
Electron Momentum Distributions from Strong-Field-Induced
Ionization of Atoms and Molecules

Von der Fakultät für Mathematik und Physik
der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

Dr. rer. nat.

genehmigte Dissertation von

M.Sc. Simon Brennecke

2023



Referent: Prof. Dr. Manfred Lein
Leibniz Universität Hannover, Deutschland

Korreferent: Prof. Dr. Reinhard Dörner
Johann Wolfgang Goethe-Universität Frankfurt, Deutschland

Korreferent: Prof. Dr. Lars Bojer Madsen
Universität Aarhus, Dänemark

Tag der Promotion: 05.05.2023



Abstract

High-intensity femtosecond laser pulses in the visible or infrared range can induce electron emission.
This single-ionization process may be interpreted as a sequence of (nonadiabatic) tunnel ionization and
subsequent acceleration of the electron by the external oscillating field in the presence of the electrostatic
force between electron and parent ion. Based on the analysis of photoelectron momentum distributions
from the numerical solution of the time-dependent Schrödinger equation, this thesis theoretically stud-
ies a variety of phenomena taking place in atoms as well as in molecules in strong fields. The underlying
physical mechanisms are revealed by simplified models which take the nonperturbative character of the
ionization process into account.

The simulation results for several settings are directly compared to measurements, offering the pos-
sibility to benchmark state-of-the-art theory and experiment against each other. One example of this is
an investigation of the nonadiabatic strong-field ionization of atomic hydrogen in an attoclock setting.
More generally, the deflection of the photoelectrons is analyzed in different attoclock configurations to
explore the initial conditions of electrons at the tunnel exit—the position where the electron appears
after tunneling. When a molecule is ionized, its orbital structure influences the liberated electron wave
packet. The orbital imprint on the momentum-space phase of the wave packet, which encodes spatial
information, is demonstrated and an interferometric approach to access these phases is evaluated. A
characterization of the freed wave packet is crucial as it influences subsequent processes.

Such secondary processes are induced when the electron is driven back to the parent ion and scatters
off. Similar to focusing of light by a lens, the Coulomb attraction forces scattered electron wave packets
through focal points, causing a shift of their phase. Due to the interference of outgoing waves, these
phases become visible in electron momentum distributions. For a faithful description, these focal-point
effects must be included in a prefactor of the exponentiated action in semiclassical models. Furthermore,
the control of electron scattering dynamics is demonstrated for low-energy electrons close to the contin-
uum threshold by means of near-single-cycle terahertz pulses. The temporally-localized preparation of
the electron wave packet by a femtosecond laser pulse at a well-defined time within the terahertz field
enables a switching between different regimes of dynamics, ranging from recollision-free acceleration
to extensive scattering phenomena.

In contrast to most studies in the electric dipole approximation that consider only the temporal evo-
lution of the external electric field, various beyond-dipole effects in strong-field ionization are explored
in the present work. The microscopic mechanisms of nondipole modifications are thoroughly analyzed.
There, the effects of the spatially-varying electric field and of the magnetic field as well as their finger-
prints on the geometry of the momentum distributions are identified. Furthermore, the subcycle time
resolution of the light-induced momentum transfer in an attoclock-like setup is explored theoretically.
Electron recollisions entirely change the observed nondipole effects and render the observations sensi-
tive to the electronic target structure. The high-order above-threshold ionization caused by large-angle
scattering is investigated both for exemplary atoms and for diatomic molecules through examination of
nondipole shifts of the lateral momentum distribution. The phases of the electron wave packets are also
altered by beyond-dipole effects. It is shown that this results in a displacement of ring-link structures
known as above-threshold ionization rings that are caused by intercycle interference. In addition, the
holographic structures arising from the subcycle interference of scattered and nonscattered electrons are
modified.
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Chapter 1

Introduction

Light-matter interaction—the absorption and emission of light by electrons in atoms, molecules and
solids—plays a crucial role in science as well as in technology and is the foundation of numerous appli-
cations. Examples reach from lasers and spectroscopy techniques over light-emitting diodes and solar
cells to the definition of time standards and quantum computing. One of the earliest manifestations of
quantum mechanics in light-matter interaction is the photoelectric effect where the absorption of one
photon leads to the ejection of an initially-bound electron [1]. However, with increasing intensity of the
radiation, not only one, but multiple photons can be absorbed [2–4]. Photoionization is even induced
with photon energies smaller than the ionization potential. Thus, atoms and molecules can be ionized
by light fields in the visible or infrared range (with wavelengths between about 400 nm and 3 µm).
The detection of the released electrons results in photoelectron energy spectra with multiple peaks that
are separated by the photon energy. Since more photons than necessary to overcome the ionization
threshold are absorbed, this process is known as above-threshold ionization (ATI) [5].

A revolution in photoionization was initiated by the temporal confinement of radiation energy into
short, but very intense laser pulses with only tens of femtosecond duration (in excess of 1013 W/cm2 in-
tensity) [6]. This led to the discovery of numerous fascinating phenomena and established strong-field
physics—a new domain in light-matter interaction. In this regime, the strength of the forces due to the
external electromagnetic fields are comparable with the electrostatic Coulomb attraction between ion
and outer-shell electrons. Hence, the physical mechanisms in strong-field ionization are fundamentally
different compared to single-photon ionization and are usually not adequately represented by pertur-
bation theory in the interaction.

Instead, the physics behind many strong-field phenomena is often well described by the follow-
ing sequence of steps [7–10]: In a first release or ionization step, an electron wave packet is created
in the continuum. In a second step, the electron wave packet is accelerated by the electromagnetic
field. Depending on the shape of the driving field, the wave packet can return to its parent ion. In a
third step, recollisions may induce different processes such as efficient extreme ultraviolet (XUV) photon
emission in high-harmonic generation (HHG) [11, 12], the release of a second electron in nonsequential
double ionization (NSDI) [13–15] or the elastic scattering resulting in high-order above-threshold ion-
ization (HATI) [16–18]. Due to the temporal localization of the stages on the scale of an optical cycle, the
physical mechanism is susceptible to the subcycle variation of the driving fields. Hence, even though
the periods of the external fields are on a femtosecond time scale, the long standing dream of observing
and controlling of electron dynamics in atoms and molecules on their much shorter natural time scale
(attoseconds) became possible [19–21].

In many ultrafast imaging methods, the structure and dynamics of the targets are probed by using
the recolliding electrons [22]. For example, in high-harmonic generation spectroscopy [23–27] structural
information is contained in the emitted radiation whereas in strong-field photoelectron holography [28–
32] or in laser-induced electron diffraction (LIED) [33–35] the target structure is reflected in the electron
momentum distribution. Due to the large kinetic energies and therefore small wavelengths of the return-
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2 CHAPTER 1. INTRODUCTION

ing electron waves in strong infrared fields, the target can be imaged with high spatial resolution [22].
Since large-angle scattering forms the physical foundation of LIED, the differential scattering cross sec-
tion of the target dominates the shape of the momentum distributions [36–38]. In molecules, the electron
wave scatters off the various atomic centers, creating a multi-slit diffraction pattern [33, 39] that encodes
information on the molecular structure and its dynamics [40–42].

The application of high-harmonic generation as a table-top source for coherent attosecond XUV
pulses and the achievements in high-harmonic spectroscopy were one of the earliest driving forces in
strong-field physics [19–21]. However, the measurement of full three-dimensional photoelectron mo-
mentum distributions (PMDs) from single ionization of atoms and molecules became possible by devel-
oping and improving the velocity-map imaging (VMI) technique [43] in combination with tomography
techniques [44–47] and the cold target recoil ion momentum spectroscopy (COLTRIMS) systems (also
known as reaction microscopes) [48–51]. In COLTRIMS, static electric and magnetic fields (usually)
guide photoelectrons and ions to position-sensitive detectors. Measuring their times of flight as well as
positions of impact in coincidence allows the retrieval of the three-dimensional momenta of the electrons
for each detected event. In contrast to high-harmonic generation, the investigation of electron momen-
tum distributions has several advantages: It offers the opportunity to study recollision-free processes, it
does not rely on recombination of the electron and it is not affected by coherent phase-matching effects.
For these reasons, the analysis of momentum distributions may allow deeper insights into the created
continuum wave packets and into the ionization process itself.

The physics in strong fields is usually located on the boundary between quantum mechanics and
classical physics. Depending on the particular observables, both the particle properties and the wave
properties of electrons become visible. Hence, strong-field ionization provides a simple environment
to study fundamental quantum-mechanical effects of matter waves such as tunneling, focusing, or in-
terference. For example, electron tunneling through a time-dependent potential barrier often describes
the ionization step well. The exact description of this quantum-mechanical process raises some ques-
tions such as: Is the tunneling probability susceptible to the time dependence of the barrier? What
influence does the structure of the initial quantum state of the atom or the molecule have on the photo-
electron wave packet? Do the tunneling characteristics depend on the velocity of the released electron?
Is it possible to resolve the ionization process in time? One important concept that provides answers
to these and other arising questions is the “attoclock” method that studies tunnel ionization on an at-
tosecond time scale in an interference-free and recollision-free setting [52–54]. There, a two-dimensional
polarization form such as a circularly-polarized field is applied that ionizes an atom or a molecule and
afterward governs the dynamics, leading to a mapping of the ionization time and the velocity of the re-
leased electron to its final momentum. The main observable is the peak of the photoelectron momentum
distribution, containing information on the ionization process in the presence of the Coulomb attraction
of the parent ion (see for example the reviews [55, 56]).

When ionizing molecules, their structure leaves an imprint on the outgoing electron wave packet.
For example in molecular imaging with circular polarization, the time-to-momentum mapping of the
attoclock is considered to attribute the measured photoelectron angular distribution to the orientation-
dependent ionization probability of the molecular orbital (see for example Refs. [57–61]). Hence, an “im-
age” of the orbital from which ionization takes place can be generated and the complexity of recollisions
as in other techniques such as LIED is avoided. Typically, in such recollision-free strong-field experi-
ments with molecules, the probability density is observed and the phase of the electron wave function
in momentum space is not considered. In single-photon ionization, the variation of the phase is related
to the Wigner time delay [62] and can be characterized by the attosecond streaking technique [63, 64]
or reconstruction of attosecond harmonic beating by interference of two-photon transitions (RABBITT)
technique [65–68]. However, the influence of the molecular structure on the phases of the momentum-
space wave function is nearly unexplored in strong-field ionization. Even though these phases cannot
be directly measured, the analysis of interference structures in electron momentum distributions can
be considered for their investigation [69]. A characterization of the liberated electron wave packet is
important as it influences secondary processes such as HHG or LIED (see for example [25, 29, 70]).
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Different types of double-slit-like interference scenarios are already well-known from strong-field
ionization with linear polarization [71–76]. Thus, the electron momentum distribution can act as a “pha-
someter”, measuring the phase difference between waves. When electrons are driven back to the vicinity
of the parent ion, their motion is influenced by electron-ion scattering in the presence of the external elec-
tromagnetic field. The scattered electron waves are focused in long-range potentials similar to focusing
of a light wave by a lens. This so-called Coulomb focusing [77] results in an enhancement of the yield in
the photoelectron momentum distribution [78, 79]. In addition, a phase change of the wave while pass-
ing a focal point is also expected for electrons analogous to the Gouy phase shift in optics [80]. So far, it
was not considered whether these focal-point phases modify the interference structures in momentum
distributions.

A plethora of different scattering phenomena appears in strong fields reaching from large-angle
scattering [16–18] to soft recollisions in the Coulomb field, leading to low-energy structures [81–86].
Whereas head-on collisions of high-energy electrons can be described as single light-field-free scatter-
ing events, the interplay between the electromagnetic field and the long-range Coulomb force acting
between the electron and the parent ion is crucial at low energies. The control and modification of the
recollision processes of electrons with energies in the eV range was demonstrated either by tailoring the
driving laser pulses [87–93] or by using two pulse schemes [94–100]. The dynamics of weakly-bound Ry-
dberg states [101, 102] and also the dynamics of low-energy continuum electrons in the meV range [103]
can be manipulated on a picosecond timescale by pump-probe schemes based on the ionization with
terahertz pulses [104, 105]. The question arises whether it is possible to deliberately switch electron-
ion collisions on and off and adjust their properties for electron wave packets at energies close to the
continuum threshold.

From a theoretical perspective, a remarkable trait of strong-field physics is that many effects can be
intuitively described by means of classical trajectories, i.e., by only considering the particle properties of
the electron. The simple man’s model [7, 8] is the most famous example, considering only classical par-
ticles in the external electromagnetic field without invoking electron-ion interaction at all. This intuitive
model creates the opportunity to explain complex physical mechanism on a simple basis. However, the
retrieval of information from the highly nonlinear harmonic signal or from photoelectron momentum
distributions is a theoretical challenge, requiring more elaborate models that should be as simple, but
at the same time as accurate as possible. An effective quantum-mechanical treatment of recollision-free
ionization is offered by the strong-field approximation (SFA) [106–108] and its generalization to describe
recollisions [18, 109]. Its further approximation employing a saddle-point method results in a simplified
analytical model where the probability amplitude is given by a coherent superposition of a finite number
of quantum orbits, i.e., Newtonian trajectories evolving in complex time [110–112]. This quantum-orbit
model contains the notion of a trajectory-based description to interpret momentum distribution, but
nevertheless considers the ionization process on a quantum-mechanical basis. To enhance the qual-
ity of the modeling, several refined methods were developed that consider the electron-ion interaction
more accurately, for example the analytical R-matrix (ARM) theory [113, 114]. To preserve the clarity
of classical mechanics, the semiclassical description adds “(quantum-mechanical) wave flesh on classi-
cal bones” [115] by associating a semiclassical phase with each trajectory. This resulted in a variety of
models such as the trajectory-based Coulomb-corrected strong-field approximation (TCSFA) [116–119],
the quantum-trajectory Monte Carlo (QTMC) model [120], the Coulomb quantum-orbit strong-field ap-
proximation (CQSFA) [121], or the semiclassical two-step (SCTS) model [122].

Intuitive models allow a simple interpretation of phenomena. However, their reliability and accu-
racy should be benchmarked against either experimental results or more sophisticated theoretical ap-
proaches. Usually, in strong-field physics, the electromagnetic field can be treated classically. Hence, a
nonrelativistic description of the electron dynamics in atoms or simple molecules requires the numerical
solution of the time-dependent Schrödinger equation (TDSE). In this thesis, almost all observed effects
are confirmed by TDSE simulations in the single-active-electron (SAE) approximation. In the SAE ap-
proximation, the motion of one active electron is governed by the influence of the external electromag-
netic field and an effective potential representing the forces from the nuclei and other electrons. This
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approach usually works very well for single ionization. However, a number of effects involving nuclear
motion (see for example Refs. [123, 124]) or multielectron physics (see for example Refs. [54, 125, 126])
were identified, i.e., their treatment requires many-particle approaches as in Refs. [123, 127–133].

Already more than 400 years ago, the deflection of comet tails observed by Kepler indicated that
radiation also applies a pressure on matter, acting in the light-propagation direction. This facet of light-
matter interaction is related to the transfer of linear photon momentum as it is well-known from Comp-
ton scattering of quasi-free electrons [134]. As of now, effects of photon momentum transfer impact a
broad range of scientific fields ranging from astrophysics [135, 136] over plasma physics [137] and the
optical tweezers [138, 139] to laser cooling [140–143]. Nevertheless, strong-field ionization is mostly dis-
cussed in the electric dipole approximation, neglecting the effect of the photon momentum. In a wave
picture, the dipole approximation only considers a spatially homogeneous, time-dependent external
electric field and furthermore neglects the magnetic field of the light wave. For laser parameters in the
so-called “dipole oasis” [144, 145] employed in real-world table-top experiments, this approximation is
well justified. Since the dispersion relations of momentum to energy are fundamentally different for
photons and electrons, the influence of the linear photon momentum is usually overshadowed by the
momentum gain of the electron due to the imparted photon energy. However, nondipole effects become
more important with increasing energy of the photoelectrons, e.g., by increasing the laser wavelength
or intensity. Hence, the development of strong mid-infrared laser systems challenges the applicability
of the dipole approximation. While the transfer of energy in strong-field ionization is well understood,
nondipole effects were only studied in recent years.

In the dipole approximation, electron momentum distributions from strong-field ionization of atoms
are symmetric under interchange of forward and backward direction. Here, “forward” denotes the light-
propagation direction. However, a nonzero forward average momentum was observed in a pioneering
experiment for nonscattered electrons [146]. The major part of this forward shift is caused by the mo-
mentum gain of the electron during its acceleration in the laser field [147–149] and only a small fraction
is attributed to its liberation by tunneling [150, 151]. Despite years of research, there are still open ques-
tions about the underlying microscopic mechanisms, e.g., on the contributions of the magnetic part of
the Lorentz force and the spatial dependence of the electric field. In linearly-polarized fields, nondipole
effects are also affected by rescattering. As a result, for the low-energy electrons, the peak of the momen-
tum distribution is shifted against the light-propagation direction. This was attributed to the exchange
of momentum between electron and ion during rescattering [152–157]. In this context various questions
emerge such as: How does large-angle scattering in HATI influence the momentum transfer? Are inter-
ference structures in PMDs such as in photoelectron holography also modified by nondipole effects?

This thesis has the following structure: Following this introduction, Chapter 2 describes the basic
concepts and methods used to interpret and to theoretically describe strong-field phenomena. In the
first part of this thesis, we use the dipole approximation to study several aspects of strong-field ioniza-
tion such as the importance of focal-point phases, the phase structure of the wave packets from molec-
ular strong-field ionization, or the control of low-energy electron wave packets. In contrast, the second
part theoretically considers the influence of nondipole effects on various strong-field phenomena and
provides answers to the questions asked above. The thesis closes with concluding remarks in Chap-
ter 11. Several chapters are based on joint work with experimental groups, enabling a direct comparison
between the simulated results and the measurements. The topics studied in the main chapters can be
summarized as follows:

• The focusing of electron waves in strong-field ionization of atoms is studied in Chapter 3. We
show that during Coulomb focusing electron waves pass through focal points and acquire a phase
shift analogous to the Gouy phase in optical beams. The focal-point phases modify the observed
interference structures in photoelectron momentum distributions. We unveil that such phases do
not only appear in linear polarization but also in other waveforms that give rise to rescattering. The
focal-point effects are encoded in a prefactor of the exponentiated action in semiclassical models
that influences both the phase and the weight of each trajectory.
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• The dynamics of electrons right at the boundary between bound Rydberg states and low-energy
continuum states is studied for atoms in Chapter 4. To this end, an electron wave packet is created
by a short femtosecond laser pulse. Its motion is controlled by a phase-stable terahertz pulse,
which implies a high degree of temporal localization of the creation process. By varying the time
delay, the signatures of various regimes of dynamics, ranging from recollision-free acceleration to
coherent electron-ion scattering induced by the terahertz field, are observed in the photoelectron
momentum distributions.

• The attoclock protocol is considered to microscopically investigate the strong-field ionization of
atoms in Chapter 5. We explore the dependence of the attoclock offset on a lateral momentum
component, i.e., on which slice of the momentum distribution is analyzed. We demonstrate that
this observable is strongly influenced by the dependence of the tunnel exit—the position where
the electron is born after tunnel ionization—on the velocity of the liberated electron. To study the
effects of the time-dependent barrier during tunneling in the attoclock configuration, both close-
to-circularly-polarized fields and quasilinear fields are used.

• The influence of the molecular structure on the momentum-space phase of the electron wave
packet created by recollision-free strong-field ionization of molecules is explored in Chapter 6.
As the derivative of this phase is related to the electron’s position, we are able to investigate the
dependence of the spatial offset of the electron’s birth position on the electron’s emission direction
relative to the molecular axis. To this end, we study both results from numerical TDSE simulations
of the phase of the continuum wave function and position offsets retrieved from photoelectron
momentum distributions in an interferometric approach [69].

• Nondipole modifications of the ATI rings in strong-field ionization of atoms are investigated in
Chapter 7. In the dipole approximation, the multiphoton generalization of Einstein’s photoeffect
law suggests that the kinetic energies of the photoelectrons do not depend on the electrons’ emis-
sion direction. However, in TDSE simulations beyond the dipole approximation, we show that
the geometric centers of ATI rings are displaced in the direction opposite to the light-propagation
direction. The beyond-dipole change of the ac Stark effect for electron continuum states is invoked
to explain this observation.

• The physical mechanisms of recollision-free strong-field ionization are investigated beyond the
dipole approximation in Chapter 8. We resolve the transfer of linear momentum in time by fol-
lowing the idea of the attoclock and by analyzing the shift of the electron momentum distribution
in the light-propagation direction as a function of the momentum in the polarization plane. The
decomposition of momentum transfer into tunneling and continuum motion is considered and the
influence of nonadiabaticity on nondipole effects is analyzed. Furthermore, we identify the contri-
butions of the magnetic part of the Lorentz force as well as the spatial dependence of the electric
field to the momentum-dependent nondipole shifts.

• The influence of large-angle scattering on the nondipole effects in the photoelectron momentum
distribution is studied in Chapter 9. Since the electrons return close to the parent ion during
scattering, the target structure vastly influences the beyond-dipole effects in HATI and, thus, the
sharing of the imparted linear momentum between photoelectron and ion. We consider the hy-
drogen molecular ion H +

2 as a prototype of diatomic molecules as well as the xenon atom. Even
though both targets show a nondipole shift of the momentum distribution, we demonstrate that
the results for atoms and molecules differ systematically.

• The nondipole modifications of the interference patterns from strong-field photoelectron hologra-
phy are explored in Chapter 10. For both long-range and short-range potentials, the interference
fringes are shifted in the light-propagation direction. A semiclassical model is developed for a
quantitative trajectory-based description and it is shown that nondipole effects modify both the
classical trajectories and their associated phases. Whereas high-order interference fringes can be
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explained by two-path interference, Coulomb focusing leads to a breakdown of this picture. A
glory-rescattering model [158] beyond the dipole approximation is used to resolve this problem.

This thesis is based on parts of the following peer-reviewed publications and, furthermore, contains
additional details as well as some important generalizations of these results.
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Chapter 2

Introduction to Basic Concepts in
Strong-Field Physics

What are the physical mechanisms behind ionization of atoms and small molecules with strong light
fields? And how to describe these processes efficiently? To illuminate these questions, we present a
short review of basic physical concepts of strong-field physics as well as an introduction to its theoretical
modeling. Similar introductions to strong-field ionization can be found in the previous works [159–161].

A complete description of light-matter interaction requires quantum-field theories. However, here,
we consider electromagnetic fields of low photon energies that are sufficiently strong to observe high-
order multiphoton effects, but sufficiently weak to avoid radiative effects such as vacuum polarization.
Hence, the electromagnetic field is treated classically. In addition, we assume that the field is not altered
by the interaction with electronic system. Over the interaction region, the electromagnetic field is ap-
proximated by plane waves traveling in z-direction with speed of light c. The respective electric and
magnetic fields are given by

E(r, t) = E
(
t−

z

c

)
and B(r, t) =

1
c

ez × E
(
t−

z

c

)
. (2.1)

Here, the polarization plane is equal to the x-y-plane.
Additionally, we do not consider effects such as creation or annihilation of massive particles and,

thus, treat the electronic system within ordinary quantum mechanics. One aim of this thesis is the in-
vestigation of nondipole phenomena and especially the influence of radiation pressure on photoelectron
momentum distributions. Here, “nondipole” refers to effects beyond the electric dipole approximation.
We only consider particles with velocities much smaller than the speed of light c and, thus, describe the
interaction of an atom or a molecule with an electromagnetic field by the nonrelativistic time-dependent
Schrödinger equation (TDSE). As the leading-order relativistic corrections are of the order 1/c2, our
treatment still allows a consistent description of nondipole effects to first order of 1/c. Despite these
approximations, we still consider this description as an “exact” reference for the problems under study.

Throughout this thesis, atomic units are used unless stated otherwise. This unit system reflects the
typical scales in length, time, etc. on which dynamics of valence electrons takes place and is well suited
for our purpose. Atomic units are defined by setting the reduced Planck’s constant  h, the elementary
charge e, the electron mass me, and the Coulomb constant 1/(4πε0) to unity. Importantly for the work,
the speed of light c is given in atomic units by the inverse of the fine structure constant: c ≈ 137.036 a.u.

