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Abstract
We investigate the trajectories of point charges in the background of finite-
action vacuum solutions of Maxwell’s equations known as knot solutions. More
specifically, we work with a basis of electromagnetic knots generated by the so-
called ‘de Sitter method’. We find a variety of behaviors depending on the field
configuration and the parameter set used. This includes an acceleration of par-
ticles by the electromagnetic field from rest to ultrarelativistic speeds, a quick
convergence of their trajectories into a few narrow cones asymptotically for suf-
ficiently high value of the coupling, and a pronounced twisting and turning of
trajectories in a coherent fashion. This work is part of an effort to improve the
understanding of knotted electromagnetic fields and the trajectories of charged
particles they generate, and may be relevant for experimental applications.

Keywords: Maxwell’s equations, conformal invariance, electromagnetic knots,
trajectories of charged particles

(Some figures may appear in colour only in the online journal)

1. Introduction

Electromagnetic knots were first developed in 1989 by Rañada [1] using the Hopf map. These
knots are finite-action vacuum solutions of Maxwell’s equations that consist of rational func-
tions in the spacetime coordinates. In the original construction, two complex scalar fields φ and
θ are used, and their level curves coincide with the electric and magnetic field lines. Those fields
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can be seen as maps from S3 × R to S2, where S3 here is the compactified three-dimensional
spaceR3 ∪ {∞} and S2 is the compactified complex planeC ∪ {∞}. The solutions are charac-
terized by a topological invariant, the so-called Hopf index. Since then, other approaches were
developed to construct electromagnetic knot solutions, for example using the twistor theory
developed by Penrose, complex Euler potentials, or special conformal transformations; see [2]
for a comprehensive review. Knotted electromagnetic fields might become important for future
applications for their unique characteristics. Therefore, it is important to seek experimental set-
tings to generate those fields and to study scenarios with them. Irvine and Bouwmeester [3]
discuss the generation of knotted fields using Laguerre–Gaussian beams and predict potential
applications in atomic particle trapping, the manipulation of cold atomic ensembles, helicity
injection for plasma confinement, and in the generation of soliton-like solutions in a nonlinear
medium. Laser beams with knotted polarization singularities were recently used to produce
some simple knotted field configurations including the figure 8 knot in the lab [4].

Lately, a new method [5] has been developed for deriving a complete basis of electromag-
netic knotted solutions to Maxwell’s equations. This was achieved by utilizing the conformal
invariance of four-dimensional Maxwell theory and a conformal equivalence of half of de
Sitter space dS4 to the future part of Minkowski space R1,3. More explicitly, one utilizes a
manifest SO(4)-covariant formalism on the spatial three-sphere slices of dS4 to obtain analytic
solutions of Maxwell’s equations in terms of hyperspherical harmonics, which can easily be
mapped onto Minkowski space with an explicit conformal map. This method also reproduces
the aforementioned Hopf–Rañada (HR) knot as a simple case. Several features of the electro-
magnetic fields constructed via this new method have been explored, such as fall-off behavior,
asymptotic energy flow, null solutions, and conserved helicity and conformal charges [6, 7].
To seek experimental applications, however, it is essential to elucidate the behavior of charged
particles in the background of these fields.

The objective of this paper is to study the behavior of classical point charges in the knot-
ted electromagnetic fields obtained via the ‘de Sitter method’. We first review the spacetime
correspondences used in the method, followed by the construction of the field configurations
and a discussion of their properties with the help of illustrative figures of field lines and energy
densities in section 2. Afterward, in section 3 we numerically solve the Lorentz force equation
for relativistic classical charged particles subject to these fields in different settings and try to
unravel the impact of various parameters on the trajectories of the particles.

2. The construction of knotted electromagnetic fields

2.1. The ‘de Sitter method’

Four-dimensional de Sitter space dS4 can be described as a hypersurface embedded in R
1,4 and

defined by the constraint

−q2
0 + q2

1 + q2
2 + q2

3 + q2
4 = �2, (2.1)

that is, a single-sheeted hyperboloid in R
1,4, where the q’s are standard coordinates in the five-

dimensional Minkowski space, and � is the so-called ‘de Sitter radius’. We can parametrize
dS4 using

q0 = −� cot τ and qA =
�

sin τ
ωA for A = 1, 2, 3, 4, (2.2)

with τ ∈ I := (0, π) and ωA being coordinates of R4 embedding the unit three-sphere S3 via
ωAωA = 1. The standard Minkowski metric on R

