ S(10)
18 ⊗ ( /A× /A)

}
= tr(32)

(
(γµ)αγ(P+SABP−)γδ( /A× /A)δβ (γµ)αγ(P+SABP+)γδ( /A× /A)δβ
(γµ)αγ(P−SABP−)γδ( /A× /A)δβ (γµ)αγ(P−S B

A P+)γδ( /A× /A)δβ

)
= tr(4){γµP+SAAP− /A× /A

}
+ tr(4){γµP−S A

A P+ /A× /A
}

= tr(4){γµSAA /A× /A
}
,

(3.21)

where in the last step we used the cyclicity of the trace to commute the chiral projec-
tors. In the last step, since the positions of the indices of the gaugino propagator in the
first vs. second term do not match up, the R-symmetry transformation properties be-
come slightly nontransparent. This is a consequence of the way we defined our Majorana
spinors (2.3). Step by step, one establishes the relation

tr(32)
{

ΓΣS
(10) /A × /A

}
= tr(4)

{
(CΣ)ABSBC /A C

D × /A
∗D

A

}
, (3.22)

with the same definitions (3.8), (3.9), (3.12) as in the canonical construction. Although
the R-symmetry indices in (3.22) cannot be strictly assigned to 4’s or 4̄’s, by construc-
tion through the above dimensional reduction, this object is invariant under R-symmetry
transformations for Σ = µ and transforms as a 6 of SU(4) for Σ = 3 + i.9

In total, we have shown that the coupling flow operator obtained from dimensional
reduction on the Landau gauge hypersurface is

←
Rg [A ] = 1

32

←−
δ

δAΓ
P Σ

Γ tr
{

(CΣ)ABSBC /A C
D × /A

∗D
A

}
. (3.23)

3.3 Unified R-symmetric framework

The goal of this subsection is to reconcile the two results (3.7) and (3.23), since they are
clearly not identical. For simplicity, we for now restrict to the Landau gauge, for which
the two results read

←
Rg [A ] = 1

8

←−
δ

δAΓ
P Σ

Γ tr
{

(CΣ)4
BS

B
C /A C

D × /A
∗D

4
}

from canonical construction ,

(3.24)

←
Rg [A ] = 1

32

←−
δ

δAΓ
P Σ

Γ tr
{

(CΣ)ABSBC /A C
D × /A

∗D
A

}
from dimensional reduction .

(3.25)

9This can also be verified through explicit calculation by splitting the quantities in (3.22) into their
chiral contributions that have fixed transformation properties. Due to the ‘hidden’ chiral projectors, all the
contributions that do not transform appropriately are projected out of the trace.
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We begin this discussion with two universal observations. Firstly, the general definition of
the coupling flow operator Rg[φ] (1.5) shows that it maps real observables to other real
observables.10 Hence, we require the kernel K of the coupling flow operator

Rg[φ] =
∫

dx K[φ; x] δ

δφ(x) (3.26)

to be real. Note that for our cases and notation above, the kernel carries a ten-dimensional
index Γ, so that

←
Rg [A ] =

←−
δ

δAΓ
KΓ , (3.27)

with implicit integration. Secondly, we recall the three conditions (1.10), (1.11) for a
coupling flow operator in a general gauge theory

(∂g +Rg[φ])Sb
g [φ] = 0 , (∂g +Rg[φ])Sf

g[φ] =
∫

dx δK[φ; x]
δφ(x) , (∂g +Rg[φ])G(φ) = 0 .

(3.28)
It is easy to see that given two coupling flow operators R(1)

g and R(2)
g , the linear combination

R′g := pR(1)
g + qR(2)

g with p, q ∈ R and p+ q = 1 (3.29)

is again a coupling flow operator (i.e. satisfies (3.28)). Thus, the coupling flow operator
obeys a principle of superposition with real coefficients that add up to one.

The next ingredient is the fact that in the canonical construction we had to single out
one of the supersymmetries to obtain a working superfield formalism. In this work, we
chose the ‘fourth’ one, resulting in the index 4 at the beginning and the end of the trace
in (3.24). This choice is of course arbitrary. We could have equivalently chosen any of
the three other supersymmetries. This, together with the principle of superposition allows
us (in the Landau gauge) to build a more general coupling flow operator by inserting a
diagonal matrix with trace four (or as we prefer, the identity plus a traceless matrix L) in
R-space in the trace in the kernel. In anticipation of the rest of this discussion, we write
down the general ansatz

←
Rg [A ] = 1

32

←−
δ

δAΓ
P Σ

Γ tr
{

(CΣ)ABSBC /A C
D × /A

∗D
E(δEA + LEA)

}
. (3.30)

The two cases (3.24), (3.25) correspond to

L = diag(−1,−1,−1,+3) and L = 0 , (3.31)

respectively. From the discussion so far we know that we can reach any element of{
L = diag(q1, q2, q3, q4) with

∑
i

qi = 0
}

=: h , (3.32)

10That is, modulo imaginary terms that vanish when taking the expectation value. For simplicity, we
ignore the possibility of such extra imaginary terms.
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Degeneracy dofs Stabilizer X dim(X) # free param.

all qi distinct 3 S(U(1)4) 3 15
two qi equal 2 S(U(2)×U(1)2) 5 12

two equal pairs 1 S(U(2)×U(2)) 7 9
three qi equal 1 S(U(3)×U(1)) 9 7
all qi = 0 0 SU(4) 15 0

Table 2. Stabilizer subgroups X of SU(4) acting on L ∈ su(4), depending on the degeneracy of
the eigenvalues qi. The last column indicates the number of free parameters for the coupling flow
operator. It is computed by adding the number of degrees of freedom (dofs) in the choice of the
qi’s to the dimension of the orbit SU(4)/X.

the Cartan subalgebra of the Lie algebra su(4). By applying an SU(4) R transformation
on the various factors in (3.30), we can deduce how L effectively transforms under R
transformations. One finds that the underlying structure of the chiral projectors requires
that just like the Majorana spinors (2.3), L splits up into two chiral parts

L = L P− + L∗ P+ (3.33)

that are complex conjugate to each other. The matrix L transforms in the adjoint 15
of SU(4)

L −→ ULU † , with U ∈ SU(4) . (3.34)

We notice that (3.34) preserves zero trace and hermiticity L† = L so that the group action
of SU(4) on h (3.32) generates the entire Lie algebra su(4). Any L ∈ su(4) can be unitarily
diagonalized such that we can classify it in terms of its four eigenvalues qi. Invariants under
the adjoint action are tr Lm for any integer m ≥ 1, but with only the first four

tr L =
∑

qi = 0 , tr L2 =
∑

q2
i , tr L3 =

∑
q3
i , tr L4 =

∑
q4
i (3.35)

functionally independent. We can equivalently characterize a generic orbit by the eigen-
values (q1, q2, q3, q4) with ∑ qi = 0 or by (tr L2, tr L3, tr L4). This gives us three real
parameters matching the dimension of the Cartan subalgebra. For a generic L ∈ su(4)
with all eigenvalues qi distinct, the stabilizer of the adjoint action is the maximal torus
S(U(1)4) ∼= U(1)3 and its orbit under the action is the 12-dimensional flag manifold

SU(4)�U(1)3 . (3.36)

For singular L, i.e. some eigenvalues qi coinciding, the stabilizer is larger and the orbit
smaller. Table 2 summarizes all cases. The fully degenerate case corresponds to L =
0 (3.25). It is a fixed point under all SU(4) transformations. The canonical construction
on the other hand led to a configuration where three of the qi’s were equal, so that only
an S(U(3) × U(1)) subgroup leaves the configuration invariant. This suggests that for L
with three degenerate qi’s, the points in its orbit under the adjoint action of SU(4) are
those that originate from an off-shell formalism and hence allow for an arbitrary choice of
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the gauge fixing function. For these cases, when choosing gauges other than the Landau
gauge, the second term in (3.7) has to be added to the general formula (3.30).

