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We track the evolution of entropy and black holes in a cyclic universe that undergoes repeated intervals 
of expansion followed by slow contraction and a smooth (non-singular) bounce. In this kind of cyclic 
scenario, there is no big crunch and no chaotic mixmaster behavior. We explain why the entropy 
following each bounce is naturally partitioned into near-maximal entropy in the matter-radiation sector 
and near-minimal in the gravitational sector, satisfying the Weyl curvature conditions conjectured to 
be essential for a cosmology consistent with observations. As a result, this kind of cyclic universe can 
undergo an unbounded number of cycles in the past and/or the future.
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1. Introduction

Much of the research on the early universe focuses on trying 
to explain the homogeneity, isotropy and spatial flatness of the 
universe, as observed in the cosmic microwave background (CMB) 
maps of the last scattering surface. However, an equally important 
but perhaps more vexing issue is explaining the entropy distribu-
tion.

The problem is that, emerging from a big bang in which grav-
ity is strongly coupled and quantum fluctuations of stress-energy 
and spacetime are both large, the natural expectation is that the 
total entropy should be nearly maximal and equally distributed 
among both stress-energy and gravitational degrees of freedom. 
Consequently, the Weyl curvature Cλμνξ , the traceless part of the 
Riemann curvature tensor that includes the entropy contributions 
of tidal fields and gravitational waves, should be nearly divergent. 
However, the observed entropy distribution on the last scattering 
surface is puzzlingly different, as Penrose has emphasized [1,2]. 
The total entropy is exponentially smaller than the maximal possi-
ble and strangely partitioned: nearly maximal in the hot matter-
radiation sector (since this sector is near thermal equilibrium) 
and totally negligible in the gravitational sector. Furthermore, since 
Cλμνξ vanishes for a homogeneous and isotropic background, the 
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Weyl curvature is negligibly small instead of being nearly diver-
gent.

The entropy puzzle is logically distinct from explaining the ho-
mogeneity and isotropy since it is possible in principle to have 
a universe that satisfies the latter conditions but with a com-
pletely different partition of entropy. In fact, inflation, which was 
introduced to smooth and flatten the universe, makes the entropy 
problem exponentially worse. In order for inflation to start, the 
universe must go from the big bang to a state dominated by a 
nearly uniform field (with all other matter-radiation and gravita-
tional components being negligible). This requires an exponentially 
smaller and, therefore, more fine tuned initial entropy than is re-
quired to explain the last scattering surface without inflation [2]. 
Similarly, a bouncing cosmology with a singular bounce, in which 
the transition from contraction to expansion occurs near the Planck 
density, does not resolve the entropy problem either, since quan-
tum gravity effects near the bounce would cause the Weyl curva-
ture to diverge in that case, too.

In this paper, we explore a third possibility: cyclic bouncing 
cosmologies that entail a period of slow contraction [3] followed 
by a gentle (non-singular) bounce to an expanding phase that oc-
curs well below the Planck density, as has been proven to be 
possible in [4,5]. It has recently been demonstrated [6] that slow 
contraction (see also [7,8]) is a powerful mechanism for smooth-
ing and flattening the universe even if the conditions at the start 
of the contraction phase are far from Friedmann-Robertson-Walker 
(FRW). Here we focus on the entropy issue, tracking the entropy 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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evolution through various stages of each cycle. This includes con-
structing a conformal diagram to take account of the fact that, 
between the last scattering surface and today, most of the entropy 
is converted into gravitational entropy in the form of black holes. 
The central result is that there is no entropic limit on how many 
cycles there could have been in our past or will be in our future.

2. Slow contraction and non-singular bounces

Bouncing models based on slow contraction and non-singular 
bounces require familiar elements: ordinary matter, dark matter, 
radiation, and a scalar field φ with potential V (φ) that is cou-
pled to itself and gravity and that evolves throughout according to 
classical equations of motion in the standard (3 + 1) dimensions. 
(We note that the bouncing models discussed here do not require 
extra-dimensions, branes or any phase in which quantum gravity 
dominates.)