1,4 then induces on dS4 the metric
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ds2 =
�2

sin2 τ

(
−dτ 2 + dΩ2

3

)
, (2.3)

where dΩ2
3 is the round metric on the unit S3. It is then clear that de Sitter space dS4 is con-

formally equivalent to a cylinder I × S3. We proceed to map part of the cylinder to the future
half of four-dimensional Minkowski space R1,3 with

− cot τ =
t2 − r2 − �2

2�t
,ω1 = σ

x
�

,ω2 = σ
y
�

,ω3 = σ
z
�

,ω4 = σ
r2 − t2 − �2

2�2
, (2.4)

where x, y, z ∈ R, t ∈ R+, r2 = x2 + y2 + z2 and

σ =
2�2√

2�2t2 + (r2 − t2 + �2)2
. (2.5)

We can glue together two copies of the cylinder by taking τ ∈ 2I := (−π, π) to cover the entire
Minkowski space. If one expresses the metric in the (t, x, y, z) coordinates one obtains

ds2 =
�2

t2

(
−dt2 + dx2 + dy2 + dz2

)
, (2.6)

which shows the conformal equivalence between part of 2I × S3 and R
1,3. For more

details, see [5].
Now we proceed to the construction of the Maxwell solutions. The fact that Maxwell’s

equations (or, more generally, the Yang–Mills equations) are conformally invariant in four
dimensions allows one to solve them in any other four-dimensional spacetime that is con-
formally related to the desired spacetime. In particular, here we will get a basis of solutions
on the Minkowski space by solving the equations on the cylinder over the three-sphere. This
lets us take advantage of a SO(4)-covariant formalism. Moreover, since S3 is the group mani-
fold of SU(2), one can also parametrize the spatial part of the cylinder by the group elements
of SU(2).

Using the Maurer–Cartan prescription one obtains three anholonomicone-forms ea(ω), with
a ∈ {1, 2, 3} and ω representing the embedding coordinates of the three-sphere. They can be
computed using the self-dual ’t Hooft symbol ηa

BC:

ea = −ηa
BC ωB dωC with ηa

bc = εabc and ηa
b4 = −ηa

4b = δa
b .

(2.7)

These one-forms satisfy the Maurer–Cartan equations and diagonalize the three-sphere
metric, i.e.,

dea + εabc eb ∧ ec = 0 and ea ea = dΩ2
3. (2.8)

Let dτ be the one-form associated with the temporal coordinate on the cylinder. One can then
expand the gauge connection one-form A on the cylinder as

A(τ ,ω) = Xτ (τ ,ω) dτ + Xa(τ ,ω) ea, (2.9)

where Xτ and Xa are real functions on the cylinder. Using the temporal gauge-fixing condition,
Xτ = 0, this simplifies to

A(τ ,ω) = Xa(τ ,ω) ea. (2.10)

3
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Now, as mentioned before, we take advantage of the fact that we are working in S3 to employ
a SO(4)-covariant formalism. The universal covering group of SO(4) is spin(4), which is equiv-
alent to SU(2)L×SU(2)R, where L and R stand for left and right. We can then use this structure
to decompose the spatial dependence of functions on the cylinder using the hyperspherical
harmonics Y j;m,n(ω) (also called left–right harmonics). For an explicit construction using the
three-sphere coordinates, see [5]. Take Ia and Ja to be the generators of the two (left and right,
respectively) su(2) subalgebras, with

[Ia, Ib] = i εabcIc, [Ja, Jb] = i εabcJc and [Ia, Jb] = 0. (2.11)

Let us define the ladder operators

I± = (I1 ± iI2)/
√

2 and J± = (J1 ± iJ2)/
√

2, (2.12)

such that the action of the su(2) generators on the hyperspherical harmonics is given by

I± Yj;m,n =
√

( j ∓ m)( j ± m + 1)/2 Y j;m±1,n, J± Yj;m,n =
√

( j ∓ n)( j ± n + 1)/2 Y j;m,n±1,

I3 Yj;m,n = m Y j;m,n, J3 Yj;m,n = n Y j;m,n, and I2 Yj;m,n = J2 Y j;m,n = j( j + 1) Y j;m,n,

(2.13)

with I2 := IaIa and J2 := JaJa being the Casimirs of the two su(2) subalgebras. We note that the
differential of any smooth function f ∈ C∞(2I × S3) on the cylinder can be expanded as

d f = dτ ∂τ f − 2 i ea Ja f , (2.14)

where Ja is viewed as a differential operator (see [6]).
On top of the temporal gauge, we can further impose the Coulomb gauge condition