In appendix C, we directly check that (3.30) indeed satisfies the infinitesimal conditions
of a coupling flow operator.

4 Nicolai maps

In this section we use the notation of [13] to write down Nicolai maps to second order.
We briefly recall the most important aspects of this compact notation. Derivatives of the
scalar propagator C are simply written as indices, so that e.g. ∂µ∂νC ≡ Cµν . Further, all
objects are implicitly matrices in color space with the exception that the last quantity in
each term is a vector in color space. Moreover, implicit integration kernels are convoluted
with insertions of bosonic fields A or ϕ.

A Nicolai map for N = 4 SYM to O(g2) in the Landau gauge was already found in [9]
by directly reducing the result from N = 1 D = 10

TgAΣ = AΣ − gCΘAΣAΘ + 3
2g

2CΘA ΓC[ΣAΘAΓ] +O(g3) , (4.1)

down to four dimensions with the simple prescription A = (Aµ, ϕi) and ∂3+i ≡ 0, which
leads to

TgAµ = Aµ − gCρAµAρ + 3
2g

2CρAλC[µAρAλ] + g2CρϕiC[µAρ]ϕi +O(g3) , (4.2)

Tgϕi = ϕi − gCρϕiAρ + g2C [ρAλ]CλϕiAρ + 1
2g

2CρϕjCρϕjϕi +O(g3) . (4.3)

In this section, we want to explicitly show the ambiguity of the N = 4 map by computing
(appendix D) and testing (appendix E) four different maps to second order in the Landau
gauge corresponding to the points

L = diag(+3,−1,−1,−1) , . . . , diag(−1,−1,−1,+3) , (4.4)

in su(4) and denote the respective coupling flow operators as

←
Rg

(A)[A ] = 1
8

←−
δ

δAΓ
P Σ

Γ tr
{

(CΣ)ABSBC /A C
D × /A

∗D
A

}
. (4.5)

with no sum over A = 1, 2, 3, 4. In general [12], the Nicolai map can be obtained from the
perturbative expansion

Rg[A ] =
∞∑
k=1

gk−1Rk[A ] = R1[A ] + gR2[A ] + g2R3[A ] + . . . , (4.6)

via
TgA = A − gR1A −

1
2g

2(R2 − R2
1
)
A +O(g3) . (4.7)
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When putting all the contributions together, we find the four distinct Nicolai maps

T (4)
g Aµ = Aµ − gCρAµAρ + 3

2g
2CρAλC[µAρAλ] + g2CρϕiC[µAρ]ϕi

−1
2g

2Π ν
µ ενλρσ

3∑
J=1

[CλϕJCρϕJ+3A
σ − CλϕJ+3C

ρϕJA
σ + CλAρCσϕJ+3ϕJ ] +O(g3) ,

(4.8)

T (K)
g Aµ = Aµ − gCρAµAρ + 3

2g
2CρAλC[µAρAλ] + g2CρϕiC[µAρ]ϕi

+1
2g

2Π ν
µ ενλρσ

3∑
J=1

(−)δKJ [CλϕJCρϕJ+3A
σ−CλϕJ+3C

ρϕJA
σ+CλAρCσϕJ+3ϕJ ]+O(g3) ,

(4.9)

and

T (4)
g ϕI = ϕI − gCρϕIAρ + g2C [ρAλ]CλϕIAρ + 1

2g
2CρϕjCρϕjϕI

−1
4g

2εµνρλ[CµϕI+3C
νAρAλ + 2CµAνCρϕI+3A

λ]

−1
2g

2Cρ
3∑

J=1
[ϕI+3CρϕJ+3ϕJ + ϕJCρϕI+3ϕJ+3 − ϕJ+3CρϕI+3ϕJ ] +O(g3) ,

(4.10)

T (K)
g ϕI = ϕI − gCρϕIAρ + g2C [ρAλ]CλϕIAρ + 1

2g
2CρϕjCρϕjϕI

+1
4g

2εµνρλ(−)δIK [CµϕI+3C
νAρAλ + 2CµAνCρϕI+3A

λ]

−1
2g

2Cρ(−)δIK
3∑

J=1
[ϕI+3CρϕJ+3ϕJ + ϕJCρϕI+3ϕJ+3 − ϕJ+3CρϕI+3ϕJ ]

+g2Cρ[ϕI+3CρϕK+3ϕK + ϕKCρϕI+3ϕK+3 − ϕK+3CρϕI+3ϕK ] +O(g3) ,

(4.11)

and the blue parts of T (4)
g ϕI+3, T (K)

g ϕI+3 are given by those of (4.10), (4.11) with I and
I+3 exchanged and an overall minus sign on the r.h.s., while the black terms are obtained
by simply replacing I with I+3. Note that the black parts of all four maps exactly equal
each other and the result from dimensional reduction (4.2), (4.3), whereas the blue parts
differ in signs for the four choices A = 1, 2, 3, 4. By investigating the explicit contributions
(appendix D) to the coupling flow operators R(A)

g , it is easy to check that the symmetric
superposition

Rg := 1
4(R(1)

g +R(2)
g +R(3)

g +R(4)
g ) , (4.12)

exactly yields the result from dimensional reduction, as expected. Note that while we can
superimpose coupling flow operators, this is not the case for the Nicolai map (1.8), since
it is not linear in Rg. In appendix E, we show through explicit computations that all four
maps that we have found in this section indeed satisfy the necessary conditions for a Nicolai
map to second order.
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5 Conclusions and outlook

In this work we have initiated a systematic study of the Nicolai map in N = 4 supersym-
metric Yang-Mills theory in four dimensions. Our main result is the explicit form of the
coupling flow operator in the Landau gauge

←
Rg [A ] = 1

32

←−
δ

δAΓ
P Σ

Γ tr
{

(CΣ)ABSBC /A C
D × /A

∗D
E(δEA + LEA)

}
,

with
L = L P− + L∗ P+ ,

and L any element in the Lie algebra su(4). Most importantly, it follows that the operator
is subject to a 15-dimensional ambiguity. This can be traced back to the theory-intrinsic
SU(4) R-symmetry. However, by construction, correlators do not depend on the choice of
L. Building up on previous results in N = 1 SYM and with the help of very compact
notation, the knowledge of Rg allows for an analogous perturbative construction of the
Nicolai map of N = 4 SYM via the universal formula Tg = −→P exp

{
−
∫ g

0 dhRh[A ]
}
.

These first steps suggest many future analyses. Natural open questions relate to the
effect of including a topological term in the theory, a better understanding of general
gauges and a graphical representation for the perturbative expansion. As a potential
application of this work, one could compute explicit N = 4 quantum correlators

〈
X[A ]

〉
g

=〈
X[T−1

g A ]
〉

0 with the inverse Nicolai map. Critical future investigations concern how
exactly the ambiguity in the coupling flow operator translates to the Nicolai map and,
more distantly related to that, whether the framework of the Nicolai map might hint at an
integrable structure of N = 4 SYM.
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A Details on the N = 1 superfield formalism

In the conventions from [17]11 and in the Wess-Zumino (WZ) gauge, the vector superfield
(V † = V ) takes the form

V = θσµθ̄Aµ(x)− iθ2θ̄λ̄(x) + iθ̄2θλ(x)− 1
2θ

2θ̄2D(x)

= θσµθ̄Aµ(y )− iθ2θ̄λ̄(y ) + iθ̄2θλ(y )− 1
2θ

2θ̄2[D(y )− iDµAµ(y )]

= θσµθ̄Aµ(y†)− iθ2θ̄λ̄(y†) + iθ̄2θλ(y†)− 1
2θ

2θ̄2[D(y†) + iDµAµ(y†)]