Slow contraction refers to a phase in which the Friedmann-
Robertson-Walker (FRW) scale factor a(t) scales as (�t)1/ε where 
ε > 3 and �t is the time remaining before a bounce. The phase 
can be generated by something as simple as a canonical scalar 
field evolving down an exponentially steep negative sector of its 
potential where V (φ) ∼ exp(φ/m). There exists then an attrac-
tor solution in which the equation of state of the scalar field, 
ε ≡ 3/2(1 + p/ρ) � 3, where p is the pressure and ρ is the energy 
density, converges to 1/2m2. The attractor solution corresponds a 
value of ε that can be quite large; for example, for m = 0.1 or 
0.01, ε = 50 or 5000. Consequently, the scalar field energy den-
sity (∝ 1/a2ε) grows rapidly to dominate over all other forms of 
stress-energy, the spatial curvature or the anisotropy). The rapid 
growth is due to gravity: the scalar field kinetic energy is gravita-
tionally blue-shifted at an extraordinary rate when the universe is 
contracting.

In this way, slow contraction resolves the homogeneity, isotropy, 
and flatness problems. Extensive numerical relativity studies [9,6,
10] have shown that slow contraction is a remarkably powerful, 
rapid and robust smoother and flattener that is surprisingly in-
sensitive to initial conditions and avoids quantum runaway effects 
that lead to the multiverse problem. For a wide range of cases, the 
smoothing and flattening is complete by the time a(t) shrinks by 
a factor O(10) or less.

Consequently, by the time the bounce occurs, spacetime is 
nearly FRW, the Weyl curvature is negligible, and any entropic con-
tributions to the total stress-energy are negligible compared to the 
homogeneous scalar field density. Assuming a bounce mechanism 
that is non-singular and occurs at energy densities well below the 
Planck density (as in the examples in Ref. [4]), these homogeneous 
and isotropic conditions should remain after the bounce. At that 
point, contraction is replaced by expansion; the Hubble parame-
ter changes sign; and, as a result, the gravitational blue-shifting of 
the scalar field energy density comes to an end. Now, through the 
interactions of the scalar field with other fields, the same sort of 
reheating mechanism envisaged for an inflaton scalar field can lead 
to the rapid conversion of the now-dominant scalar field energy 
density to a thermal distribution of matter and radiation. Since the 
decay occurs uniformly over space, homogeneity and isotropy are 
maintained.

The net result is a spatially flat FRW universe with negligible 
Weyl curvature; total entropy much less than maximal; and, the 
entropy that does exist is partitioned into nearly maximal entropy 
in the thermally equilibrated matter-radiation sector and negligible 
entropy in the gravitational and scalar field sectors.

This single bounce scenario is promising, but it does not include 
any explanation for what preceded the contraction phase or what 
the ultimate fate of the universe will be. A cyclic universe is ap-
pealing because it potentially provides a more complete and more 
2

predictive model. Entropy has famously been a problem in earlier 
types of cyclic models; but here we show how slow contraction 
and a non-singular bounce lay those problems to rest.

3. Cyclic models with slow contraction and a non-singular 
bounce

In cyclic models of this type, the scalar field plays multiple 
roles as it evolves back and forth along its potential V (φ). It is 
at one stage the source of the dark energy that drives the cur-
rent accelerated expansion (and its equivalent in other cycles); at 
another stage, it is the component responsible for the transition 
from accelerated expansion to slow contraction; at a third stage, it 
is the driver of the transition from contraction to expansion (the 
bounce); and, through the decay of scalar field stored energy, the 
origin of the hot matter-radiation that dominates the universe af-
ter the bounce and for the first 9 Gy following (before the scalar 
field acting as dark energy takes over). Microphysical models ex-
emplifying these stages can be found in earlier papers (see [11]
and references therein. For the purposes here, it suffices to know 
that the sequence of phases is possible.

