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Abstract Flexoelectricity is a universal
electro-mechanical coupling effect that occurs in
dielectrics of all symmetric groups and becomes dom-
inant at the micro- and nano-scales. It plays an impor-
tant role in evaluating micro-electro-mechanical sys-
tems (MEMS) such as energy harvesters which con-
vert vibrational energy to electric energy. At finer
length scales, micro-inertia effects significantly con-
tribute to the behavior of flexoelectric materials due to
the mechanical dispersion. Hence, to properly charac-
terize the vibrational behavior ofMEMS, a reliable the-
oretical approach is required accounting for all possi-
ble phenomena that affect the output of the system such
as voltage or power density. In this work, we present
a consistent (dynamic) model and associated compu-
tational framework for flexoelectric structures to study
the characteristics of the vibrational behavior of energy
harvesters showing the dominance of the flexoelectric
effect at micro- and nano-scales. In this context, we
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quantify the impact of the micro-inertia length scale
and the flexoelectric dynamic parameter on both fre-
quency and time responses of energy harvesters.
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1 Introduction

Experimental evidence and observations on thin metal
films and wires [1–4], micro-epoxy beams [5,6], and
CFRP composites [7] have indicated significant size-
dependent phenomena which become dominant at
micro- and nanoscopic levels. In continuum mechan-
ics, this effect is commonly modeled by enriching the
conventional continuum theories with some material
length scale parameter(s). This in turn has lead to the
development of higher-order gradient theories such as
the couple stress-based elasticity theory proposed by
Mindlin and Tiersten [8], Toupin [9] and Koiter [10];
strain gradient elasticity theory based on the seminal
work of Mindlin [11], Eringen and Suhubi [12], Green
and Rivlin [13], Kröner [14], Mindlin and Eshel [15]
andGermain [16], surface stress elasticity theory devel-
oped by Mindlin [17], the surface energy model from
Gurtin andMurdoch [18,19] and integral nonlocal the-
ories proposed by Eringen [20]. As these theories pro-
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vide reasonable explanations and their results agreed
wellwith experimental data accounting for size and sur-
face energy effects, they have been applied successfully
for characterizing the mechanical behavior of micro-
and nano-scale structures.

Micro-electro-mechanical systems (MEMS) have
wide applications in many areas including the auto-
motive industry, smart wearable devices, sports equip-
ment and energy harvesters. Capturing the electro-
mechanical coupling effect at lower length scales
requires an appropriate extension of the strain gradient
theories. In classic continuum mechanics, the piezo-
electric effect describes the linear relation between the
induced electric polarization and the applied mechani-
cal strain. Piezoelectricity exists only in
non-centrosymmetric dielectrics. Evidence of ‘size-
dependent piezoelectricity’ was confirmed by Mul-
tani and Palkar [21] when they found that decreas-
ing grain sizes of PZT decreases the piezoelectric fac-
tor. Other experimental observations of size-dependent
piezoelectric have been reported from Mishima et al.
[22], Buhlmann et al. [23], Cross [24], Harden et al.
[25], Baskaran et al. [26], Catalan et al. [27]. This size
dependence is commonly named flexoelectricity [24]
and is due to the linear coupling between the elec-
tric polarization and strain gradients. Different from
piezoelectricity which requires non-centrosymmetric
constraint, flexoelectricity is a universal phenomenon
that exists in all dielectrics including centrosymmetric
materials. Flexoelectricity has a wide range of appli-
cations including nanodevices [28,29], sensors and
actuators [29–31] and energy harvesters [32–35]. An
energy harvester is a self-power autonomous electronic
device operated by cultivating available existing power
from the surrounding environment such as human
movements, solar energy, and wind energy. Simi-
lar to conventional piezoelectric energy harvesters,
flexoelectric-based energy harvesters convert mechan-
ical energy into electrical energy via the mechanical
vibrations of actuators.

While there are numerous contributions about piezo-
electric energy harvesters, see Raj et al. [36], Caetano
et al. [37], and references therein, there are compara-
tively few studies on flexoelectricity though they have
increased in recent years. Deng et al. [32] proposed a
flexoelectric Euler–Bernoulli model to analyze the fre-
quency response functions of energy harvesters. The
same method was applied by Faroughi et al. [33] to
study the influence of tapering geometric properties on

the voltage/power outcomes. A nonlinear flexoelectric
beam model for energy harvesters was developed by
Wang et al. [35] quantifying the influence of differ-
ent material parameters such as the gradient index. The
material volume ratio coefficient on the generated volt-
age output of functionally graded flexoelectric energy
harvesters was studied by Chu et al. [38]. Majdoub et
al. [39] reported that a 5 nm BaTiO3 beam can sus-
tain almost five times the inhomogeneous strain com-
pared to a corresponding macro beam. Deng et al. [32]
showed that decreasing the thickness of a flexoelectric
beam made of polyvinylidene fluoride (PVDF) from
3µm to 0.3 µm leads to a two order increase in the
magnitude of the energy conversion efficiency; a simi-
lar observation was reported from Wang et al. [35] for
nonlinear vibrations of PVDF and from Moura et al.
for strontium titanate [40].

Polymer-based piezo- and flexoelectric materials
such as PVDF and fiber-reinforced polymers improve
the structural bending abilities and therefore promise
a higher elastic energy. Flexoelectric beam models
have been widely used due to their computational effi-
ciency and simplicity. However, these beam models
overestimate the natural frequency. Furthermore, most
beam models neglect dynamic contributions. Models,
that includes both internal length scale and internal
inertia gradient affects, are called dynamically con-
sistent [41–43]. The micro-inertia effect are impor-
tant to describe dispersive wave propagations [43].
For dielectric materials, considering a crystal made
of at least two different atoms and under mechanical
accelerated motion, the unit cell is distorted, which
leads to a polarization wave with an amplitude propor-
tional to the exciting acceleration. This phenomenon
is called dynamic flexoelectricity [44–46] which is
nonzero for dielectric materials constructed by differ-
ent ions due to the mass differences. Deng et al. [34]
studied this influence on the performance of energy har-
vesters employing an Euler–Bernoulli beammodel and
a reduced-order method. However, the micro-inertia
effect was neglected. Furthermore, beam formulations
and reduced-order approaches unfortunately cannot
capture the complex underlying physics. For vibration
problems such as energy harvesting, there are twomain
issues: firstly, up to date there is no reliable model con-
sidering all possible physical phenomena that can influ-
ence the output such as voltage and power density. And
secondly, no model has been developed that accurately
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characterize the vibrational behavior of microstruc-
tures.