(A.1)

11Up to a global sign to recover a plus sign in the field strength and covariant derivative instead of a
minus sign.
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where y = x+iθσθ̄ and y† = x− iθσθ̄ parameterize (anti-)chiral superspace. The advantage
of the WZ gauge is that

V 2 = −1
2θ

2θ̄2AµA
µ , (A.2)

whereas all higher powers vanish such that the power series

e2V = 1 + 2V + 2V 2 (A.3)

truncates at the second order. The non-abelian supersymmetric field strength Wα and its
conjugate are given by

Wα = −1
4D̄D̄e−2V Dαe2V = +2iλα(y )− 2

[
δ β
α D(y )− iσµν β

α Fµν(y )
]
θβ − 2θ2 /Dαα̇λ̄

α̇(y ) ,

W̄ α̇ = −1
4DDe−2V D̄α̇e2V = −2iλ̄α̇(y†)− 2

[
δα̇
β̇
D(y†) + iσ̄µνα̇

β̇
Fµν(y†)

]
θ̄β̇ + 2θ̄2 /̄Dα̇α

λα(y†) ,
(A.4)

in chiral superspace, with the superspace covariant derivatives Dα, D̄α̇. The chiral super-
fields (D̄α̇ΦI = 0, DαΦ†I = 0) have the simple expansions

ΦI = φI(y) +
√

2θψI(y) + θ2FI(y) , Φ†I = φ†I(y
†) +

√
2θ̄ψ̄I(y†) + θ̄2F †I (y†) , (A.5)

in chiral superspace and the full superspace expansions

ΦI = φI(x) + iθσµθ̄∂µφI(x) + 1
4θ

2θ̄2�φI(x) +
√

2θψI(x)− i√
2
θ2∂µψI(x)σµθ̄ + θ2FI(x) ,

Φ†I = φ†I(x)− iθσµθ̄∂µφ†I(x) + 1
4θ

2θ̄2�φ†I(x) +
√

2θ̄ψ̄I(x) + i√
2
θ̄2θσµ∂µψ̄I(x) + θ̄2F †I (x) .

(A.6)
For the construction of the coupling flow operator we also need the penultimate components
of the various contributions to (2.8). For the first part, we find
1
4W

αWα =−λ2+
[
−2iDλ−2Fµνλσµν

]
θ+
[
−2iλσµDµλ̄−

1
2F

µνFµν+D2+ i
4F

µνF ρλεµνρλ

]
θ2,

1
4W̄α̇W̄

α̇ =−λ̄2+
[
+2iDλ̄−2Fµν λ̄σ̄µν

]
θ̄+
[
+2iDµλσ

µλ̄− 1
2F

µνFµν+D2− i
4F

µνF ρλεµνρλ

]
θ̄2.

(A.7)
Next, we evaluate

εIJK tr ΦI [ΦJ ,ΦK ] = iεIJKfabc
[
φaIφ

b
Jφ

c
K + 3

√
2 θ ψaIφbJφcK + 3θ2(F aI φbJφcK − φaIψbJψcK)] ,

(A.8)
and the hermitian conjugate analogously. Lastly, we find

1
nc

tr e−2V Φ†Ie
2V ΦI = Φa†

I Φa
I+ 2

nc
tr [T a,T b]T c Φa†

I V
bΦc

I+ 2
nc

tr [T a,T b][T c,T d] Φa†
I V

bV cΦd
I

= . . .+θ2θ̄
[
−i
√

2σ̄µψaIDµφ
a†
I +
√

2F aI ψ̄aI +2fabcφa†I λ̄
bφcI
]

+θ̄2θ
[
−i
√

2σµψ̄aIDµφ
a
I+
√

2F a†I ψaI−2fabcφa†I λ
bφcI
]

+θ2θ̄2[−Dµφ
a†
I DµφaI+F a†I F aI +iDµψ̄

a
I σ̄

µψI

−fabc
(
iφa†I D

bφcI−
√

2φa†I λ
bψcI+

√
2ψ̄aI λ̄bφcI

)]
+ total derivatives ,

(A.9)
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where we have left out terms of power 2 or less in θ and the traces over the SU(nc) generators
were evaluated with

[T a, T b] = ifabcT c , tr T aT b = ncδ
ab . (A.10)

From (2.8) and (A.7), (A.8), (A.9), we deduce that in Weyl notation the Lagrangian can
be written as

g2L =− 1
4F

a
µνF

aµν − iλaσµDµλ̄
a + 1

2D
2 − 1√

2
εIJKf

abc(F aI φbJφcK + F a†I φb†J φ
c†
K

)
−Dµφ

a†
I DµφaI − iψaIσµDµψ̄I + F a†I F aI + 1√

2
εIJKf

abc(φaIψbJψcK + φa†I ψ̄
b
J ψ̄

c
K

)
−
√

2fabc
(
ψaIλ

bφc†I + ψ̄aI λ̄
bφcI
)
− ifabcφa†I D

bφcI ,

(A.11)

up to total derivatives. From the superspace expansions we read off the supersymmetry
transformations

δφI =
√

2θψI , δψI = i
√

2σµθ̄DµφI +
√

2θFI , δFI = i
√

2θ̄σ̄µDµψI − 2φI×λ̄θ̄ ,
δAµ = −iλ̄σ̄µθ + iθ̄σ̄µλ , δλ = σµνθFµν + iθD , δD = −θσµDµλ̄−Dµλσ

µθ̄ .

(A.12)
For convenience, we translate the superfield formalism to a four-component Majorana basis
using

λ(M) =
(
λα
λ̄α̇

)
, λ̄(M) = (λα, λ̄α̇) , α =

(
θα
θ̄α̇

)
, ᾱ = (θα, θ̄α̇)

γµ =
(

0 σµ
σ̄µ 0

)
, γ5 = γ0γ1γ2γ3 =

(
−i 0
0 i

)
, etc. ,

(A.13)
so that

λ̄(M)λ(M) = λλ+ λ̄λ̄ , λ̄(M)iγ5λ
(M) = λλ− λ̄λ̄ ,

λ̄(M)γµλ(M) = λσµλ̄+ λ̄σ̄µλ = 2λσµλ̄ , 1
2 λ̄

(M)γµνα = λσµνθ + λ̄σ̄µν θ̄ , etc. ,
(A.14)

where the l.h.s. are in the four-component Majorana basis and the r.h.s. are in the two-
component Weyl basis. Additionally, we need the chiral projectors

P± = 1
2(1± iγ5) , λ̄(M)P+λ(M) = λλ , λ̄(M)P−λ(M) = λ̄λ̄ . (A.15)

This leads to the Lagrangian in Majorana notation (2.10) (leaving the superscript (M)

implicit from now on) and to the penultimate component

∆̊ = ᾱ

{
−Dγ5λ−

1
2Fµνγ

µνλ+ 2εIJKfabc
[
P+ψaIφ

b
Jφ

c
K + P−ψaIφ

b†
J φ

c†
K

]
+ 2ifabcγ5φ

a†
I λ

bφcI

+ i
√

2
[
γµP−ψaIDµφ

a
I + γµP+ψaIDµφ

a†
I

]
−
√

2
[
P+ψaIF

a†
I + P−ψaIF aI

]}
.

(A.16)
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For completeness, we note the following hermiticity properties for Majorana spinors χ, ξ:

χ̄ξ = ξ̄χ , χ̄γµξ = −ξ̄γµχ , χ̄γ5ξ = ξ̄γ5χ , χ̄γµγ5ξ = ξ̄γµγ5χ ,

χ̄γµνξ = −ξ̄γµνχ , χ̄γµνγ5ξ = −ξ̄γµνγ5χ , χ̄γρλγµξ = ξ̄γµγ
ρλχ .