2.1 Basic ideas in strong-field ionization

The regimes of light-induced ionization of small target gases can be characterized by considering three
parameters: the ionization potential Ip of the target, the frequency ω as well as the maximal field

7
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strength E0 of the radiation. Usually, the three characteristic quantities are combined into two dimen-
sionless parameters (see for example Ref. [162]):

γ =

√
2Ipω
E0

(Keldysh parameter) and Q =
Ip

ω
(multiphoton parameter). (2.2)

If the photon energy is larger than the ionization potential (Q < 1), a single photon is sufficient to
ionize the system and the excess energy manifests itself as the kinetic energy of the liberated electron.
However, at very high photon densities (high light intensities) it is possible to not only absorb one but
multiple photons. Hence, even for multiphoton parameters Q > 1, i.e., multiple photons are required
to overcome the ionization threshold, ionization is possible. The latter case of large Q is realized with
visible or infrared laser fields and it is considered in this thesis. If more photons than necessary to over-
come the ionization threshold are absorbed, a characteristic series of peaks is visible in the photoelectron
energy spectra. In this process known as above-threshold ionization (ATI) [5], the peaks are separated
by the photon energyω.

Ip

Multiphoton ionization (a) Tunnel ionization (b)

Ip

Figure 2.1: Sketch of ionization processes: (a) Multiphoton ionization. The electron of a bound-state wave function (blue area) is
liberated by absorbing multiple photons (indicated as red arrows). (b) Adiabatic tunnel ionization. The potential of the light field
(black dashed line) deforms the ionic potential, creating a barrier (black line) through which the previously bound electron can
escape via tunneling.

In the regime Q � 1, the ionization process is usually dictated by two different time scales: the
Keldysh time

√
2Ip/E0 and the optical cycle Tω = 2π/ω of the external light field. The nonadiabaticity

of the ionization process is characterized by their dimensionless combination, i.e., the Keldysh param-
eter γ [106]. The so-called multiphoton regime—the natural generalization of single-photon ioniza-
tion—is indicated by large values of the Keldysh parameter γ� 1 (see Fig. 2.1(a)). The electron changes
its energy by absorption of several photons in a first step. Hence, for this n-photon process, the ion-
ization rate has the form Γ ∝ In, where n is the number of absorbed photons and I = 1

2ε0c E
2
0 is the

intensity (in SI units) [163, 164]. Afterwards, the created electron wave packet in the continuum travels
away from the parent ion.

In the presence of a strong light field, the bound electron feels the joint electric field of the ionic
core and of the external field, giving rise to a time-dependent potential barrier (see Fig. 2.1(b)). For
small Keldysh parameters (γ � 1), the barrier changes slowly compared to the characteristic Keldysh
time

√
2Ip/E0 and, thus, the electron can escape through this quasistatic barrier via tunneling. In con-

trast to multiphoton ionization, the energy does not change, but the position changes in adiabatic tun-
neling. Hence, an electron that was freed at a given time t0, i.e., the “time of birth” or “instance of
tunneling”, appears at the tunnel-exit position r0. In this tunneling regime, the ionization probability
depends exponentially on the width of the tunnel barrier and, hence, on the external field strength. The
ionization rate for electrons born at time t0 with an initial velocity v0 can be approximated by

wini(t0, v0) ∝ exp
(
−

2κ3

3|E(t0)|

)
exp

(
−
κ v2

0

|E(t0)|

)
(2.3)
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with the momentum scale κ =
√

2Ip associated with the ionization potential Ip. Equation (2.3) is the ex-
ponential part of the Perelomov-Popov-Terent’ev (PPT) or Ammosov–Delone–Krainov (ADK) rate [165–
168]. In a long-range ionic potential with an asymptotic charge Z, a third parameter Z̃ = E0

I2
p
Z should

be considered which characterizes the relative importance of Coulomb effects in the ionization process.
For Z̃ > 1/4, the external field strength is so large that the barrier is suppressed and an electron with
initial energy −Ip can classically escape [169].

Most of today’s strong-field experiments are performed in the intermediate regime γ . 1 that can be
viewed as nonadiabatic tunnel ionization. To a certain extent, the process can be treated as a first step
of multiphoton absorption, promoting the initially-bound electron to a virtual intermediate state from
which it is afterwards released by adiabatic tunneling [163, 164]. Hence, during nonadiabatic tunneling
the energy as well as the position of the electron changes [170]. In this thesis, we will often start with the
simple picture of adiabatic tunneling and afterwards include the leading-order nonadiabatic corrections.

2.1.1 The simple man’s model

The physical understanding of ionization in the adiabatic or nonadiabatic tunneling regime is often
greatly boosted by an interpretation in a sequence of two or three steps [7–10]. After the electron is
freed in a nonclassical tunneling process (ionization step), it emerges in the continuum and it is further
accelerated by the external electromagnetic field (acceleration step). If the frequency ω is sufficiently
low, the electron motion can be treated classically. In this section, we restrict ourselves to the dipole
approximation and discuss the most important nondipole modifications in Section 2.1.2. It is fruitful to
first neglect the electron-ion interaction and study the classical dynamics induced solely by the external
field, i.e., described by Newton’s equation of motion

r̈(t) = −E(t). (2.4)

We first assume that the electron is born at some time t0 with vanishing initial velocity v0 = ṙ(t0) = 0.
Hence, the time evolution of the velocity v(t) is given by

ṙ(t) = v(t) = A(t) − A(t0) with A(t) = −

∫t
−∞ dt ′ E(t ′). (2.5)

Here, we introduced the quantity A usually referred to as the vector potential. In a continuous wave
(cw) field, the velocity can be split in a time-independent part describing the drift motion and a time-
dependent part describing the electron’s quivering motion. The cycle-averaged kinetic energy of the
quivering motion reads

Up =
1
Tω

∫Tω
0

dt
1
2

A2(t), (2.6)

and it is called ponderomotive potential. In a strong field, the effective ionization potential is enhanced
from Ip to Ip + Up due the required quivering energy, resulting in a shift of the positions of the ATI
peaks [171–173]. This shift only appears, if the electron stays in the focus of the radiation until the end
of the pulse what is typically fulfilled for the subpicosecond pulses used in today’s experiments.

In reality, laser pulses have to satisfy the conditions

lim
t→±∞E(t) = 0 and lim

t→±∞A(t) = 0. (2.7)

If the electron does not leave the focus until the end of the pulse, its asymptotic final momentum reads

p = −A(t0). (2.8)

This important relation between time of ionization t0 and photoelectron momentum p can be used
to predict the overall shape of the photoelectron momentum distribution. For example in circularly-
polarized light, one expects a distribution that is rotationally symmetric around the propagation direc-
tion of light with a maximum of the distribution in the polarization plane at p⊥ = |A(t0)| = A0. In
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contrast, for linearly-polarized fields with E(t) = E0 cos(ωt)ex, the vector potential is given by

A(t) = −
E0

ω
sin(ωt) ex. (2.9)

Thus, the distribution should be concentrated along the polarization axis with a maximal momen-
tum pmax

x = E0/ω = A0 in polarization direction (corresponding to a maximal photoelectron energy
of (pmax

x )2/2 = K0 = 2Up). Here, we used the ponderomotive potential Up =
E2

0
4ω2 for linearly-polarized

fields. It turns out that a vanishing initial velocity v0 is a very strict assumption. Instead, a distribution
of initial velocities analogous to Eq. (2.3) should be considered to describe more properly the momentum
distributions in recollision-free strong-field ionization.

Time t

Po
si

ti
on
x

E(t)

Figure 2.2: Classical simple man’s trajectories (solid lines) that start in the half cycle centered around t = 0 of the depicted electric
field (black line). The red curves indicate trajectories that are released in a descending quarter cycle of the electric-field strength
and that revisit the ionic core. In contrast, the blue curves show trajectories that depart in an ascending quarter cycle and that do
not revisit the ionic core. The dashed dark-blue trajectory corresponds to ionization in another cycle of the field, but is otherwise
equivalent to the solid dark-blue trajectory.

By integrating the velocity (2.5), the time-dependent position of the electron is obtained

r(t) = r0 − A(t0)(t− t0) + α(t, t0), (2.10)

where we define the quiver amplitudes

α(t, t0) =

∫t
t0

dt ′A(t ′) and α2(t, t0) =

∫t
t0

dt ′A2(t ′). (2.11)

Since the force due to the external field is independent of the position, we can simply choose the place
of birth r0 = r(t0) = 0. In the special case of linear polarization, the dynamics is restricted to the
polarization axis

x(t) =
E0

ω
sin(ωt0)(t− t0) +

E0

ω2 (cos(ωt) − cos(ωt0)). (2.12)

Hence, the drift motion of the photoelectron is modulated by the oscillatory quiver motion with an
amplitude E0/ω

2. Figure 2.2 shows examples of trajectories for different ionization times t0. Each final
photoelectron momentum px with |px| < E0/ω is reached by two trajectories starting in one optical cycle
of the field. If the electrons depart in an ascending quarter cycle of the electric-field strength (see the
trajectories marked in blue), they do not revisit the ionic core. However, electrons that are released in
a descending quarter cycle are driven back to the parent ion, i.e., there is a return time tc > t0 with
x(tc) = x(t0) = 0.

In a recollision step, the electron can undergo different processes: It can recombine with the parent
ion resulting in high-harmonic generation [11, 12]. For high-harmonic generation, the return energy of
the electron determines the frequency of the emitted radiation. Hence, the cutoff energy of the charac-
teristic plateau structure in the HHG spectrum is related to the maximal return energy and is found to
be EHHG

max ≈ 3.17Up+ Ip [9, 10]. For all photon energies between Ip and EHHG
max , there exist two trajectories

per cycle of the laser field called the short and long (HHG) trajectories. Similarly, the electron can scatter
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inelastically, leading to the emission of a second electron via nonsequential double ionization [13, 15]. In
the case of an elastic collision, the magnitude of the electron velocity stays constant, but its direction is
changed. The target-specific field-free differential cross section (DCS) represents the probability for scat-
tering to a certain direction [36]. After the collision a second stage of acceleration by the field takes place,
resulting in high final kinetic energies such that the process is called high-order above-threshold ioniza-
tion (HATI). For backscattering, the highest energy is classically found to be EHATI

max ≈ 10.01Up [16, 17].
Trajectories starting very close to the time of peak electric-field strength (see the trajectory drawn as dark
red line in Fig. 2.2), can revisit the parent ion multiple times. However, in general, the ability of a return
to the ionic core depends strongly on the shape of the external field, e.g., when increasing the ellipticity
towards circular polarization recollisions are suppressed.

2.1.2 Nondipole effects

Strong-field ionization is usually described in the electric dipole approximation, i.e., the magnetic field
of the laser pulse is neglected and furthermore the incident electric field is assumed to be spatially
homogeneous over the field-atom interaction region. Formally, electromagnetic plane-wave fields (2.1)
can be represented in Coulomb gauge with ∇ · A = 0 and ρ = 0, where A and ρ are the vector and
scalar potential, respectively. We assume that the electronic system is centered around the origin r = 0.
Mathematically, the electric dipole approximation is then realized by replacing the exact vector potential
A(r, t) by its value at the origin, i.e., by the purely time-dependent function A(t) = A(0, t). This has
some important observable consequences. Here, we review for what parameters of the electromagnetic
radiation the dipole approximation is expected to be accurate. To this end, following Refs. [144, 145],
we consider the parameter space spanned by the frequency ω and the intensity I of the radiation (see
Fig. 2.3).
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Figure 2.3: (a) Illustration of the wavelength-intensity parameter space in strong-field physics. In the various regions, different
approximations of an “exact” theory are possible, e.g., in the dipole oasis the electron dynamics can be accurately described by
the nonrelativistic Schrödinger equation in the dipole approximation. The indicated boundaries are explained in the main text.
Adapted from Refs. [144, 145]. (b) Examples of classical trajectories in the simple man’s model starting at t0 = Tω/20 with
vanishing initial velocity for a linearly-polarized laser field with 1600 nm wavelength and a peak field strength of E0 = 0.1 a.u.
In contrast to the dipole approximation (black line), nondipole corrections (red line) result in a displacement of the electron and a
velocity component in the light-propagation direction. Note the different scales in x-direction and z-direction.

A short-wavelength boundary of the dipole approximation is reached, if the wavelength λ of the
radiation is on the order of the length scale of the target [2]. Here, the spatial variation of the electric field
can palpate the electronic structure and, thus, electric quadrupole transitions become important [174].
Hence, we estimate this short-wavelength boundary by λ ≈ 1 a.u. It is of importance for single-photon
ionization [150, 175, 176], but does not play a practical role in the strong-field ionization with visible or
infrared fields.

On the other hand, the quantum electrodynamics defines a hard relativistic boundary. Nonperturba-
tive phenomena of (quasi)-free electrons in electromagnetic fields such as pair annihilation or Compton
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scattering become important, when the parameter zf = 2Up/c2 ≈ 1 [144, 145]. Then, the characteristic
kinetic energy 2Up of an electron in the field is on the order of its rest energy E = c2. This boundary is
usually not reached by table-top laser sources in the mid-infrared range.

In the dipole approximation, there exists no radiation pressure. Or to phrase it differently, the light
field cannot transfer any momentum to the center of mass of an electron-ion system. Thus, for an atom
that was initially at rest, the momentum of the residual ion is equal to the negative photoelectron mo-
mentum. As a result, one of the most fundamental concepts in physics, the conservation of momentum
in the total system of photons, electrons and ion would be violated. In reality, however, every portion of
energy Eγ injected by the light field during the ionization process is accompanied by a transfer of linear
momentum pγ = Eγ/c to the center of mass. If we assume that after tunneling the electron is accelerated
by the laser field independently of the parent ion, then we expect that the electron receives the photon
momentum associated with its gain in kinetic energy K = p2/2. The typical drift momentum can be
estimated as p ≈ A0 ≈ E0/ω. Thus, linear momentum of about K0/c = A2

0/(2c) should be transferred
to the electron. The relative importance of this radiation-pressure effect can be quantified by the ratio
of the transferred linear momentum to the drift momentum in the polarization plane, i.e., the ratio is
given by A0/(2c).1 In Figure 2.3(a), we use the condition A0/c = 0.05 to estimate the breakdown of the
dipole approximation due to importance of radiation pressure. Interestingly, nondipole effects can be
observed at significantly lower intensities compared to the hard relativistic boundary. For the popular
Ti:sapphire laser systems with wavelengths of 800 nm, the radiation-pressure boundary is on the order
of 5× 1015 W/cm2, an intensity that is commonly accessible in modern laboratories. For the up-coming
mid-infrared laser systems, this boundary will even be reached at much lower intensities.

To underpin the arguments, we study again the classical dynamics of an electron that is born with
vanishing initial velocity v0 = 0 at the origin r0 = 0. Neglecting the Coulomb attraction but including
the nondipole parts of the Lorentz force, Newton’s equation reads

r̈(t) = −E
(
t−

z(t)

c

)
− ṙ(t)× B

(
t−

z(t)

c

)
. (2.13)

Here, both the electric field inhomogeneity and the magnetic field are considered. For the laser param-
eters under consideration, this equation can be solved perturbatively. To first order in 1/c, nondipole
effects modify only the motion in the light-propagation direction. The time evolution of the correspond-
ing velocity component is given by

ż(t) =
1
c

[
A2(t)

2
− A(t0) ·A(t) +

A2(t0)

2

]
. (2.14)

The first two terms represent an additional quivering motion induced by the nondipole part of the
Lorentz force and vanish after the end of the laser pulse. In contrast, the last term determines the final
momentum in the light-propagation direction after the end of the light pulse (see for example Ref. [177])

pz =
A2(t0)

2c
. (2.15)

In agreement with the radiation-pressure picture, the classical description of the electron dynamics in the
electromagnetic field leads to a small momentum shift in forward direction. Importantly, in Chapter 8,
we will show that this simple result needs to be revised, if nonzero initial velocities of the electrons are
considered.

The position of the electron in the light-propagation direction is also modified by nondipole effects.
The integration of the velocity (2.14) results in

z(t) =
1
c

[
1
2
α2(t, t0) − A(t0) · α(t, t0) +

1
2

A2(t0)(t− t0)

]
(2.16)

1The relevant parameter that characterizes the applicability of the dipole approximation is also known as the relativistic pa-
rameter ξ = E0/(ωc).
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with α and α2 defined in Eq. (2.11). In contrast to the dipole approximation, the electron motion is
not restricted to the polarization plane. A typical trajectory in a linearly-polarized field is shown in
Fig. 2.3(b). The magnetic part of the Lorentz force induces a drift motion in the light-propagation direc-
tion with a position offset per optical cycle of the field given by zoff = πE2

0/(2ω
3c) for t0 = 0. For an

electron starting with zero initial velocity, the displacement prevents an exact recollision and, thus, can
influence the dynamics of recollision-based phenomena such as HHG, NSDI or HATI. The blue line in
Fig. 2.3(a) shows the rough estimate of zoff = 1 a.u. similar to Ref. [178].

2.2 The time-dependent Schrödinger equation

In the nonrelativistic regime, the time evolution of atomic or molecular systems under the influence of
external electromagnetic fields follows the time-dependent Schrödinger equation (TDSE)

i
∂

∂t
|ψ(t)〉 = H(t)|ψ(t)〉. (2.17)

Here, in principle, |ψ(t)〉 is the many-body state representing electronic and nuclear degrees of freedom.
The Hamiltonian H(t) includes effects of the time-dependent external fields as well as the interaction of
the different particles with each other. For most atomic and molecular targets, this quantum-mechanical
system is still too complicated to be solved numerically. Thus, we apply the following common approx-
imations: The nuclear motion is neglected, i.e., the relative distances between the nuclei are fixed. We
are interested in single-ionization processes and, hence, consider only the time evolution of one of the
electrons. In this single-active-electron (SAE) approximation, the electron moves in an effective poten-
tial V(r), representing the interaction with the nuclei as well as an averaged interaction with the other
electrons. The spin degree of freedom is also not considered.2

Despite these approximations, the theoretical treatment of nondipole effects and momentum transfer
in strong-field ionization is still complicated. Strictly speaking, when considering nondipole corrections,
the electron-ion two-particle system does not decouple into center-of-mass and relative motion. The
remaining coupling terms scale with the ratio of the electron to the ionic core masses and, thus, are
nonnegligible for exotic atoms [150, 185]. However, for common atoms and molecules, it is a very good
approximation to identify the electron-ion relative coordinates with the laboratory-frame coordinates
of the electron. Hence, in the following, we will only consider the relative motion represented by the
positions r and momenta p.

The central observables of this thesis are photoelectron momentum distributions (PMDs). Initially,
at a time tA, the electronic system is prepared in a state

∣∣ψ0
〉
. Afterwards, a light pulse induces ion-

ization, i.e., the electron evolves under the influence of the electromagnetic field as well as the bind-
ing potential V(r). After the end of the light pulse at a time tf, the created continuum electron wave
packet spreads out and its motion is only governed by the field-free Hamiltonian H0 = K + V(r) with
K = 1

2 p̂2. The momenta p of the photoelectrons are measured experimentally at asymptotically large
distances (compared to the microscopic length scales). In principle, the spreading electron waves need
to be propagated till asymptotically large times t→∞. Hence, the quantum-mechanical photoelectron
momentum distribution, i.e., the distribution of final asymptotic momenta p, is formally given by

w(p) = lim
t→∞ |〈p|U(t, tA)|ψ0〉|2 . (2.18)

Here, U(t, tA) is the time-evolution operator and
∣∣p〉 are plane waves with momentum p. In practical

simulations, the limit t → ∞ can never be reached. However, the field-free evolution after tf can be

2Even though these approximations are usually assumed in strong-field physics, there are several aspirations to go beyond
them. For example, effects of non-Born-Oppenheimer dynamics on the strong-field processes were studied in models in reduced
dimensionality (see for example [123, 124, 179]). Furthermore, multielectron effects were considered by studying two-electron
systems such as helium (see for example [180–182]) or by using models in reduced dimensionality (see for example [15, 183, 184]).
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carried out efficiently by considering the spectral resolution of H0. The electron momentum distribu-
tion w(p) = |M(p)|2 can be expressed by means of a probability amplitude

M(p) = 〈p(−)|U(tf, tA)|ψ0〉, (2.19)

where we introduced the incoming stationary scattering states |p(−)〉with asymptotic momentum p (see
Appendix A.1 for an introduction to scattering theory).

2.2.1 Minimal-coupling Hamiltonian

Based on the minimal coupling principle the dynamics of the electron in the light field is governed by
the following Hamiltonian

H(t) =
1
2
(p̂ + A(r, t))2 − ρ(r, t) + V(r). (2.20)

Although the corresponding TDSE is invariant under gauge transformations of the form

A ′ = A +∇χ, ρ ′ = ρ− ∂tχ and |ψ ′〉 = exp(−iχ)|ψ〉 (2.21)

with fields χ(r, t), an appropriate choice of the gauge simplifies drastically the numerical solution of
the TDSE and is important to construct approximate models. In this thesis, we consider effects beyond
the electric dipole approximation. However, for the laser parameters under considerations, these effects
are still small and can be treated as a perturbation. The vector potential of a plane-wave field (2.1) in
Coulomb gauge (ρ = 0) can be expanded in 1/c (see for example [186])

A(r, t) = A
(
t−

z

c

)
= A(t) +

z

c
E(t) + O

(
1
c2

)
(2.22)

with E(t) = −∂tA(t). The corresponding physical electric and magnetic fields are

E(r, t) = −∂tA(r, t) = E(t)−
z

c
Ė(t)+O

(
1
c2

)
and B(r, t) = ∇×A(r, t) =

1
c

ez×E(t)+O

(
1
c2

)
. (2.23)

Using the expansion of the vector potential (2.22) and neglecting terms proportional to 1/c2 the Hamil-
tonian reads

H(t) =
1
2
(p̂ + A(t))2 +

z

c
(p̂ + A(t)) · E(t) + V(r) + O

(
1
c2

)
. (2.24)

The theory covers the dynamics in electric quadrupole approximation, i.e., effects of the electric-field
inhomogeneity are into account. However, to first order in 1/c, only a spatially homogeneous magnetic
field is considered, i.e, the magnetic dipole approximation is used. We title this choice of the Hamilto-
nian as generalized velocity gauge. Since relativistic corrections to Eq. (2.24) are on the order of 1/c2, the
description is consistent with the full relativistic Dirac theory to first order in 1/c.

The dipole approximation enables to choose a gauge with vanishing vector potential by applying a
gauge transformation with [2]

χL = −A(t) · r. (2.25)

When this transformation is used for the generalized velocity gauge (see Eq. (2.24)), the vector potential
is still nonzero and, hence, a coupling between momenta and positions is still present

HL(t) =
1
2

p̂2 +
(

r +
z

c
p̂
)
· E(t) + V(r) + O

(
1
c2

)
. (2.26)

This is expected, because a nonvanishing magnetic field always requires a spatially-inhomogeneous
vector potential. We refer to the Hamiltonian (2.26) as generalized length gauge.
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2.2.2 Unitary transformation to “natural gauge”

In the dipole approximation, a great advantage of the velocity gauge is that the canonical momenta p
are classically conserved for a vanishing binding potential V . However, beyond the dipole approxima-
tion, it is impossible to find a gauge transformation (2.21) such that the resulting canonical momenta
are conserved, i.e., there is always a coupling between position and momentum operators in the Hamil-
tonian. Luckily, we can overcome this problem by applying a more general unitary transformation
U = exp(−iχU) generated by a hermitian operator χU. The idea was first worked out in Refs. [160, 187].