The striking and distinctive feature compared to other types 
of cyclic models is that the evolution of the Hubble parameter 
H(t) ≡ d ln a/dt is periodic, but the evolution of a(t) is not [11–13]. 
Instead, a(t) increases by a substantial exponential factor from cy-
cle to cycle. See Fig. 1.

To be more precise: Over the course of a cycle, a(t) increases by 
60 e-folds during the radiation- and matter-dominated epochs (as-
suming a reheat temperature of ∼ 1015 GeV after the bounce), and 
by an additional NDE e-folds during the dark energy dominated 
epoch, where NDE H−1

0 is the duration of dark energy epoch and 
H−1

0 is the present value of the Hubble parameter. During the sub-
sequent slow contraction and bounce phases, the decrease in a(t)
is O(1); that is, negligible by comparison to the (60 + NDE) e-folds 
of increase during the expanding phase. The extreme asymmetry 
between the large amount of expansion versus the tiny amount of 
contraction of a(t) is due to the fact that ε is O (1) or less during 
the expansion phase but � 1 during the contraction phase. Over 
the course of many cycles, the result is an on-average de Sitter-
like expansion over many cycles with an effective de Sitter Hubble 
parameter of HdeS = (NDE + 60)H−1

0 /(NDE + 1) that is set by the 
energy density and dynamics of the dark energy density.

The scale factor as shown in Fig. 1 is approximately of the form

a(t) = P (t) exp

((
NDE + 60

) t

T

)
, (1)

where P (t + T ) = P (t) is a periodic function with period T ≈
(ND E + 1)H−1

0 and the exponential factor accounts for the ex-
ponential increase in a(t) from cycle to cycle. Without loss of 
generality, we can choose t = 0 to correspond to the moment 
during the most recent bounce when H passed through zero (so 
ȧ(0) = 0) and normalize the scale factor so that a(0) = 1. In this 
case, P (0) = P (T ) = 1 and Ṗ (0) = Ṗ (T ) = −(NDE + 60)/T . The pre-
cise form of P (t) can be computed from knowing how a(t) varies 
with time during each phase. Note that a(t) is, by definition, a con-
formal factor. Consequently, even though its value is exponentially 
smaller in earlier cycles compared to today, this has no effect on 
physical observables, like the temperature, density, expansion rate, 
etc.

The corresponding Hubble parameter varies periodically:

H(t) = (d lnP (t)/dt) + (NDE + 60)/T . (2)

As shown in Fig. 1, H(t) oscillates between positive and neg-
ative values, passing through zero twice each cycle. The time-
independent second term in Eq. (2) is small and positive; the 
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Fig. 1. In the cyclic model based on slow contraction and a non-singular bounce, the 
Hubble parameter H(t) oscillates (upper panel) between positive values (during ex-
pansion) and negative values (during contraction) with an amplitude of ∼ 1010 GeV 
over a period T . The scale factor a(t), by contrast, goes through long periods of 
expansion followed by shorter periods of contraction (lower panel). The net result 
is an exponential increase in a(t) over the course of each cycle, producing an on-
average de Sitter-like expansion (dashed curve in lower panel) over many cycles. 
This figure is adapted from Ref. [11].

large range in H(t) is due to the first term, which runs from 
� (NDE + 60)/T to � −(NDE + 60)/T over the course of a cycle.

As for the Hubble radius, |H−1|, it grows after each bounce 
from a microscopic size (say, ∼ 10−25 cm) to the 1028 cm Hubble 
radius observed today. It remains roughly constant during the dark 
energy dominated (accelerated expansion) phase. Then the Hub-
ble radius shrinks back to microscopic size (∼ 10−25 cm) during 
slow contraction and the process repeats after the bounce. The 
enormous decrease in the Hubble radius during slow contraction 
is possible even though a(t) shrinks very little because the Hubble 
radius is proportional to a(t)ε according to the Friedmann equa-
tion, and ε can be quite large (e.g. ≥ 50).