(A.17)

Consistency checks. In order to cross-check the expressions above (in the Majorana
basis), we performed three consistency checks. Firstly, due to the superfield structure, the
penultimate component ∆̊ has to generate the Lagrangian via its supervariation up to total
derivatives

1
4δ∆̊

∣∣
ᾱα

= g2L , (A.18)

with ᾱ(. . .)α
∣∣
ᾱα

= −1
2tr(. . .). In practice, this requires the Fierz identity for Majorana

spinors

4ξχ̄ = −(χ̄ξ) + γµ(χ̄γµξ) + 1
2γµν(χ̄γµνξ) + γ5γµ(χ̄γ5γ

µξ) + γ5(χ̄γ5ξ) . (A.19)

A second check is making sure that the Lagrangian transforms as a divergence, i.e.

δL = divergence . (A.20)

A third consistency check is verifying the generation of the susy-algebra

{Qα, Q̄β} = 2(γµ)αβPµ = −2i(γµ)αβ∂µ , (A.21)

up to a gauge transformation. With the supercharges δ(. . .) = ᾱαQα(. . .) this can be
evaluated by computing the commutator of two supervariations

[δ(1), δ(2)] = [ᾱ1αQα, Q̄βα2β ] = ᾱ1α{Qα, Q̄β}α2β , (A.22)

acting on each field. One finds that the susy-algebra reads

{Qα, Q̄β} = −2i(γµ)αβ∂µ − [ω, ·]αβ +Gαβ(A) , (A.23)

where ω = 2i /A, [ω, ·]a = fabcωb(·)c and Gαβ is a gauge transformation Aµ → Aµ + ∂µω as
required in the WZ gauge.

Stripping-off the susy parameter. Lastly, we find it convenient to strip-off the susy
parameter by setting δ ≡ δααα and ∆̊ ≡ ᾱα∆̊α. This yields the supervariations (2.11)
and the penultimate component (2.12) (up to an overall normalization). We note that the
fermionic supervariations have gained an extra minus sign, since

χ̄δλ = χ̄βMβααα = χ̄βδαααλβ = −χ̄βδαλβαα ⇒ δαλβ = −Mβα , (A.24)

with some arbitrary spinor χ̄. In general, one has to be careful with sign-flips, because
fermionic quantities anti-commute with each other.
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B Details on the canonical construction

In this appendix we give the detailed calculation for how to get from (3.6) to (3.7). We
need

δαX[Ã ] = −i
∫

d4x

(˜̄
ψ4γµ

δ

δÃµ
+ ˜̄
ψJ(ci)J4

δ

δϕ̃i

)
α

X[Ã ]

= −i
∫

d4x

(˜̄
ψA(ĈΣ)A4

δ

δÃΣ

)
α

X[Ã ] ,
(B.1)

where we introduced the object

(ĈΣ)A4 =
{
δA4γµ for Σ = µ = 0, 1, 2, 3
(ci)A4 for Σ = 3 + i = 4, 5, . . . , 9 , (B.2)

with matrix-valued entries. It is defined via

δ(4)
α ÃΣ = −i( ˜̄ψA(ĈΣ)A4)α , (B.3)

where the (4) indicates that we have singled out one of the four supersymmetries (the
‘fourth’ one). Further we have

sX[Ã ] = √g
∫

d4x D̃ΓC̃
δ

δÃΓ
X[Ã ] , (B.4)

as well as the gaugino and ghost propagators, given by

ψ̃A(x) ˜̄ψB(y) = −S̃AB (x, y; Ã ) , /̃DA
C S̃

C
B (x, y; Ã ) = δABδ(x− y) , (B.5)

and
iC̃(x) ˜̄C(y) = G̃(x, y; Ã ) , ∂G(Ã )

∂ÃΓ
D̃Γ G̃(x, y; Ã ) = δ(x− y) , (B.6)

respectively. The rescaled coupling flow operator then reads

←
R̃ [Ã ] =

←−
δ

δÃΓ
P̃ Σ

Γ R̃Σ+
←−
δ

δÃΓ
D̃ΓG̃ G(Ã ) , (B.7)

where we introduced the covariant projector

P̃ Σ
Γ = δ Σ

Γ − D̃ΓG̃
∂G(Ã )
∂ÃΣ

, (B.8)

and

R̃Σ = −1
4tr
{[1

2 F̃µνγ
µν S̃4

C + (Φ̃4
A)† /̃DA

BS̃
B
C −

1
2(Φ̃4

A)†Φ̃A
B×S̃BC

]
(ĈΣ)C4

}
, (B.9)

where the trace is over Majorana spinor space.
The original (unrescaled) coupling flow operator is given by [12]

Rg[A ] = 1
g

(
R̃[Ã ]− E

)
with E = ÃΓ

δ

δÃΓ
. (B.10)
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To isolate the Euler operator E, we need the identities

γρλF̃ρλ = 2 /̃D /̃A+ 2∂ · Ã− /̃A× /̃A , (B.11)
/̃DS̃4

C = δ4
C − Φ̃4

B × S̃BC , (B.12)

which (next to other contributions) generate the Ãµ
δ

δÃµ
part of E. Further we use

/̃DA
B S̃BC = δAC in the second term of (B.9) and

(Φ̃4
A)†(ĈΣ)A4 =


0 for Σ = µ

−14ϕ̃I − γ5ϕ̃I+3 for Σ = 3 + I

+γ5ϕ̃I − 14ϕ̃I+3 for Σ = 6 + I

. (B.13)

With tr γ5 = 0, this gives the second part of the Euler operator. Straightforward calcula-
tions lead to

R̃Σ = ÃΣ −
1
4tr
{

(CΣ)4
A

[1
2 S̃

A
4(2∂ · Ã− /̃A× /̃A)− S̃AB Φ̃B

4 × /̃A− 1
2 S̃

A
B Φ̃B

C × (Φ̃C
4)†
]}

,

(B.14)
where we flipped the order of the quantities in the trace for a more natural implicit color
structure. To do so, we have used that R̃Σ is real and identities such as

ψ̄ = ψ† γ0 , (γ0)2 = 14 , (S̃AB )† = γ0 S̃
B
A γ0 , (CΣ)4

A : = γ0 ((ĈΣ)A4)† γ0 ,

γ†µ = γ0 γµ γ0 , γ†5 = γ0 γ5γ0 = −γ5 , γ0 Φ̃A
B γ0 = (Φ̃B

A)† .
(B.15)

This leads to
(CΣ)4

A =
{
δ4
Aγµ for Σ = µ = 0, 1, 2, 3

(ci)4
A for Σ = 3 + i = 4, 5, . . . , 9 . (B.16)

Since R̃Γ = ÃΓ + . . ., the Euler operator conveniently cancels and we find (after inserting
Ã = gA ) for any linear gauge

←
Rg [A ] = −1

4

←−
δ

δAΓ
P Σ

Γ tr
{

(CΣ)4
A

[1
2S

A
4

(2
g
∂·A− /A× /A

)
− SABΦB

4 × /A

− 1
2S

A
BΦB

C × (ΦC
4)†
]}

.