Inserting the transformed state |ψ̃〉 = U|ψ〉 into the TDSE (2.17) and ensuring its form invariance,
i.e., the transformed TDSE should be given by i∂t|ψ̃(t)〉 = H̃(t)|ψ̃〉, we can read off the transformed
Hamiltonian

H̃(t) = UH(t)U† +
∂

∂t
χU. (2.27)

We use the generating operator

χU =
z

c

(
p̂ ·A(t) +

1
2

A2(t)

)
(2.28)

to transform the generalized velocity gauge (2.24). Importantly, the position and momentum opera-
tors do not commute. Hence, in addition to the modifications in the kinetic and the interaction terms,
the transformation changes also the potential term. Using Hadamard’s lemma we find the following
transformed Hamiltonian

H̃(t) =
1
2

(
p̂ + A(t) +

ez
c

(
p̂ ·A(t) +

1
2

A2(t)

))2

+ V
(

r −
z

c
A(t)

)
. (2.29)

A time-dependent shear of the potential appears due to the position-dependent shift s(t) = zA(t)/c.
Because of the first term in Eq. (2.28), the transformation is not a gauge transformation (2.21) in the
usual sense. Nevertheless, we refer to the transformed system as “natural gauge”. The separation of
the Hamiltonian H̃ in purely position- and momentum-dependent terms allows to apply the Fourier
split-operator method [188] to solve numerically the TDSE (see Appendix A.2.2 for details).

2.2.3 Gordon-Volkov states

The solution of the potential-free TDSE, i.e., neglecting the potential V and considering only the dynam-
ics induced by an external electromagnetic field, is quite helpful for the development of approximate
theories in strong-field physics. Here, the time evolution is governed by the so-called Volkov Hamilto-
nian that reads (to first order in 1/c)

HF(t) =
1
2

p̂2 +HI(t) =


1
2 p̂2 +

(
r + z

c
p̂
)
· E(t) , length gauge

1
2 (p̂ + A(t))2 + z

c
(p̂ + A(t)) · E(t) , velocity gauge

1
2

(
p̂ + A(t) + ez

c

(
p̂ ·A(t) + 1

2 A2(t)
))2 , natural gauge.

(2.30)

The corresponding solutions of the TDSE consist of plane-wave states |w〉 and can be labeled by a vec-
tor k that is equal to the momentum before and after the end of the light pulse. We define an auxiliary
vector by

v(k, t) = k + A(t) +
ez
c

(
k ·A(t) +

1
2

A2(t)

)
. (2.31)

For the three considered gauges, the Gordon-Volkov states are given by (see for example [186, 189])

|ψFk(t)〉 = exp (iSF(k, t))×


∣∣v(k, t)

〉
, length gauge∣∣v(k, t) − A(t)

〉
, velocity gauge∣∣k〉 , natural gauge.

(2.32)

Here, we introduced the action

SF(k, t) =
1
2

∫
t

dζv2(k, ζ). (2.33)
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As expected, the momenta k used as labels of the states are classically conserved in natural gauge.
For the exact nonrelativistic Hamiltonian (2.20) with V = 0, a procedure was recently established to
construct the Volkov states in plane-wave fields [190]. These exact states and the approximate states of
Eq. (2.32) agree to first order in 1/c.

At each time t, the Gordon-Volkov states form an orthogonal and complete basis system. Thus, the
potential-free time-evolution operator UF that propagates an arbitrary state under the influence of an
electromagnetic field can be written as

UF(t, t ′) =
∫
dk
∣∣ψFk(t)〉〈ψFk(t ′)∣∣. (2.34)

2.3 Strong-field approximation

The strong-field approximation (SFA) offers a simplified quantum-mechanical description of strong-
field processes. The main idea is that the electron dynamics is governed by the electromagnetic field
and is only weakly perturbed by the ionic potential. Already in 1964, Keldysh [106] developed the first
approach that was later on further refined by Faisal [107] and Reiss [108]. Since then several formulations
and extensions of the theory were provided that allow the description of various phenomena such as
recollision-free strong-field ionization, laser-induced electron diffraction and high-harmonic generation.
Here, we focus on the approximate evaluation of photoelectron momentum distributions beyond the
electric dipole approximation. We assume that the electron is initially in an eigenstate with energy −Ip of
the field-free HamiltonianH0 = p̂2

2 +V(r). The field-free time evolution is then given byU0(t
′, tA)

∣∣ψ0
〉
=

eiIp(t′−tA)
∣∣ψ0
〉
.

To build the physical intuition of the two- and three-step models into a quantum-mechanical descrip-
tion, the full time-evolution operator U(tf, tA) can be rewritten by means of a Dyson representation.
Hence, the time-evolved final state is given by

∣∣ψ(tf)〉 = U(tf, tA)∣∣ψ0
〉
= U0(tf, tA)

∣∣ψ0
〉
− i
∫tf
tA

dt ′U(tf, t ′)HI(t
′)U0(t

′, tA)
∣∣ψ0
〉
. (2.35)

In the second term, the system evolves first in its initial state. At a time t ′, the application of the inter-
action operator HI(t

′) acts like a “kick” and in the spirit of the two-step model the electron is born in
the continuum [191]. The integral over t ′ represents the summation over all possible ionization times.
If the external electromagnetic fields are strong, we can hope that the continuum motion of the electron
is mainly governed by these fields. Hence, we use a second Dyson representation of the time-evolution
operator

U(tf, t ′) = UF(tf, t ′) − i
∫tf
t′

dtUF(tf, t)VU(t, t ′) (2.36)

with the Volkov propagatorUF of Eq. (2.34). Using Eqs. (2.35) and (2.36), the probability amplitude (2.19)
has the following form

M(p) = 〈p(−)|U(tf, tA)|ψ0〉 =MD(p) +MR(p) (2.37)

with an amplitude for direct electrons

MD(p) = −i
∫tf
tA

dt ′ 〈p(−)|UF(tf, t ′)HI(t
′)U0(t

′, tA)
∣∣ψ0
〉

(2.38)

and an amplitude including rescattering

MR(p) = (−i)2
∫tf
tA

dt ′
∫tf
t′

dt 〈p(−)|UF(tf, t)VU(t, t ′)HI(t
′)U0(t

′, tA)
∣∣ψ0
〉
. (2.39)

Up to this point, the derived expressions are exact. Due to the appearance of the full time-evolution
operator U in Eq. (2.39) no simplification of the numerical calculations is yet achieved. In the remaining
part of this section, we discuss usual approximations for both amplitudes.
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Direction ionization

In the usual strong-field approximation only the amplitude of Eq. (2.38) is considered and the exact scat-
tering states

∣∣p(−)
〉

are approximated by plane-wave states
∣∣p〉. Inserting the Volkov propagator (2.34)

into Eq. (2.38), the KFR amplitude is obtained (for a nondipole version see for example [147, 190, 192])

MKFR(p) = −i
∫tf
tA

dt ′D(p, t ′) eiSSFA(p,t′) (2.40)

with the generalized action of SFA

SSFA(p, t ′) = −
1
2

∫tf
t′
dζv2(p, ζ) + Ip(t ′ − tA) (2.41)

and the transition matrix element given by (to first order in 1/c)

D(p, t ′) =


〈
v(p, t ′)

∣∣ (r + z
c

p̂
)
· E(t ′)

∣∣ψ0
〉

, length gauge〈
v(p, t ′) − A(t ′)

∣∣A(t ′) · p̂ + A2(t′)
2 + z

c
(p̂ + A(t ′)) · E(t ′)

∣∣ψ0
〉

, velocity gauge〈
p
∣∣ (1 + pz

c

) (
A(t ′) · p̂ + A2(t′)

2

) ∣∣ψ0
〉

, natural gauge.

(2.42)

In a physical interpretation, the “kicked” electron experiences only the influence of the light field during
its continuum propagation such that the KFR amplitude describes direct ionization without rescattering.

In general, the strong-field approximation is not gauge invariant (see for example [193]). In length
gauge, unlike the velocity gauge, the field-free initial state

∣∣ψ0
〉

is usually a good approximation of
the dressed ground state in the presence of the light field. Hence, the length gauge results in a more
accurate description for many strong-field phenomena [194–196], e.g., it reproduces well the PMDs for
short-range potentials.

Ionization including rescattering

The amplitude of Eq. (2.39) contains scattering of the electron in the potential. It can be again simplified
by replacing the exact scattering states

∣∣p(−)
〉

by plane-wave states
∣∣p〉 and the full propagator U by the

Volkov propagator UF. The resulting improved SFA amplitude contains a single scattering event [18,
192, 197]

M1BA(p) = (−i)2
∫tf
tA

dt ′
∫tf
t′

dt 〈p|UF(tf, t)VUF(t, t ′)HI(t
′)U0(t

′, tA)
∣∣ψ0
〉
. (2.43)

The physical interpretation is that after a first acceleration in the continuum, the electron scatters off
the parent ion at a time t. The subsequent electron motion is again governed by the electromagnetic
field. Thus, two integrals over the possible ionization times t ′ and scattering times t appear. The laser-
assisted scattering process is treated in first Born approximation (1BA) such that the distortion of an
incident plane wave caused by the potential is neglected. We will redress this issue in Section 9.4.

Two major problems appear: (i) For realistic long-range potentials, the integrals in Eq. (2.43) diverge.
For example, for a Yukawa potential V(r) = −Z/r exp(−r/σ), the integrals converge only for small cut-
off parameters σ 6 1 [190]. (ii) Formally, higher-order rescattering processes can be included in the
theory by the recursive use of the Dyson Equation (2.36) in Eq. (2.39). However, in general, the resulting
Born series does not converge [198].

2.3.1 Saddle-point analysis and the appearance of quantum orbits

In the KFR amplitude of Eq. (2.40), the underlying physics is still veiled by the appearing time inte-
gral. In principle, for a given momentum p, the probability amplitude can be viewed as the coherent
superposition of contributions from all different pathways labeled by the real-valued starting times t ′.
A simplified analytical treatment of the integral is provided by the saddle-point approximation (SPA).
In this approach, the physical signal at each momentum p is linked to a finite number of specific events.



18 CHAPTER 2. INTRODUCTION TO BASIC CONCEPTS IN STRONG-FIELD PHYSICS

0.1

0.2

−0.1 0.0 0.1

0.1

0.2

−0.1 0.0 0.1

0.1

0.2

−0.1 0.0 0.1

Im
(t

‘)
[i

n
un

it
s

of
T
ω

]

Re(t‘) [in units of Tω]

−20 −10 0 10 20

Im
(t

‘)
[i

n
un

it
s

of
T
ω

]

Re(t‘) [in units of Tω]

−20 −10 0 10 20

Im
(t

‘)
[i

n
un

it
s

of
T
ω

]

Re(t‘) [in units of Tω]

10−5 10−3 10−1

(a) (b) (c)

Figure 2.4: Illustration of the steepest-descent method for the KFR amplitude (2.40) in a linearly-polarized field (momentum
p = 0): (a) real part Re(SSFA) of the action, (b) imaginary part Im(SSFA) of the action and (c) absolute value of the integrand (in
velocity gauge) shown as a function of complex time. The relevant stationary point is indicated as black dot and the dashed line
marks the corresponding steepest-descent path, i.e., the path at constant phase Re(SSFA).

The integrand in Eq. (2.40) is a product of a transition matrix element and an oscillating phase factor
of the action (2.41). The time integral is well approximated in SPA, when the phase factor oscillates
quickly as a function of the time t ′. In the literature, there is no definite agreement what physical
conditions need to be fulfilled. It sounds reasonable that the SPA works well in the low-frequency
limit, i.e, when the ponderomotive energy Up and the ionization potential Ip are large compared to the
photon energyω [122]. Importantly, stationary points t ′s = t ′r+ it ′i of the action (2.41) are defined by the
saddle-point equation

ṠSFA(p, t ′s) =
∂

∂t ′
SSFA(p, t ′)

∣∣∣∣
t′=t′s

= 0. (2.44)

The solutions t ′s are in general complex. The probability amplitude (2.40) is then approximated as [199]

MKFR(p) ≈ −i
∑
t′s

√
2πi

S̈SFA(p, t ′s)
D(p, t ′s) e

iSSFA(p,t′s). (2.45)

Here, the sum enables the interference of a finite number of contributions linked to the saddle points.
Mathematically, the idea behind the SPA is to deform the integration path in Eq. (2.40) into the com-

plex time plane [200]. For a single stationary point, a steepest-descent path is chosen such that (i) it goes
through the saddle point, (ii) the real part of the phase SSFA is constant along the path and (iii) the imag-
inary part of the phase SSFA increases when moving away from the saddle point.3 The integral along
the deformed path is dominated by the region around the saddle point (see the schematic illustration
in Fig. 2.4). Hence, the integrand can be approximated by a Gaussian function and the integral can be
evaluated analytically. If multiple well-separated saddle points appear, the total integration path is split
in different sections that are each chosen as steepest-descent contour and, hence, the final amplitude is
given by the sum in Eq. (2.45).

The applicability of SPA is based on two critical assumptions: (i) The integrand is holomorphic
in the relevant complex-time region and (ii) the saddle points are well separated. However, in the
favored length gauge, the transition matrix element (2.42) has a pole at t ′s and, hence, strictly speaking
a generalized approximation is needed as derived in Refs. [194, 201]. On the other hand, for a given
electric field, the number of saddle points reached by the steepest-descent contour can depend on the
final momenta p. For example, in elliptical polarization, there are two relevant saddle points at low
energies, but only a single point at high energies [202, 203]. At intermediate energies, where both points
merge, the usual SPA breaks down. Here, it is not possible to consider the contributions of the two
points separately and, thus, more advanced methods such as the uniform approximation are needed to
obtain reliable results [204].

3Hence, the saddle points need to fulfill Im(S̈SFA(p, t ′s)) > 0.
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t ′s = t
′
r + it ′i

Re(t ′s) = t ′r
Re(t)

Im(t)

Figure 2.5: Standard integration contour in the complex-valued time plane to calculate the action of Eq. (2.41).

The overall shape of the momentum distributions and the appearance of interference are often dom-
inated by the exponential of the action in the probability amplitude (2.45). For holomorphic func-
tions A(t), the integral in the action (2.41) does not dependent on the chosen integration contour. How-
ever, in the spirit of the two-step model, we can consider a standard contour consisting of two sections
as depicted in Fig. 2.5. The leg from the complex-valued saddle point t ′s = t ′r+it ′i down to the real axis is
usually identified with the under-the-barrier motion. It determines fully the ionization probability and,
thus, the shape of the electron wave packet. The second leg along the real axis from Re(t ′s) = t ′r to the
final time tf can be interpreted as continuum propagating after liberation at time t ′r. Here, the electron
picks up some additional phase, i.e., the real part of the action changes, which influences decisively the
interference patterns.

In semiclassical theory, trajectories are introduced for a descriptive analysis of the classical action.
Inspired by this concept, “quantum orbits” can be defined to evaluate the complex-valued action in
SFA [110]. To this end, we solve Newton’s equation in complex time. At each time t along the integration
path, the velocity is given by v(t) = p + A(t) in the dipole approximation. Formally, its integration
results also in a complex-valued position

r(t) =
∫t
t′s

dτ [p + A(τ)] . (2.46)

The real parts of these orbits are frequently considered for an intuitive explanation of strong-field phe-
nomena. In particular, the nonzero position Re(r(t ′r)) at the liberation time t ′r is often interpreted as the
SFA tunnel-exit position. However, as the SFA action does not explicitly depend on a real-valued orbit’s
position, this interpretation should be viewed with caution [205–207].

2.4 Semiclassical two-step model

As motivated in Section 2.3, effects of the ionic potential can be included in the SFA by means of a
Born expansion. In such a description, the electron follows potential-free paths in between two scat-
tering events and, hence, only hard-scattering phenomena are considered properly.4 In contrast, even
for recollision-free ionization, a long-range Coulomb potential leads to a deflection of the outgoing elec-
trons [55]. Furthermore, in linear polarization, “soft” Coulomb effects can change the topology of the
orbits and, hence, are crucial for the real physical dynamics [208]. To include such observations explic-
itly in the theoretical description, it is advantageous to split the ionization process into a release step
and a propagation step. In the large class of “semiclassical models”, the propagation step is then de-
scribed using classical trajectories that are governed by the electromagnetic field and the electron-ion

4In principle, under certain circumstances, the Born series describes all effects due to the ionic potential. However, effects such
as Coulomb distortion and deflection are represented by higher-order terms in the series that relate to orbits undergoing multiple
hard recollisions.
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interaction. Here, we briefly discuss the main ideas of these models by the example of the semiclassical
two-step (SCTS) model [122]. A comparison of different approaches can be found in Ref. [208].

In the first step, electrons are released by laser-induced tunnel ionization at each time t0. This non-
classical process leads to a freed electron wave packet that is represented by a classical phase-space
distribution. For adiabatic tunneling (γ→ 0), the initial velocities v0 of the electrons have to be perpen-
dicular to the instantaneous electric field E(t0) [106, 209, 210]

v0 · E(t0) = 0. (2.47)

The initial probability distributionwini(t0, v0,⊥, v0,z) can be parameterized by the ionization time t0, a ve-
locity component v0,⊥ in the polarization plane and a velocity component v0,z in the light-propagation
direction. A possible choice for wini is, for example, the ADK rate (2.3). An initial position r0 is cho-
sen for each set of coordinates (t0, v0,⊥, v0,z). In the original SCTS implementation, tunnel-exit positions
from the tunnel ionization in parabolic coordinates with induced dipole and Stark shift (TIPIS) model
were used [54, 122]. This relies on the separation of the time-independent Schrödinger equation for a
Coulomb potential V(r) = −Z/r under the influence of a (weak) static electric field E in parabolic coor-
dinates. The exit position is then determined by the intersection of the field-dressed potential surface
with the bound-state energy [54, 122, 211]

r0 = −
Ip +

√
I2p − 4βE

2E
Ê. (2.48)

Here, we introduced the separation constants β = Z−
√

2Ip/2 in 3D and β = Z−
√

2Ip/4 in 2D.
In the second step, the electron is described classically. In the dipole approximation, the trajec-

tory rcl(t) is governed by the following Newton’s equation of motion (EOM)

r̈cl(t) = −E(t) −∇V(rcl(t)), rcl(t0) = r0, ṙcl(t0) = v0. (2.49)

For late final times tf after the end of the light pulse, the velocity ṙcl(tf) approaches some final asymptotic
momentum p. A key ingredient of semiclassical models is a phase associated with each trajectory. In
the SCTS model, the phase is basically given by the exponential part of the semiclassical propagator

SSCTS(t0, v0) = −v0 · r0 + Ip(t0 − tA) −

∫tf
t0

dt
[

1
2

ṙ2
cl(t) + V(rcl(t)) − rcl(t) · ∇V(rcl(t))

]
. (2.50)

To calculate electron momentum distributions, there are basically two roads. One can solve the so-
called inversion problem, i.e., find all initial conditions (t0, v0) that are mapped by the classical motion
to a given final momentum p. The solution of the inversion problem is in general a quite difficult task
and we will study this approach further in Chapter 3. Alternatively, one uses the “shooting method” as
introduced in Ref. [118]. Then, the classical ensemble is represented by a swarm of trajectories obtained
by randomly sampling the initial conditions (t0, v0). Afterwards, the momentum distribution is then
calculated by binning. For a given momentum p, we consider all np trajectories with final momenta in
the vicinity of p, i.e., we determine all trajectories that end up in the bin [pi + ∆p,pi + ∆p] (i = x,y, z).
If the interference of different branches is neglected, the probability distribution of a classical-trajectory
Monte Carlo (CTMC) simulation is given by

w(p) ≈
np∑
j=1

wini

(
tj0, vj0

)
. (2.51)

To consider interference, this formula was modified to include the phases associated with the trajectories

w(p) ≈
∣∣∣∣ np∑
j=1

√
wini

(
tj0, vj0

)
exp(iSSCTS(t

j
0, vj0))

∣∣∣∣2. (2.52)

Even though this approximation works qualitatively well, we will treat in Chapter 3 the preexponential
part of the semiclassical propagator more faithful and investigate the quantitative differences.
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The introduced SCTS model neglects nonadiabatic effects and also to a certain extent sub-barrier
Coulomb effects. To cure these deficits, different initial conditions of the classical trajectories, modified
initial probability distributions as well as more advanced implementations of the semiclassical propa-
gator can be used. This variety results in a plethora of different trajectory-based models.

2.5 Analytical R-matrix theory

Semiclassical models are usually based on many physically-motivated ad-hoc assumptions. In contrast,
the analytical R-matrix theory is a systematic approach to include the effects of long-range Coulomb
potentials and nonadiabaticity on photoelectron momentum distributions. The price, however, is that
the theory includes the binding potential V only as a first-order correction to the SFA action. ARM
theory was originally developed for linear polarization in Ref. [113]. Later, it was extended to close-to-
circularly-polarized fields [114, 212, 213]. The main idea is to split the position space into two regions
separated by a spherical boundary of radius a. For the splitting, a Bloch operator is defined as

L(a) = δ(r− a)

(
∂

∂r
+

1 − b

r

)
(2.53)

with an arbitrary constant b. The probability amplitude can be written as an integral over the matching
sphere

M(p) = −i
∫tf
tA

dt ′
∫

dr
〈
p
∣∣Uout(tf, t ′)

∣∣r〉L(a)ψ(r, t ′). (2.54)

Here, the time-evolution operator Uout satisfies the homogeneous Schrödinger equation i∂tUout(t, t ′) =
Hout(t)Uout(t, t ′) with the Hamiltonian Hout(t) = H(t) − L(a). When the boundary radius is chosen
within the tunneling barrier with 1/κ � a � Ip/E0, then different approximations for the dynamics
in inner and outer space can be used. In the outer region, an eikonal-Volkov approximation of the
propagator in length gauge is applied [214, 215]〈

p
∣∣Uout(tf, t ′)

∣∣r〉 ≈ 1
(2π)3/2 e

−i(p+A(t′))·re−
i
2

∫tf
t′ dτ (p+A(τ))2

e−i
∫tf
t′ dτV(r+rL(τ;p,t′)). (2.55)

The potential-free trajectory of the light-driven electron reads

rL(τ; p, t ′) =
∫τ
t′

dt ′′ (p + A(t ′′)). (2.56)

In the inner region, the electric field is neglected. Hence, the time-dependent wave function ψ(r, t ′) is
approximated by the field-free bound-state evolution, given by eiIp(t′−tA)ψ0(r). We restrict ourselves
to atoms and only consider initial states with zero angular momentum. In an asymptotically Coulomb-
like potential, i.e., V(r) ' −Z/r for large r, the bound states at large r satisfy ψ0(r) ∝ C(κr)Z/κ−1e−κr

with some constant C. These approximations lead to an expression for the probability amplitude of the
following form

M(p) ≈ iκ
(2π)3/2

∫tf
tA

dt ′
∫

dr δ(r− a) eiS̃ARM(p,tf;r,t′)
(
C (κr)Z/κ−1e−κr

)
(2.57)

with an action phase S̃ARM. Usually, the integrals are tackled by using a saddle-point approximation.
For a consistent description to first order in the potential V , the corrections of the saddle-point times
due to the potential can be neglected. Firstly, the saddle points t ′a are still functions of the boundary
radius a. However, luckily, the dependence of the action and of the initial state on the boundary ra-
dius a approximately compensate each other. As a result, the probability amplitude is approximately
independent of a.

For an explicitly a independent result, a matching procedure is considered as described in Refs. [113,
114]. The probability amplitude can be written in the following form [206, 212, 213]

MARM(p) = R(p, t ′s)e
iSARM(p,t′s) (2.58)
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with an atomic form factor R(p, t ′s) and the ARM action

SARM(p, t ′s) = SSFA(p, t ′s) + SC(p, t ′s). (2.59)

The shape of the momentum distribution is usually dominated by this complex-valued action, where in
addition to the SFA term a Coulomb-correction appears. The correction is simply obtained by integration
of the potential V along the potential-free trajectory (2.56)

SC(p, t ′s) = −

∫tf
t′s−iκ−2

dτV(rL(τ; p, t ′s)). (2.60)

Here, the lower integration boundary t ′κ = t ′s − iκ−2 is related to the boundary matching for a Coulomb
potential. As, for example, in Ref. [212], we only consider ionization from spherically-symmetric ground
states in this work and, hence, neglect the preexponential factor R(p, t ′s) in Eq. (2.58).



Chapter 3

Gouy’s Phase Anomaly in Electron
Waves Produced by Strong-Field
Ionization

3.1 Introduction

When an electromagnetic wave passes through a focus, its phase is shifted by π with respect to the
evolution of a plane wave. More than 100 years ago, this astonishing effect was already observed by
Gouy [80]. With the advances in optical technologies, important consequences were found, e.g., for the
trapping force in optical tweezers [216], in applications based on single-cycle terahertz waveforms [217]
or few-cycle laser pules [218] and for phase matching in the production of attosecond pulses [219]. Anal-
ogous phenomena were also explored in other types of waves such as acoustic waves [220], standing
microwaves [221] and phonon-polariton wave packets [222]. Due to the particle-wave duality, exper-
iments were proposed and conducted for measuring the Gouy phase anomaly in matter waves such
as coherent beams of Rydberg atoms [223], Laguerre-Gaussian beams in transmission electron micro-
scopes [224] and astigmatic electron waves [225].