4. Four roadblocks to overcome

Cyclic models in which a(t) varies periodically and/or ap-
proaches zero at the transition from contraction to expansion en-
counter one or more of the following four roadblocks, each of 
which is avoided in the cyclic model considered here:
Cosmic singularity, which leads to the Weyl curvature problem: 
avoided because the energy density is at all times well below the 
Planck density and a(t) does not approach zero.
Chaotic mixmaster oscillations triggered by anisotropy, which de-
stroy homogeneity and isotropy: avoided because a scalar field 
with ε > 3 dominates the anisotropy during the contraction phase, 
altogether blocking mixmaster oscillations.
3

Big crunch, which causes black holes formed in the preceding cycle 
to merge and disrupt the bounce: avoided because a(t) and, hence, 
the distance between black holes, does not decrease significantly 
during the slow contraction phase. And last but not least:
Entropy density build-up from cycle to cycle that limits the number 
of cycles: this is the subject of the remainder of this paper.

5. The cyclic conformal diagram and the evolution of black holes

Entropy evolution from cycle to cycle can be envisaged by con-
structing the conformal diagram for this scenario. As is standard 
with conformal diagrams, we first consider the sequence of stages 
using (barred) conformal time and space coordinates (η̄, χ̄ ), and 
then rescaling to new (unbarred) coordinates (η, χ) chosen such 
that they span a finite range and preserve the condition that null 
lines are oriented at ±45 degrees.

In the cyclic model considered here, there is no crunch – in 
fact, a(t) increases from bounce to bounce – and quantum gravity 
effects are negligible throughout. Therefore, a(t) is always positive 
and well-described by classical equations of motion. As a result, 
the conformal time can be straightforwardly computed from the 
relation

dη̄ ≡ dt/a(t) (3)

using the expression for a(t) with FRW time coordinate in Eq. (1), 
even if the classical equations deviate from Einstein gravity near 
the bounce.

Because of the exponential factor in Eq. (1) that describes the 
envelope for the evolution of a(t), the result for η̄ bears a close 
resemblance to the result for flat de Sitter space with HdeS =
(NDE + 60)/T . Namely, η̄ spans a semi-infinite range that can be 
chosen to be 0 > η̄ > −∞; similarly, +∞ > χ > 0. Consequently, 
one can use the same transformation as in the true flat de Sit-
ter case to convert from the (barred) to the conformally equivalent 
(unbarred) coordinates (η, χ) related by

η̄ = sinη

cosη + cosχ
and χ̄ = sinχ

cosη + cosχ
(4)

that span a finite range 0 > η > −π and π > χ > 0. Then the 
conformal diagram takes the form of Fig. 2. Space-like infinity cor-
responds to the upper right corner of the triangle; past time-like 
infinity to the lower left hand corner; and past null-like infinity to 
the diagonal.

Although the overall causal structure is formally similar to flat 
de Sitter, the cosmic scenario is fundamentally different. For exam-
ple, the Hubble parameter H(t) is positive and time-independent 
in flat de Sitter, but H(t) traverses a wide range from highly pos-
itive to highly negative during each period of the cyclic model. 
Also, flat de Sitter has constant positive accelerating expansion, 
ä/a > 0, whereas the cyclic model may not include any interval 
with this property. Hence, it is important to include demarcations 
in the conformal diagram of the cyclic model that indicate these 
and other differences.

Fig. 2 includes (blue) curves that indicate the slow contraction 
and bounce phases. From one bounce to the next, a(t) increases 
by an exponential factor, exp(NDE + 60); therefore, the conformal 
time interval between bounces, �η̄, decreases by this same fac-
tor from bounce to bounce, according to Eq. (3). That is, in the 
barred coordinates (η̄, χ̄ (which have semi-infinite ranges), the 
bounces would be represented as semi-infinite horizontal lines of 
constant η̄ whose spacings decrease as η̄ → 0. However, this pat-
tern gets distorted when we re-plot using the transformations in 
Eq. (4) that convert (η̄, χ̄ ) to the finite-range (unbarred) coordi-
nates (η, χ) shown in Fig. 2. The semi-infinite horizontal lines of 
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Fig. 2. The conformal diagram for a cyclic cosmology based on slow contraction 
and non-singular bounces. The thick blue curves (centered on curves of constant 
η̄) correspond to the slow contraction and bounce phases during which a(t) (and, 
hence, η) changes negligibly. The overall conformal diagram bears a superficial re-
semblance to that for flat de Sitter space, but here H(t) varies over a wide span of 
values that range from positive to negative.