(B.17)

Now that the coupling is restored, with

/DA
B = /DδAB + gΦA

B× , with Dµ = ∂µ + gAµ× , (B.18)

and /DA
CS

C
B = δAB , the fermion propagators can be expanded perturbatively:

SAB = S0δ
A
B − gS0 /A

A
CS

C
B =

∞∑
l=0

(
−gS0 /A

)lA
BS0 , (B.19)

with S0 = /∂
−1 = −/∂C and

/A A
B = /AδAB + ΦA

B . (B.20)
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In particular SA4|g=0 = 0, so that the coupling flow operator Rg contains no term of order
1
g . We use the same procedure to get rid of the S0

2
g∂ ·A|g=0 contribution as in the N = 1

case [13] with
2S0∂ ·A = −2 /AL = /A

∗ − /A (B.21)

to rewrite the first term:

− 1
4

←−
δ

δAΓ
P Σ

Γ tr
{

(CΣ)4
A

[
1
2S

A
4

(
2
g
∂·A− /A× /A

)]}

=− 1
8

←−
δ

δAΓ
P Σ

Γ tr
{

(CΣ)4
A

[ ∞∑
l=0

(
−gS0 /A

)l A
4S0

(
2
g
∂ ·A− /A× /A

)]}

=− 1
8

←−
δ

δAΓ
P Σ

Γ tr
{

(CΣ)4
A

[
1
g

∞∑
l=0

(
−gS0 /A

)l A
4S0( /A∗− /A)−

∞∑
l=0

(
−gS0 /A

)l
A4S0 /A× /A

]}

=− 1
8

←−
δ

δAΓ
P Σ

Γ tr
{

(CΣ)4
A

[
1
g

∞∑
l=0

(
−gS0 /A

)l A
4S0( /A∗− /A)−

∞∑
l=0

(
−gS0 /A

)l A
BS0( /A B

4−ΦB4)× /A
]}

=− 1
8

←−
δ

δAΓ
P Σ

Γ tr
{

(CΣ)4
A

[
1
g

∞∑
l=0

(
−gS0 /A

)l A
4S0( /A∗− /A)+ 1

g

∞∑
l=1

(
−gS0 /A

)l A
4× /A+SABΦB4× /A

]}

=− 1
8

←−
δ

δAΓ
P Σ

Γ tr
{

(CΣ)4
A

[
1
g
δA4S0( /A∗− /A)+ 1

g

∞∑
l=1

(
−gS0 /A

)l A
4× /A

∗+SABΦB4× /A

]}

=− 1
8

←−
δ

δAΓ
P Σ

Γ tr
{

(CΣ)4
AS

A
B

[
− /A B

4× /A
∗+ΦB4× /A

]}
− 1
g

←−
δ

δAΓ
P ν

Γ AL
ν

=− 1
4

←−
δ

δAΓ
P Σ

Γ tr
{

(CΣ)4
AS

A
B

[
−1

2
/A B

4× /A
∗+ 1

2ΦB4× /A
]}

+
←−
δ

δAΓ
Π Σ

Γ AΣG
∂G(A )
∂Aν

AL
ν ,

(B.22)

containing no term of order 1/g. Putting everything together we find

←
Rg [A ] = 1

8

←−
δ

δAΓ
P Σ

Γ tr
{

(CΣ)4
AS

A
B

[
/A B

4 × /A
∗ + ΦB

4 × /A+ ΦB
C × Φ†C4

]}
+
←−
δ

δAΓ
Π Σ

Γ AΣG
∂G(A )
∂Aν

AL
ν ,

(B.23)

which after defining
/A
∗A

B = /A
∗
δAB + (ΦA

B)† , (B.24)

takes the simple form (3.7).

C Infinitesimal free action condition

In this appendix we present a direct proof that the coupling flow operator in the Landau
gauge (3.30) satisfies the three infinitesimal conditions (1.10) (1.11). The determinant
matching condition follows from the other two conditions and the defining relation (1.4).
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The gauge condition (1.11) follows automatically from the form of the covariant projec-
tor (3.13). Thus, we have only left to show the infinitesimal free action condition

(∂g +Rg)Sb
g [A ] = 0 . (C.1)

The basic procedure of the proof is equivalent to the one in A.3 of [10] for N = 1 SYM
in D = 3, 4, 6, 10, but we have to take into account subtleties coming from the additional
degrees of freedom in the N = 4 case. We can write the bosonic action as

Sb
g [A ] =

∫
d4x

{
−1

4F
ΣΘFΣΘ

}
, (C.2)

with

FΣΘ = ∂ΣAΘ − ∂ΘAΣ + gAΣ ×AΘ , ∂3+i = 0 , Aµ = Aµ , A3+i = ϕi . (C.3)

From these expressions, it is easy to find

∂gS
b
g = −1

2F
ΣΘAΣ×AΘ and

δSb
g

AΣ
= DΘFΘΣ , (C.4)

with implicit integration. We first show the statement for the particular choice of the
coupling flow operator (3.24) and afterwards generalize the result to the full Lie algebra
su(4). Concretely, we first prove that

(∂g +Rg)Sb
g [A ] = −1

2F
ΣΘAΣ×AΘ + 1

8DΘFΘΣ tr
{
(CΣ)4

BS
B
C /A C

D × /A
∗D

4
}

(C.5)

vanishes. To do so, we use the identities

1
4tr
{
(CΣ)4

B(C̄Θ)BC(CΓ)CD(C̄Ψ)D4
}

= ηΣΨηΘΓ − ηΣΓηΘΨ + ηΣΘηΓΨ , (C.6)

(C Γ)ABDΓ S
B
C = /D

A
B SBC = δAC , (C.7)

(C[Σ)AB(C̄Θ])BC(CΓ)CD = −2(C[Σ)AD ηΘ]Γ + (C[Σ)AB(C̄Θ)BC(CΓ])CD ,
(C.8)

that are similar to the ones used in [10]. Here we have introduced a ‘conjugate’ C̄ (in the
Landau gauge), so that

Cµ = 14γµ , C3+i = 2[(ti)∗P+ − tiP−] , /A A
B = A Γ(CΓ)AB = /A+ ΦA

B

C̄µ = 14γµ , C̄3+i = 2[tiP+ − (ti)∗P−] , /A
∗A

B = A Γ(C̄Γ)AB = /A+ (ΦA
B)† ,

(C.9)

with the Clebsch-Gordon coefficients tiAB as matrices in R-space. It should be noted
that (C.6) is only valid up to terms that vanish when contracted with fields in the ad-
joint representation of the gauge group due to the Jacobi identity in color space. We
explicitly check (C.6) at the end of this appendix. The identity (C.8) follows from the
analogous identity for the 10d gamma matrices

Γµ = 18 ⊗ γµ and Γ3+i = 2
(

0 ti

(ti)∗ 0

)
⊗ (P+ − P−) , (C.10)
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as well as the anti-commutation relation for the Clebsch-Gordon matrices

{ti, (tj)∗} = −1
2δ

ij
14 . (C.11)

With these identities at hand, we can rewrite the first term in (C.5) as

−1
2F

ΣΘAΣ×AΘ

(C.6)= 1
16F

ΣΘtr
{
(CΣ)4

B(C̄Θ)BC(CΓ)CD(C̄Ψ)D4
}
A Γ×A Ψ

(C.7)= 1
16F

ΣΘtr
{
(CΣ)4

B(C̄Θ)BC(CΓ)CDDΓSDE /A E
F × /A

∗F
4
}

ibp= − 1
16DΓFΣΘtr

{
(CΣ)4

B(C̄Θ)BC(CΓ)CDSDE /A E
F × /A

∗F
4
}

(C.8)= − 1
16DΓFΣΘtr

{[
−2(CΣ)4

DηΘΓ + (C[Σ)4
B(C̄Θ)BC(CΓ])CD

]
SDE /A E

F × /A
∗F

4
}

= − 1
8DΘFΘΣtr

{
(CΣ)4

DS
D
E /A E

F × /A
∗F

4
}
,

(C.12)
where in the last step we used the Bianchi identity D [ΓFΣΘ] = 0. This concludes the proof
for the special case L = diag(−1,−1,−1,+3) (and permutations thereof). To reach the full
Lie algebra we make use of the fact that we can superimpose coupling flow operators with
weight one, giving the Cartan subalgebra and that Sb

g [A ] is invariant under R-symmetry
transformations A → A ′. From

0 = (∂g +Rg[A ′])Sb
g [A ′] = (∂g +Rg[A ′])Sb

g [A ] , (C.13)

we observe the transformed Rg[A ′] also satisfies the infinitesimal free action condition,
reaching all L ∈ su(4).