In strong-field ionization of atoms or small molecules, continuum electron wave packets are formed
by (nonadiabatic) tunnel ionization. Afterwards, their motion is governed by the electromagnetic field
in presence of the attraction of the parent ion. In linear polarization, a part of the created wave packet is
driven back to the parent ion where it scatters. In full dimensionality (3D) and for long-range potentials,
the scattering electron waves pass through focal points similar to the focusing of a light wave by a
lens. This so-called Coulomb focusing [77] is reflected as an enhancement of the yield in photoelectron
momentum distributions [78, 79]. However, analogous to Gouy phase shift in optical waves, we will
show that the scattered wave packet acquires also a π/2 phase shift while passing through focal points.
Importantly, the situation need to be considered in 3D as in reduced dimensionality (2D) Coulomb
focusing is absent. This phenomenon is not restricted to linear polarization, but occurs also in other
waveforms that give rise to rescattering.

Even though a rigorous derivation of the focal-point phase shift is nontrivial, several illustrative ex-
planations were given (see for example Refs. [226–228]). In an intuitive trajectory-based description, the
focal-point properties are not fully determined by the selected trajectory itself, but also by the evolution
of its local environment [229]. The environment can be represented as a bunch of “neighboring” trajec-
tories or, more mathematically, as a small oriented volume element [229–231]. When the wave packet
passes through a focal point, the spatial extension of the bunch of trajectories and the oriented volume
go through zero. After the focus, the orientation of the volume element is inverted in the direction
where the spatial extension crosses zero. In the semiclassical theory, the wave amplitudes are inversely
proportional to the square root of the oriented volume. Hence, a sign change of the volume induces a

23
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phase jump of ±π/2. Similar to a cylindrical lens [232], Coulomb focusing in strong-field ionization acts
only in one degree of freedom, it causes a bare phase shift of π/2. In contrast, in the common focusing of
an optical Gaussian beam, a two-dimensional manifold of optical rays is deflected to one point, i.e., the
beam is focused in two degrees of freedom. Hence, the well-known optical Gouy phase of π appears.

The absolute phase of a quantum-mechanical wave function cannot be measured in experiments.
However, by considering interference structure in the photoelectron momentum distributions, relative
phases of the interfering wave packets can be retrieved from the fringe positions. In this case, the emerg-
ing PMD may be viewed as a “phasometer”. For linear polarization, different parts of the released elec-
tron wave packets are always deflected to the same final momenta and, thus, rich interference patterns
appear. For a cw field, wave packets are born in every cycle of the field, leading to intercycle interfer-
ence that is reflected as ATI rings in the PMD. Even in recollsion-free ionization, contributions that are
released at different times of birth within one optical cycle are mapped to the same final momentum
and, thus, create intracycle interference pattern [71–73, 76, 233]. Scattering off the parent ion induces
additional “holographic patterns” with spider-like [74, 234, 235], fork-like [236], fishbone-like [28, 30] or
spiral-like interference structures [79, 237].

To reveal the physical origin of the holographic patterns, the concept of conventional holography [238]
was transferred to strong-field ionization. A “reference” wave is formed by a part of the released wave
packet with large transverse initial velocities [28, 239]. A “signal” wave is formed by another part of the
wave packet with small initial velocities that is driven back to the parent ion, where it scatters [28, 239].
The interference of the signal (scattered) and reference (nonscattered) waves creates a hologram with
finger- or spider-like interference fringes. Today, a more general class of structures resulting from the
interference between trajectories undergoing different types of rescattering is often referred to as holo-
graphic patterns [208]. The holograms encode spatial and temporal information about the atomic or
molecular structure and dynamics on the subfemtosecond time scale. Thus, photoelectron holography
was successfully used to probe the continuum electron phase in molecular ionization [29, 240], the parity
of atomic and molecular orbitals [241] or momentum offsets at the tunnel exit [242]. Other achievements
were the observations of nuclear motion and electronic valence-shell dynamics in molecules [30–32].

Photoelectron holography provides an ideal setting to observe Gouy’s phase anomaly in electron
waves. The scattered signal wave experiences a phase shift of the fundamental value of π/2 due to
Coulomb focusing and the nonscattered wave automatically acts as a Gouy-phase-free reference. In
agreement with this prediction, we can already note that PMDs obtained by numerical solution of the
TDSE in full dimensionality (3D) reproduce well with experimental data [74, 234]. In contrast, in re-
duced dimensionality (2D) where Coulomb focusing is absent, simulated PMDs show different fringe
positions as well as emission strengths and do not quantitatively agree the experimental findings [29].
In this chapter, we will demonstrate that these differences are indeed related to Gouy’s phase anomaly
in electron waves.

In order to decode photoelectron holograms, several attempts were undertaken to model PMDs by
means of classical trajectories. In the simplest approach, an action phase is added to the simple man’s
model of Section 2.1.1. The influence of the ionic potential is then only included as a hard scattering
event and Coulomb-free orbits are employed during the propagation in the continuum [28, 35, 239].
This simple man’s model can be seen as a SFA-based description where the reference wave is mod-
eled by the direct SFA (2.40) and the signal wave is represented by the improved SFA (2.43). However,
such a perturbative inclusion of the ionic potential by means of a Born series results in holographic pat-
terns that significantly differ from ab-initio simulations for long-range potentials and from experimental
measurements. For a realistic modeling, the distortion of the electron trajectories by the long-range
Coulomb attraction is essential. As a consequence, the distinction between direct and rescattered trajec-
tories becomes blurred in long-range potentials and the topology of trajectories can be changed. To re-
produce the interference pattern, several attempts based on classical Newtonian trajectories were made,
e.g., trajectory-based Coulomb-corrected strong-field approximation (TCSFA) [116–119], the quantum-
trajectory Monte Carlo (QTMC) model [120], the Coulomb quantum orbit strong-field approximation
(CQSFA) [121], or the semiclassical two-step (SCTS) model [122]. All have in common that they assign
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a certain phase to each classical trajectory and add coherently the contributions leading to a given final
momentum (see also Section 2.4 for an introduction).

Qualitatively, the various types of interference structures for linear polarization are well reproduced
by this zoo of semiclassical models. However, almost all models assume that a slice through the 3D
dynamics is equal to the corresponding 2D dynamics. Hence, these approaches do not allow to model
quantitatively the fringe position of the holographic pattern in 3D and to predict the correct relative
weights of various kinds of trajectories. Putting aside the question of dimensionality, the Coulomb po-
tential is only considered in first-order perturbation theory in the semiclassical phase in the TCSFA and
QTMC models so that the number of fingers in the spider-like and the number of blades in the fan-like
interference structures are not correctly reflected [122]. In contrast, the phases of the SCTS and CQSFA
approaches are based on a semiclassical approximation of the time-dependent propagator formulated
as Feynman’s path integral. They include the Coulomb potential beyond perturbation theory. This ap-
proach is promising, because it leads to the correct number of interference fringes [72, 73, 121, 122, 243].
For photoelectrons with low transverse final momenta, the semiclassical trajectory-based description
breaks down. The central maximum of the interference pattern was recently modeled by considering
a glory-rescattering process [158, 244, 245]. However, since this approach does not take the interfer-
ence between different types of trajectories into account, this glory model is unable to predict the full
holographic pattern.

Even many years after the first measurement and first numerical calculation of interferences in
strong-field photoelectron distributions, there is a puzzling discrepancy between observation and pre-
vious trajectory-based modeling. In this chapter, we resolve the existing discrepancy and explain quan-
titatively the interference structures in the PMDs by refining the semiclassical description. The prefactor
of the exponentiated action [246, 247] is the missing piece that was not considered in detail in previ-
ous models for strong-field ionization. Its phase, known as Maslov phase, is related to Gouy’s phase
anomaly and influences the interference structures. Its modulus affects the relative weights of various
trajectories. Here, we give a recipe how to analyze the focal-point structure of the system and determine
the corresponding phase jumps. Using the rotational symmetry in linearly-polarized fields, we formu-
late a simple rule how to evaluate the modulus and the phase in 3D compared to 2D. In addition, we
find that there exist observable Maslov phases already in the 2D situation. As a first step towards more
complex systems, we show that Gouy’s phase anomaly is also present in interference pattern created by
bicircular fields consisting of two counter-rotating circularly-polarized fields. The analysis and classifi-
cation of the semiclassical trajectories is carried out by means of a method that combines the shooting
method [74, 118] with a clustering algorithm to determine all initial momenta that are classically mapped
to a given final momentum (inversion problem).

Many results of this chapter are published in Ref. [248].

3.2 Anatomy of momentum distributions for linear polarization

3.2.1 Computational details

To calculate photoelectron momentum distributions in the dipole approximation, we solve numerically
the TDSE in the single-active-electron approximation. The linearly-polarized laser pulse is represented
by a vector potential of the form

A(t) = −
E0

ω
sin(ωt− φCEP) cos2

(
ωt

2np

)
ex, (3.1)

whereω is the central frequency of the field.1 Mostly, we restrict ourselves to very short two-cycle pulses
(np = 2) with a fixed carrier-envelope phase φCEP = 0 and an electric-field strength E0 = 0.107 a.u.
corresponding to an intensity of 4 × 1014 W/cm2. For 3D calculations, we use a Tong-Lin potential

1Note the convention of the carrier-envelope phase in comparison to earlier work, e.g., in Ref. [111].
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for helium (see Section A.2.3). For 2D calculations, this potential is softened by replacing the radius r
by
√
r2 + α and tuning α to 0.1962 such that the 1s state provides still the correct ionization potential

Ip ≈ 0.904 a.u. of helium.

In 3D, the TDSE is solved by means of the pseudospectral method in length gauge using a time step
∆t = 0.1 a.u. as described in the Appendix A.2.1. To obtain PMDs, we project the wave function at the
end of the laser pulse onto numerically-calculated scattering states for the ionic potential. The angular
dependence of the wave function is expanded in spherical harmonics. If not stated otherwise, a maximal
orbital angular momentum lmax = 512 is used. In position representation, the wave function is repre-
sented in spherical coordinates. The radial coordinate is discretized using 2000 points on a nonuniform
grid (A.44) with a core region rcenter = 80 a.u. and an extension rmax = 1000 a.u.

In 2D, the TDSE is solved using the Fourier split-operator technique on Cartesian grids as described
in the Appendix A.2.2. To this end, the wave function is divided into an inner and an outer part.
The inner wave function is represented on Cartesian grids of size 819.2 × 819.2 a.u. with spacings
∆x = ∆z = 0.2 a.u. and a time step ∆t = 0.01 a.u. is used. The absorbing potential starts at a distance
rA = 360 a.u. from the grid center. Within the absorber, the ionic potential is set to a constant value (see
Appendix A.2.2). After the end of the pulse, the simulation is usually run for a time of 800 a.u. In prin-
ciple, the electron momentum distribution is obtained from the outer wave function with a resolution
of ∆px = ∆pz = 0.0077 a.u. However, to increase the quality at low energies, we add coherently the
continuum part that is still on the inner grid and that can be extracted by projection on eikonal states
(see Appendix A.2.2).
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Figure 3.1: Photoelectron momentum distribution for helium ionized by linearly-polarized laser pulses with 800 nm wavelength.
(a) PMDs obtained from 2D simulations and (b) slices at py = 0 through 3D distributions. Distributions for a two-cycle pulse at
4× 1014 W/cm2 intensity are presented in the upper row whereas focal-volume-averaged distributions for a ten-cycle pulse and
a peak intensity of 4.5× 1014 W/cm2 are shown in the lower row. Certain structures of the PMD are highlighted in panel (b1) by
dashed lines (see main text). The distributions are arbitrarily normalized. Figure is adapted from Brennecke et al. [248].
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3.2.2 Comparison of TDSE results in 2D and 3D

The photoelectron momentum distributions for ionization of helium by short linearly-polarized laser
pulses obtained by numerical solution of the TDSE are shown in Fig. 3.1(a1) for a 2D simulation and in
Fig. 3.1(b1) for a 3D simulation. In 3D, it is sufficient to show a 2D slice at py = 0 through the distribu-
tion, because the system has a rotational symmetry around the polarization axis. The shortness of the
laser pulses (see also Fig. 3.2) induces a strong asymmetry of the PMD along the polarization direction
(px-direction) that depends on the chosen CEP [111, 249–251]. This offers the ability to separate different
structures present in the PMDs. For momenta px below the classical cutoff of the simple man’s model
(here at |px| ≈ 1.63 a.u.), direct nonscattered and forward-scattered electrons concentrated along the po-
larization axis dominate for px < 0 and px > 0, respectively. According to the simple man’s model, the
signal of direct electrons is dominated by trajectories starting at two different release times within the
central optical cycle. Their superposition results in intracycle interference structures [71–73] that appear
as signal modulations along the px-axis and are indicated as gray dashed lines in Fig. 3.1(b1). When ion-
ization takes place in a quarter cycle of descending electric-field strength, the electrons are driven back
to the ionic core. The interference of forward-scattered trajectories and nonscattered trajectories starting
in the same quarter cycle leads to photoelectron holography [74, 234, 239]. It is observable for px > 0 as
finger-like structures that are nearly parallel to the px-axis and that are indicated as white dashed lines
in Fig. 3.1(b1). High energies can be reached by hard rescattering of electrons [16, 17]. These high-order
above-threshold ionization (HATI) electrons form a weaker contribution that extends over a large range
of lateral momenta pz (mostly |pz| > 0.5 a.u.). For the short pulse, only one of the “table-tennis-bat-like”
structures is visible showing a cutoff energy much smaller than the≈ 10Up expected for a cw field [252].
The high-energy plateau is overlaid by broad interference rings that are indicated as black dashed lines
in Fig. 3.1(b1). In general, the same overall structures appear in the PMDs from 2D and 3D simulations.
However, there are obvious differences in the positions of the interference fringes and in the relative
signal strengths of the various structures.
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Figure 3.2: Two-cycle laser pulse with CEP φCEP = 0 at an intensity of 4× 1014 W/cm2 as a function of time in units of optical
cycles Tω: (a) electric field and (b) vector potential.

In experiments, longer laser pulses are usually used. In addition, the intensity varies spatially over
the laser focus and the contributions from the whole laser spot determine the experimentally-observed
momentum distributions (see Section A.2.4). Hence, in order to more-realistically mimic a typical
strong-field experiment, we show in Fig. 3.1(a2) and 3.1(b2) focal-volume averaged PMDs for a ten-
cycle laser pulse with a peak intensity of Ipeak = 4.5× 1014 W/cm2.2 For the present laser conditions, the
focal-volume averaging washes out some of the previously-visible patterns such as intracycle interfer-
ence. However, the long laser pulse supports also plenty of additional structures that are partly caused
by the interference of trajectories starting in different half cycles of the laser pulse. In addition, some
familiar structures such as spider-like holographic fingers are visible. In agreement with the findings for
a short pulse, the positions of the holographic fingers are shifted in 2D compared to 3D and, especially,
the central fringe along the px-axis is much broader in 3D.

2Here, different numerical parameters are used for the 3D simulations. A maximal angular momentum of 768 is considered
and the radial grid consists of 4000 point that cover an extension of rmax = 2000 a.u.
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3.3 Semiclassical model

The semiclassical treatment of Feynman’s path integral offers a unique opportunity to interpret quantum-
mechanical dynamics on basis of classical physics. Naturally, a successful model should be able to de-
scribe quantitatively the appearing interference patterns in PMDs. Hence, both the ionic potential and
the laser fields need to be included in the model beyond perturbation theory. In the spirit of the two-
step picture and similar to the derivation of the SFA, it is advantageous [253, 254] to first express the
probability amplitude (2.19) by means of a Dyson representation (2.35)

M(p) = −i
∫tf
tA

dt ′
∫

dr̃ 〈p|U(tf, t ′)|r̃〉 〈r̃|HI(t ′)|ψ0〉 eiIp(t′−tA). (3.2)

Here, we additionally approximated the exact scattering state by a plane wave and introduced the clo-
sure relation 1 =

∫
dr |r̃〉〈r̃|. The expression has an intuitive physical interpretation in terms of field-free

ground-state evolution up to a time t ′ when the electron is “kicked” to the continuum via interaction
with the laser field [191]. Afterwards, in contrast to the strong-field approximation, the dynamics is gov-
erned by the laser field and the ionic potential. Similar to the models introduced in Refs. [121, 122], we
apply a semiclassical approximation to the mixed position-momentum-space propagator 〈p|U(tf, t ′)|r̃〉.
However, in previous semiclassical models in strong-field physics, the attention was mostly paid to the
appearing semiclassical phase SSC and the remaining prefactor was not considered properly. Here, we
fully include the prefactor and discuss its implications on PMDs.

3.3.1 Semiclassical approximation

In general, we study a system in D dimensions that is described by Cartesian coordinates r and corre-
sponding canonical momenta k. The motion of the system is governed by the Hamiltonian H(r, k, t)
including both the laser field and the ionic potential. Formally, the mixed position-momentum-space
propagator can be represented as a path integral (see Refs. [246, 255, 256])

〈p|U(tf, t ′)|r̃〉 =
∫k(tf)=p

r(t′)=r̃
D[r(t), k(t)] ei(SSC[r(t),k(t)]−r(t′)·k(t′)) (3.3)

with an action phase

SSC[r(t), k(t)] = −

∫tf
t′

dt [H(r(t), k(t), t) + r(t) · k̇(t)]. (3.4)

In this context, a path is represented by a 2D-dimensional vector function {r(t), k(t)} with boundary
conditions

r(t ′) = r̃ and k(tf) = p. (3.5)

The “path differential” D[r(t), k(t)] indicates the summation over all possible paths and can be defined
in a manner similar to Feynman’s polygon procedure used in a Lagrangian formulation [246, 247] (see
Ref. [256] for a textbook treatment). The path integral over in general nonclassical paths can be approx-
imated by means of the saddle-point method, if the classical action SSC is much larger than the typical
unit  h = 1 a.u. of a “quantum” action. In an  hn expansion of the exact result, this semiclassical ap-
proximation considers only the leading-order term. The classical trajectories with positions rcl(t) and
momenta kcl(t) are defined as stationary “points” of the action under the boundary conditions (3.5). It
is well-known that the action is stationary, if Hamilton’s equations of motion (EOM) are fulfilled

ṙcl(t) =
∂H(rcl(t), kcl(t), t)

∂k
and k̇cl(t) = −

∂H(rcl(t), kcl(t), t)
∂r

. (3.6)

Usually, several classical trajectories defined by Eq. (3.6) satisfy the boundary conditions (3.5). For well-
separated classical trajectories and nonvanishing second variations of the action [229], the main contri-
butions to the path integral come from the regions around the classical trajectories. In this case, the path
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integral of Eq. (3.3) can be approximated by using a saddle-point method. In Refs. [246, 247], a deriva-
tion of the semiclassical approximation in momentum-space representation was given. Here, these ideas
are applied to the mixed position-momentum-space representation. The propagator is approximated by
the coherent sum over all possible classical trajectories that fulfill the boundary conditions (3.5) (labeled
by µ)

〈p|U(tf, t ′)|r̃〉 ≈
1

(2π)D/2

∑
µ

e−iνµ(tf)π2√
|Jµ(tf)|

ei(SSC[rcl,µ(t),kcl,µ(t)]−kcl,µ(t
′)·r̃). (3.7)

The phase of each contribution in Eq. (3.7) is mostly governed by the action SSC evaluated along the
classical trajectory. However, in addition, a prefactor consisting of the Jacobian J and a Maslov-phase
term with the Maslov index ν appears.

To calculate the Jacobian J and the Maslov index ν for a given trajectory, it is advantageous to deter-
mine the Jacobian fields ∂k(t)

∂p̃ and ∂r(t)
∂p̃ along the trajectory. These time-dependent matrices represent

the changes of the momentum k(t) or the position r(t) of classical trajectories at a time twith respect to
infinitesimal changes of the initial momenta p̃. The Jacobian fields can be efficiently calculated by inte-
gration of the Jacobi initial value problem [246, 257]. To this end, the second derivatives of the Hamil-
tonian with respect to the positions and momenta are needed. When using the velocity gauge (2.24) or
length gauge (2.26) in the dipole approximation, these derivatives are given by(

∂2H

∂k∂k

)
= 1 ,

(
∂2H

∂r∂r

)
=

(
∂2V

∂r∂r

)
,
(
∂2H

∂k∂r

)
= 0. (3.8)

The time evolution of the Jacobian fields is then determined by the equations

d
dt

(
∂r(t)
∂p̃

)
j,l

=

(
∂k(t)
∂p̃

)
j,l

,
d
dt

(
∂k(t)
∂p̃

)
j,l

= −
∑
m

(
∂2V

∂rj∂rm

)
cl

(
∂r(t)
∂p̃

)
m,l

(3.9)

with the initial conditions ∂k(t′)
∂p̃ = 1 and ∂r(t′)

∂p̃ = 0. Here, the subscript “cl” indicates the evaluation
along the classical (unperturbed) trajectory.

The relevant Jacobian J is related to the Jacobian fields by

J(t) = det
(
∂k(t)
∂p̃

)
. (3.10)

For classically-allowed processes, the Jacobian determines the classical evolution of the phase-space
density around a given trajectory and, hence, it influences the particle density [122].

The Maslov index ν associated with each classical trajectory can be viewed as a time-dependent
function that can only take integer values. At the initial time t ′ the Maslov index vanishes, ν(t ′) = 0. It
can only change at focal points, i.e., at times T when the Jacobian J(T) = 0 vanishes. If the multiplicity
of the root is m, the rank of the matrix ∂k(T)

∂p̃ is D −m. Hence, there are m linearly-independent zero

modes d(i) of ∂k(T)
∂p̃ defined by ∑

k

∂k(T)
∂p̃k

d
(i)
k = 0. (3.11)

When considering the classical dynamics governed by the EOM (3.6), infinitesimal changes of the initial
momenta p̃→ p̃+εd(i) in these directions d(i) do not change the momentum k(T) of the classical orbits
at the time T in first order of ε. Thus, a plethora of initial momenta is deflected to approximately the
same momentum k(T). This results in a strongly increased probability density and, hence, explains the
name “focal point”. The corresponding changes δr(i) of the positions read

δr(i) = ε
∑
k

∂r(T)
p̃k

d
(i)
k . (3.12)

The jump of the Maslov index across the focal point can be calculated as

∆ν(T) = m− 1 + sgn det(g) with gi,j = δr(i) ·
(
∂2V

∂r∂r

)
cl
δr(j). (3.13)
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In the definition of the m × m matrix g, the Hessian matrix of the potential V(r) with respect to the
positions is evaluated at the position rcl(T) of the considered classical trajectory at the focal point. When
the Hessian matrix is positive definite, then the change of the Maslov index is equal to the multiplicity
m of the root [258]. However, in contrast to the position representation of the semiclassical propagator,
this is not generally true for the discussed mixed representation [246, 247]. In general, Equation (3.13)
needs to be evaluated at each focal point. The Maslov index at the final time tf is simply obtained by
tracking the changes of the index across all passed focal points of the trajectory.

The Jacobian fields determine the prefactor of the semiclassical propagator. Hence, the semiclas-
sical propagator is not only influenced by the dynamics of the trajectories selected by the boundary
conditions (3.5), but also by their local environment [229]. Mathematically, the local environment is rep-
resented by the Jacobian fields. These quantities can be viewed as small oriented volume elements in
momentum or position space whose time evolution need to be followed.