Thus, we formulate a dynamically consistent model
for micro-scale piezo-flexoelectric model by includ-
ing internal length, internal inertia gradient and flex-
odynamic effects in the context of nonlinear geomet-
ric analysis and develop an IGA (Isogeometric Analy-
sis) formulation to investigate the dynamic/vibrational
behaviors of micro-scale energy harvesting structures.

2 Theory of couple stress-based
piezo-flexoelectricity

2.1 Energy formulation

The internal energy density of an elastic dielectric can
be expressed as [47–49]

ψ(εi j , εi j,k, Pi ) = 1

2
εi j C̃i jklεkl

+ 1

2
εi j,k H̃i jklmnεlm,n + 1

2
Ai j Pi Pj

+ f̃i jkl Piε jk,l + d̃i jk Piε jk (1)

where ε is the Green–Lagrange strain εi j = 1
2 (Fik Fjk

−δi j ) = 1
2 (ui, j + u j,i + uk,i uk, j ) capturing geomet-

rical nonlinearities, ui is the displacement vector, Pi

the polarization vector, Fi j = ∂xi
∂X j

the deformation

gradient, C̃i jkl the fourth-order elasticity tensor, Ãi j

the dielectric tensor, d̃i jk the piezoelectric tensor and
f̃i jkl denotes the flexoelectric tensor. For a cubic elas-
tic material tensor, we have C̃i jkl = C̃ jikl = C̃i jlk ,
C̃1111 = C11, C̃1122 = C22 and C̃2323 = C44 denoting
three independent nonzero components. Taking advan-
tage of Voigt notation, the elasticity tensor Ci j , the
dielectric tensor Ai j and the piezoelectric material di j
can be, respectively, expressed in matrix form as

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C11 C12 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎤
⎥⎥⎥⎥⎥⎥⎦

,

A =
⎡
⎣
1/α11 0 0
0 1/α11 0
0 0 1/α33

⎤
⎦

and d =
⎡
⎣

0 0 0 0 d15 0
0 0 0 d15 0 0
d31 d31 d33 0 0 0

⎤
⎦ (2)

where αi j is the electric susceptibility. The flexoelec-
tric tensor of a cubic material has three independent
parameters and is computed as [50,51].

f̃i jkl = f1122δ jkδil + f1212(δi jδkl

+δikδ jl) + ( f1111 − f1122 − 2 f1212)δi jkl , (3)

where δi j is the Kronecker–Delta and δi jkl is the
fourth-order identity tensor which equals to 1 when
i = j = k = l = 1. The theory of couple stress
model is based on the idea of replacing the third-order
strain gradient εi j,k by a traceless second-order tensor
κi j = −eiabε ja,b [8,9] and then decomposing it into a
symmetric and an antisymmetric part as κi j = κs

i j +κa
i j

(seeAppendixA for details).Applying this concept, the
energy formulation (27) is expressed as

ψ(εi j , κ
s
i j , χi ) = ψ int (εi j , κ

s
i j , χi ) + Ai j

2
Pi Pj

+2 f̃ Piχi + di jk Piε jk . (4)

The internal elastic energy is

ψ int (εi j , κ
s
i j , χi ) = 1

2
εi j C̃i jklεkl

+ 8g2χiχi + g1κ
s
i jκ

s
i j . (5)

where g1 and g2 are two material parameters of the
nonlocal elasticity, i.e., g1 = l21C12 and g2 = l22C12

and the flexoelectric energy is

f̃i jk Piκ jk = f̃i jk Pi (κ
a
jk + κs

jk)

= f̃i jk Piκ
a
jk = 2 f̃ Piχi (6)

where f̃ = f1122− f1212
2 .

2.2 Conservation of energy and weak formulations

According to the energy balance principle for isother-
mal processes, the rate of change of the internal and
kinetic energies are equal to the work done by the body
forces, surface tractions, and electric field, i.e.,

Pint + Pkin = Pext (7)

with

Pint = D

Dt

∫
	

ψ int (εi j , κ
s
i j , χi )d	

+ D

Dt

∫
	

( Ai j

2
Pi Pj
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+ 2 f̃ Piχi − 1

2
ε0Ei Ei + di jk Piε jk

)
d	,

Pkin = D

Dt

∫
	

1

2
ρvivi d	

+ D

Dt

∫
	

1

2
l2ρvi, jvi, j d	

+ D

Dt

∫
	

1

2
γi j Ṗi Ṗj d	

+ D

Dt

∫
	

mi jvi Ṗj d	,

Pext =
∫

	

ρv̇i b̃i d	 +
∫

∂	

v̇i (τi + ti )d


+ D

Dt

∫
	

φρ̃d	 + D

Dt

∫
	

Ei Pid	, (8)

where τi and ti indicate the higher-order traction and
traction forces, respectively, b̃i denotes the body force,
vi is the velocity vector. The inertia gradient is included
to captures the elastic wave dispersion as shown in
[41–43]. The dynamic flexoelectric effect describes the
response of the polarization to the mechanical acceler-
ation mi j [44–46]. The polarization dynamics is also
included in the above equation, i.e., the dynamic energy
related to the rate of the polarization γi j [44,46,52].
Finally, it can be shown that the initial boundary value
problem reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṗi (Ai j Pj + 2 f̃ χi + di jkε jk + γi j Pj + mi j v̇ j − Ei ) = 0 in 	,

vi (mi j P̈j − ρl2v̇i, j j + ρv̇i − ρbi − σi j, j + ssi j, j + sai j, j ) = 0 in 	,

Dψ int

Dt
+ 2 f̃ Pi χ̇i + di jk Pi ε̇ jk = vi, j (σi j − ssi j − sai j ) in 	

(σi j − ssi j − sai j )N j = τi + ti on 
,

si jk Ni N j = 0 on 
S

N jvi, j = u∗∗ on 
u∗∗

N j v̇i, j = v∗∗ on 
v∗∗ .