constant η̄ are transformed to finite curves that meet at space-like 
infinity and compress the intervals between bounces approaching 
past null-like infinity (the diagonal). An artifact of the transfor-
mation in Eq. (4) is that intervals between bounces in the middle 
range (η ∼ −π/2) appear to be the widest even though they ac-
tually decrease monotonically going from bottom to top in the 
physical (barred) coordinate η̄.

Without loss of generality, we can choose the blue curve that 
intersects the vertical axis near η = −π/2 to represent the most 
recent bounce that occurred 13.8 Gya. The blue curves below and 
above then represent the bounces in our past and future, respec-
tively. Only a few bounces are shown on either side to avoid clut-
tering the diagram.

The scale factor a(t) (and, hence, ¯eta) changes negligibly dur-
ing the slow contraction and bounce phases combined compared 
to the interval between one bounce and the next (exp(NDE + 60)). 
This comparatively small change in η̄ is represented symbolically 
by the thicknesses of the blue curves. If the thicknesses were 
drawn to proper quantitative scale, the curves would be expo-
nentially thinner. For pedagogical purposes, we have made them 
thick to remind the reader that they represent not just a single 
instant of time, but the combination of the slow contraction and 
non-singular bounce stages.

(N.B. A very similar looking conformal diagram for a different 
kind of cyclic model appears in [14]; in that case, the curves cor-
respond to big crunches where a(t) → 0, densities and the Weyl 
curvature diverge, pre-existing black holes merge, and the Hubble 
radius shrinks to zero; consequently, the conclusions reached in 
this paper do not apply to that case.)

Immediately following each bounce, the universe enters a 
radiation-dominated phase due to the decay of the scalar field en-
ergy density. Spacetime is homogeneous, isotropic and spatially flat 
due to the preceding slow contraction phase. At these moments, 
the matter-radiation is in thermal equilibrium at nearly maximal 
entropy. On the other hand, the gravitational sector entropy and 
the Weyl curvature are negligible. The subsequent expansion of 
the universe between the bounce and the last scattering surface is 
nearly adiabatic and homogeneous, so the distribution of entropy 
on the last scattering surface is the same. (Here and in the remain-
der of this discussion, we consider the evolution of entropy within 
4

Fig. 3. An enhanced version of the conformal diagram in Fig. 2 where each blue 
curve represents the constant η̄ surfaces corresponding to the slow contraction 
and bounce phases. The interval between each blue curve and the red curve di-
rectly above it corresponds to a radiation dominated phase. Each red curve repre-
sents radiation-matter equality and, interval between it and the violet curve just 
above it corresponds to a matter dominated phase; each violet curve represents the 
crossover from matter to dark energy domination (accelerated expansion); which 
terminates at the next blue curve above it, when the next contraction and bounce 
phases occur.

a comoving volume whose radius is ∼ H−1
0 using time-slicing on 

surfaces of constant (FRW) cosmic time.)
In Fig. 3, we have added two curves to each interval between 

bounces that represent the transition from radiation to matter 
domination (red) and the transition from matter domination to 
dark energy domination. As we did for the thickness of the blue 
curves above, we have for pedagogical purposes exaggerated the 
spacings between these different curves, which span the first 10 
Gy since the last bounce. If drawn to proper scale, the bounce, 
matter-radiation equality and dark energy-matter equality curves 
would be too close to discriminate from one another (because the 
spacing depends the factor by which a(t) (and, hence, η̄) changes 
in going from one stage to the next, and that factor is exponen-
tially small compared to the factor by which a(t) changes in from 
one bounce to the next).