Example: potential-free motion in a laser field

For illustration, we study the potential-free motion of an electron in the laser field. Using length
gauge (2.26), Hamilton’s equations of motion (3.6) are given by ṙcl(t) = kcl(t) and k̇cl(t) = −E(t). For
each pair of boundary conditions (3.5), there is one unique classical trajectory with

kcl(t) = p + A(t) and rcl(t) = r̃ + p(t− t ′) +
∫t
t′

dτA(τ). (3.14)

According to Eq. (3.9), the relevant Jacobian fields are given by ∂k(t)
∂p̃ = 1. The Jacobian, J(t) = 1, and

the Maslov index, ν(t) = 0, are constant. Hence, no focal points appear. The semiclassical action (3.4)
related to each trajectory is given by

SSC[rcl(t), kcl(t)] = −

∫tf
t′

dt
1
2

k2
cl(t) = −

1
2

∫tf
t′

dt (p + A(t))2 . (3.15)

When inserting these quantities in the semiclassical approximation of the propagator (3.7), the exact
result of the quantum-mechanical Volkov propagator (2.34) is reproduced. In this special case, the prob-
ability amplitude (3.2) reduces to the well-known KFR amplitude (2.40).

3.3.2 Approximation of the under-the-barrier dynamics

When including the ionic potential, the calculation of the probability amplitude (3.2) is much more
complicated. Here, for a given final momentum p, the semiclassical contributions of all possible times t ′

and all initial positions r̃ have to be determined. This means, for each pair (t ′,r̃), all classical paths
that fulfill the boundary conditions (3.5) have to be identified. To avoid this cumbersome task, further
approximations are desirable. One approach would be to evaluate the time and space integrals by using
a saddle-point method. Then, analogous to the quantum-orbit model of Section 2.3.1, the time t ′ and
the trajectories need to be continued into the complex plane. The appearing complex-valued orbits do
not offer an intuitive interpretation and show problems with branch cuts of the potential [205–207].3

For a more intuitive route, we follow the idea of the two-step model 2.1.1 and split the motion into
an ionization and a propagation step. In the spirit of the quantum-orbit model of Section 2.3.1, the two-
pronged integration path shown in Fig. 2.5 is used for the time integral (3.2). The contour along the
real axis is identified with the propagation of electron under the influence of the combined laser and
Coulomb fields and, here, we restrict ourselves to real-valued trajectories. On the other hand, the con-
tour down to the real axis is related to the under-the-barrier motion and, here, we neglect the potential V .
Thus, the under-the-barrier dynamics is effectively treated like in the strong-field approximation. An
auxiliary momentum p̃ ′ exists that is conserved during the potential-free motion and would be equal to

3For the spider-like holographic structures, we followed this brute-force approach and used complex orbits. Compared to the
model based on the approximations discussed below, we found only minor improvements.
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the final momentum p, if the potential would also be neglected in the propagating step. Similar, but not
identical approaches were also used in TCSFA [118] and CQSFA [121].

For the chosen time-integration contour, the semiclassical action can be split into a complex-valued
part that is related to the tunneling step (see also Eq. (3.15))

S0
↓ = −

∫Re(t′)

t′
dt

(p̃ ′ + A(t))2

2
(3.16)

and a real-valued part corresponding to the propagation step

S→ = −

∫tf
Re(t′)

dt
[

1
2

ṙ2
cl(t) + V(rcl(t)) − rcl(t) · ∇V(rcl(t))

]
. (3.17)

Under the made assumptions, for each auxiliary momentum p̃ ′, the saddle-point times t ′s are approxi-
mately determined by the saddle-point equation of the plain SFA

1
2
(p̃ ′ + A(t ′s))

2
= −Ip. (3.18)

For a given auxiliary momentum p̃ ′, there are usually several solutions that are labeled by s. For a
single trajectory and an initial s-like state, we approximate the probability amplitude corresponding to
the release step by

Mion(p̃ ′) ≈ CCoul

√
2π

|E(t ′s) · (p̃ ′ + A(t ′s))|
ei(S0

↓+Ip(t
′
s−tA)). (3.19)

The last two factors are familiar from the saddle-point approximation (2.45) of the plain SFA.4 Here, the
ionization probability is mostly determined by the imaginary Im(S0

↓ + Ipt
′
s) of the action. In addition, a

Coulomb correction of the ionization rate [259, 260] is included

C2
Coul = (4Ip/|E(t ′r)|)

2Z/
√

2Ip . (3.20)

This factor can be derived by considering the first-order corrections of the potential V to the sub-barrier
action in the adiabatic limit [259, 261].

For further simplification, a connection between the auxiliary momenta p̃ ′ and the initial positions r̃
of the classical trajectories is established to avoid the r̃ integration in the probability amplitude (3.2).
Even though there is no fundamental justification, most semiclassical models in strong-field physics
rely on the concept of a defined tunnel exit (see for example Refs. [116–122, 210, 262]). We use the SFA
tunnel-exit positions defined by Eq. (2.46), i.e., we assume that the trajectories are real valued at the
release time t ′r = Re(t ′s), Im(rcl(t

′
r)) = 0, and start with a vanishing real part of the position at the

saddle-point time t ′s, Re(rcl(t
′
s)) = 0. The tunnel-exit position r0 is then given by

r0 = Re

(∫t′r
t′s

dτA(τ)

)
(3.21)

and the corresponding initial velocity reads

v0 = p̃ ′ + A(t ′r). (3.22)

This connection between the initial degrees of freedom was previously used in various different works,
e.g., in Refs. [116–118]. Due to the made ad-hoc assumptions, this section should not be viewed as a
derivations, but instead a motivation of the model. Naturally, there are cases where certain of the ap-
proximations fail. For example, it was shown that the proper modeling of the enhancement in probabil-
ity for energies close to the classical 2Up cutoff for direct ionization prevents a separation into sub-barrier
motion up to a real-valued tunnel exit and subsequent classical dynamics [205].

4We neglect the phase in the square root. For liner polarization, we explicitly use
√

2Ip + p̃′ 2⊥ |Ex(t
′
s)| for the denominator.
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3.3.3 Inversion problem

The numerical solution of the classical equations of motion (3.6) for given initial conditions of Eqs. (3.21)
and (3.22) defined by an auxiliary momentum p̃ ′ is a relatively simple task. However, according to the
recipe in Section (3.3.1), in the semiclassical simulations all classical trajectories leading to a given final
momentum p must be identified. This can be a cumbersome task.

In general, all initial conditions and, hence, the associated classical trajectories can be uniquely la-
beled by the constant p̃ ′ and the index s. When restricting ourselves to a single saddle-point time t ′s
per auxiliary momentum p̃ ′, then the classical dynamics defines a mapping D of an auxiliary momen-
tum p̃ ′ to a final momentum p = D(p̃ ′). Thus, all initial conditions p̃ ′ that are mapped to a given final
momentum p need to be found, i.e., mathematically, we have to calculate all roots

p̃ ′ = D−1(p). (3.23)

When scattering is important, the Coulomb attraction significantly alters the topology of the classical
trajectories. Then, the function D has a complicated form and it is in general not injective. The direct
application of root-finding algorithms, such as in Refs. [121, 245], is difficult and requires the prior
knowledge about the overall characteristics of the trajectories. Hence, this inversion approach cannot be
easily adapted to different targets and driving-field shapes.
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Figure 3.3: Sampled initial momenta p̃ ′ that correspond to a bin centered around a momentum p = (0.3, 0.3) a.u. with ∆p =

0.01 a.u. for the bicircular field used in Fig. 3.15. The different colors indicate the identified cluster. Each cluster consists of many
points, see also the magnification of a cluster centered at p̃ ′ = (0.21, 0.53) a.u. shown in the inset. 18000 points are depicted in
total. The few black dots indicate points that are not assigned to any cluster.

Here, we follow an alternative approach: We use a Monte-Carlo algorithm to sample the initial
momenta p̃ ′ and determine the corresponding final momenta by propagating the classical EOM (3.6).
Thus, we scan the function D with at finite number of random points. Afterwards, for a given final
momentum p, we select all trajectories that have final momenta in the vicinity of p, i.e., we consider all
trajectories that end up in the bin [pi + ∆p,pi + ∆p] (i = x,y, z). Up to this point, the scheme is quite
similar to the shooting method introduced in Section 2.4. As an example, we show in Fig. 3.3 all initial
conditions in the p̃ ′-space for a bin around a given final momentum p. For a sufficiently large number of
trajectories per the bin, the points in p̃ ′-space form a finite number of accumulations around the desire
roots of the inversion problem. Each cluster corresponds to a different kind of trajectory. We identify the
different accumulations labeled by µ and their location p̃ ′µ by means of clustering algorithms.5 It turned
out that a DBSCAN (density-based spatial clustering of applications with noise) algorithm is a good
choice. In this algorithm, single points can be rejected that belong to chaotic trajectories.6 Considering
vanishing bin sizes, the area covered by the clusters goes to zero and their locations are the solutions of
the inversion problem (3.23) for the given final momentum p. Since this approach does not rely on any
physical intuition, it is a quite versatile approach to solve the inversion problem.

5This idea was first formulated by Nicolas Eicke.
6These orbits circle around the ionic core multiple times and lead to very fuzzy structures without much weight in the PMD.
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The quality of the solution is determined by the number of points per cluster. If the initial mo-
menta p̃ ′ are sampled randomly, i.e, with a uniform distribution, the number of points per cluster is
proportional to the inverse of the Jacobian |J(tf)|. Thus, the efficiency of the clustering approach is im-
proved, when this effect is compensated by using a nonuniform distribution of the initial momenta in
the Monte-Carlo sampling. Qualitatively, for linear polarization, this can be achieved by considering
larger weights for small lateral momentum components.

3.3.4 Explicit scheme of the simulation

A recipe for a simulation, i.e., the calculation of the probability amplitude for a given momentum p, is
as follows:

• Solve the saddle-point equation (3.18) for each auxiliary momentum p̃ ′ to obtain the correspond-
ing saddle-point times t ′s = t ′r + it ′i. Establish a connection between p̃ ′ and the initial conditions
for the trajectories of the propagation step, i.e., determine the tunnel-exit position r0 of Eq. (3.21)
and initial velocity v0 of Eq. (3.22) for each p̃ ′.

• Sample the momenta p̃ ′ using a Monte-Carlo algorithm. For each p̃ ′, determine corresponding
final momentum by solving the classical equations of motion (3.6) from time t ′r till tf including
both laser field and Coulomb attraction with the initial conditions rcl(t

′
r) = r0 and ṙcl(t

′
r) = v0. If

the electron energy at the time tf after the end of the laser pulse is negative, the electron is trapped
into Rydberg states. Hence, these trajectories are excluded from the simulation.

• Solve the inversion problem for the given final momentum p by using a clustering algorithm as
described in Section 3.3.3. For each branch of saddle-point times, all auxiliary momenta p̃ ′µ are
found that lead to the given final momentum p.

• For each solution p̃ ′µ of the inversion problem, the ingredients for the probability amplitude are
calculated. To this end, determine the ionization amplitude Mion of Eq. (3.19) by numerical inte-
gration of the sub-barrier action S0

↓ of Eq. (3.16). In order to calculate the phase S→ of Eq. (3.17),
the Jacobian J and the Maslov index ν for each trajectory, we solve once more the classical EOM,
but add one equation for the phase and the set of equations (3.9) for the Jacobian fields. During
the propagation of the trajectories, we monitor the time-dependent Jacobian J(t) and determine
the jump of the Maslov index at focal points as described in Section 3.3.1.

• Finally, the transition amplitude is approximated using these ingredients

M(p) ≈
∑
µ

Mion(p̃ ′µ)
e−iνµ π2√
|Jµ(tf)|

eiS→,µ , (3.24)

where µ labels all possible initial momenta p̃ ′µ that are classically mapped to the given final mo-
mentum p, i.e., the solutions of the inversion problem. Note that in the sum all branches of saddle-
point times must be included.

This model describes the quantum dynamics of the propagation step within the semiclassical ap-
proximation and, hence, considers both the laser field and the Coulomb potential in a nonperturbative
manner. The solution of the inversion problem by means of a clustering algorithm enables the simula-
tion of arbitrary targets and driving-field shapes. In contrast to previous models, the prefactor of the
exponentiated action is treated properly by including both the Maslov phase and the square root of the
Jacobian 1/

√
|J|.

3.3.5 Symmetry considerations for linearly-polarized fields

In the special case of linear polarization, the dynamical system of atom and electric field has a rotational
symmetry around the polarization axis (x-axis). Hence, the electron momentum distributions in 3D are
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rotationally symmetric around the px-axis and it is sufficient to consider only a 2D slice through the
PMD at py = 0. In the semiclassical model, the initial positions are on the x-axis and, thus, classical
trajectories starting with initial velocities in the x-z-plane stay in this plane. To calculate a slice through
the PMD at py = 0, we only need to consider initial momenta in the p̃x-p̃z-plane.

Importantly, the Jacobian fields depend on the dimensionality of the problem. Thus, a slice through
the semiclassically-calculated PMD in 3D is not the same as a semiclassically-calculated PMD in 2D.
Here, we provide the relations between Jacobians J and Maslov indices ν for 2D and 3D simulations. To
this end, we follow the scheme introduced in Section 3.3.1 and restrict ourselves to potentials V(x, r⊥)
with a single minimum at r⊥ =

√
y2 + z2 = 0 for each x.

Under these assumptions, the rotational symmetry determines the form of the Jacobian fields in 3D(
∂k(t)
∂p̃

)
3D

=̇

α 0 β

0 ζ 0
γ 0 δ

 with ζ =
kcl,z(t)

p̃z
, (3.25)

where the remaining four elements belong to the Jacobian fields in 2D(
∂k(t)
∂p̃

)
2D

=̇

(
α β

γ δ

)
. (3.26)

As a result, the Jacobian J3D(t) of the 3D system and the Jacobian J2D(t) of the corresponding 2D system
are related by

J3D(t) =
kcl,z(t)

p̃z
J2D(t). (3.27)

This 2D-to-3D correction factor was already used in Ref. [122]. Effects of the different Jacobians on the
photoelectron momentum distributions are discussed later on.

To determine the Maslov index ν, we need to consider the jumps of the index at focal points T defined
by J(T) = 0. According to Eq. (3.27), focal points in 3D appear, if either kcl,z(T) = 0 or J2D(T) = 0.

• For kcl,z(T) = 0, but J2D(T) 6= 0, an additional focal point appears in the 3D system compared to
the 2D situation. The zero mode of the Jacobian matrix is given by d = ey. It can be shown that
the Jacobian fields ∂r(t)

∂p̃ have also the form of Eq. (3.25), but with ζ replaced by rcl,z(t)
p̃z

. Thus, the
infinitesimal position change defined in Eq. (3.12) is

δr = ε
rcl,z(T)

p̃z
ey. (3.28)

According to Eq. (3.13), the Maslov index changes across the focal point by

∆ν(T) = sgn

[(
∂2V

∂y2

)
cl
ε2
(
rcl,z(T)

p̃z

)2
]
= sgn

[(
1
r⊥

∂V(x, r⊥)
∂r⊥

)
cl
ε2
(
rcl,z(T)

p̃z

)2
]
= +1, (3.29)

where we used that rcl,y(T) = 0 for the trajectory and that the potential V(x, r⊥) has a single
minimum at r⊥ = 0 for fixed x, i.e., it is monotonically-increasing function for all r⊥ > 0.

• For kcl,z(T) 6= 0, but J2D(T) = 0, the focal point is already present in the 2D situation. The form of
the Jacobian matrix (3.25) implies zero modes with vanishing y-component, i.e., d = a ex + b ez
with a,b ∈ R. The infinitesimal position changes are also in the x-z-plane. Hence, the jump of
the Maslov index in 3D is the same as for the corresponding 2D system and can be calculated
according to Eq. (3.13).

In principle, the rare case of kcl,z(T) = 0 and J2D(T) = 0 could appear. Even though it does not play a role
in practice, it can be treated like the two cases above. Thus, we can summarize that there are additional
focal points of the electron waves in 3D compared to the corresponding 2D system. The Maslov indices
of the 3D system and of the 2D system are related by

ν3D = ν2D + δν, (3.30)

where δν is the number of zeros of kcl,z(t) along the trajectory. At the additional focal points of the 3D
system, the Maslov index is always increased by one.
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3.4 Results and discussion

In this section, we show that the prefactor of the exponentiated action, i.e., the Maslov phase and the Ja-
cobian, needs to be considered for a quantitative description of the interference structures in PMDs. We
explore how Coulomb focusing leads to Gouy’s phase anomaly in electron waves (reflected by nonzero
Maslov phases) and study its influence on the various interference patterns in electron momentum dis-
tributions. Previously, this well-known phenomenon of optics and wave mechanics was simply over-
looked in strong-field physics.
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Figure 3.4: Photoelectron momentum distributions for helium ionized by two-cycle linearly-polarized laser pulses with 800 nm
wavelength and 4× 1014 W/cm2 intensity as in Fig. 3.1. (a) PMDs obtained from 2D simulations and (b) slices at py = 0 through
3D distributions. The distributions are calculated by numerical solution of the TDSE in the upper row or with the semiclassical
model in the lower row. Figure is adapted from Brennecke et al. [248].

The introduced semiclassical model is considered to simulate PMDs for helium ionized by linearly-
polarized pulses with 800 nm central wavelength and an intensity of 4 × 1014 W/cm2. For simplicity,
we use a bare -1/r potential, but insert the correct ionization potential to evaluate the amplitude (3.19)
and the initial conditions for the trajectories. The resulting PMDs are shown in Fig. 3.4 for two and
three dimensional calculations. Since the ionization rate depends strongly on the field strength, the
contributions of the three central half cycles of the electric field are only considered (see Fig. 3.5). In
addition, complicated trajectories with Maslov indices |ν2D| > 3 are discarded. These trajectories have
very low contributions in regions, where their Jacobian J(tf) is nonzero, and lead to narrow caustic
structures for momenta, where their Jacobian J(tf) vanishes. Since the appearance of caustics indicate
the breakdown of the semiclassical approximation [263], the bright caustic lines would not be physical,
i.e., regularization procedures would need to be applied.

The PMDs from the semiclassical model agree very well with the TDSE results (see Fig. 3.4). Espe-
cially, the differences between 2D and 3D simulations are present on both levels of theory. The consid-
ered trajectories are independent of the dimension such that the same semiclassical phase S→ associated



36 CHAPTER 3. GOUY’S PHASE ANOMALY IN ELECTRON WAVES

−1

0

1

−2 −1 0 1 2

−1

0

1

−2 −1 0 1 2

−0.10

−0.05

0.00

0.05

0.10

−1.0 −0.5 0.0 0.5 1.0

M
om

en
tu

m
p
z

[a
.u

.]

Momentum px [a.u.]

M
om

en
tu

m
p
z

[a
.u

.]

Momentum px [a.u.]

10−5

10−4

10−3

10−2

10−1

10−0
10−5

10−4

10−3

10−2

10−1

10−0
E
x
(t

)
[a

.u
.]

Time t [in units of Tω]

(a) I. (b) II.

(c) III.

(d)

I.

II.

III.

Figure 3.5: (a)-(c) PMDs from the semiclassical model in 2D for the same parameters as in Fig. 3.4, but each result only contains
the contributions of trajectories starting in one of the half cycles of the electric field that are indicated in panel (d). The same
normalization is used in panels (a)-(c).

with the continuum motion and same ionization amplitudeMion are included in the model. The crucial
ingredient to reproduce the differences between 2D and 3D simulations is the prefactor of the semiclas-
sical propagator, i.e., the Jacobian and the Maslov index. The Jacobian reflects how a small volume in
the space of initial momenta is deformed by the classical propagation into a volume in the space of final
momenta. Or to phrase it otherwise, the Jacobian can be viewed as a measure of how the final momenta
change under classical evolution when varying the initial momenta. As shown in Section 3.3.5 for linear
polarization, the Jacobian J3D of the 3D system and the Jacobian J2D of the corresponding 2D system are
related by

|J3D| =
p⊥

p̃⊥
|J2D| with p⊥ =

√
p2
y + p

2
z. (3.31)

Here, p⊥ and p̃⊥ are the momentum components perpendicular to the polarization direction of the final
and initial momenta. As an example, we may consider direct nonscattered electrons with sufficiently
high energy. There, the final momenta are only weakly deflected by Coulomb attraction compared to
the initial momenta. Hence, the Jacobians are typically close to one and, especially, nearly independent
of the dimensionality.

When scattering plays a role, the situation is different. For large-angle scattering leading to high-
energy electrons, the final momenta are very sensitive to changes of the initial momenta and, hence,
the associated Jacobians are much larger than one. Classically, large scattering angles correspond to
small impact parameters and to small initial perpendicular momenta p̃⊥. At the same time, large final
perpendicular momenta p⊥ can be reached. In this case, the Jacobians in 3D are even further enhanced
and, thus, the weights of the trajectories in the PMDs are reduced compared to 2D. Physically, this
reflects the dependence of the scattering probability on the dimension. The resulting higher emission
strength in 2D compared to 3D can be clearly seen at large perpendicular momenta |p⊥| & 0.8 a.u. in
Fig. 3.4.
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On the other hand, for forward scattering present around the central holographic fringe, the final
momenta p⊥ are smaller than the initial momenta p̃⊥. Comparing the 3D to the 2D situation, the Jaco-
bians of these trajectories are reduced and their weights are enhanced. This results in a concentration
of the signal along the polarization axis for px > 0 in the 3D PMDs shown in Fig. 3.4. Classically, due
to the cylindrical symmetry, a given final momentum p on the polarization axis is reached by an infi-
nite amount of distinct trajectories with the same magnitude p̃⊥ of the transverse initial velocity and
with the same release time [158]. Here, the influence of the Coulomb attraction maps a circle of initial
transverse velocities to a single point in final momentum space so that the effect is called Coulomb fo-
cusing [77, 78]. As a result, an axial caustic singularity emerges in the model indicating the breakdown
of the semiclassical approximation. Hence, the result of the model is questionable in the vicinity of the
polarization axis (for our laser parameters typically p⊥ < 0.05 a.u.). To obtain finite spectral weights,
a regularization procedure that considers the quantum nature of the focusing process in terms of glory
rescattering was developed [158]. We will further discuss this point in Section 10.5.3.
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Figure 3.6: 1D slices through the momentum distributions of Fig. 3.4 at fixed px = 0.81 a.u.: TDSE results (gray thick line), semi-
classical model of Eq. (3.24) (red line), neglecting Maslov’s phase (blue dashed line) or neglecting Maslov’s phase and using the
Jacobian J2D instead of its square root (orange dashed-dotted line) (see main text for further information). For better comparison,
the distributions are normalized to an arbitrary value. The slices are averaged over a range of px = 0.81 ± 0.05 a.u. Figure is
adapted from Brennecke et al. [248].

Figure 3.6 compares slices through the momentum distributions in 2D and 3D for different modi-
fications of our model. In many previous semiclassical models such as in Refs. [74, 118, 120, 122], the
inversion problem is not solved explicitly, but instead the shooting method introduced in Section 2.4 is
used. The distribution from the shooting method can be written in form of Eq. (3.24), but then a wrong
power of the Jacobian must be artificially used (−1 instead of −1/2). In Ref. [122], the correct 2D-to-3D
correction factor for the Jacobian was already used, but not derived. Then, the wrong power of the 2D
Jacobian still appears (see the orange line in Fig. 3.6). This wrong weighting of the shooting method
leads to a too fast decrease towards large perpendicular momenta and a too low contrast of the interfer-
ence fringes. Compared to our model, the agreement with the TDSE result is worse. On the other hand,
the CQSFA includes the correct power of the Jacobian [121, 264, 265], but always treats the system in 2D
resulting in a diminished agreement with realistic 3D simulations.

3.4.1 Observing Gouy’s phase anomaly in photoelectron holography

Coulomb focusing, i.e., the interplay between the long-range Coulomb attraction and the laser electric
field, does not only result in a bunching of scattered electrons in momentum space at asymptotically
large times. But in addition, similar to a lens in optics, Coulomb focusing also makes the scattered wave
packets pass through focal points in momentum or position space during their propagation. Thus, it
acts like a “lens” for electron waves.