Lastly, we prove (C.6) by explicitly checking the various possibilities of the open indices.
The easiest case is the one with only gamma matrices

1
4tr
{
(Cµ)4

B(C̄ν)BC(Cρ)CD(C̄σ)D4
}

= 1
4tr
{
γµγνγργσ

}
= ηµσηνρ − ηµρηνσ + ηµνηρσ. (C.14)

Next, we consider the case when there are three gamma matrices (modulo chiral projectors)
in the trace, i.e. one of the four indices in the range 4 to 9 and the three others in the
range 0 to 3. In that case, the trace vanishes since any trace over an odd number of gamma
matrices vanishes and the r.h.s. of (C.6) also clearly vanishes because in each term there
is a Kronecker delta that is zero. The next case is the one where two indices are in the
range 0 to 3 and the other two indices are in the range 4 to 9. We have to distinguish three
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arrangements of indices
1
4tr
{
(C3+i)4

B(C̄3+j)BC(Cµ)CD(C̄ν)D4
}

= 1
4tr
{
(C3+i)4

B(C̄3+j)B4γµγν
}

= (ti)4J(tj)J4 tr
{
P+γµγν

}
+(ti)4J(tj)J4 tr

{
P−γµγν

}
=−2[(ti)4J(tj)J4ηµν+c.c.] = δijηµν ,

(C.15)
1
4tr
{
(C3+i)4

B(C̄µ)BC(C3+j)CD(C̄ν)D4
}

= tr
{
[(ti)4JP+−(ti)4JP−]γµ[(tj)J4P+−(tj)J4P−]γν

}
=−(ti)4J(tj)J4tr

{
P+γµγν

}
−(ti)4J(tj)J4tr

{
P−γµγν

}
= 2(ti)4J(tj)J4ηµν+c.c.=−δijηµν ,

(C.16)
1
4tr
{
(C3+i)4

B(C̄µ)BC(Cν)CD(C̄3+j)D4
}

= tr
{
[(ti)4JP+−(ti)4JP−]γµγν [(tj)J4P+−(tj)J4P−]

}
= (ti)4J(tj)J4 tr

{
P+γµγν

}
+(ti)4J(tj)J4 tr

{
P−γµγν

}
=−2[(ti)4J(tj)J4ηµν+c.c.] = δijηµν ,

(C.17)

with all the other index configurations related to the three above by the cyclicity of the
trace. The trace with only one gamma matrix vanishes due to the same reason as for three
gamma matrices. We are left with the case

1
4tr
{
(C3+i)4

B(C̄3+j)BC(C3+k)CD(C̄3+l)D4
}

=4(ti)4I(tj)IC(tk)CK(tl)K4 tr P+

+4(ti)4I(tj)IC(tk)CK(tl)K4 tr P−

=8 (ti)4I(tj)IC(tk)CK(tl)K4+c.c.
=8 [(ti)4I(tj)I4(tk)4K(tl)K4

+(ti)4I(tj)IJ(tk)JK(tl)K4]+c.c.

(C.18)

The last expression can be evaluated with the explicit form of the Clebsch-Gordon coeffi-
cients (2.27) and the identity

εIJM ε
MKL = δ K

I δ L
J −δ L

I δ K
J . (C.19)

We do not quite find the desired result, because we obtain additional terms when two of
the indices i, j,k, l are in the range 1 to 3 and the other two are in the range 4 to 6. For
example

1
4tr
{
(C3+I)4

B(C̄6+J)BC(C3+K)CD(C̄6+L)D4
}

= δILδJK−δIKδJL−δIJδKL , (C.20)

where only the second term on the r.h.s. would appear in the r.h.s. of (C.6). However, we
contract (C.6) with the ϕ’s in the adjoint representation of the gauge group. It turns out
that the additional terms are proportional to

(ϕI×ϕJ) (ϕI+3×ϕJ+3)+(ϕI×ϕJ+3) (ϕJ×ϕI+3)+(ϕI×ϕI+3) (ϕJ+3×ϕJ) = 0 , (C.21)

i.e. vanish by the Jacobi identity in color space.
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D Explicit computation of the Nicolai maps

We first collect a number of useful identities

∑
B

ΦA
B×(ΦB

A)†=
{
−2γ5

∑
J ϕJ×ϕJ+3 for A= 4

2γ5
∑
J(−)δKJϕJ×ϕJ+3 for A=K

,

∑
B

ΦA
BS0ΦB

A =
{ ∑

j ϕjS0ϕj−γ5
∑
J(ϕJ+3S0ϕJ−ϕJS0ϕJ+3) for A= 4∑

j ϕjS0ϕj+γ5
∑
J(−)δKJ (ϕJ+3S0ϕJ−ϕJS0ϕJ+3) for A=K

,

∑
B

(cI)ABS0ΦB
A =

{
S0ϕI+γ5S0ϕI+3 for A= 4

S0ϕI−γ5S0ϕI+3(−)δIK for A=K
,

∑
B

(cI+3)ABS0ΦB
A =

{
−γ5S0ϕI+S0ϕI+3 for A= 4

γ5S0ϕI(−)δIK +S0ϕI+3 for A=K
,

(D.1)

and
∑
B,C,D

tr
{
(cI)4

BS0ΦB
CS0ΦC

D×(ΦD
4)†
}

= tr
{
−2S0

∑
j

ϕjS0ϕjϕI

−2S0
∑
J

[
ϕI+3S0ϕJϕJ+3−ϕJS0ϕI+3ϕJ+3+ϕJ+3S0ϕI+3ϕJ

]}
,

(D.2)

∑
B,C,D

tr
{
(cI)KBS0ΦB

CS0ΦC
D×(ΦD

K)†
}

= tr
{
−2S0

∑
j

ϕjS0ϕjϕI

−2S0
∑
J

[
ϕI+3S0ϕJϕJ+3−ϕJS0ϕI+3ϕJ+3+ϕJ+3S0ϕI+3ϕJ

]
(−)δIK

+4S0
[
ϕI+3S0ϕKϕK+3−ϕKS0ϕI+3ϕK+3+ϕK+3S0ϕI+3ϕK

]}
,

(D.3)

where in (D.2) and (D.3) half of the terms dropped out due to tr γµγνγ5 = 0. The analogous
formulae with (cI+3)AB are given by (D.2) and (D.3) with all indices I,J,K, . . . replaced
by I+3,J+3,K+3, . . . and vice versa so that e.g.

∑
B,C,D

tr
{
(cI+3)4

BS0ΦB
CS0ΦC

D×(ΦD
4)†
}

= tr
{
−2S0

∑
j

ϕjS0ϕjϕI+3

−2S0
∑
J

[
ϕIS0ϕJ+3ϕJ−ϕJ+3S0ϕIϕJ+ϕJS0ϕIϕJ+3

]}
.

(D.4)

To evaluate the traces, we need

tr γ5γ
µγνγργσ =−4εµνρσ ,

tr γµγνγργσ = 4(ηµνηρσ−ηµρηνσ+ηµσηνρ) ,
tr γµγνγργσγλγη =−ηµν tr γργσγλγη+ηµρ tr γνγσγλγη∓. . . .