Although the entropy on the last scattering surface is almost 
entirely in the matter-radiation sector, an important change oc-
curs as the universe continues to expand and cool. Non-linear 
structure forms through gravitational instability and a combination 
of irreversible processes that cause the total entropy to increase 
significantly. Most of that increase is in the form of Bekenstein-
Hawking [15,16] entropy associated with supermassive black holes 
(SMBHs) that have formed since last scattering [17]. Based on 
current measurements of cosmic parameters and the mass func-
tion for SMBHs, a census of the entropy contributions within 
the observable universe today yields Sgas&stars ∼ 1081k, Sphotons ≈
Sneutrinos ≈ Sdark matter ∼ 1090k, Sbaryons ∼ 1090k, and SSMBH ∼
10105k where k is Boltzmann’s constant. The black hole contribu-
tion overtakes the matter-radiation entropy around z = 10 [17,18], 
and, by the present epoch (or its equivalent in other cycles) ex-
ceeds the other sources of entropy by a factor ∼ (1015).

During the remaining dark energy dominated phase, the en-
tropy density in the form of radiation and black holes are both 
diminished, but the radiation density decreases faster than the 
black hole mass density. Hence, to determine how much entropy 
from a previous cycle lies within the Hubble radius a cycle later, 
it suffices to track what happens to the supermassive black holes. 
For this purpose, it is reasonable to treat the black holes as moving 
along comoving worldlines (constant χ̄ ).
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Fig. 4. On the left, the conformal diagram in Fig. 3 where black dashed curves have 
been added that represent the worldlines for a sequence of black holes, each formed 
during a matter dominated phase (one black hole per cycle), each at the same time 
interval following the most recent bounce, and each at the same distance from a 
comoving observer at χ = 0. Also shown in orange is the particle horizon for an 
observer today (η = η0) located at χ = 0, where the blue curve that intersects 
χ = 0 near η = π/2 represents the most recent bounce that occurred 13.8 Gya. 
Note that black holes formed in earlier cycles are outside the particle horizon of the 
observer in a current one. In the circle at the right is a blowup showing the most re-
cent bounce (blue), the matter-radiation equality (thin red) and dark energy-matter 
equality (thin purple), and the current extent of the observable universe (green). 
Note that black holes formed in earlier cycles lie outside the observable universe 
today and so do not contribute the entropy census described in the text.

During the slow contraction phase, the black hole density does 
not change significantly because a(t) only decreases by a factor of 
a few.

In cyclic models in which a(t) shrinks significantly during con-
traction (by more than 1030 or more, say), spacetime would be 
filled with supermassive black holes that crunch together, and, in 
cases where a(t) → 0 at the bounce, it would be unclear how to 
treat the passage of black holes through to the expanding phase. 
However, in cyclic models based on slow contraction and non-
singular bounces, though, a(t) may only contract by a factor of two 
or so, as noted above. Spacetime remains far from singular. Conse-
quently, mergers do not take place and it is reasonable to suppose 
that supermassive black holes move along comoving worldlines 
pass through the bounce freely.

More precisely, during contraction, any Hubble patch far from 
the black holes shrinks to a tiny size (radius ∼ 10−24 cm) that is 
much smaller than the radii of supermassive black holes. These re-
gions undergo the bounce and reheating process that have been 
described. Regions within the gravitational near-field of the black 
holes will undergo a different evolution determined by that lo-
cal field sourced by the black hole. Although we cannot precisely 
describe what that is, it is plausible to imagine the black holes 
continue to exist after the bounce, but now immersed in a cosmic 
far-field metric that is expanding rather than slowly contracting. 
The evaporation time of these black holes is much longer than a 
cycle, assuming no accretion. In fact, the black holes would accrete 
significant mass during the phases following a bounce. We pre-
sume the net effect is that the black holes can survive indefinitely 
from cycle to cycle.