For linearly-polarized fields, this can be vividly illustrated in position space (see also Fig. 3.7). Clas-
sically, the rotational symmetry dictates again that all trajectories starting at the tunnel exit with the
same magnitude p̃⊥, but different directions of their initial transverse velocity cross the polarization



38 CHAPTER 3. GOUY’S PHASE ANOMALY IN ELECTRON WAVES

axis r⊥ = 0 at the same position x. Hence, in a trajectory-based description, a one dimensional manifold
of trajectories is deflected to a single point. As a result, whenever the wave packet crosses the polar-
ization axis, it is focused in position space. In analogy to Gouy’s phase anomaly in optics, we expect a
phase shift of the electron wave packet after passing the focus. Within a semiclassical description, this
phase anomaly is related to a change of Maslov’s index. When describing the wave packet in position
space, the associated position-space Maslov index increases indeed by one at each position-space fo-
cal point [258]. Since Coulomb focusing only appears in 3D, the position-space Maslov phases for the
scattered trajectories differ by π/2 in the 3D system compared to the corresponding 2D system. The
described setting in strong-field ionization is comparable to a cylindrical lens in optics that creates a line
focus, i.e., the two-dimensional area of a light beam is focused in one degree of freedom and, thus, the
Gouy phase only changes by π/2 [232].

Figure 3.7: Schematic illustration of Gouy’s phase anomaly in photoelectron holography. Interference between a nonscattered
trajectory (blue line) and scattered trajectory (red line) that lead to the same final momentum p. Due to the rotational symmetry
in 3D, a one-dimensional manifold of trajectories with the same initial perpendicular momentum p̃⊥ (indicated as a surface) is
focused on the polarization axis in position space. This results in a phase shift ofπ/2. Figure is adapted from Brennecke et al. [248].
The graphic implementation was done by Nicolas Eicke.

The absolute phases of the photoelectron wave packets are not experimentally accessible. However,
when the focused signal wave packet is overlaid with a nonscattered reference wave as in photoelectron
holography [74, 239], their phase difference determines the interference pattern. The resulting modula-
tion of the signal is clearly visible in 1D slices through the distributions in 2D and 3D (see Fig. 3.6). For a
quantitative modeling, we consider the semiclassical model of Section 3.3 based on a momentum-space
description. Since the focal points and the Maslov phases in position space generally differ from the
ones in momentum space, we first confirm the simple argumentation presented above by calculating
the Maslov indices in momentum space.

For final momenta with pz � 0, the reference trajectory is only weakly perturbed by the Coulomb
attraction. It starts already with initial momentum p̃z > 0 and its Jacobian J2D is close to one (see
Figs. 3.8(b) and (c)). Hence, its Maslov index is zero. For a given final momentum p, the corresponding
signal trajectory starts approximately at the same release time t ′r (see Fig. 3.8(a)), but with an initial
velocity p̃z < 0. It is deflected by the potential to its final momentum pz > 0. The numerical calculation
shows that its Maslov index is still zero in 2D. However, according to the previous sections, the Maslov
indices in 2D and in 3D are related by

ν3D = ν2D + δν, (3.32)

where δν is the number of zeros of p⊥(t) along the trajectory. The signal trajectory passes one additional
axial focal point in momentum space, resulting in a Maslov index in 3D of one. Thus, the Coulomb-
focused trajectory in 3D indeed experiences a phase shift compared to the 2D situation. This is reflected
by the different positions of the holographic fringes (see Fig. 3.6). The central fringe is broader in 3D
and the higher-order maxima are systematically shifted towards larger perpendicular momenta. The
predictions by the semiclassical model are in perfect agreement with the TDSE results.

In 2D, the final Maslov index of the signal trajectory in holography is still zero. The time evolution of
the corresponding Jacobian J2D(t) is shown in Fig. 3.8(e) for selected final momenta pz. For p⊥ = pz = 0,
the signal trajectory and the reference trajectory are indistinguishable, resulting in Jacobians close to one
at all times. However, when considering larger pz � 0, we find that the Jacobian of the signal trajectory
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Figure 3.8: Properties of the trajectories relevant for the holographic pattern shown in Fig. 3.6 at px = 0.8 a.u.: (a) release
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has two zero crossings in 2D, indicating two focal points. Compared to the previously-discussed axial
caustic in Coulomb focusing, these points have another structure. Following the recipe of Section 3.3.1,
the numerical calculation shows that the Maslov index is increased by +1 at one point, but it is decreased
by −1 at the other point. This results in the final Maslov index of zero. The simple example emphasizes
that it is usually not sufficient to count the number of focal points in 2D in order to determine the Maslov
phases.

Scaling of the wavelength

When adding the potential-free action phase of Eq. (3.15) to the simple man’s model of Section 2.1.1,
the basic properties of holography can be qualitatively studied [74, 234]. The phase difference between
signal and reference wave (in 2D) is mostly determined by ∆S ≈ 1

2p
2
⊥(tc − t0). For adiabatic conditions,

the excursion time of the signal trajectory, i.e., the time spent in the continuum between release and
recollision, is nearly independent of the laser intensity. Hence, the pattern is only weakly affected by
changes of the intensity and it survives focal-volume averaging. On the other hand, the excursion time
is proportional to the wavelength λ and, thus, the fringe spacing is expected to scale as ∝ λ−1/2.

Even though this simple man’s model is unable to predict the fringe positions quantitatively cor-
rect, our TDSE results show smaller fringe spacings for longer wavelengths in agreement with earlier
work [234] (see Fig. 3.9).7 For the studied wavelengths between 400 nm and 1200 nm, the influence
of Maslov’s phase shift is apparent, i.e., the correct positions of the interference maxima and minima
can only be reproduced, when including the Maslov phase. The agreement between our semiclassical
model and the TDSE result is best for the longest wavelength, i.e., for the most adiabatic conditions.
There, not only the fringe positions but also the signal strength is perfectly predicted for a broad region
of perpendicular momenta p⊥. When considering smaller wavelengths, we still find good agreement

7For 1000 nm and 1200 nm wavelength, a maximal angular momentum of 768 is considered in the 3D TDSE simulations.
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Figure 3.9: 1D slices through the momentum distributions in 3D at fixed px ≈ E0/(2ω) analogous to Fig. 3.6(b), but for different
wavelengths: (a) λ = 400 nm, (b) λ = 600 nm, (c) λ = 1000 nm and (d) λ = 1200 nm. Again, the results are indicated as: TDSE
results (gray thick line), semiclassical model including Maslov’s phase (red line) and neglecting Maslov’s phase (blue dashed
line). For better comparison, the distributions are normalized to an arbitrary value. The slices are averaged over a range of
px = E0/(2ω)± 0.05 a.u. Figure is adapted from Brennecke et al. [248].

for the central fringes. However, since the maximal return energy of the signal electrons scales quadrat-
ically with the wavelength, the extension of classically-reachable perpendicular momenta shrinks with
decreasing wavelength. For 400 nm and 600 nm, pronounced cutoffs at |pz| ≈ 0.8 a.u. and |pz| ≈ 1.0 a.u.
are visible in the semiclassical calculations. In principle, classical caustics appear at these cutoff mo-
menta, indicating the breakdown of the semiclassical approximation. Due to the finite resolution in our
simulations, the caustics are reflected by fuzzy maxima.

3.4.2 Intracycle interference

Interference appears not only between trajectories starting in the same half cycle of the pulse (see the
color-marked time windows in Fig. 3.5), but also between trajectories released in different half cycles.
For a cw field, the simple man’s model predicts that each momentum |px| < E0/ω is reached by two
distinct trajectories starting at different times within an optical cycle. For the considered pulse, such
intracycle interference occurs between contributions from the time windows I. and II. or from the win-
dows II. and III. (see Fig. 3.5). It results in fringes roughly parallel to the z-axis in Fig. 3.4. Due to the
shortness of the pulse and the chosen CEPφCEP = 0, the contributions from windows I. and III. are much
weaker than the signal from window II. Hence, the intracycle interference pattern has a low contrast.

The intracycle interference can be controlled via the CEP of short few-cycle laser pulses [71, 73]. For
a CEP of φCEP = −π/2, the pattern can be observed more clearly (see the pulse shown in Figs. 3.10(a)
and (b)). This choice ensures that the signal on the positive px-axis is dominated by the central quarter
cycles of the field. The intracycle interference leads to a series of pronounced peaks along the px-axis
(see Fig. 3.10(c)). The positions as well as the modulation depth of the fringes are again well reproduced
by the semiclassical model including Maslov’s phase. In the time window marked in orange, one direct
trajectory has a relevant contribution to the signal. In contrast, a direct and a scattered trajectory are
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Figure 3.10: (a) Electric field of a two-cycle pulse with CEP φCEP = −π/2 and (b) corresponding negative vector potential. The
color-marked half cycles induce the dominant signal on the positive px-axis. (c) Signal along the px-axis obtained by integration
over the central stripe with p⊥ 6 0.2 a.u. of 3D distributions. Again, the results are indicated as: TDSE results (gray thick line),
semiclassical model including Maslov’s phase (red line) and neglecting Maslov’s phase (blue dashed line).

launched in the time window marked in blue. Hence, the intracycle interference pattern is formed
by scattered and direct trajectories. As a result, the nonzero Maslov phase present for the scattered
trajectory also influences this type of interference. Here, however, the relative importance of the Maslov
phase depends strongly on the weight of direct and scattered trajectories.

As discussed above, an axial caustic is present on the polarization axis in the semiclassical simula-
tions. Even though the integration over a small region around the axis ensures that the calculated signal
is finite, it is not guaranteed that the used Maslov phase is meaningful for momenta very close to the
polarization axis. However, we obtain the same conclusions, if only the signal between p⊥ = 0.05 a.u.
and p⊥ = 0.2 a.u. is considered in the integration.

For the observation of intracycle interference in more common multi-cycle pulses, the fringe spacings
of the intracycle interference need to be much larger than the spacings of the ATI peaks [233]. It was
shown that the visibility of the fringes can be controlled in orthogonal two-color fields by their relative
phase [92, 266]. Alternatively, sculpted light pulses created by parallel two-color fields can be used as in
the experiment by Xie et al. [76]. There, a fundamental field is superimposed with its second harmonic of
equal field strength and, for a certain two-color phase, prominent intracycle interference was observed.
This choice of the field leads to a pronounced asymmetry along the polarization axis already for a cw
field, i.e., a preferred emission in positive px-direction. We use a similar field represented by a vector
potential

A(t) = −

(
E0

ω
sin(ωt+ π/2) +

E0

2ω
sin(2ωt+ π/2)

)
cos2

(
ωt

2np

)
ex, (3.33)

but choose again a two-cycle envelope (np = 2) (see the pulse shown in Figs. 3.11(a) and (b)). Compared
to a single-color field with the same intensity, the sculpted field has a higher cutoff for direct ionization
and the release times of the interfering wave packets are confined to a narrower time window. The
latter ensures that their accumulated phase difference is smaller and, thus, the spacing of the intracy-
cle fringes is larger. In Ref. [76], the authors interpreted their distributions using a model based on
a Coulomb-corrected version of strong-field approximation and retrieved the relative phase difference
between the interfering trajectories. They concluded that the valence-electron dynamics and, especially,
the transient population of excited states are important to explain the interference pattern. Surprisingly,
our semiclassical model including Maslov’s phase can perfectly reproduce the TDSE-based interference
pattern without considering valence-electron dynamics at all (see the signal along the polarization axis
shown in Fig. 3.11(c)). Again, when the Maslov phase is neglected, the intracycle interference pattern
cannot be quantitatively modeled. Thus, our approach offers an alternative interpretation of the exper-
imental results [76] and suggests that the retrieval of valence-electron dynamics might actually not be
possible.
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Figure 3.11: (a) Electric field, (b) corresponding negative vector potential and (c) signal along the px-axis as in Fig. 3.10, but for
the sculpted two-color field of Eq. (3.33). A fundamental wavelength of 800 nm and a total intensity of 1× 1014 W/cm2 are used.

3.4.3 Interference of high-energy electrons

High kinetic energies can be reached by electrons which are elastically scattered by large angles and,
subsequently, are further accelerated by the light field [16, 17]. Within this high-order above-threshold
ionization (HATI) process, some electrons are deflected to large lateral momenta forming a plateau-like
region in the PMD. Classically, two trajectories per optical cycle contribute to the same final momentum
(see also the schematic illustration in Fig. 3.12). According to their excursion times, they are called
“short” and “long” rescattering trajectory. A more detailed investigation of their kinematics can be
found in Chapter 9. In the 2D distributions shown in Fig. 3.4, their interference pattern is visible as
nearly-circular ring structures.

Figure 3.12: Schematic illustration of high-order above-threshold ionization. The superposition of the long rescattering trajectory
(red solid line) with the short rescattering trajectory (violet dashed-dotted line) creates an interference pattern in the high-energy
region. Here, the long trajectory passes two focal points in 2D (black squares) resulting in a Maslov index ν2D = 0. In contrast,
the short trajectory only passes one focal point (black square) resulting in a Maslov index ν2D = 1. Figure is adapted from
Brennecke et al. [248].

By considering this interference pattern, we will demonstrate that nonzero Maslov phases already
influence the PMDs in 2D. These Maslov phases arise from passing through other types of focal points,
e.g., through fold caustics, and, hence, the change of the Maslov index needs to be calculated numeri-
cally. The long trajectory is topologically equivalent to the scattered trajectory in holography (see Sec-
tion 3.4.1). In 2D, it crosses through two focal points, where the Maslov index is increased at one point
and it is decreased at the other. Hence, its final Maslov index is ν2D = 0. On the other hand, the short
trajectory only passes through one focal point in 2D and has a final Maslov index of ν2D = +1. For
a quantitative modeling of the fringe positions in the circular interference structures, the difference of
these Maslov phases is crucial (see also the 1D slice through the distributions at px = −0.5 a.u. shown
in Fig. 3.13). Since both trajectories become equivalent at the classical boundary (here at |pz| ≈ 1.4 a.u.),
a caustic appears in the semiclassically-simulated PMDs.

The yield of high-energy electrons is much higher in the 2D setting compared to the 3D setting. As
explained above, this overall effect is well reproduced by the semiclassical model due to the dependence
of the Jacobian on the dimensionality. However, for large-angle scattering, the electron has to return
very close to the parent ion such that the HATI process is very sensitive to details of the ionic potential.
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Figure 3.13: 1D slices through the momentum distributions in 2D (panel a) and in 3D (panel b) of Fig. 3.4 at fixed px = −0.5 a.u.
and py = 0. Again, the results are indicated as: TDSE results (gray thick line), semiclassical model including Maslov’s phase (red
line) and neglecting Maslov’s phase (blue dashed line). For better comparison, the distributions are normalized to an arbitrary
value. Figure is adapted from Brennecke et al. [248].

The target-dependent elastic-scattering differential cross section (DCS) mostly determines the shape of
the scattering plateau in the PMDs. Thus, it is expected that the −1/r potential used in the semiclassical
model cannot quantitatively reproduce all details. In principle, the problem of modeling HATI by means
of classical simulations goes much deeper, because the classical DCS usually differs from the correct
quantum-mechanical DCS. A prominent exception is a bare Coulomb potential in 3D.

To include the correct quantum-mechanical DCS in simplified simulations, quantum-orbit models
based on the framework of the improved strong-field approximation can be used (see Section 2.3 and
also Chapter 9). For sufficiently adiabatic conditions, such models are able to quantitatively predict
the shape of the scattering plateau and the appearing interference pattern for short-range potentials. In
these approaches, an additional phase (analogous to Maslov’s phase) is also present and it is inherently
included in the prefactor resulting from saddle-point approximation. For example, this prefactor was
already used in Refs. [199, 204].

3.4.4 Interference in bicircular counter-rotating fields

Focusing of electron wave packets and the appearance of Gouy’s phase anomaly is nothing special for
cylindrically-symmetric systems under the influence of linearly-polarized pulses, but it is rather a prop-
erty of light-driven rescattering in general. To demonstrate this, we consider strong-field ionization in
bicircular fields consisting of two counter-rotating circularly-polarized fields with frequenciesω and 2ω.
A prototype of a bicircular field can be represented by the vector potential

A(t) =
E0

ω

1√
1 + R

[(
sin(ωt)
± cos(ωt)

)
+

√
R

2

(
sin(2ωt)
cos(2ωt)

)]
, (3.34)

where a positive sign corresponds to co-rotating fields and a negative sign to counter-rotating fields. The
parameter R represents the intensity ratio of the two colors. For R → 0 or R → ∞, circularly-polarized
fields of frequency ω or 2ω are retrieved, respectively. In contrast to pure circular polarization, in
counter-rotating fields at intermediate intensity ratios, more complex electron dynamics occur, allow-
ing electrons to revisit the parent ion. Already in 1995 Eichmann et al. [267] demonstrated that it is
possible to efficiently drive high-harmonic generation by counter-rotating bicircular fields. The HHG
process was further explored to generate circularly-polarized XUV radiation [268–270]. Later on, other
recollision-based phenomena such as high-order above-threshold ionization [271–277] and nonsequen-
tial double ionization [278–281] were analyzed.

Figure 3.14 shows PMDs from 2D TDSE simulations for helium ionized by four-cycle counter-rotating
bicircular fields for various intensity ratios. In contrast to cw fields with their three-fold dynamical sym-
metry [271, 282], the finite pulse duration leads to a symmetry breaking. In the simple man’s model, the
main parts of the momentum distribution are expected to follow the negative vector potential −A(t).
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Hence, for intermediate intensity ratios R, intracycle interference occurs due to the superposition of
wave packets launched in different thirds of an optical cycle. In addition, high-energy electrons visible
with their “scattering spheres” are again a sign of hard rescattering. The interference between direct
and rescattered electrons leads to holographic interference patterns, which were theoretically predicted
in Refs. [272, 273, 283]. Such interference patterns were also experimentally observed in lateral distri-
butions [284]. A detailed analysis of various rescattering structures in bicircular fields can be found in
Refs. [272, 273].
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Figure 3.14: Photoelectron momentum distributions from 2D TDSE simulations for helium ionized by bicircular counter-rotating
fields with 800 nm fundamental wavelength, 8× 1014 W/cm2 intensity and using a cos2 envelope of four cycles duration. The
panels correspond to different intensity ratios R of the two colors. For each panel, the dashed black line is the negative vector
potential of a cw field with the same intensity ratio.

In the following, we restrict ourselves to the intensity ratio R = 3, where scattering is quite pro-
nounced. The PMDs for ionization by a short two-cycle pulse obtained by 2D and 3D simulations are
shown in Fig. 3.15.8 Even though the same overall structures are present in both 2D and 3D PMDs,
the positions of the interference fringes and the relative weight of the various regions differ. Even for
these nontrivial waveforms, the semiclassical model reproduces well the various types of interference
patterns and, especially, their differences of the 2D and 3D system.9 Due to the lack of symmetry, the Ja-
cobian initial-value equations (3.9) have to be solved numerically to determine the Jacobians and Maslov
indices in 2D and 3D. We speculate that the over-pronounced high-energy contributions of the model

8Here, a maximal angular momentum of 384 is used in the 3D TDSE simulations.
9In the semiclassical calculations of the probability amplitudes (3.24) in 2D and in 3D, we consider the same trajectories evolv-

ing in the x-y-plane.



3.4. RESULTS AND DISCUSSION 45

−2

−1

0

1

2

−2

−1

0

1

2

−2 −1 0 1 2 −2 −1 0 1 2

M
om

en
tu

m
p
y

[a
.u

.]
M

om
en

tu
m
p
y

[a
.u

.]

Momentum px [a.u.]

10−4

10−3

10−2

10−1

10−0

Momentum px [a.u.]

10−4

10−3

10−2

10−1

10−0

(a1) 2D (b1) 3D

(a2) 2D (b2) 3D

TDSE TDSE

model model

Figure 3.15: Photoelectron momentum distributions for helium ionized by two-cycle bicircular laser pulses with 800 nm funda-
mental wavelength, 8× 1014 W/cm2 intensity and intensity ratio R = I2ω/Iω = 3. (a) PMDs obtained from 2D simulations and
(b) slices at py = 0 through the 3D distributions. The distributions are calculated by numerical solution of the TDSE in the upper
row or with the semiclassical model in the lower row.

in 2D are caused by a too large classical cross section in 2D compared to the exact quantum-mechanical
DCS (see also Section 3.4.3).

In analogy to linear polarization, the interplay between the Coulomb potential and the laser field
leads in 3D to focusing of scattered electron waves into the polarization plane. Within the semiclas-
sical model, this bunching of electrons causes three bright lines of caustics corresponding to the three
thirds of an optical cycle. In the TDSE simulations, the associated enhancement of the yield in 3D com-
pared to 2D is particularly visible for the central holographic fringe point in the upper left quadrant of
Fig. 3.15(b1). A magnification of the holographic pattern is shown in Fig. 3.16(b). It is caused by the in-
terference of a nonscattered wave packet with a scattered wave packet [283]. A schematic illustration of
typical trajectories in position space is presented in Fig. 3.17. We consider the same trajectories in the 2D
and 3D semiclassical simulations for the distribution in the px-py-plane. However, scattered trajectories
pass additional focal points during their time evolution in 3D compared to the 2D situation. An analysis
shows that the corresponding zero mode of the Jacobian field points in z-direction. Hence, trajecto-
ries starting with slightly different initial velocity in z-direction and otherwise same initial conditions
are focused by Coulomb attraction to the same point in the polarization plane (see also the trajectories
indicated as black lines in Fig. 3.17). In the position-space description, the focused electron wave expe-
riences a phase shift of π/2 in 3D. In agreement with our findings for linear polarization, the numerical
calculation in the momentum-space description indeed shows that those scattered trajectories experi-
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Figure 3.16: Photoelectron holography in bicircular fields. (a) Interference pattern of direct and scattered trajectories, i.e.,
cos2 (∆S/2) of their phase difference ∆S in 3D. (b) 2D slice through the 3D PMD from numerical solution of the TDSE as in
Fig. 3.15(b1). The positions of the holographic interference minima of the semiclassical model are marked by black dashed lines,
if Maslov’s phase is included, and by white dashed lines, if Maslov’s phase is neglected. Figure is adapted from Brennecke et
al. [248].

ence an additional sign change of their Jacobian and a change of their Maslov index by +1 in 3D. This
is an indication that the connection of Coulomb focusing and Gouy’s phase anomaly is a rather general
property of scattering trajectories.

The additional Maslov phases picked up in 3D become visible in the holographic interference pat-
tern. The phase in the semiclassical model is dominated by S ≈ Re(S0

↓) + Ip(t
′
r − tA) + S→ − νπ2 . We

restrict ourselves to the two most important trajectories. Figure 3.16(a) shows the interference pattern
calculated from their phase difference ∆S. The form of the fringes is reminiscent of the well-known
finger-like structures in linear polarization. The positions of the predicted interference minima includ-
ing Gouy’s phase anomaly, i.e., Maslov’s index in 3D, are depicted as black dashed lines. These positions
agree well with the minima visible in the PMD from numerical solution of the 3D TDSE (see Fig. 3.16(b)).

x

yz

Figure 3.17: Schematic illustration of holography trajectories in a bicircular field. Both the nonscattered trajectory (blue line) and
the scattered trajectory (red line) evolve in the x-y-plane. Trajectories (black lines) starting with small additional velocities in
z-direction compared to the scattered trajectory are deflected by the Coulomb attraction of the ionic core (indicated as gray dot)
and cross the polarization plane in the same point. Hence, this point is a focal point in position space.

3.5 Conclusion

In this chapter, the focusing of electron waves produced by strong-field ionization was analyzed. In full
dimensionality (3D), the interplay of the laser electric field and the Coulomb attraction between electron
and ion leads to a bunching of electron waves. As a result, similar to a lens in optics, this Coulomb
focusing acts as a lens for electrons, making the waves pass through focal points. Reminiscent of Gouy’s
phase anomaly, the phase of the electron wave packets changes while passing through a focus. Since the
bunching takes place in one degree of freedom, we found the fundamental value of π/2 for the phase
shift. This can be vividly illustrated for linearly-polarized fields with their rotational symmetry around
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the polarization axis. There, the scattered electron wave packets are focused in position space every
time when they cross the polarization axis. However, importantly, the appearance of focal-point phases
is a much more general phenomenon in strong-field ionization which is also present in other waveforms
that give rise to rescattering such as in bicircular counter-rotating fields.