(9a)

(9b)

(9c)

(9d)

(9e)

(9f)

(9g)

From the local strong form, the integral formulation
of the weak form can be obtain by replacing vi from
Eq. (9b) by a test function δui and integrate over the
domain 	. After integration by parts and using the
divergence theorem in Eq. (9b) leads to∫

	

ρaiδuid	 −
∫

	

l2ρai, j jδuid	 +
∫

	

σm
i j δεi j d	

+
∫

	

sai δχi d	

∫
	

ssi jδκi j d	

+
∫

	

Pi (2 f̃ δχi + di jkδε jk)d	

+
∫

	

mi j P̈iδu jd	 =
∫

	

b̃iδuid	

+
∫

∂	

(ti + τi )δuid
, (10)

where the acceleration is denoted as üi = ai . Apply-
ing the divergence theorem and integral by part on the
micro-inertia gives

−
∫

	

l2ρai, j jδuid	 =
∫

	

l2ρai, jδui, j d	

−
∫

	

l2ρai, jδui N jd	. (11)

From Askes and Aifantis [43], we know that the term
on boundary is − ∫

	
l2ρai, jδui N jd	 = 0 and hence

− ∫
	
l2ρai, j jδuid	 = ∫

	
l2ρai, jδui, j d	. This accel-

eration gradient is an additional positive term ensuring
a positive kinetic energy density and thus stability [43].
Equation (10) can be rewritten as
∫

	

ρaiδuid	 +
∫

	

l2ρai, jδui, j d	 +
∫

	

σm
i j δεi j d	

+
∫

	

sai δχi d	 +
∫

	

ssi jδκi j d	

+
∫

	

Pi (2 f̃ δχi + di jkδε jk)d	

+
∫

	

mi j P̈iδu jd	 =
∫

	

b̃iδuid	

+
∫

∂	

(ti + τi )δuid
. (12)
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Gauss’s law for an isotropic dielectric material and
its corresponding boundary conditions are given as

⎧⎪⎨
⎪⎩

∇ · D = ρ̃ in 	,

φ = φ∗ on 
φ∗ ,

D · N̂ = D∗ on 
D∗ .

(13a)

(13b)

(13c)

The weak formulation of the electrical problem is
obtained by multiplying (13b) with a test function δφ

yielding
∫

	

(∇ · D)δφd	

=
∫

	

ρ̃δφd	 (14)

Applying integration by parts

−
∫

	

D · ∇(δφ)d	

=
∫

	

ρ̃δφd	 −
∫

∂	

δφD · N̂d
D. (15)

we finally obtain

Pm = −(Ami + γmi )
−1(φ,i + 2 f̃ χi

+di jkε jk + mi ja j ) (16)

and

Dm = ε0Em + Pm = −ε0φ,m − (Ami

+ γmi )
−1(φ,i + 2 f̃ χi + di jkε jk + mi ja j )

= −
(
ε0δmi

+ (Ami + γmi )
−1

)
φ,i − (Ami

+ γmi )
−1(2 f̃ χi + di jkε jk + mi ja j ) (17)

Then, we have

−
(
ε0δmi + (Ami + γmi )

−1
) ∫

	

φ,iδφ,md	

− (Ami + γmi )
−1

∫
	

(2 f̃ χi

+ di jkε jk + mi ja j )δφ,md	

=
∫

	

ρ̃δφd	

∫
∂	

Di N̂iδφd
D (18)

In this work, the dynamics due to polarization γi j is
neglected for two reasons:

• Different from themicro-inertia length scale related
to the higher mechanical dispersion, the dynamics
of polarization γi j is related to the higher electri-
cal dispersion. In some applications such as energy
harvesting, the mechanical loading is related to the
direct flexoelectric effect rather than converse effect
due to an applied electrical field.

• There has been no work until now measuring or
theoretically evaluating the value of γ .

3 Time integration and Newton iterative solver

In order to solve the nonlinear dynamic equations (12),
(18), we consider equilibrium at time step t = n + 1:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f d(an+1
i , δun+1

i ) + f m(un+1
i , δun+1

i )

+ f e(un+1
i , δun+1

i , φn+1)

= f ext (δun+1
i , b̃n+1

i , τ n+1
i ),

he(φn+1, δφn+1) + hm(un+1
i , δφn+1)

= hext (δφn+1, Dn+1
i ),

(19a)

(19b)

with

f d (an+1
i , δun+1

i ) =
∫

	

ρan+1
i δun+1

i d	

+
∫

	

l2ρan+1
i, j δun+1

i, j d	,

f m(un+1
i , δun+1

i ) =
∫

	

(σm
i j )

n+1δεn+1
i j d	

+
∫

	

(sai )n+1δχn+1
i d	

+
∫

	

(ssi j )
n+1δκn+1

i j d	,

f e(un+1
i , δun+1

i , φn+1) =
∫

	

Pn+1
i (2 f̃ δχn+1

i

+ di jkδε
n+1
jk )d	

+
∫

	

mi j P̈
n+1
i δun+1

j d	,

f ext (δun+1
i , b̃n+1

i , tn+1
i , τ n+1

i ) =
∫

	

b̃n+1
i δun+1

i d	

+
∫

∂	

(tn+1
i + τ n+1

i )δun+1
i d
,

he(φn+1, δφn+1) = (ε0δmi + A−1
mi )∫

	

φn+1
,i δφn+1

,m d	,

hm(un+1
i , δφn+1) = A−1

mi

∫
	

(2 f̃ χn+1
i

+ di jkε
n+1
jk + mi j a

n+1
j )δφn+1

,m d	,
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hext (δφn+1, Dn+1
i ) =

∫
	

ρ̃δφn+1d	

−
∫

∂	

Dn+1
i N̂i δφ

n+1d
D (20)

We take advantage of the implicit Newmark scheme
[53,54] to update the velocity vi and the acceleration
ai :

vn+1
i = vni + �t (1 − γ )ani + γ�tan+1

i ,

an+1
i = 1

�t2β
un+1
i − gni (u

n
i , v

n
i , a

n
i ),

gni (u
n
i , v

n
i , a

n
i ) = 1

�t2β

(
uni + �tvni + �t2(0.5 − β)ani

)
,

(21)

where the parameters of the Newmark scheme are cho-
sen as β = 1/4 and γ = 1/2. Similarly, the polariza-
tion vector is approximated as

Ṗn+1
i = Ṗn

i + �t (1 − γ )P̈n
i

+ γ�t P̈n+1
i ,

P̈n+1
i = 1

�t2β
Pn+1
i

− gni (P
n
i , Ṗn

i , P̈n
i ). (22)

Linearization of above equations yields

�u f
d(un+1

i , δun+1
i ) + �u f

m(un+1
i , δun+1

i )

+ �u f
e(un+1

i , δun+1
i , φn+1)

+ �φ f e(un+1
i , δun+1

i , φn+1)

= f ext (δun+1
i , b̃n+1

i , tn+1
i , τ n+1

i ),

− f d(an+1
i , δun+1

i ) − f m(un+1
i , δun+1

i )

− f e(un+1
i , δun+1

i , φn+1)

�φh
e(φn+1, δφn+1) + �uh

m(un+1
i , δφn+1)

= hext (δφn+1, Dn+1
i ) − he(φn+1, δφn+1)

− hm(un+1
i , δφn+1),

where �u and �φ are the linearization operators with
respect to un+1

i and φn+1
i , respectively, and

�u f d (un+1
i , δun+1

i ) = 1

�t2β

( ∫
	

ρ�un+1
i δun+1

i d	

+
∫
	
l2ρ�un+1

i, j δun+1
i, j d	

)