Ja Xa(τ ,ω) = 0. (2.15)

Moreover, the Maxwell equations d ∗ F = 0, with F := dA read, in this setting,

−1
4
∂2
τ Xa = (J2 + 1)Xa + i εabcJbXc. (2.16)

One can then expand

Xa(τ ,ω) =

∞∑
j=0

j∑
m,n=− j

Z j;m,n
a (τ ) Yj;m,n(ω) (2.17)

to transform the gauge-fixing condition and the Maxwell equations into matrix equations
diagonal in j and m. Using X±(τ ,ω) :=X1(τ ,ω) ± i X2(τ ,ω), the matrix equations can be
decoupled and easily solved to find a full basis of solutions to the system of equations,

X( j;m,n)
+ (τ ,ω) =

√
( j − n)( j− n + 1)/2 e±2( j+1)iτ Y j;m,n+1(ω),

X( j;m,n)
3 (τ ,ω) =

√
( j + 1)2 − n2 e±2( j+1)iτ Y j;m,n(ω), (2.18)

X( j;m,n)
− (τ ,ω) = −

√
( j + n)( j + n + 1)/2 e±2( j+1)iτ Y j;m,n−1(ω),

where j � 0, m ranges from − j to j, n ranges from −( j + 1) to j + 1 and it is understood that
Yj;m,n vanishes for |n| > j.
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Now one can proceed to find the electromagnetic fields using

F = dA = ∂τ Aadτ ∧ ea −
(
i J[bAc] +Aaεabc

)
eb ∧ ec, (2.19)

and the electric and magnetic field on the cylinder will have components Ea = Fτa and
Ba =

1
2 εabcFbc, respectively.

2.2. Electromagnetic knots in Minkowski space

To find the corresponding electromagnetic fields in Minkowski space, one has to write the one-
forms dτ and ea in terms of dxμ. A straightforward computation using (2.4), (2.5) and (2.7)
gives these one-forms in terms of spacetime coordinates (t, x):

dτ =
σ2

�3

(
1
2

(t2 + r2 + �2) dt − t xk dxk

)
and (2.20)

ea =
σ2

�3

[
t xa dt −

(
1
2

(t2 − r2 + �2)δak + xaxk + � εa jkx j

)
dxk

]
. (2.21)

Substituting into (2.19), one gets Fμν from F = 1
2 Fμν dxμ dxν , with dx0 = dt, and obtains

the components Ei = F0i and Bi =
1
2εi jkFjk of the electric and magnetic fields in Minkowski

space for any configuration generated by the basis (2.18). Since the basis configurations
(2.18) are complex, the corresponding fields on Minkowski space will also be complex.
Hence, they combine two physical solutions, namely the real and imaginary parts, which we
denote as

( j; m, n)R configuration and ( j; m, n)I configuration,

respectively. The basis configurations increase in complexity with increasing j, as shown in
figure 1. Furthermore, these fields have a preferred z-direction due to our convention to diag-
onalize the J3 action in (2.13) (notice here that the SO(3) isometry subgroup, and hence its
generators Ja, are identified on the cylinder and the Minkowski side; see [6] for details).
This is clearly exemplified in figure 2, where the energy density E := 1

2 (E2 +B2) decreases
along the z-axis. As a result, the basis fields along the z-axis (i.e. E(t, x = 0, y = 0, z) and
B(t, x = 0, y = 0, z)) are either directed in the xy-plane or along the z-axis. In fact, for extreme
field configurations ( j;± j,±( j + 1)), for any j > 0, the fields along the z-axis vanish for all
times. In the simulations we have also used the maximum of the energy density at time t,
i.e. Emax (t) (that occurs at several points xmax that are located symmetrically with respect to
the origin), for different initial conditions and field configurations, and in each case we have
employed a parameter Rmax (t) of ‘maximal’ radius defined via

E(t,xmax (t)) = Emax (t) =⇒ Rmax (t) := |xmax (t)|. (2.22)

As previously stated, the celebrated HR knot [5] turns out to be the same as our (0; 0, 1)I

basis configuration. One can also construct generalizations of HR-knots such as the time-
translated and rotated Hopfions using a linear combination of j = 0 configurations [7]. More-
over, we find that some of our basis configurations are related to the (p, q)-torus knots arising
from Bateman’s construction [2]. We illustrate this point in figure 1 where we find the following
correspondences:

Hopfian ↔ (0, 0, 1)I ↔ (1, 1),

(
1
2

,−1
2

,
3
2

)
R

↔ (2, 1), (1, 1, 2)I ↔ (1, 3). (2.23)
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Figure 1. Electric (red) and magnetic (green) field lines at t = 0 with four fixed seed
points. Left: (0; 0, 1)I configuration. Center: ( 1

2 ;− 1
2 , 3

2 )R configuration. Right: (1; 1, 2)I

configuration. More self-knotted field lines start appearing with additional seed points
in the simulation.