We demonstrated that these previously-overlooked Gouy phase shifts influence the formation of
various interference structures in photoelectron momentum distributions from strong-field ionization.
A simple example is the spider-like holographic pattern caused by the superposition of a nonscattered
reference wave and a scattered signal wave. Since Coulomb focusing is absent in reduced dimensional-
ity (2D), its influence on the photoelectron momentum distributions was qualitatively identified by com-
paring the results from TDSE simulations in 3D and in 2D. In addition to the well-known enhancement
of the spectral weight, we observed a systematic shift of the interference fringes related to Gouy’s phase
anomaly. A similar effect is also present for the intracycle interference pattern. Aside from Coulomb
focusing, we revealed that there are measurable focal-point phases already in 2D. As an example, the
interference between short and long rescattering trajectories in the high-energy plateau region was con-
sidered. Hence, it turned out that strong-field ionization is an ideal setup for the natural observation of
focal-point phases for electron waves.

For a quantitative, but intuitive trajectory-based modeling, we refined the semiclassical description
based on an approximation of Feynman’s path integral. Previous studies mostly concentrated on the
action phase associated with each trajectory. However, to account for focusing effects of the electron
waves, we studied an additional prefactor of the semiclassical propagator which reflects the classical
evolution of the local environment around a given trajectory. The modulus of the prefactor involves the
Jacobian and influences the weighting of the trajectories. In contrast, its phase, known as the Maslov
phase, can be identified as a case of Gouy’s phase anomaly and it affects the interference structures. We
analyzed the focal-point structure of the electron trajectories and calculated the jumps of the Maslov
phase. In the special case of linear polarization, the rotational symmetry enabled us to formulate a
simple rule how to evaluate the Jacobian and Maslov phase in 3D compared to 2D. By considering
several laser wavelengths, it was shown that the inclusion of preexponential factors is crucial for the
good agreement of the model with TDSE results.

The analysis of the semiclassical trajectories relies on the solution of the inversion problem, i.e., the
determination of all possible initial momenta of the electron trajectories that are classically deflected to
a given final momentum. Here, we accomplished this task by means of a clustering method based on
machine learning. This alternative approach is quite versatile and can be applied for different targets
and electric-field configurations. Thus, the clustering scheme resolves one of the problems in the appli-
cability of the semiclassical propagator. In principle, the idea can be transferred to other semiclassically-
treated problems as long as the dynamics is not too chaotic. Compared to previously used initial-value
representations, this may open the route for a clearer view on physical processes in various fields of
research such as molecular spectroscopy [257, 285, 286] or interacting bosons [287].

Recently, it was shown that the inclusion of the Gouy phase anomaly results in a significant im-
provement in direct comparison to experimental data [288]. The quantitative interpretation of photo-
electron momentum distributions for atoms by means of semiclassical models forms the foundation
for the future analysis of nontrivially-polarized fields [275, 283, 284] or more complex targets such as
molecules [30, 31, 240, 289]. In atoms, the properties of structured electron beams such as vortex beams
generated by strong-field ionization of current-carrying orbitals [290–292] could be quite interesting,
because similar effects as in the focusing of structured optical beams are expected. In molecules, the
scattering off different centers may lead to new kind of electron trajectories with different focal-point
properties and, thus, unexplored types of interference patterns. From a fundamental point, it would
be illuminating to study the limits of the Coulomb focusing process. For example, the use of small
negatively-charged molecules with permanent dipole moments results in a 1/r2 behavior of the ionic
potential at large distances r (in contrast to the common −1/r behavior), raising the question whether
focusing and Gouy’s phase anomaly are present in this modified situation.





Chapter 4

Control of Electron Wave Packets Close
to the Continuum Threshold Using THz
Waveforms

4.1 Introduction

Recollisions of high-energy electrons in strong linearly-polarized electromagnetic fields form the basis
of many phenomena such as high-harmonic generation [11, 12], elastic scattering and diffraction [16–
18, 33, 34, 36], or photoelectron holography [74, 239]. These processes can be qualitatively understood
by means of the three-step model [7–10]: A continuum electron wave packet is created by laser-induced
tunneling, afterwards it is controlled by the same light field, and it is potentially driven back to the
parent ion (see also Chapter 3). However, for electron energies close to the continuum threshold, the
light-driven motion of the electron wave packets is decisively influenced by the long-range Coulomb
force of the parent ion. For example, low-energy structures [81–84] appear in the photoelectron spectra
for atoms in strong laser field. These are caused by soft recollisions of electrons just above the contin-
uum threshold [83–86, 118]. In addition, the long-range nature of the potential leads to a quasicontin-
uum of bound Rydberg states just below the continuum threshold. In strong fields, these weakly-bound
states play for example an important role in the generation of coherent vacuum-ultraviolet (VUV) emis-
sion [293–296] and can be populated through multiphoton absorption [297–299] or by recapture after
tunnel ionization [300–302].

For Rydberg states, the important time and length scales are hugely increased compared to the typi-
cal scales of tightly-bound atomic ground states. The dynamics of these electrons close to the continuum
threshold can be modified by means of terahertz (THz) waveforms. Rydberg states can be ionized by
means of half-cycle THz pulses [104] and single-cycle THz pulses [105] or their population can be re-
distributed [303]. Due to the different scales involved, the ionization mechanism usually works quite
different compared to tunnel ionization in visible or infrared laser fields [105]. For example, the stabi-
lization of states close to the ionization threshold were observed for single-cycle THz pulses [304, 305].
Previously, pump-probe schemes based on THz waveforms were already used to study phenomena at
the continuum threshold. Examples are the control of the recombination of continuum electrons at low
energies on a picosecond timescale [103, 306], the investigation of the electron dynamics in Rydberg
states [101, 102] or the probing of electron interactions in double Rydberg wave packets [307].

Low-energy structures, population of Rydberg states and also other recollision-based phenomena
appear quite naturally in strong visible or infrared fields. However, the control of the created electron
wave packets with a single light pulse is difficult, because the same field governs both the preparation
of the wave packet and its further evolution.1 In this chapter, we investigate the natural solution and

1One way to extend the possibilities of control is to use bichromatic fields (see for example [87–92, 308]).
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decouple the creation step from the propagation step by using two very distinct light fields: a short
infrared (IR) pulse with 25 fs duration and a synchronized carrier-envelope-phase-stable near-single-
cycle THz pulse with a cycle length of about 1.3 ps at the central frequency. In this scheme, the IR pulse
launches an electron wave packet at the continuum edge, i.e., extending across continuum and weakly-
bound states. The subsequent motion of the electron wave packet is steered by the THz waveform. The
creation time of the wave packet is localized on the scale of an optical cycle of the THz field such that
launch process and subsequent acceleration are well separated. Compared to previous pump-probe
studies using THz pulses [101–103, 306, 307], the subcycle timing enables the selection of the ongoing
physical processes. Depending on the delay between the pulses, we observe effects such as Coulomb
focusing of the outgoing wave packet or even more pronounced collision dynamics such as large-angle
scattering and the appearance of holographic patterns. These phenomena well-known from strong-
field ionization (see Chapter 3) are here observed under rather different conditions of the radiation and,
hence, for quite different electron energies (|E| < 1 eV).

The setting is strongly reminiscent of the attosecond streak camera [63, 309, 310]. There, single-
photon ionization by an XUV attosecond pulse launches a temporally-localized electron wave packet in
the continuum. Afterwards, these photoelectrons are streaked in energy by means of a femtosecond in-
frared laser pulse. Usually, the initial kinetic energies of the freed electrons are sufficiently high such that
the interaction with the parent ion can be ignored. Hence, the momenta of the photoelectrons roughly
follow the negative vector potential of the streaking field [63]. However, for low electron energies (in
the few-eV range), theoretical works predict that recollision-based phenomena may also be present in
streaking [99, 311–315]. In a modified streak camera for strong-field ionization, based on the combina-
tion of ionization by a short visible pulse and deflection of the created wave packets by a mid-infrared
pulse, scattering was already experimentally observed [100, 316]. In a RABBITT-like scheme with an at-
tosecond pulse train phase-locked to the infrared field [65], electron wave packets at low energies were
also manipulated and probed in experiment [94, 95, 97, 98]. The imprint of recollisions were observed
in photoelectron distributions [96, 317] and in the emitted radiation [318, 319] by variation of the delay
between the pulse train and the infrared field. However, the analysis of the momentum distributions is
difficult in RABBITT-like schemes due to the series of wave packets launched by the pulse train. The
main differences of our scheme to these previous works are: We consider much lower electron energies
where the interplay between long-range Coulomb interaction and external electric field is even more
pronounced. To control the electron dynamics, we use THz pulses. This enables us to reach a high de-
gree of temporal localization of the initial wave packet. If this is quantified as the ratio of probe cycle
length to ionizing pulse length, our THz-IR scheme reaches a ratio of about 50 whereas the previous
studies only reached about 10.

The work is based on a collaboration with the group of Ulrike Frühling in Hamburg. Martin Ranke
performed an experiment using the described two-pulse scheme and measured the projection of the
photoelectron momentum distributions for various delays by means of velocity-map imaging [320, 321].
We provided the theoretical simulations and developed the physical model of the ongoing processes.
Most parts of this chapter are already published in Ref. [322].

4.2 Computational details

In order to calculate photoelectron momentum distributions in the presence of the THz pulse and the
IR field, the TDSE is solved numerically in the electric dipole approximation for xenon modeled by a
single-active-electron potential. We only consider ionization of the 5p orbital aligned along the polar-
ization direction of the IR pulse, i.e., the orbital with magnetic quantum number m = 0 for the angular
momentum component along x-direction. Compared to the conditions present in the other chapters of
this work, the natural scales for low-energy electrons (typically with momenta |p| < 0.25 a.u.) and for
THz pulses are quite different. Hence, to obtain reliable results, several challenges have to be mastered:
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• Energy scale: In an accurate simulation of electrons at low energies, the ionic potential V has to be
considered during the whole motion of the outgoing electrons, i.e., two-grid methods as described
in the Appendix A.2.2 cannot be used. Thus, we use the pseudospectral method in length gauge
as described in the Appendix A.2.1 and store the position-space wave function on a single grid
till the end of the THz pulse. To determine the PMDs, we project the final wave function onto
numerically-calculated scattering states for the ionic potential (see Eq. (2.19)).

• Time scale: The THz field has an optical cycle length of about 1.3 ps and, thus, a time interval of
several picoseconds must be covered in the simulations. The accuracy of the splitting scheme in the
pseudospectral method is mostly determined by the error term of Eq. (A.23) which is proportional
to ∼ E(t) · [E(t) + 2∇V(r)]∆t3. Hence, the error in length gauge is strongly influenced by the
electric-field strength (in contrast to velocity gauge where the error is proportional to the vector
potential). Since the THz electric field is much weaker than the IR electric field with a ratio of
about ETHz/EIR ≈ 10−3, we use a time step of ∆t = 0.15 a.u. when the IR is present, but we choose
a large step of ∆t = 1.5 a.u. when only the THz field is present.

• Length scale: The quiver amplitude of the electrons in the THz field is given by ETHz/ω
2
THz ≈

1400 a.u. However, even electrons with small momenta as 0.15 a.u. can travel large distances as
15500 a.u. in the time interval between their liberation and the end of the THz pulse (maximal
time span of ≈ 2.5 ps). The radial part of the wave function is discretized using 6000 points on a
nonuniform grid (A.44) with an extension rmax = 19000 a.u. and a core region rcenter = 100 a.u. The
grid spacing in the asymptotic part is approximately given by∆rmax ≈ 3.3 a.u. such that a maximal
momentum of pmax ≈ 1.1 a.u. can be represented. This choice ensures that the low-energy part
of the wave function remains on the grid until the end of the THz pulse. However, depending on
the time delay, electrons from higher-order ATI peaks of the IR field (see Section 4.3) can reach the
grid boundary and are absorbed by a mask function (A.53) of ∆rA = 200 a.u. width.

• Angular-momentum scale: For a rough classical estimate, we consider the product of a characteristic
lateral momentum of 0.15 a.u. and a quiver amplitude of 1400 a.u. which results in an angular
momentum of about 210 a.u.2 In the expansion of the angular dependence of the wave function in
spherical harmonics, we include states with maximal orbital angular momentum lmax = 512. For
selected delays, the simulations were repeated with lmax = 768 and similar results were obtained
for the low-energy part of the PMDs. To speed up the calculations, we monitor the populations of
the angular momentum components during the propagation and only consider states with appre-
ciable population.

4.3 THz-field-free distributions

The IR pulse prepares the electron wave packet that is afterwards steered by the THz waveform. The
shape of the wave packet at the end of the IR pulse is a central ingredient that decisively influences the
subsequent motion. For this reason, we first study the photoelectron momentum distributions in the
absence of the THz field, i.e., the continuum part of the prepared wave packet. The experimentally-
measured projection of the PMD is shown in Figs. 4.1(a) for ionization with an IR pulse of 795 nm
central wavelength and a peak intensity of about 8.5 × 1012 W/cm2. Here, the polarization of the light
pulses (x-axis) is parallel to the detector plane. For the calibration of the momentum axis and the laser
intensity, the measured distribution was compared to distributions from numerical simulations of the
TDSE taking focal-volume averaging into account. The simulated distributions are further discussed
below.

In a multiphoton picture for above-threshold ionization [5, 172], the positions of the ATI peaks are
determined by the condition En = nω − Ip − Up with the ionization potential Ip of xenon and the

2In the used length gauge, states with even higher angular-momentum quantum numbers are populated.
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Figure 4.1: Photoelectron momentum distributions projected onto the px-pz-plane for ionization of xenon by an IR pulse. The
experimental results are shown in panels (a). The focal-volume-averaged distributions from numerical simulations of the TDSE
for the GSZ potential and for the Tong-Lin potential are depicted in panels (b) and (c), respectively. The lower row contains a
magnification of the low-energy region. Arbitrary normalization is used for panels (a), (b) and (c). The experimental data were
provided by Ranke [320]. Figure is adapted from Brennecke et al. [322].

ponderomotive potentialUp ∝ E2
0/ω

2 (see Section 2.1.1). For ionization with the xenon ion ending up in
a 2P3/2 state with an ionization potential Ip ≈ 0.4458 a.u., a number of n = 9 photons is at least required
to form an ATI peak in the continuum.3 We can assign the photon numbers n = 9, ..., 12 to the ATI peaks
centered at momenta |p| ≈ 0.33, ..., 0.64 a.u. The chosen laser intensity is just above the closing of the
eight-photon ionization channel occurring at an intensity defined by E8 = 8ω − Ip −Up = 0. Thus, the
eight-photon peak is centered slightly below the continuum edge. Due to its finite spectral width, its
high-energy tail still reaches positive electron energies. In the low-energy part of the measured PMD, it is
visible as an extended “butterfly-like”-shaped pattern (see also the magnification shown in Fig. 4.1(a2)).

For the TDSE simulations, we use IR pulses with a cos2 envelope of 26 optical cycles duration (≈ 25 fs
FWHM in intensity) and perform calculations for a broad range of intensities. To consider the influence
of focal-volume averaging, we assume a Gaussian beam profile and follow the scheme introduced in
the Appendix A.2.4. The xenon atom is either model by a Tong-Lin potential [324] (see Section A.2.3) or
by a modified Green-Sellin-Zachor (GSZ) potential [325].4 The projected PMDs are shown in Figs. 4.1(b)
and (c), respectively. The overall structure of the PMDs is similar as the experimental one. However,
in the simulated distributions, we find that each ATI peak is split in two sub peaks with a different
angular structure. We identify the inner peak with the nonresonant ionization channel whereas the
outer peak is related to a Freeman resonance [172] of 6d states. Due to this resonance behavior, the
simulated PMDs are quite susceptible to the exact electronic structure and to the laser parameters. For
example, the resonant ionization path is much more pronounced in the Tong-Lin potential compared
to the GSZ potential. In the low-energy region, the resonant channel is visible as an extended structure

3In agreement with Ref. [323], the analysis of the signal along the pz-axis and some symmetry arguments suggest that the
channel ending up in a 2P1/2 state can be neglected.

4In order to accurately reproduce the ionization potential of xenon, we slightly modified the parameterH = 6.8163 of the GSZ
potential of Ref. [326].
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with f character and it is too pronounced for the Tong-Lin potential compared to the experimental result.
Hence, since we are mostly interested in this low-energy region, we use the GSZ potential for all further
simulations. Note that for this choice the emission strength of the higher-order ATI peaks (n > 8) is only
qualitatively reproduced (see also the 1D distributions in Fig. 4.2(a)).

In the presence of the THz pulse, we are unable to perform focal-averaged simulations for all delays.
When only considering a single intensity, the low-energy part of the PMD is most accurately reproduced
for an intensity of 7 × 1012 W/cm2. In this case, compared to the focal-averaged simulations, the yield
is underestimated in the region between p ≈ 0.08 a.u. and p ≈ 0.2 a.u., but matches well in all other
regions (see Fig. 4.2(b)).
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Figure 4.2: Photoelectron momentum distributions along the polarization direction (px-direction) for the same conditions as in
Fig. 4.1. The distributions are calculated by integration of the 2D projections over |pz| < 0.1 a.u. In addition to the focal-volume-
averaged result for the GSZ potential (blue line), the distribution for a fixed intensity of 7× 1012 W/cm2 is shown (red line). Panel
(b) is a magnification of the low-energy region. The experimental data were provided by Ranke [320].

A characteristic difference between the TDSE simulations and the experiment is a bright spot cen-
tered at p = 0. These “zero-energy electrons” (ZEEs) have been neglected so far. As explained, the n = 8
photon peak is centered at slightly negative energies and, hence, there is a strong population in Ryd-
berg states with very weak binding energies. After the end of the IR pulse, the ionization of these states
by the static electric field of the VMI [327–329] or by blackbody radiation [330] leads to the additional
zero-energy signal. We will consider this part of the PMD in more detail in Section 4.6.

In the remaining part of this chapter, we will study the influence of the THz field on the released
electron wave packet. To this end, we investigate the following three regions of the PMDs separately:

• High-energy electrons: ATI peaks with energies En = nω− Ip −Up and n > 8.

• Low-energy electrons: the region corresponding to the “peak” at the threshold with n = 8 photons,
but only momenta with

√
p2
x + p

2
z > 0.04 a.u.

• Zero-energy electrons: identified with the region
√
p2
x + p

2
z < 0.04 a.u. in momentum space and

mostly related to additional ionization of Rydberg states.5

4.4 Streaking of ATI peaks

After the preparation of the electron wave packet by the IR pulse, the interplay between the THz pulse
and the electron-ion interaction controls its subsequent dynamics. Figure 4.3 shows the experimental
momentum distributions along the polarization axis as a function of the time delay τ between THz
waveform and IR pulse. The ATI peaks for n > 9 all behave similarly and are mostly streaked in energy

5The exact choice of the boundary between zero-energy and low-energy electrons has no deeper physical motivation. In spite
of an experimental broadening of the zero-energy peak, the value of p = 0.04 a.u. ensures that all additional electrons released by
the detector field are assigned to “zero-energy electrons”. For a value of p = 0.03 a.u., the observables discussed in this chapter
show a quite similar behavior.
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Figure 4.3: Experimental photoelectron momentum distributions along the polarization axis as a function of time delay τ between
the THz waveform and the IR pulse. The distributions are calculated by integration of the 2D projections over |pz| < 0.1 a.u. The
experimental data were provided by Ranke [320].

by the THz field [63]. For these electrons with high initial kinetic energy, the effect of the Coulomb
attraction can be neglected and their dynamics is solely determined by the THz field. Following the
same idea as in attosecond streaking, the momentum change induced by the THz pulse is approximated
classically as [63, 331, 332]

∆px = −

∫∞
τ

dt ETHz(t) = −ATHz(τ). (4.1)

Here, τ is the creation time of the wave packet and it is equal to the time delay. ETHz and ATHz are the
electric field and the vector potential of the THz waveform, respectively.

The relation of Eq. (4.1) is used to reconstruct the experimentally-applied THz pulse. To this end,
we determine the central momenta of the ATI peaks as a function of the delay τ. To extract the relative
variation due to the THz field, the THz-field-free positions are subtracted. The reconstructed vector
potentials for the three ATI peaks with n = 9 − 11 are in very good agreement with each other (see
Fig. 4.4(a)). Although the maximal THz field strength is only about 81 kV/cm ≈ 1.58 × 10−5 a.u., the
long acceleration time of the THz field leads to momentum changes on the order of 0.1 a.u. For the
simulations, we apply a smoothed spline fit to the data for the ATI peak with n = 9. In order to reduce
the computational effort and obtain a manageable pulse duration, the retrieved waveform is truncated
at −1500 fs and +1350 fs by using a sin2 mask. The resulting “short” pulse is shown in Fig. 4.4 as black
line.
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Figure 4.4: Vector potential of the THz pulse retrieved from experimental data for several ATI peaks indicated in the legend (left
panel) and retrieved from TDSE simulations (right panel). The black solid line shows the vector potential for the short THz pulse
used in the TDSE simulations. The experimental data were provided by Ranke [320].

In the extraction procedure of the THz pulse, the influence of the Coulomb attraction is neglected.
We can test this approximation by using the PMDs from numerical TDSE simulations, including both the
IR pulse and the THz pulse. The same procedure as for the experimental data is applied to reconstruct
the vector potential. For the ATI peak with n = 9, the retrieved result is shown in Fig. 4.4(b) as blue dots.
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The reconstruction is in perfect agreement with the vector potential used for the simulations (deviations
lower than 0.002 a.u.). For large negative delays τ < −290 fs, higher-order ATI peaks are absent in the
simulations, because these electrons reach the boundary of the radial simulation grid.

4.5 Dynamics of low-energy electrons

The low- and zero-energy electrons exhibit major deviations from the simple momentum shift of the
higher-order ATI peaks. Figure 4.5(a) shows a magnification of the experimental distributions along the
polarization directions as a function of the time delay τ. An animated presentation of the complete 2D
projections of the PMDs is available as Supplemental Material of Ref. [322]. Even though some parts of
the momentum distribution at low energies still roughly follow the momentum shift of Eq. (4.1), their
signal strength is modulated and their corresponding angular distribution is deformed as a function of
the delay. Additionally, localized spots are visible in the PMDs, e.g., at px ≈ 0.09 a.u. for the delay
τ ≈ 174 fs or at px ≈ 0.14 a.u. for the delay τ ≈ 400 fs. Furthermore, the creation of the wave packet
before the main THz pulse arrives (large negative delays) results in noticeably broader px-distributions
compared to its launch after the main THz pulse has already passed (large positive delays). All in all,
we observe a variation of the total electron emission probability as a function of the delay.
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Figure 4.5: Low-energy part of the photoelectron momentum distributions along the polarization axis as a function of time delay
τ analogous to Fig. 4.3. The dashed line indicates the momentum shift of Eq. (4.1) which is usually considered in streaking
experiments, i.e., estimated by neglecting the electron-core interaction. The experimental data were provided by Ranke [320].
Figure is adapted from Brennecke et al. [322].

The PMDs from numerical solution of the TDSE well reproduce the major features of the experiment
in the low-energy region (see Fig. 4.5(b)). However, as expected, the bright line centered at px = 0 of
zero-energy electrons is visible in the experiment and it is not contained in the TDSE simulations. We
will separately discuss zero-energy electrons in Section 4.6. To avoid a background resulting from the
projection of higher-order ATI peaks (n > 9), we subtracted the corresponding signal in all simulations.
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4.5.1 Classical model

The observations for low-energy electrons are already a clear indication that the interplay between the
THz field and the electron-ion interaction plays a crucial role. To reveal the physics behind these obser-
vations, a classical-trajectory Monte Carlo (CTMC) model is established. Since the creation of the wave
packet takes a much shorter duration than the length of an optical cycle of the THZ field, the whole
ionization process is split into two steps:6

• Creation of the wave packet. The IR field prepares the initial wave packet at a time τ by multiphoton
ionization. To properly describe this nonclassical process, we perform a TDSE simulation with-
out THz field. The low-energy part of the quantum-mechanical energy distribution is shown in
Fig. 4.6(a). Here, we select the peak at the continuum edge, i.e., extending across weakly-bound
Rydberg states (E < 0) and continuum states (E > 0).