(D.5)

We now give some intermediate results for the various contributions to the Nicolai maps.
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First order: We have

←
R1

(A) = 1
8

←−
δ

δAΓ
Π Σ

Γ tr
{

(CΣ)ABS0 /A
B
C× /A

∗C
A

}
, (D.6)

where Π Σ
Γ = δ Σ

Γ −C Σ
Γ and ∂3+i≡ 0. Further expanding

←
R1

(A) = 1
8

←−
δ

δAΓ
Π Σ

Γ tr
{

(CΣ)ABS0
[
/A× /AδBA+2ΦB

A× /A+ΦB
C×(ΦC

A)†
]}
, (D.7)

we find
R1

(A)Aµ = 1
8Π ν

µ tr
{
γνS0 /A× /A

}
=CρAµAρ , ∀ A= 1,2,3,4 , (D.8)

where we used (Cν)AJ = 0, as well as ΦA
J×(ΦJ

A)† ∼ γ5 and tr γνγργ5 = 0. The remaining
part is

R1
(A)ϕi = 1

4 tr
{

(ci)ABS0ΦB
A× /A

}
=CρϕiAρ , ∀ A= 1,2,3,4 , (D.9)

where we used that a trace over an odd number of gamma matrices vanishes.

Second order: First, it is straightforward to obtain

(R1
(A))2Aµ = 2CρA[µC

λAρ]Aλ , ∀ A= 1,2,3,4 , (D.10)
(R1

(A))2ϕi =CρϕiCλA
ρAλ−CρAρCλϕiAλ ∀ A= 1,2,3,4 . (D.11)

With the perturbative expansion of the covariant projector

P Σ
Γ = δ Σ

Γ −DΓG∂
Σ = Π Θ

Γ

{
δ Σ

Θ −gAΘ

∞∑
k=0

(−g∂·A C)kC∂Σ
}
, (D.12)

and the gaugino propagator (B.19), we further find

←
R2

(A) =−1
8

←−
δ

δAΓ
Π Σ

Γ tr
{

(CΣ)ABS0 /A
B
CS0 /A

C
D× /A

∗D
A

}
− 1

8

←−
δ

δAΓ
Π Θ

Γ AΘS0∂
σtr
{
γσS0 /A

A
B× /A

∗B
A

}
.

(D.13)

It is easy to see that the second term gives no contribution using ΦA
B×(ΦB

A)† ∼ γ5 and
symmetry. Evaluating the traces, one finds

R2
(4)Aµ = 3CρAλC[µAλAρ]+2CρA[µC

λAρ]Aλ+2CρϕiC[ρAµ]ϕi

+Π ν
µ ενλρσ

3∑
J=1

[CλϕJCρϕJ+3A
σ−CλϕJ+3C

ρϕJA
σ+CλAρCσϕJ+3ϕJ ] ,

(D.14)

R2
(K)Aµ = 3CρAλC[µAλAρ]+2CρA[µC

λAρ]Aλ+2CρϕiC[ρAµ]ϕi

−Π ν
µ ενλρσ

3∑
J=1

(−)δKJ [CλϕJCρϕJ+3A
σ−CλϕJ+3C

ρϕJA
σ+CλAρCσϕJ+3ϕJ ] ,

(D.15)
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and
R2

(4)ϕI =CρϕIC
λAρAλ−CρAρCλϕIAλ+2C [ρAλ]CρϕIAλ+CρϕjCρϕIϕj

+ 1
2εµνρλ[CµϕI+3C

νAρAλ+2CµAνCρϕI+3A
λ]

+Cρ
3∑

J=1

[
ϕI+3CρϕJ+3ϕJ+ϕJCρϕI+3ϕJ+3−ϕJ+3ϕI+3ϕJ

]
,

(D.16)

R2
(K)ϕI =CρϕIC

λAρAλ−CρAρCλϕIAλ+2C [ρAλ]CρϕIAλ+CρϕjCρϕIϕj

− 1
2εµνρλ(−)δIK [CµϕI+3C

νAρAλ+2CµAνCρϕI+3A
λ]

+Cρ(−)δIK
3∑

J=1

[
ϕI+3CρϕJ+3ϕJ+ϕJCρϕI+3ϕJ+3−ϕJ+3CρϕI+3ϕJ

]
−2Cρ

[
ϕI+3CρϕK+3ϕK+ϕKCρϕI+3ϕK+3−ϕK+3CρϕI+3ϕK

]
,

(D.17)

R2
(4)ϕI+3 =CρϕI+3C

λAρAλ−CρAρCλϕI+3A
λ+2C [ρAλ]CρϕI+3Aλ+CρϕjCρϕI+3ϕj

− 1
2εµνρλ[CµϕICνAρAλ+2CµAνCρϕIAλ]

−Cρ
3∑

J=1

[
ϕICρϕJ+3ϕJ+ϕJCρϕIϕJ+3−ϕJ+3ϕIϕJ

]
,

(D.18)
R2

(K)ϕI+3 =CρϕI+3C
λAρAλ−CρAρCλϕI+3A

λ+2C [ρAλ]CρϕI+3Aλ+CρϕjCρϕI+3ϕj

+ 1
2εµνρλ(−)δIK [CµϕICνAρAλ+2CµAνCρϕIAλ]

−Cρ(−)δIK
3∑

J=1

[
ϕICρϕJ+3ϕJ+ϕJCρϕIϕJ+3−CρϕJ+3ϕIϕJ

]
+2
[
ϕICρϕK+3ϕK+ϕKCρϕIϕK+3−CρϕK+3ϕIϕK

]
,

(D.19)
for K = 1,2,3.

E Testing the conditions of the Nicolai maps

We explicitly check the three conditions for the four distinct Nicolai maps (4.8)–(4.11).

Check of the gauge condition: the (Landau) gauge condition ∂µTgAµ = ∂µAµ+O(g3)
follows from symmetry and ∂µΠ ν

µ = 0.

Check of the free-action condition: the maps have to satisfy

S0[A′µ,ϕ′I ,ϕ′I+3] =Sb
g [Aµ,ϕI ,ϕI+3] , (E.1)

with the bosonic action

Sb
g =

∫
d4x

{
−1

4FµνF
µν− 1

2DµϕiDµϕi−
g2

4 (ϕi×ϕj)2
}
,

Fµν = ∂µAν−∂νAµ+gAµ×Aν ,
Dµ = ∂µ+gAµ× ,

(E.2)
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and Sb
0 =Sb

g=0. Writing this condition out at second order gives
∫

d4x

{1
2A
′
µ|O(g)

(
�ηµν−∂µ∂ν

)
A′ν |O(g)+Aµ

(
�ηµν−∂µ∂ν

)
A′ν |O(g2)

+ 1
2ϕ
′
i|O(g)�ϕ

′
i|O(g)+ϕi�ϕ′i|O(g2)

}
=
∫

d4x

{
−1

4(Aµ×Aν)2− 1
2(Aµ×ϕi)2− 1

4(ϕi×ϕj)2
}
,

(E.3)

after integrating by parts on the left hand side. The free-action condition (in the Landau
gauge) was previously shown for the map in N = 1 D= 10 SYM, i.e. before dimensional
reduction. It is clear that the condition remains valid for the reduced map (given by the
black terms) and action. We therefore argue that we only have left to show that the blue
terms have no effect on the l.h.s. of (E.3). Further using ∂µA′µ = 0 (at all orders), we can
drop two terms on the l.h.s. of (E.3), so we are left with the condition∫

d4x
{
Aµ�A

′µ|O(g2)+ϕI�ϕ′I |O(g2)+ϕI+3�ϕ
′
I+3|O(g2)

}
blue terms

= 0 . (E.4)

Let us start with the map obtained from A= 4. We refer to the three contributions as
1 , 2 , 3 respectively. Dividing by an overall factor of 1

2 and switching to a graphical
notation, we find for the first part

1 = εµνρλ

{ ∂νAµ

φJ

φJ+3

Aλ

Cρ

−

∂νAµ

φJ+3

φJ

Aλ

Cρ

+

∂νAµ

Aρ

φJ+3

φJ

Cλ

}
. (E.5)