Figure 2. Contour plots for energy densities at t = 0 (yellow), t = 1 (cyan) and t = 1.5
(purple) with contour value 0.9Emax (1.5). Left: (0, 0, 1)I configuration. Center:
( 1

2 ;− 1
2 ,− 3

2 )R configuration. Right: (1;−1, 1)R configuration.

3. Trajectories

Given a knotted electromagnetic field configuration, a natural issue that arises is the behavior
of charged particles in the background of such a field. This question was already discussed in
the context of the Hopfion [8]. Now we proceed to address this issue in the context of the ‘de
Sitter’ method by analyzing, with numerical simulations (see Mathematica Notebook [9]), the
trajectories of several (identical) charged point particles for the family of knotted field config-
urations that we encountered in the last section. We will consider basis field configurations (up
to j = 1) here for simplicity.

The trajectories of these particles are governed by the relativistic Lorentz equation

dp
dt

= q(E� + v ×B�), (3.1)

where q is the charge of the particle, p = γmv is the relativistic three-momentum, v is the usual
three-velocity of the particle, m is its mass, γ = (1 − v 2)−1/2 is the Lorentz factor, and E� and
B� are dimensionful electric and magnetic fields respectively. With the energy of the particle
Ep = γm and dEp/dt = qv · E, one can rewrite (3.1) in terms of the derivative of v [10] as

dv
dt

=
q
γm

(E� + v ×B� − (v ·E�)v). (3.2)

6
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Figure 3. Simulation of N = 18 particles in scenario (a(3)) for ( 1
2 ;− 1

2 ,− 3
2 )R with

κ = 10 and for t ∈ [0, 1]. Left: r = Rmax (0) ≈ 0.447. Right: r = Rmax (0)/3.

Equations (3.1) and (3.2) are equivalent, and either one can be used for a simulation pur-
pose; they only differ by the position of the nonlinearity in v. In natural units h̄ = c = ε0 = 1,
every dimensionful quantity can be written in terms of a length scale. We relate all dimension-
ful quantities to the de Sitter radius � from equation (2.1) and work with the corresponding
dimensionless ones as follows:

T :=
t
�

, X :=
x

�
, V :=

dX
dT

≡ v, E := �2E�, and B := �2B�. (3.3)

Moreover, the fields are solutions of the homogeneous (source-free) Maxwell equations, so
they can be freely rescaled by any dimensionless constant factor λ. Combining the above con-
siderations, one can rewrite (3.1) (or analogously for (3.2)) fully in terms of dimensionless
quantities as

d(γV)
dT

= κ(E+V ×B), (3.4)

where κ = q�3 λ
m is a dimensionless parameter. One consequence of this parameter is that we

can tune the values of each of the constants separately. In particular, we can make the charge as
small as needed without changing κ such that the effect of the backreaction on the trajectories
becomes negligible. As for the initial conditions, we mostly work in the following two main
scenarios:

(a) N identical charged particles with V0 ≡ V(T = 0) = 0 located symmetrically (with
respect to the origin), or

(b) N identical charged particles with X0 ≡ X(T = 0) = 0 with particle velocities directed
radially outward in a symmetric fashion (with respect to the origin; shown in colored
arrows),

with the following three sub-cases for both of these conditions:

(1) Along a line,
(2) On a circle of radius r,
(3) On a sphere of radius r.

We vary several parameters including the initial conditions with different directions of lines
and planes for each configuration, the value of κ, and the simulation time in order to study
the behavior of the trajectories. In several field configurations studied below, we find that

7
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Figure 4. Trajectory of a charged particle for ( 1
2 ;− 1

2 ,− 3
2 )R configuration with initial

conditions X0 = (0.01, 0.01, 0.01) and V0 = 0 simulated for t ∈ [−1, 1]. Left: particle
trajectory. Center: absolute velocity profile for κ = 10. Right: absolute velocity profile
for κ = 100.