= δun+1M�un+1,

�u f m(un+1
i , δun+1

i ) =
∫
	

�(σm
i j )

n+1δεn+1
i j d	

+
∫
	

�(sai )n+1δχn+1
i d	

+
∫
	

�(ssi j )
n+1δκn+1

i j d	

+
∫
	

(σm
i j )

n+1�δεn+1
i j d	

+
∫
	

(sai )n+1�δχn+1
i d	

+
∫
	

(ssi j )
n+1�δκn+1

i j d	

= δun+1Km(un+1)�un+1,

�u f
e(un+1

i , δun+1
i , φn+1) + �φ f e(un+1

i , δun+1
i , φn+1)

=
∫

	

Pn+1
i (2 f̃ �δχn+1

i + di jk�δεn+1
jk )d	

+
∫

	

�u P
n+1
i (2 f̃ δχn+1

i + di jkδε
n+1
jk )d	

+
∫

	

mi j

�t2β
�u P

n+1
i δun+1

j d	

+
∫

	

�φP
n+1
i (2 f̃ δχn+1

i + di jkδε
n+1
jk )d	

+
∫

	

mi j

�t2β
�φP

n+1
i δun+1

j d	

= δun+1Ke(un+1, φn+1)�un+1

+ δun+1Kuφ(un+1)�φn+1, (23)

�φh
e(φn+1, δφn+1) = (ε0δmi + A−1

mi )

∫
	

�φn+1
,i δφn+1

,m d	

= δφn+1Kφφ�φn+1,

�uh
m(un+1

i , δφn+1) = A−1
mi

∫
	

(2 f̃ �χn+1
i

+ di jk�εn+1
jk + mi j

δt2β
�un+1

j )δφn+1
,m d	

= δφn+1Kφu(un+1)�un+1.

Let’s denote Kn+1
uu = Km(un+1) + Ke(un+1,φn+1),

Kn+1
uφ = Kuφ(un+1) and Kn+1

φu = Kφu(un+1).
Rayleigh damping, which is a linear combination of

the mass and the stiffness matrices, is applied D̃
n+1
uu =

α1Kn+1
uu + α2M where[

α1

α2

]
= 2ω1ω2

ω2
1 − ω2

2

[
1/ω2 −1/ω1

−ω2 ω1

] [
ξ1
ξ2

]
(24)

and ξ1 and ξ2 are two damping ratios. The Newton–
Raphson iterative is used to solve the linearized system
of equations, i.e.,⎡
⎣Kn+1

uu,k + γ
D̃n+1
uu,k

β�t + M
β�t2

Kn+1
uφ,k

Kn+1
φu,k Kφφ,k

⎤
⎦

[
�un+1

k+1
�φn+1

k+1

]

=
[
fn+1
u − Rn+1

u,k − D̃n+1
uu ṽn+1

k − Mãn+1
k

fn+1
φ − Rn+1

φ,k

]
(25)
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Fig. 1 Bending cantilever beam

where fn+1
u · δun+1 = f ext , fn+1

φ · δφn+1 = hext ,

Rn+1
u,k · δun+1 = f m + f e, Rn+1

φ,k · δφn+1 = hm + he.
The IGA-based spatial discretization can be found in
Appendix B. In this work, quadratic NURBS functions
are implemented for all numerical examples.

4 Numerical examples

4.1 Linear analysis for cantilever beam: analytical
solution vs. numerical solution

Let us consider a cantilever beam subjected to dis-
tributed bending force q = 1N/m as illustrated in
Fig. 1. The beam is clamped on its left edge with
ux = uz = φ = 0 and ux,x = 0 (C1 continu-
ity condition). The material parameters of polyvinyli-
dene difluoride (PVDF) from Table 1 are adopted; the
beam’s dimensions are as follows: h=10−6m, L=50h.
The shear modulus is assumed to be zero for a com-
parative study between numerical results and analytical
solutions which are obtained from beam theory as

uy(x) = w(x) = 2qx2(−3L + x)α33

c11h3α33 − 12 f̃ 2h(α33 − ε0)α33 − d233h
3(α33 − ε0) + 12h(g1 + 4g2)α33

,

φ(x) = −h

2

12e−x/z f̃ q(L − ex/z L + ex/z(x − z) + z)(α33 − ε0)

c11h3α33 − 12 f̃ 2h(α33 − ε0)α33 − d233h
3ε0(α33 − ε0) + 12h(g1 + 4g2)α33

. (26)

Figure 2 shows excellent agreement between the
analytical solutions and numerical results. In the fol-
lowing numerical example, we will illustrate the limit
of the beam model and the need for our proposed two-
dimensional approach—especially for analyzing the
vibration behavior.

4.2 Relation of natural frequencies and sample
thickness

Many previous works have pointed out the dominance
of the flexoelectric effect over the piezoelectric effect at

the micro-scale [32,35]. To accurately capture the flex-
odynamic effect at lower scale, the eigenfrequencies
should be evaluated properly. The variation of the first
eigenfrequency of the cantilever beam from Fig. 3 with
respect to sample thickness is investigated. The mate-
rial parameters of SrTiO3 from Table 2 with g2 = 0
are chosen in order to verify our 2D model with the
reduced-order beam formulation from Deng et al. [34]
where the ratio L/W/h are fixed to be 20/1/1 for all val-
ues of thickness h. The results are illustrated in Fig. 4;
for h > 20 nm, the beam and 2D models give nearly
same values for f. However, when h ≤ 10 nm, the dis-
crepancy of the two models increase from 23.31 to
33.35 and 44.09% for h = 10 nm, h = 7 nm and h
= 5 nm, respectively, suggesting the beam model over-
estimates the natural frequency.