The last diagram drops out since we can bring the ∂ν to the center through integration by
parts and the overall anti-symmetry under µ↔ ρ (gaining a factor −1/2). Then, clearly
∂νCλ =Cνλ contracts to zero with the epsilon symbol as it is symmetric under ν↔λ. The
second contribution is

2 = 1
2εµνρλ

{ ∂µφI

φI+3

Aρ

Aλ

Cν

+2

∂µφI

Aν

φI+3

Aλ

Cρ

}

+
{ ∂ρφI

φI+3

φJ+3

φJ

Cρ +

∂ρφI

φJ

φI+3

φJ+3

Cρ −

∂ρφI

φJ+3

φI+3

φJ

Cρ

} (E.6)

and
3 =−

[
2 with (I↔ I+3)

]
. (E.7)

The first respective terms of 2 and 3 cancel each other by means of integration by parts
and symmetry. The second term of 2 cancels the first term of 1 and the corresponding
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second term of 3 cancels the second term of 1 . We are left with the second line of (E.6)
and the corresponding terms from (E.7):

∂ρφI

φI+3

φJ+3

φJ

Cρ +

∂ρφI

φJ

φI+3

φJ+3

Cρ −

∂ρφI

φJ+3

φI+3

φJ

Cρ

−

∂ρφI+3

φI

φJ+3

φJ

Cρ −

∂ρφI+3

φJ

φI

φJ+3

Cρ +

∂ρφI+3

φJ+3

φI

φJ

Cρ =:
∑
I,J

ZIJ
!= 0.

(E.8)
We can integrate by parts in the first diagram, which gives two contributions, one of them
canceling the fourth diagram. Similarly, the third and fifth diagram can be combined into
one. In the second and last diagram we can make use of the anti-symmetry under I↔ J to
also integrate by parts in both diagrams (gaining a factor −1/2 in each) and then combine
them into one contribution. This way the six diagrams reduce to three:

−

φI

φI+3

φJ+3

φJ

−

φI

φJ+3

φJ

φI+3

−

φI

φJ

φI+3

φJ+3

!= 0 , (E.9)

where we used ∂ρCρ =�C =1. The condition (E.9) follows simply from the Jacobi identity
(in color space). In conclusion, the blue terms of the A= 4 map indeed have no effect on
the free action condition, at least to the second order.
For the A=K case, most of the calculation can be done in the same way as for A= 4
by simply carrying around the sign factors (−)δKJ etc. However, the third and last line
in (4.11) require special attention. Referring to (E.8), the remaining condition for A=K

can be written as

∑
I,J

(−)δKIZIJ−2
∑
I

ZIK =
∑
J

(
−ZKJ−2ZJK+

∑
I 6=K

ZIJ

)
!= 0 . (E.10)

In the following we will show that this condition is satisfied by demonstrating that

∑
J

ZJK =−
∑
J

ZKJ , for any K = 1,2,3 , (E.11)

and using our previous result∑I,J ZIJ = 0. In order to make clear that we are not summing
over K, we will set K = 1 in the following, although the calculation works in the exact same
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way for K = 2,3. We start with

∑
J

ZJ1 =

∂ρφJ

φJ+3

φ4

φ1

Cρ +

∂ρφJ

φ1

φJ+3

φ4

Cρ −

∂ρφJ

φ4

φJ+3

φ1

Cρ

−

∂ρφJ+3

φJ

φ4

φ1

Cρ −

∂ρφJ+3

φ1

φJ

φ4

Cρ +

∂ρφJ+3

φ4

φJ

φ1

Cρ
.

(E.12)

We can integrate by parts in the first diagram as previously. This gives two diagrams of
which one cancels with the fourth diagram. Further, we integrate by parts in all of the
four other diagrams. This leaves us with the 9 diagrams

∑
J

ZJ1 =−

φJ

φJ+3

φ4

φ1

−

φJ

φ1

φJ+3

φ4

−

φJ

φ4

φ1

φJ+3

+

φJ+3

φ1

φJ

φ4

−

φJ+3

φ4

φJ

φ1

−

φJ

∂ρφ1

φJ+3

φ4

Cρ

+

φJ

∂ρφ4

φJ+3

φ1

Cρ

+

φJ+3

∂ρφ1

φJ

φ4

Cρ

−

φJ+3

∂ρφ4

φJ

φ1

Cρ

,

(E.13)

of which the first three cancel through the Jacobi identity and the fourth and fifth can be
combined into one using the Jacobi identity once more. We find

∑
J

ZJ1 = +

φJ+3

φJ

φ1

φ4

−

φJ

∂ρφ1

φJ+3

φ4

Cρ

+

φJ

∂ρφ4

φJ+3

φ1

Cρ

+

φJ+3

∂ρφ1

φJ

φ4

Cρ

−

φJ+3

∂ρφ4

φJ

φ1

Cρ

.

(E.14)
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We can use 1=Cρρ , symmetry and integration by parts to modify the first diagram

φJ+3

φJ

φ1

φ4

=

φ1

φ4

φJ+3

φJ

=

φ1

φ4

φJ+3

φJ

∂ρCρ

=−

∂ρφ1

φ4

φJ+3

φJ

Cρ −

φ1

∂ρφ4

φJ+3

φJ

Cρ

(E.15)

Using antisymmetry to flip the external lines appropriately, it is now easy to see that

∑
J

ZJ1 =−

∂ρφ1

φ4

φJ+3

φJ

Cρ +

∂ρφ4

φ1

φJ+3

φJ

Cρ −

∂ρφ1

φJ

φ4

φJ+3

Cρ

+

∂ρφ4

φJ

φ1

φJ+3

Cρ +

∂ρφ1

φJ+3

φ4

φJ

Cρ −

∂ρφ4

φJ+3

φ1

φJ

Cρ =−
∑
J

Z1J ,

(E.16)
which concludes our check of the free action condition for A=K.

Check of the determinant matching: the map has to satisfy

log det δA ′

δA
= log ∆MSS[A]∆FP[A] , (E.17)

which has been checked for the N = 1 D= 10 result (to fourth order). It is easy to convince
oneself that the condition is preserved under dimensional reduction to N = 4 D= 4. Hence,
we will again only show that the blue terms have no effect on the l.h.s. of the condition.
Using log det = tr log, we see that they first enter at the second order through the first
term of

log det δA ′

δA

∣∣∣
O(g2)

= tr δA
′

δA

∣∣∣
O(g2)

− 1
2tr δA

′

δA

∣∣∣
O(g)

δA ′

δA

∣∣∣
O(g)

. (E.18)

More specifically, we have

tr δA
′

δA
=
∫

d4x d4y δ(4)(x−y)δabδΣ
∆
δA ′aΣ (x)
δA b

∆(y)

=
∫

d4x d4y δ(4)(x−y)δab
{
δA′aµ (x)
δAbν(y) δ

µ
ν+ δϕ′aI (x)

δϕbJ(y)
δIJ+

δϕ′aI+3(x)
δϕbJ+3(y)

δIJ

}
.

(E.19)

We need to show that the contributions from the blue terms in (E.19) vanish. We again refer
to the three contributions as 1 , 2 and 3 respectively and start with the case A= 4.
It is easy to see that 1 = 0, since every term contains εµλρσηµσ = 0. For 2 , we note that
the first line of the blue terms in (4.10) contains no fields ϕI , i.e. drops out when varying
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w.r.t. ϕI . The second term in the last line gives no contribution since faac = 0, whereas the
remaining two contributions cancel each other. In an analogous fashion, one finds 3 = 0,
so that in total, the blue terms leave the determinant matching condition (E.17) invariant.
The A=K case works in almost the same way by carrying around the sign factors and
additionally taking care of the last line in (4.11).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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