Figure 5. Simulation of N = 18 particles for (0, 0,−1)I configuration, with κ = 100 and
t ∈ [0, 1]. Left: scenario (a(3)) with r = 0.1. Right: scenario (b(3)) with r = 0.75.

Rmax (0) = 0, so we use a small radius r for the initial condition of kind (a) to be able to
probe the particles around a region of maximum energy of the field. In this scenario, the effect
of the field on the trajectories of the particles is more prominent, as expected, and this helps
us understand small perturbations of the trajectories as compared to a particle starting at rest
from the origin. The effect of the fields on particles starting near the maximum of the energy
density is also more prominent for Rmax (0) = 0, as illustrated in figure 3. Moreover, for the
initial condition of kind (b) we use the particle initial speeds in the range where it is (i) non-
relativistic, (ii) relativistic (usually between 0.1 and 0.9), and (iii) ultrarelativistic (here, 0.99
or higher).

We observe a variety of different behaviors for these trajectories, some of which we summa-
rize below with the aid of figures. Firstly, it is worth noticing that, even with all fields decreasing
as powers of both space and time coordinates, in most field configurations we observe particles
getting accelerated from rest up to ultrarelativistic speeds. The limit of these ultrarelativistic
speeds for higher times depend on the magnitude of the fields (see, for example, figure 4).

With fixed initial conditions (of kind (a) or (b)) and for higher values of κ one can expect,
in general, that the initial conditions may become increasingly less relevant. For some fields
configurations we indeed found that, with increasing κ, the particles get more focused and
accumulate like a beam of charged particles along some specific region of space and move

8
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Figure 6. Simulation of N = 20 particles for (0, 0, 1)I configuration, with κ = 1000 and
t ∈ [0, 1]. Left: particles starting from rest and located randomly inside a solid ball of
radius r = 0.01 (Rmax = 0). Right: particles located at origin and directed randomly
(shown with colored arrows) with |V0| = 0.45.

Figure 7. Simulation of N = 18 particles in scenario (a(3)) with r = 0.01 and for t ∈
[0, 3]. Left: (1,−1,−2)R configuration with κ = 500. Right: (1,−1,−1)R configuration
with κ = 10.

asymptotically for higher simulation times. This is exemplified below with two j = 0 configu-
rations: the (0, 0,−1)I configuration in figure 5, and the HR configuration in figure 6. We have
verified this feature not just with symmetric initial conditions of particles like that with initial
conditions (a) and (b) (as in figure 5), but also in several initial conditions asymmetric with
respect to the origin, like particles located randomly inside a sphere of fixed radius about the
origin with zero initial velocity, and particles located at the origin but with different magnitudes
of velocities. Figure 6 is an illustrative example for both of these latter scenarios of asymmetric
initial conditions.

This is not always the case though. For some j = 1
2 and j = 1 configurations, and with initial

particle positions in a sphere of very small radius about the origin, we are able to observe the
splitting of particle trajectories (starting in some specific solid angle regions around the origin)
into two, three or even four such asymptotic beams that converge along some particular regions
of space (depending on the initial location of these particles in one of these solid angle regions).
Trajectories generated by two such j = 1 configurations have been illustrated in figure 7.

9
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Figure 8. Simulation of N = 18 particles in scenario (a(3)) with κ = 10, r = 0.01 and
for t ∈ [0, 3]. Left: ( 1

2 ;− 1
2 ,− 3

2 )R configuration. Right: (1, 0,−2)I configuration.

Figure 9. Simulation of N = 11 particles in scenario (a(1)) with |X0| ∝ 0.025 (including
one at the origin), for ( 1

2 ; 1
2 , 1

2 )I configuration (Rmax = 0) with κ = 10 and t ∈ [−1, 1].
Left: particles initially located along z-axis (blue line). Right: particles initially located
along some (blue) line in xy-plane.

Naturally, there are also regions of unstable trajectories for particles starting between these
solid angle regions (see figure 8), which generally include the preferred z-axis, since in some
cases trajectories that start at rest in the z-axis never leave it.

We employ the parameter Rmax (2.22) in the following figures 9–14 for both kinds of initial
conditions viz (a) and (b) (it is especially relevant for the former) to understand the effect of
field intensity on particle trajectories.

One very interesting feature of trajectories for some of these field configurations is that
they twist and turn in a coherent fashion owing to the symmetry of the background field. For
particles with initial condition of kind (b), we see that their trajectories take sharp turns, up to
two times, with mild twists before going off asymptotically. This has to do with the presence of
strong background electromagnetic fields with knotted field lines. This is clearly demonstrated
below in figures 10–12. It is worthwhile to notice in figure 10 that the particle which was
initially at rest moves unperturbed along the z-axis; again, this has to do with the fact that these
fields have preferred z-direction.