4.3 Linear analysis for frequency response and
external electrical circuit condition

If the external mechanical excitation is harmonic, i.e.,
fu(t) = f̄u Exp(Iωt) and fφ(t) = 0, the solutions have
the form u = ū0Exp(Iωt) and φ = φ̄0Exp(Iωt)
where ū0 and φ̄0 are obtained from
[ ¯̄̄
Kuuω

4 − (M + ¯̄Kuu)ω
2 + IDω + K̄uu − ¯̄Kuφω2 + K̄uφ

− ¯̄Kφuω
2 + K̄φu Kφφ

]

[
ū0
φ̄0

]
=

[
f̄u
0

]
. (27)

Detailed expressions for K̄uu ,
¯̄Kuu ,

¯̄̄
Kuu are pre-

sented in Appendix C. If the beam operates as a capac-
itor and is connected to an external electrical resis-
tance, the rate of the average electrical displacement
D3 = −ε0

∂φ

∂ξ3
+P3 over the thickness can be expressed

as a current flow through the resistor by Gauss law

V

R
+ ε

w

h
V̇ L = −w(ε − ε0)

∫
	

( f̃ χ̇i

+ di jk ε̇ jk + mi j ȧ j )d	 (28)

With an input harmonic loading, equation (28) is rewrit-
ten as
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Table 1 Material
properties of PVDF

Material parameter Symbol Value

Elastic coefficients C11 ≈ C22 3.61 [GPa] [55]

C33 1.63 [GPa] [55]

C13 ≈ C12 ≈ C23 1.42 [GPa] [55]

C44 ≈ C55 ≈ C66 0.55 [GPa] [55]

l1 = l2 5 × 10−7 [m][32]

Permittivity α11 ≈ α33 7.55ε0 [F/m] [55]

α22 9.27ε0 [F/m] [55]

Flexoelectric coefficients f̃ = f12− f44
2 1.3 × 10−8 [C/m] [56]

Piezoelectric coefficients d31 0.21 [Vm/N] [55]

d33 −0.46 [Vm/N] [55]

Mass density ρ 1780 [kg/m3] [32]

Damping ratio ζr 0.05

a b

Fig. 2 Cantilever beam analytical results vs. numerical results

V

R
+ ε

w

h
V̇ L = −w(ε − ε0)

∫
	

(Iω f̃ χ̄i

+ Iωdi jk ε̄ jk − Iω3mi j ū j )d	. (29)

and the power density is computed as

P̄ = V 2

R
∫
	
d	

(30)

Let us consider the frequency response of the base
excitation beam from Fig. 3. The samematerial param-
eters are used as in Sect. 4.2. The thickness h = 10 nm,
the length L = 20h, the amplitude of excitation is set
equal w0 = 9.81/ω2

1 as in [33] with ω1 = 2π f e1 . To

Fig. 3 Cantilever beam-based energy harvester

study the influences of different material inputs on the
output of the energy harvester, a sensitivity analysis is
carried out. The influence of the flexoelectric coeffi-
cient f̃ is presented in Fig. 5. Increasing the magnitude
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Table 2 Material
properties of SrTiO3

Material parameter Symbol Value

Elastic coefficients C11 = C22 = C33 317.2 [GPa] [57]

C12 = C23 = C13 102.5 [GPa] [57]

C44 = C55 = C66 123.5 [GPa] [57]

l1 = l2 1.0 × 10−8 [m] [34]

Permittivity α11 ≈ α22 ≈ α33 240ε0 [F/m] [52,58]

Flexoelectric coefficients f̃ = f12− f44
2 −0.51 [Nm/C] [52]

Piezoelectric coefficients d31 6.1 [pm/V] [59]

d33 40.0 [pm/V] [59]

Mass density ρ 5174 [kg/m3] [52]

Damping ratio ζr 0.05

Fig. 4 Comparison
between Euler–Bernoulli
beam model and 2D
IGA-based model on the
variation of first
eigenfrequency f with
respect to the beam
thickness h. The ratio
L/W/h are fixed to be 20/1/1
for all values of thickness h

2D IGA couple stress based model

Beam model Qian- 2018

h=5 nm, f=4.7732 Ghz

h=10 nm, f=1.2394 Ghz
h=100 nm, f=35.3879 Mhz

h=5 nm, f=2.6686 Ghz

h=10 nm, f=0.9320 Ghz h=100 nm, f=35.6714 Mhz

5 10 50 100
0

1000

2000

3000

4000

5000

h[nm]

f [
M
H
z ]

of f̃ from 0.3 to 2.3 Nm/C (7.76 times) makes the
voltage and power density increase 41.32 times and
1707.4 times, respectively. This agrees with Eq. (30)
where the power is a quadratic function of voltage. Fig-
ure 5 shows a direct relation between the flexoelectric
parameter f̃ and the electrical outputs. As we can see,
higher values of f̃ give higher voltages and powers; this
indicates the importance of seeking higher flexoelectric
effect materials for practical applications [60] in order
to improve the performance of energy harvester. The
effect of the electrical circuit boundary condition with
the variation of electrical resistance R can be found
in Fig. 6. Increasing the electrical resistance R from

10 to 500K	 makes the outcome voltage increases
from 1.37×10−9µV to 3.24×10−8µV and this totally
agrees with Eq. (29). For each value of R, the peaks of
output voltage andpower density of frequency response
curves are obtained at the natural frequency f e1 = 1.394
GHz.When connectingwith an external electric circuit,
the beam plays as a capacitor and the external electri-
cal resistance R contributes to the system admittance
jωC + 1/R where C is the beam’s capacitor. Hence,
it does not exhibit a monotonic behavior of the power
density when increasing (or decreasing) the load resis-
tance according to Eqs. (29) and (30). To be precise,
increasing the electrical resistanceR from10 to250K	

123



2192 T. Q. Thai et al.

a b

Fig. 5 Effect of flexoelectricity with variation of f , ld = 10 h, R = 50 K	 and m = 6 × 10−8 Vs2/m2

a b

Fig. 6 Effect of electrical circuit boundary condition with variation of R, ld = 10 h and m = 6 × 10−8 Vs2/m2

lead the power increases from 0.01 to 0.125W/mm3.
However, when R = 500 K	 the power is decreased to
0.105W/mm3. In this case, R = 250 K	 is the optimal
value of the electrical resistance. In practical applica-
tions, it is important to find the optimal value ofRwhere
the power density of energyharvesting structure ismax-
imized. The influence of the flexodynamic effect on the
frequency response is illustrated in Fig. 7 by varying the
flexodynamic parameter m from 4 × 10−8Vs2/m2 to
7×10−8Vs2/m2; this is studiedwith three cases of non-
local elastic parameters g1 = g2 = h, g1 = g2 = 1.3h
and g1 = g2 = 1.7h. It can be observed from Fig. 7,
the flexodynamic effect has an remarkable impact on
the outputs of energy harvester. However, the behavior

of the influence depends strongly on the elastic length
scales. For the case g1 = g2 = h (see Fig. 7a, b), the
flexodynamicity diminishes the voltage and power den-
sity, i.e., higher values of m cause lower values V and
P̄ . For the case g1 = g2 = 1.7h, the situation is oppo-
sitewhen the flexodynamic effect enhances the outputs,
i.e., higher values of m give higher values V and P̄ (see
Fig. 7e, f). When g1 = g2 = 1.3h, it is observed that
increasingm from4×10−8Vs2/m2 to 6×10−8Vs2/m2

leads the voltage decrease from 3.13 to 1.25 × 10−9

µV. However increasing m from 6 × 10−8Vs2/m2 to
7×10−8Vs2/m2 makes an increase of the voltage from
1.25 to 1.93 × 10−9 µV (see Fig. 7c). Similar behav-
ior is observed for the power (see Fig. 7d). Besides,