Consequently, the conformal diagram in Fig. 4 shows the world 
lines of a representative sequence of black holes continuing along 
a comoving worldline from cycle to cycle. In this representative se-
quence, each black hole formed during a matter dominated phase 
(one black hole per cycle), each at the same time interval following 
the most recent bounce, and each at the same distance from a co-
moving observer at χ = 0. Recall that the scaling is not accurate so 
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the figure should be viewed as qualitative; drawn to proper scale, 
the distances between the curves corresponding to the bounce, the 
matter-radiation and dark energy-matter equality curves in a given 
cycle should be exponentially smaller than shown here. The figure 
shows that black holes formed in previous cycles exit the parti-
cle horizon of today’s observer before the most recent bounce and 
so do not contribute to today’s observable black hole density. Also, 
the radiation emitted by them is diluted during the dark energy 
dominated expansion phase and then overwhelmed by the new 
radiation produced after the bounce, so there is no measurable ef-
fect in the next cycle.

Quantitatively, suppose a black hole was at a distance L from a 
comoving observer’s worldline one cycle ago. For that black hole to 
lie within that observer’s Hubble radius today, it is necessary that

L × (eNDE) × O (1) × (e60) < H−1
0 (5)

or L < 0.004 cm, where the factors correspond to the dark energy 
expansion, slow contraction, and radiation plus matter expansion 
epochs between a cycle ago and today. Equivalently, the volume 
that evolved into today’s Hubble volume of (1028 cm)3 occupied 
only (0.004 cm)3 a cycle ago, so only the entropy and black holes 
that were within that small volume a cycle ago would be within 
our Hubble volume today.

Considerations of entropy naturally lead to considerations of the 
second law of thermodynamics. In this case, while we do not claim 
to explain the arrow of time, there is no apparent violation of the 
second law since dissipation is included, heat always flows from
hot to cold, and the total entropy of the universe is always increas-
ing. (It is only the entropy within a Hubble radius that exponen-
tially decreases during contraction, and only because the Hubble 
radius is shrinking during the contraction phase so that entropy 
that was within the Hubble radius exits during the slow contrac-
tion phase. This violates no fundamental laws.) Furthermore, in the 
limit of an infinite universe, there are an unbounded reservoir of 
energy and an infinite volume to accommodate the increasing en-
tropy and increasing number of black holes. Hence, there is no 
obvious entropic roadblock.

Nevertheless, it has been suggested recently that an infinitely 
bouncing universe of the type here violates a conjectured cosmo-
logical generalization of the second law for de Sitter-like space-
times (inspired by a conjectured ‘central dogma’ about black holes) 
[19]. The argument, though, rests on holographic reasoning that 
implicitly assumes null convergence (e.g., Einstein gravity and the 
null energy condition), which effectively rules out bounces by fiat, 
rather than by some truly independent evidence.

6. Discussion

In sum, each cycle brings the universe to the same conditions 
after the bounce, conditions in which:

• the total entropy with the Hubble radius is much less than 
maximal;

• the entropy with the Hubble radius is partitioned so that it is 
nearly entirely in the matter-radiation and nearly minimal in 
the gravitational sector;

• the Weyl curvature is negligible after the bounce; and,
• matter, radiation, entropy, and black holes from earlier cycles 

virtually all lie outside the Hubble radius.

Hence, there appears to be no way for an observer making lo-
cal observations to distinguish one cycle from another, and there 
appears to be no limit to the number of cycles that may have 
occurred in the past or that will occur in the future. Of course, 
tracing the cycles going back in time, a(t) shrinks by a large expo-
nential factor between bounces. To have a truly unlimited sequence 
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of bounces going back in time requires that spacetime be infinite. 
In that limit, a(t) acts purely as a conformal factor that can be ar-
bitrarily small in the past or arbitrarily large in the future without 
a physical effect on a local observer. Globally, the total entropy and 
number of black holes grows without bound but in proportion to 
the growing volume so as to keep their densities the same after 
each bounce.
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