10
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Figure 10. Simulation of N = 11 particles in scenario (b(1)) with |V0| ∝ 0.025 in the
direction of (0, 1, 0) (including one at rest), for (1, 0, 0)I configuration (Rmax = 0), with
κ = 10. Left: t ∈ [0, 1]. Right: t ∈ [0, 3].

Figure 11. Simulation of N = 10 particles in scenario (b(2)) with r = 0.99 for
(1,−1, 1)R configuration with κ = 100 and t ∈ [0, 3]. Left: normal direction is y-axis.
Right: normal direction is z-axis.

This feature is even more pronounced in figure 11 and (the right subfigure of) figure 12
where we see that particles with ultrarelativistic initial speeds are forced to turn (almost verti-
cally upwards) due to the strong electromagnetic field. These particles later take very interest-
ing twists in a coherent manner. This twisting feature is much more refined for the case where
initial particle velocities were directed along the xy-plane. Here also, we can safely attribute
this behavior of the particle trajectories to the special field configurations, with preferred
z-direction, that we are working with.

We see in figure 13 that the trajectories of particles that were initially located on a circle
whose normal is along the z-axis flow quite smoothly with mild twists for some time before
they all turn symmetrically in a coherent way and go off asymptotically. Comparing this with
the other case in figure 13, where particles split into two asymptotic beams, we realize that
this is yet another instance of the preferred choice of direction for the electromagnetic fields
influencing the trajectories of particles.

11
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Figure 12. Simulation of N = 18 particles in scenario (b(3)) for (1, 0, 0)I configuration
and t ∈ [0, 2]. Left: r = 0.1 and κ = 10. Right: r = 0.99 and κ = 100.

Figure 13. Simulation of N = 10 particles in scenario (a(2)) with r = 0.1 for (1, 0, 0)I

configuration (Rmax = 0) with κ = 10 and t ∈ [0, 2]. Left: normal direction is x-axis.
Right: normal direction is z-axis.

In figures 14 and 11 we find examples of kind (a) and (b) respectively where both twisting
as well as turning of trajectories is prominent. We see in figure 14 that the particles that start
very close to the origin take a longer time to show twists as compared to the ones that start off
on a sphere of radius Rmax. This is due to the fact that the field is maximal at Rmax and hence
its effect on particles is prominent, as discussed before. We also notice here that the particles
sitting along the z-axis at T = 0 (either on the north pole or on the south pole of this sphere)
keep moving along the z-axis without any twists or turns. This exemplifies again the fact that
these background fields have a preferred direction.

For higher-spin configurations the maximum of the energy density increases but it gets
localized into an increasing number of lobes centered around the origin, due to the presence
of higher-spin harmonics. Thus, only particles located very close to the tip of these lobes of
maximum energy density get accelerated to ultrarelativistic speeds, while particles located
outside (which effectively means most of the space) remain unaffected.

12



J. Phys. A: Math. Theor. 55 (2022) 315401 K Kumar et al

Figure 14. Simulation of N = 18 particles in scenario (a(3)) for (1,−1, 1)R config-
uration (Rmax = 0) with t ∈ [0, 1]. Left: r = 0.01 and κ = 10. Right: r = 0.1 and
κ = 100.

4. Conclusions

We have discussed the trajectories of charged particles subject to knotted electromagnetic fields
generated by the ‘de Sitter method’. We first reviewed the construction of the fields using the
aforementioned method, followed by a discussion of some of their features, including field
lines and energy densities in different cases. Afterward, we discussed trajectories of charged
particles in those fields, in different settings.

Various behaviors were obtained by a numerical simulation of the trajectories, including
a separation of trajectories into different ‘solid angle regions’ that converge asymptotically
into a beam of charged particles along a few particular regions of space, an ultrarelativis-
tic acceleration of particles and coherent twists/turns of the trajectories before they go off
asymptotically.

The results contribute to an effort to better understand the interactions between electromag-
netic knots and charged particles. This becomes increasingly relevant as laboratory generation
of knotted fields progresses. We plan to comprehensively study how exactly the family of
torus knots, obtained from a Seifert fibration or via Bateman’s construction, is related to
our basis configurations. Another future work in this direction may be to analyze a single
Fourier mode of these solutions to understand its experimental realization via monochromatic
laser beams.
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