123



An electro-mechanical dynamic model 2193

a b

c d

e f

Fig. 7 Effect of flexoelectric-dynamics with variation of m, l1 and l2, ld = 10 h and R = 50 K	
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a b

c d

Fig. 8 Effect of micro-inertia effect with variation of ld , l1 and l2, m = 6 × 10−8 Vs2/m2 and R = 50 K	

the maximum voltage and power density are found
around the natural frequency for all values of m indi-
cating that the flexoelectric dynamic effect does not
affect the structural eigenfrequency. The micro-inertia
effect is presented in Fig. 8 where ld is varied from h
to 30h. Two values of the nonlocal elastic length scale,
i.e., g1 = g2 = h and g1 = g2 = 2h are included in the
study.When g1 = g2 = h as illustrated in Fig. 8a, b, the
magnitudes of voltage and power density get smaller
with larger values of ld . More importantly, we find—
different from the flexodynamic effect—there is a shift-
ing of the system’s natural frequency when varying ld .
We note that the inclusion of the inertial-related length
scale is necessary in order to capture the dispersive
behavior of microstructures. When g1 = g2 = 2h (see
Fig. 8c, d), it can be found that the first natural fre-
quency f e1 is increased from 1.39 GHz to 1.72 GHz;

however, it also leads to less sensitivity of the outputs
with respect to ld . Many studies [61,62] have pointed
out that the length scale should be small enough and
directly related to the lattice space, it also depends on
the correlation properties of the medium. It was shown
from Askes et al. [63] that for the wave propagation of
pulse loads, taking the ratio h/g1 = h/g2 = 1 and h/ld =
1 are appropriate choices.

4.4 Nonlinear analysis: shoe-mounted flexoelectric
energy harvester

Inspired from the well-known work on curved piezo-
electric energy harvesters [64], we study a shoe-
mounted micro-scale energy harvester as illustrated
in Fig. 9. The heel strike compressing energy from
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Fig. 9 Sketch illustrating of
micro-scale shoe-mounted
energy harvester. Layers of
curved energy harvesting
components are placed on
the shoe insole to harness
the heel strike energy

a b

Fig. 10 Applied force pattern and resulting vertical displacement at point A for the case f = 3 Hz

the bending process of the foot is harvested by lay-
ers of curved energy harvesting components. Let us
quantify the piezoelectric and flexoelectric effects on
the energy conversion. The material parameters from
Table 1 are adopted. Although PVDF materials belong
to the orthorhombic mm2 symmetry, the experimental
data from Roh et al. [55] show that at room tempera-
ture, the assumption of cubic behavior is still accept-
able. A tip mass 4 × 10−8 kg is attached at the mid-
span at the lower edge (see Fig. 9), and the gravity

forces of this tip mass and the beam are considered as
well. The sizes of curved beam are as follows: curva-
ture r = 0.5 µm, beam thickness h = 6r/100, width
w = 5r and central angle θ = 2.5π/4. The flexody-
namic coefficient is computed theoretically following
Tagantsev [44], Yudin and Tagantsev [46] and Kvasov
and Tagantsev [52] as mi j = χi j

m2−m1
2q . For PVDF-β

(−CH2 − CF2−)n , we have m1 = 14u, m2 = 50u,
q = 1.602 × 10−19 C is the elementary charge, u
is the atomic mass, u = 1.6605 × 10−27 kg, and
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a b

c

Fig. 11 Distribution of displacement and electric potential fields of shoe-mounted micro-scale energy harvester at maximum loading
step P = 6.5 µN, t = 1.17 s

χi j = (εr − 1)δi j is the dielectric susceptibility hence
mi j = 1.529×10−6δi j Vs2m−2.Open electrical circuit
conditions, i.e., R → ∞ are assumed.

Figure 10a shows the force pattern imitating the
applied force on the foot during the running process
with F = 3Hz and Pmax = 6.5µN. The impulse func-
tion of stepping process is assumed to have the form of
Gaussian distribution, i.e., P(t) = Pmaxe−t2/2a2 where
a is the full width at half maximum and we choose a2 =
0.1. The step frequency in human running is f = 3 Hz
[65]. Figure 10b shows the vertical displacement uz at
the observed pointA; a snap throughoccurs such thatuz
jumps from−0.098 to−0.265µmwhenP is about 4.71
µN. The full model including both piezoelectric and
flexoelectric effects give nearly identical results as the
model containing only flexoelectric effects; the piezo-
electric model predicts only a slightly smaller value of
maximum uz . Distributions of the displacement field of
shoe-mounted micro-scale energy harvesters at maxi-
mum load of P =6.5µNand t =1.172s are presented in
Fig. 11a, b. The highest difference in the electric poten-
tial between the upper and lower layers is observed at
the beam’s mid-span where the loading force is applied
(see Fig. 11c). The output voltage under open electri-
cal circuit condition is shown in Fig. 12a. Before the
snap through, in the first cycle, the voltage is positive
and reaches a maximum of 0.324 mV at t = 0.113

s. The minimum voltage is −3.389 mV at t = 0.172
s after the snap through. This indicates that a higher
voltage level can be obtained when operating the flex-
oelectric energy harvesting in the regime of finite dis-
placement as the inhomogeneity of applied mechanical
strain is enhanced. The minimum value of the voltage
from piezoelectric material is −0.129 mV. Obviously,
at smaller loads, the piezoelectric effect is nearly zero,
larger loads make the strain over thickness inhomo-
geneous and the voltage related to the piezoelectric-
ity over the thickness is nonzero. However, compared
to the flexoelectric effect, the contribution of piezo-
electricity is insignificant. Our results indicate that the
flexoelectric effect dominates the electro-mechanical
coupling effect at the micro-scale. The energy conver-
sion factor is an important quantity for evaluating the
efficiency of MEMS devices and computed as

η = �n+1
E

Wn+1
F

, (31)

whereWn+1
F denotes the external work and�n+1

E is the
electrical energy at the time step t = n+ 1. For energy
harvesters, hext = 0 and we obtain

Wn+1
F = f ext (un1+1

i , b̃n+1
i , τ n+1

i ) = un+1
i K n+1

uu,i j u
n+1
j

+ un+1
i K n+1

uφ,i jφ
n+1
j

= un+1
i K n+1

uu,i j u
n+1
j + φn+1

i K n+1
φφ,i jφ

n+1
j
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a

b

Fig. 12 Voltage and converting factor of the case F = 3 Hz. The
coupling factor and voltage of the piezoelectric model are ampli-
fied by 10 times. The flexoelectric effect has a more significant
contribution over the piezoelectric effect

= �n+1
S + �n+1

E , (32)

with �n+1
S = un+1

i K n+1
uu,i j u

n+1
j and �n+1

E = φn+1
i

K n+1
φφ,i jφ

n+1
j . The time-dependent energy conversion

factor (ECF) in four cycles can be found in Fig. 12b for
F = 3 Hz. In the first cycle, when the voltage obtains
is maximum at t = 0.113 s, the ECF is also maximum
with η = 0.49. At t = 0.13 s, the ECF is minimum,
η = 0.054, when snap through is observed, indicating
the main contribution of the flexoelectric effect to the
electro-mechanical coupling. The voltage response of
three different excited frequencies (F = 3 Hz, F = 30
Hz and F = 60 Hz) is presented in Fig. 13. Higher
frequencies lead to higher inertia and dynamic effects
which yields negative voltage in the first half cycle and
increases the voltage magnitude in the remaining half

a

b

c

Fig. 13 Voltage response was observed in four cycles for three
different exciting frequencies. It is observed that higher frequen-
cies make the inertial effect more profound

cycle. The size effect is examined by varying the struc-
tural radius r , see Fig. 14. The voltage output is stud-
ied for five different values for r . Figure 14a from the
piezo-flexoelectric model and Fig. 14b from the flexo-
electricmodel are nearly identical due to the dominance
of the flexoelectric effect at micro-scale. As pointed out
in [66], the size effect influences the critical buckling
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a

b

c

c

Fig. 14 Size effect: voltage response observed in four cycles for
five different values of curvature r with F = 3 Hz

load. For r = 0.5 µm and r = 0.7 µm, the critical buck-
ling values are 4.711 and 6.155 mN. The maximum
absolute magnitude of the voltage is inversely propor-
tional to r , with values of −3.39 and −2.268 mV for r
= 0.5 µm and r = 0.7 µm, respectively. This is because
for the cases of r = 0.5 µm and r = 0.7 µm, the struc-
tures becomemore compliant; hence, the snap-through
effect happens with a smaller value of applied force.
After the snap-through, the deformation is altered from
compression to dilation; this leads to a redistribution of
the strain and strain gradient. Consequently, the volt-
age sign and the polarization direction are changed.
For larger values of r, the beam is stiffer; hence, the
buckling effect does not occur such that the voltage
does not change its sign. The maximum voltage values
are 0.975, 0.701 and 0.503mV for r = 1.0, 1.5, and
2.0 µm, respectively. In the full and the ‘pure’ flexo-
electric models (see Fig. 14a, b), the maximum voltage
decreases with increasing r . The situation is different
for the piezoelectric model, see Fig. 14c. Larger values
of r lead to higher maximum voltage levels confirm-
ing that increasing the structural dimensions increases
the contribution of piezoelectricity and decreases the
contribution of flexoelectricity.

5 Conclusions

In this work, we have developed a nonlinear dynam-
ically consistent model to characterize the vibrational
behavior of electro-mechanical coupling structures at
the micro-scale by including size effects, flexoelec-
tricity, and their corresponding dispersive behaviors,
i.e., the internal inertia gradient effect and dynamic
flexoelectric effect. We also studied the influence of
these effects on the output of the flexoelectric energy
harvester for both time and frequency responses. It is
pointed out that decreasing the structural size not only
diminishes the piezoelectric effect and enhances the
flexoelectric effect but also increases the dynamic flex-
oelectric effect and the internal inertia gradient effect.
The proposed model is expected to serve as a numer-
ical tool in evaluating and characterizing the realistic
dynamic behavior of MEMS and vibrational structures
such as actuators and sensors.

For energy harvesting applications, the dynamic
flexoelectric effect reduces the output voltage but does
not notably influence the natural frequencies. The
micro-inertia effect on the other hand shifts the natural
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frequencies and increases the obtained output voltage.
In the finite displacement regime, larger mechanical
loads increase the voltage and power density of the
energy harvester. From the numerical experiments, it
was revealed that significant enhancement in the elec-
tric voltage is obtained due to the increase in inhomo-
geneous mechanical strain suggesting the applications
of nonlinear operating MEMS. However, the energy
converting factor—when the structures undergo finite
displacements—is quite small, so improving the per-
formance of microstructure energy harvester is one of
the future studies where some shape optimization or
topology optimization methods can be applied to opti-
mize the converting factor.

We also indicated that, at the micro-scale level, flex-
oelectricity is the dominant coupling effect over its
piezoelectric counterpart. When decreasing the struc-
tural dimensions, the piezoelectric effect becomes less
significant and the flexoelectric effect offers a larger
contribution to the total electrical response.
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Appendices

Appendix A. Couple stress-based flexoelectricity
model

In couple stress theory, the third-order strain gradi-
ent εi j,k is replaced by a traceless second-order tensor
κi j = −eiabε ja,b [8,9]. The strain gradient tensor can
be decomposed into a symmetric and an antisymmet-
ric part as κi j = κs

i j + κa
i j . The antisymmetric tensor

κa
i j can be represented by its corresponding dual vec-

tor χi = 1
2ei jkκ

a
k j . The strain gradient elastic energy

density is given by

1

2
εi j,k H̃i jklmnεlm,n

= 1

2
κs
i j Bi jklκ

s
kl + 1

2
χi B̃i jχ j (A.1)

with

Bi jkl = g1(δikδ jl + δilδ jk) and B̃i j = 16g2δi j ,(A.2)

where g1 and g2 are two material parameters of the
nonlocal elasticity, i.e., g1 = l21C12 and g2 = l22C12. By
using κi j as the strain gradient metric, the flexoelectric

tensor is f̃i jk = −e jab fikab. Denoting f̃ = f̃1122− f̃1212
2 ,

we have

f̃i jk Piκ jk = f̃i jk Pi (κ
a
jk + κs

jk)

= f̃i jk Piκ
a
jk = 2 f̃ Piχi (A.3)

This means the symmetric part of κi j does not con-
tribute to the flexoelectric coupling effect. The internal
energy density is rewritten as [48,49]

ψ(εi j , κ
s
i j , χi ) = ψ int (εi j , κ

s
i j , χi )

+ Ai j

2
Pi Pj + 2 f̃ Piχi + di jk Piε jk

(A.4)

with

ψ int (εi j , κ
s
i j , χi ) = 1

2
εi j C̃i jklεkl

+ 8g2χiχi + g1κ
s
i jκ

s
i j . (A.5)

The constitutive equations can be expressed as

σi j = ∂ψ

∂εi j
= C̃i jklεkl + di jk Pk,

ssi j = ∂ψ

∂κs
i j

= 2g1κ
s
i j ,

sai = ∂ψ

∂χi
= 16g2χi + 2 f̃ Pi or s

a
i j
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= ∂ψ

∂κa
i j

= 8g2κ
a
i j + f̃i jk Pk (A.6)

let’s denote σm
i j = C̃i jklεkl and smi = 16g2χi or

smi j = 8g2κa
i j . The governing equation and correspond-

ing boundary conditions are obtained by applying the
principle of energy balance.

Appendix B. IGA-based for spatial discretization

B-spline functions are computed from the Cox-de Boor
recursion as

Ñ p
i (ξ) = ξ − ξi

ξi+p − ξi
Ñ p−1
i (ξ)

+ ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ñ p−1
i+1 (ξ), (B.1)

with

Ñ 0
i =

{
1, if ξi ≤ ξ ≤ ξi+1

0, otherwise.
(B.2)

NURBS are defined as

N p
i = Ñ p

i (ξ)wi∑n
i=0 Ñ

p
i (ξ)wi

. (B.3)

The displacement u and its test function δu belong to
the following spaces:

U ∈ {u ∈ H2(	)|u = u∗ on 
u∗ and N̂ · ∇u

= u∗∗ on 
u∗∗},
U0 ∈ {δu ∈ H2(	)|δu = 0 on 
u∗ and N̂ · ∇δu

= 0 on 
u∗∗}, (B.4)

where the interpolation of i th nodal variables of the
elements is used as u = ∑

i N
i
u · ũi , δu = ∑

i N
i
u · δũi

and

u =
[
u1
u2

]
; δu =

[
δu1
δu2

]
;Ni

u =
[
Ni 0
0 Ni

]
;

ũi =
[
ũi1
ũi2

]
; δũi =

[
δũi1
δũi2

]
. (B.5)

Similarly, the electric potentials is expressed as

� ∈ {φ ∈ H1(	)|φ = φ∗ on 
φ∗} and

�0 ∈ {δφ ∈ H1(	)|δφ = 0 on 
φ∗} (B.6)

whereφ = ∑
i N

i
φ ·φ̃i

and δφ = ∑
i N

i
φ ·δφ̃i

.Quadratic
NURBS functions are adopted in this work. The strain
tensor and its variation are computed, respectively, as

ε =
⎡
⎣

ε11
ε22

2ε12

⎤
⎦ =

⎡
⎣

u1,1 + 0.5uk,1uk,1
u2,2 + 0.5uk,2uk,2

u1,2 + u2,1 + uk,1uk,2

⎤
⎦ , (B.7)

δε =
⎡
⎣

δε11

δε22

2δε12

⎤
⎦ =

∑
i

⎡
⎢⎢⎣

∂Ni

∂X1
(1 + u1,1)

∂Ni

∂X1
u2,2

∂Ni

∂X2
u2,1

∂Ni

∂X2
(1 + u2,2)

∂Ni

∂X2
(1 + u1,1) + ∂Ni

∂X1
u2,1 + ∂Ni

∂X1
(1 + u2,2) + ∂Ni

∂X2
u1,2

⎤
⎥⎥⎦

[
δu1
δu2

]

(B.8)

The nonzero component of 2D rotational tensor κ is

κ31 = 1

2
(u2,11 − u1,12 + uk,11uk,2 − uk,12uk,1)

κ32 = 1

2
(u2,12 − u1,22 + uk,12uk,2 − uk,22uk,1) (B.9)

The vector form of κs and κa are presented, respec-
tively, as

χ s =
[ 1
2κ32
1
2κ31

]
and χa =

[ 1
2κ32− 1
2κ31

]
(B.10)

and their corresponding variations are

δχ s = 1

4

⎡
⎢⎣

∂2Ni

∂2X2
(1 + u1,1) + ∂2Ni

∂X1∂X2
u1,2 + ∂Ni

∂X2
u1,12 − ∂Ni

∂X1
u1,22

∂2Ni

∂X1∂X2
(1 + u2,2) − ∂2Ni

∂X2
u2,1 + ∂Ni

∂X2
u2,12 − ∂Ni

∂X1
u2,22

− ∂2Ni

∂X1∂X2
(1 + u1,1) + ∂2Ni

∂X2
1
u1,2 + ∂Ni

∂X2
u1,11 − ∂Ni

∂X1
u1,12

∂2Ni

∂2X1
(1 + u2,2) − ∂2Ni

∂X1∂X2
u2,1 + ∂Ni

∂X2
u2,11 − ∂Ni

∂X1
u2,12

⎤
⎥⎦ ·

[
δu1
δu2

]

(B.11)

δχa = 1

4

⎡
⎢⎣

∂2Ni

∂2X2
(1 + u1,1) + ∂2Ni

∂X1∂X2
u1,2 + ∂Ni

∂X2
u1,12 − ∂Ni

∂X1
u1,22

∂2Ni

∂X1∂X2
(1 + u2,2) − ∂2Ni

∂X2
u2,1 + ∂Ni

∂X2
u2,12 − ∂Ni

∂X1
u2,22

∂2Ni

∂X1∂X2
(1 + u1,1) − ∂2Ni

∂X2
1
u1,2 − ∂Ni

∂X2
u1,11 + ∂Ni

∂X1
u1,12 − ∂2Ni

∂2X1
(1 + u2,2) + ∂2Ni

∂X1∂X2
u2,1 − ∂Ni

∂X2
u2,11 + ∂Ni

∂X1
u2,12

⎤
⎥⎦ ·

[
δu1
δu2

]

(B.12)
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Appendix C: Expressions of equation of motion for
linear frequency response

The components of equation (27) are computed as (the
dynamic of polarization is neglected, i.e., γi j = 0)

δui K̄
i j
uuu j =

∫
	

(
σm
i j εi j + smi δχi + ssi j δκi j

− A−1
im (2 f̃ χi + di jkε jk )(2 f̃ δχm + dmjkδε jk )

)
d	,

δui
¯̄Ki j
uu ü j = −A−1

im

∫
	

(2 f̃ χ̈i + di jk ε̈ jk )mmkδukd	

− A−1
im

∫
	

(2 f̃ χi + di jkε jk )mmkδükd	,

δui
¯̄̄
Ki j
uu

....
u j = −A−1

im

∫
	
mi j

....
u jmmkδukd	,

δui K̄
i j
uφφ j = −A−1

im

∫
	

φ,m (2 f̃ δχi + di jkδε jk )d	,

δui
¯̄Ki j
uφφ̈ j = −A−1

im

∫
	

φ̈,mmi j δu j d	,

Di j = α1M
i j + α2 K̄

i j
uu (C.1)
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