The main idea is to use the quantum-mechanical wave function from the TDSE and to convert it
into a classical phase-space distribution. To this end, we consider the quantum-mechanical ve-
locity distribution at the end of the IR pulse and assign to every velocity v0 a unique initial po-
sition r0(v0). The angular structure of the velocity distribution shown in Fig. 4.6(b) is caused by
the superimposition of contributions with small orbital angular momentum (here l = 1, 3 and 5).
For simplicity, we assume zero initial angular momentum in the classical calculation and, thus,
choose a mapping of the form r0(v0) = r0(v0)v̂0. The function r0(v0) is optimized to reproduce the
THz-field-free quantum-mechanical energy distribution (energy-optimization method).7 After the
end of the IR pulse, the wave packet is still localized in the vicinity of the ionic core (see the initial
positions shown in Fig. 4.6(c)). By construction, this approach assigns a unique energy value to
each initial velocity. This enables the identification of regions with negative and positive energies
in the wave packet (see the white dotted line in Fig. 4.6(b)).

An alternative way to define the mapping r0(v0) is offered by the local-position method [333, 334].
To this end, for each velocity v0, a local position is defined as r0(v0) = −∇v0 arg ψ̃(v0) with the mo-
mentum representation ψ̃(v0) of the wave packet (for a more detailed discussion see the classical
backpropagation method of Section 5.2.4). To avoid complications caused by interference, we only
analyze the dominant contribution of the quantum-mechanical wave packet with orbital angular
momentum l = 1. Besides some additional oscillations, the result of the local-position method is
in good agreement with the energy-optimization method (see Fig. 4.6(c)). Hence, in the following,
all presented results are obtained with the energy-optimized mapping.

• Propagation in the presence of the THz pulse. The dynamics induced by the THz pulse is treated
classically by propagating the phase-space distribution forward in time. To this end, we simulate
a swarm of classical trajectories following Newton’s equation including the THz field and the
attractive force of a −1/r potential (see the EOM (2.49)). For the chosen initial conditions, the
electron motion is restricted to the plane spanned by the polarization direction and the initial
velocity. At large times tf after the end of the THz pulse, we determine the final momenta p
of the electrons and calculate the electron momentum distributions. Similar to the discussion
in Section 3.3.5, it is sufficient to only consider trajectories in a 2D plane. However, in order to
account for focusing in the third dimension, we use an additional weighting factor of |v0,⊥|/|p⊥| in
the calculation of PMDs (see the relation of the Jacobians in 2D and 3D presented in Eq. (3.31)).

The result of the classical model shown in Fig. 4.5(c) contains all major features of the TDSE distribu-
tions. As expected, small quantitative differences are visible. For example, a slight shift (up to≈ 50 fs) is
present for some of the structures. We believe that these deviations are partially attributed to the chosen
initial distribution and to the neglect of the THz pulse during the release by the IR pulse.

6This idea is similar to the well-known two-step model of strong-field physics [8].
7To this end, the coefficients of a fourth-order polynomial representing the auxiliary function v0(E) are varied to optimally

reproduce the quantum-mechanical energy distribution. The numerical inversion of v0(E) and the use ofE = v2
0/2−1/r0 results

in the desired mapping r0(v0).
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Figure 4.6: Properties of the initial wave packet used in the classical simulations: (a) energy distribution from the TDSE simulation
without THz pulse (black solid line) and used in the classical model (red dashed line). (b) Representation as a slice through the
electron velocity distribution. The white dotted line indicates zero energy in the classical model. (c) Mapping r0(v0) of the initial
velocity v0 to the initial position r0 determined by an optimization of the energy distribution (red line) or by the local-position
method (blue line). Figure is adapted from Brennecke et al. [322].

4.5.2 Discussion

In the absence of Coulomb effects, the electron motion is only influenced in polarization direction by
the THz pulse. On the other hand, if the THz pulse is absent and the created wave packet only evolves
under the influence of the binding forces, it expands radially outwards. For the chosen initial conditions,
the classical trajectories follow straight lines. In both special cases, the trajectories do not cross the
polarization axis (r⊥ =

√
y2 + z2 = 0). Thus, an axis crossing of trajectories is a sign of the interplay

between THz pulse and Coulomb attraction. Figure 4.7 shows the classical distributions where the
trajectories are selected with respect to their number δ of axis crossings. As expected, for late delays,
no crossings (δ = 0) occur and the main characteristics of trajectories are unchanged compared to the
Coulomb-free case. However, for intermediate and very early delays, trajectories undergoing one or
even multiple axis crossings play an important role. In this section, we will first discuss the limiting
scenarios of wave packets created before the main THz pulse arrives (large negative delays) or after the
main THz pulse has already passed (large positive delays). Afterwards, we will turn to intermediate
delays.
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Late delays: THz-field-free dynamics

For the short THz pulse of the simulations and for late delays, i.e., at the right edge of Fig. 4.5(c), the
wave packet is created after the THz pulse has already passed. In this situation, the energy of the
outgoing electrons is classically conserved. The wave packet expands radially outwards and is only
decelerated by the Coulomb attraction. Classically, after a certain finite time, electrons with negative
energies (E < 0) reach their turning points and, thus, are trapped in bound orbits, i.e., correspond to the
population of Rydberg states. In contrast, electrons with positive energies (E > 0) escape and form the
THz-field-free PMD. Importantly, this division into bound and escaping orbits is an asymptotic concept
in the sense that both types of electrons only show qualitatively different behavior after sufficiently long
propagation times.
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Figure 4.8: Electron dynamics for a delay of −1133 fs. (a)-(c) 2D projections of the PMDs from the experiment, the TDSE simulation
and the classical model. (d) Classification of trajectories in the initial-velocity space according to their number of axis crossings:
trapped trajectories (white), δ = 0 (orange), δ = 1 (green), δ = 2 (yellow) and δ > 2 (rose). (e) Final lateral momentum
component (pz-component) in a.u. as a function of the initial velocity. (f) Characteristic trajectories leading to a given final
momentum marked by points in panels [(b),(c)]. The corresponding initial velocities are also indicated by the points in panels
[(d),(e)]. The electric field ETHz is shown in the inset of panel (a). The experimental data were provided by Ranke [320].

Early delays: ionization of Rydberg states by a single-cycle THz pulse

For very early delays, the continuum part of the wave packet has already traveled far away from the
core, when the main part of the THz pulse arrives. Hence, the coupling between the THz pulse and the
Coulomb potential can be neglected such that the trajectories do not cross the polarization axis (see the
red trajectory in Fig. 4.8(f)). Since these electrons experience the whole THz pulse, their final momenta
deviate only slightly from the THz-field-free situation. Weakly-bound electrons with negative initial
energy also experience the whole THz pulse and, hence, they can be liberated by the single-cycle THz
pulses as in earlier works [105, 304, 335]. Here, the ionization mechanism is mostly determined by the
relative duration of the THz pulse, i.e., for the single-cycle pulse the optical period, compared to Kepler
period τK = 2πn3 of the orbit with an effective quantum number n = 1/

√
−2E.

For high binding energies (e.g. −0.1 eV), the Kepler periods are much smaller than the pulse dura-
tion and an adiabatic over-the-barrier ionization mechanism dominates as discussed in Ref. [105]. The
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ionization probability increases with decreasing binding energy, i.e., for too small initial velocities ion-
ization is suppressed (see Fig. 4.8(d)). In this regime, the interplay between the THz pulse and the ionic
potential results in a complex motion with multiple revisits of the core (see the trajectories shown as
black lines in Fig. 4.8(f)). The chaotic dynamics leads to a fragmentation of the initial-velocity space into
regions of escaping trajectories and of trapped trajectories. As a result, very different initial conditions
are mapped to the same final momenta. For example, about 20 different trajectories contribute to the
momentum indicated as a black point in Figs. 4.8(b),(c). In the 2D PMDs, these contributions lead to a
concentrated signal with very fuzzy structures along the polarization axis. This additional signal is also
visible in the distributions along the polarization in the region between px ≈ −0.15 a.u. and px ≈ 0.1 a.u.
(see Figs. 4.5 and 4.7(d)). The various structures cannot be resolved in the experiment and only appear
as a blurred region.

When going towards the ionization threshold, the binding energy decreases and the associated Ke-
pler period increases. For certain initial energies, the magnitude of Kepler period is on the same order
as the duration of the THz pulse. Hence, the orbits do not circle around the ionic core multiple times.
A typical trajectory is shown as blue solid line in Fig. 4.8(f). The related structures in the PMD are more
extended compared to the chaotic dynamics discussed above. Very close to the ionization threshold, the
Kepler times become much larger than the THz duration. In this regime, ionization can occur by dis-
placement and a counter-intuitive stabilization was observed [304, 305]: More weakly-bound electrons
are less likely to be liberated (see the white area around v0 ≈ 0.1 a.u. in Fig. 4.8(d) that indicates trap-
ping of electrons). The energies in our initial wave packet span both the regime of displacement and the
regime of adiabatic ionization. The combination of both mechanisms leads to an “ionization window”
in the energy distribution with high ionization probability.

Intermediate delays: reminiscence of strong-field phenomena

In the intermediate time range, i.e., when the wave packet is created during the main part of the THz
pulse, very interesting dynamics occurs. Here, the interplay between the electron-ion interaction and the
THz pulse is still very important, but the dynamics can be interpreted by means of a few characteristic
trajectories. For large regions of initial conditions, the motion is regular in the sense that small changes
of external parameters such as the THz field or the initial wave packet only weakly perturb the electron
dynamics and the structures in the PMD.

In conventional strong-field ionization, the release time and the transverse initial velocity of the elec-
trons determine the characteristics of their motion (see Chapter 3 and references therein). For example,
rescattering is only possible for electrons born slightly after the maximum of the electric field. Here, in
contrast, we only “ionize” at a well-defined time given by the delay τ. However, we have to pay the
price that the initial wave packet contains a broad range of parallel initial velocities. Hence, for a given
delay, the initial velocity defines the ongoing dynamics and the structures visible in the PMD. In the
following, we discuss the several physical phenomena through the example of two selected delays.

Streaking of low-energy electrons

When the wave packet is created close to a zero crossing of the THz electric field, the electrons are
accelerated in the same direction for the following half cycle of the THz pulse. Hence, parts of the
wave packet with initial velocity components v0,x antiparallel to the electric field are driven away from
the parent ion. For example, the electric field points in x-direction for time larger than about −58 fs
and a corresponding trajectory is indicated as red dotted line in Fig. 4.9(f). For sufficiently large initial
velocities, these parts of the wave packet are only weakly decelerated by the Coulomb attraction. In
the projected PMD, this results in the triangle-like region at px < −0.1 a.u. (see Figs. 4.9(b),(c)). The
situation is similar to streaking of high-energy electrons or recollision-free strong-field ionization.

Classically, the triangular region is formed of trajectories with both negative and positive initial
energies E. The white dotted line in Fig. 4.9(b),(c) marks E = 0 from the classical model. In the TDSE
simulations as well as in the classical calculations, the shape of this structure in the PMD is sensitive to
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the angular structure of the initial velocity distribution. Thus, the PMD contains not only information
on the energy distribution of Rydberg states but also on the initial shape of their angular distribution.
Unfortunately, the current classical model is not able to fully reproduce the angular dependence of
the quantum-mechanical TDSE results. We think that more advanced modeling is necessary for an
appropriate reconstruction of the initial wave packet from a photoelectron momentum distribution. A
promising approach could be a simple quantum-mechanical model based on eikonal-Volkov states [215].
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Figure 4.9: Electron dynamics analogous to Fig. 4.8, but for a delay of −58 fs. In addition, the white dotted line in panels (b)
and (c) indicates zero initial energy (E = 0). The blue dashed line marks the classical boundary of the scattering plateau. The
experimental data were provided by Ranke [320]. Figure is adapted from Brennecke et al. [322].

Recollision-based phenomena

When considering smaller initial velocities (but still a delay of −58 fs and v0,x < 0), the influence of
the Coulomb potential becomes more prominent. Here, we observe a strong deflection and focusing
of electrons in the lateral direction. This results in an enhancement of the yield in the vicinity of the
polarization axis at the upper edge of the triangle-like region. The corresponding trajectories form the
boundary between zero and a single axis crossing and, hence, their initial conditions lay on the boundary
between the green and orange area in Fig. 4.9(d). Even though trajectories with even smaller initial
velocities can still escape in negative x-direction, they cross the polarization axis during the motion (see
the trajectory indicated as the black dotted line in Fig. 4.9(f)).

On the other hand, trajectories initially launched with v0,x-components parallel to the THz electric
field are first decelerated and may reverse their direction. For large transverse initial velocities, the elec-
tron makes a wide turn around the ion. Its trajectory is still only weakly influenced by the Coulomb field
and can be attributed to recollision-free ionization. An example is shown as black dashed-dotted line in
Fig. 4.9(f). For smaller transverse initial velocities, Coulomb focusing appears similar to conventional
strong-field ionization [77, 78] (see Section 3.4 for further discussions). Here, the electrons are deflected
to very small transverse final momenta and the signal is enhanced in the vicinity of the polarization axis
(see the bright region around px ≈ −0.08 a.u. in Fig. 4.9(b),(c)).

For even smaller transverse initial velocities, the electrons are driven back to the vicinity of the parent
ion during their acceleration in the THz field and scatter off the potential, resulting in strong changes of
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their velocities. Afterwards, they are further accelerated by the THz field. Typical trajectories are shown
as the blue and black solid lines in Fig. 4.9(f). The trajectories cross the polarization axis such that
their topology changes, i.e., their Maslov index changes and a Gouy phase is picked up as discussed
in Chapter 3. Due to the large deflection of the scattered electrons, different parts of the initial wave
packet can be mapped to the same final momentum and interfere. Similar to strong-field photoelectron
holography [74, 239] introduced in Section 3.4.1, we find interference fringes roughly parallel to the
polarization axis in the TDSE simulations. The pattern is caused by the superposition of a nonscattered
and a scattered trajectory (see trajectories indicated as dashed-dotted and solid black lines in Fig. 4.9(f)).
For small final perpendicular momenta p⊥, a third type of trajectories is important (indicated as dotted
black line). Their interference with the holography trajectories results in a coarse signal modulation
in px-direction. The characteristics of interfering trajectories are similar to those leading to intracycle
interference in strong-field ionization [71, 72, 233]. Here, however, the trajectories are released at the
same time τ defined by the IR pulse, but have different initial velocities (in contrast to the “double-slit
in time” present in strong-field ionization).

Classically, smaller transverse initial velocities and, thus, smaller impact parameters lead to larger
the scattering angles of the electrons (see the trajectory indicated as blue solid line in Fig. 4.9(f)). Analo-
gous to the high-order above-threshold ionization (HATI) process introduced in Section 3.4.3, some elec-
trons are deflected to large lateral momenta and form a circular plateau-like region [16, 17]. Its classical
boundary is indicated in Fig. 4.9(b) as blue dashed line. In our numerical simulations, “backscattered”
electrons, i.e., those that are elastically scattered into large angles close to 180◦, also appear in this THz-
driven situation. Analogous to HATI, these particular electrons can acquire “high” kinetic energies. It
is important to note that even though we observed phenomena known from conventional strong-field
ionization, the time, length and momentum scale on which the electron dynamics appears are quite
different in our THz-field-driven situation.
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Figure 4.10: Electron dynamics analogous to Fig. 4.8, but for a delay of 174 fs. In addition, the white dotted line in panels (b)
and (c) indicates zero initial energy (E = 0). The blue dashed line marks the classical boundary of the scattering plateau. The
experimental data were provided by Ranke [320]. Figure is adapted from Brennecke et al. [322].
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Bunching effects

For slight variations of the delay around the zero crossing of the electric field at τ ≈ −58 fs, the electron
motion is only weakly modified and the overall shape of the PMDs remains unchanged. In this region,
the different vector potentials ATHz(τ) at the release times τ solely alter the exact positions and sizes
of the various structures (see the contributions corresponding to zero or one axis crossing in Fig. 4.7).
Despite the shortness of our near-single-cycle THz pulse, similar recollision-free and recollision-based
structures appear in the PMD in reversed direction for delays half an optical cycle later. In the tran-
sition region, i.e., for delays around the maximum of the THz electric field, the physical processes are
drastically changed. In conventional strong-field ionization, electrons liberated directly after the peak
of the electric-field strength can revisit the core multiple times (see for example Fig. 2.2). This compli-
cated dynamics leads to the appearance of low-energy structures [86]. In the THz field similar effects
occur, involving additional axis crossings of the trajectories (see for example the strong contributions of
trajectories with two axis crossings for delays around τ = 200 fs in Fig. 4.7).

To investigate the transition region, we start with the well understood delays around τ = −58 fs
and track the changes towards delays around τ = 200 fs. When going to later delays, the time span
in which the THz field accelerates the electrons in negative x-direction gets shorter. Thus, the electric
field changes its sign when the electron is still in the close vicinity of the ionic core. In this region
of delays, it is not justified to divide the electron motion in THz-driven sections and a “scattering”
process. Instead, the intriguing interplay between the THz field and the ionic attraction defines the
exact electron trajectories. Besides a shift of the whole distribution, we find that the extension of the
rescattering plateau shrinks (see the blue dashed line in Fig. 4.10(b) for a delay of ≈ 174 fs). An analysis
shows that all trajectories with a single axis crossing (see the green area in Fig. 4.10(d)) are deflected to
this tiny region in final momentum space. A typical trajectory is shown as blue solid line in Fig. 4.10(f).
Importantly, for slightly changed initial velocities, the electron circles once around the core and crosses
the polarization axis twice (see the trajectory indicated as blue dashed-dotted line). At the boundary
between these two topologically different types of trajectories bunching occurs, resulting in caustics in
the classical simulations. For a delay of ≈ 174 fs, the bunching effect is also visible as bright spot at
px ≈ 0.08 a.u. in the experimental and TDSE results (see Figs. 4.10(a),(b)). For even later delays, after
the maximum of the THz electric field, electrons with velocity components v0,x > 0 are not efficiently
driven back to the parent ion by the THz field. Thus, similar to conventional strong-field ionization, the
dynamics and the resulting structures in the PMDs are substantially altered in this region of delays.

4.6 Dynamics of zero-energy electrons

The probability of low-energy electrons (expect for zero-energy electrons) is shown in Fig. 4.11(a) as
a function of the delay τ. In the simulations, the normalization is chosen such that the whole wave
packet at the continuum edge has a probability of one. In contrast, the experimental yield is arbitrarily
normalized to best match the TDSE result. The dependence of the yield of low-energy electrons on the
delay is well reproduced by the TDSE and by CTMC simulations.

In contrast, the yield of zero-energy electrons (with
√
p2
x + p

2
z < 0.04 a.u.) is systematically underes-

timated in the simulations (see Fig. 4.11(b)). The experimental result is majorly influenced by the con-
tribution of the bright spot approximately centered at vanishing momentum in the electron momentum
distributions. In earlier works [327–330], this additional signal was attributed to depletion of Rydberg
states after end of the light pulses by the VMI detector field or by blackbody radiation. However, we
find that even when the wave packet is created after the main part of the THz pulse has already passed
(τ > 1100 fs) the yield enhancement is much larger in the measurements with THz source compared
to the THz-field-free situation of Section 4.3. Importantly, in earlier experiments with a similar THz
source [332], it was shown that the applied THz pulses have a weak, but long pulse tail. So far, in the
simulations, we only considered a near-single-cycle THz pulse with vanishing field strength outside the
pulse length of 2.9 ps. In the following section, we investigate the influence of the THz pulse tail and the
static detector field of the VMI to explain the variation of the yield of zero-energy electrons.
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Figure 4.11: Integrated probabilities from 3D results versus time delay. (a) Probability of low-energy electrons except for zero-
energy electrons, obtained by integration over all momenta satisfying |px +Ax(τ)| < 0.2 a.u., |pz| < 0.1 a.u. and

√
p2
x + p

2
z >

0.04 a.u. (b) Zero-energy electrons’ probability with
√
p2
x + p

2
z < 0.04 a.u. The dashed line shows the sum of the classical model

result for a long THz pulse and a selected amount of Rydberg electrons freed by the detector field (see main text at the end of
Section 4.6). The theoretical results are normalized such that the probability of the initial wave packet is chosen to one. The
experimental results were provided by Ranke [320] and are arbitrarily normalized. Figure is adapted from Brennecke et al. [322].

The classical trajectory simulations enable us to include both a tail of the THz pulse and a static
electric field of the VMI. Without detector field, the system is rotationally symmetric around the polar-
ization axis of the THz radiation. Hence, it was sufficient to only consider trajectories in a 2D plane.
The inclusion of a detector field breaks this symmetry. Nevertheless, to keep the simulations compu-
tationally feasible, we restrict ourselves to the 2D dynamics in the plane spanned by the polarization
axis (x-axis) and the detector field F pointing in negative y-direction. After the end of the THz pulse
and at sufficiently large distances r such that V(r) ≈ −Z/r, the situation simplifies to the well-known
Stark problem (see for example Ref. [336]). The corresponding Hamilton-Jacobi equation is separable in
semiparabolic coordinates (ζ =

√
r+ y and σ = ±

√
r− y). For this choice, the Stark barrier is formed in

ζ-direction. The characteristic energy scale of the problem is given by

Ec = 2
√
ZF. (4.2)

For a detector field strength F = 20.5 kV/m ≈ 4 × 10−8 a.u. and an asymptotic charge Z = 1, we
obtain the energy Ec = 4 × 10−4 a.u. Similar to the field-free situation, all electrons with E > 0 are
asymptotically free. The detector field induces additional over-the-barrier ionization of electrons with
energy 0 > E > −Ec. However, not all trajectories which fulfill the energy condition will actually escape.
In addition, a sufficiently large amount of energy needs to be in the degree of freedom ζ, resulting in the
condition

Γζ −
E2

F
> 0 (4.3)

with the conserved quantity Γζ = 4r2ζ̇2 − Fζ4 − 2Eζ2. In the simulations, we propagate all trajectories
till the end of the THz pulse. Afterwards, to speed up the simulations, we restrict ourselves to orbits
that satisfy Eq. (4.3). These escaping trajectories are further propagated till they are sufficiently far away
from the ionic core. From their final momenta p, the momentum distributions are determined. Here,
however, we only consider the distributions along the polarization axis obtained by integration over the
py-direction.

For vanishing detector field strength and for the short THz pulse of Fig. 4.4, the 1D distributions
are shown in Fig. 4.13(a) as a function of the delay. Even though the same overall structures as in the
3D simulations (see Fig. 4.5(c)) are present, their relative weight is slightly changed due to the reduced
dimensionality (2D).8 In order to study the effect of a more realistic THz pulse, we perform additional
simulations for a long pulse with an extended pulse tail of maximal field strength of ≈ 15 kV/cm at
t ≈ 1.4 ps. The tail reaches zero at t = 10 ps (see Fig. 4.12).9 In the low-energy region with |px| > 0.04 a.u.,

8Here, in contrast to the 3D simulations, the focusing in the third dimension has been ignored. The effect is similar to the
dependence on the dimensionality studied in Chapter 3.

9In additional simulations, we confirmed that our conclusions do not depend on the precise length of the THz pulse tail.



64 CHAPTER 4. CONTROL OF ELECTRON WAVE PACKETS USING THZ WAVEFORMS

−0.12

−0.08

−0.04

0.00

0.04

0.08

0.12

−1 0 1 2 3 4 5 6 7 8 9
Ve

ct
or

po
te

nt
ia

lA
T

H
z

[a
.u

.]

Time t [ps]

Short pulse

Long pulse

Figure 4.12: Vector potential of the THz waveforms used in the classical simulations for a short pulse or a long pulse with a pulse
tail. Figure is adapted from Brennecke et al. [322].

all prominent structures are basically unchanged compared to the short pulse result (see Fig. 4.11(b)).
As expected, slightly more electrons with very low kinetic energies (|px| < 0.04 a.u.) are liberated by
the pulse tail. However, we find that even the inclusion of a pulse tail cannot fully reproduce the strong
enhancement of zero-energy electrons visible in the experiment.

For zero-energy electrons, the detector field of the VMI plays a crucial role [329, 336, 337]. Even for
electrons with small positive energies, the static field may induce an additional collision with the ionic
core and modifies the dynamics. Thus, the influence of the detector field in the presence of the long-
range electron-ion interaction results in deviations from parabolic trajectories that are usually assumed
in the interpretation of VMI measurements [43]. The inclusion of the detector field in the classical sim-
ulations leads to the px-distributions shown in Figs. 4.13(b) and (d) for the short and long THz pulses,
respectively. For low-energy electrons (discussed in the previous section), the detector field does not
change the types of structures and their intensity is only very weakly altered. The corresponding elec-
tron trajectories are approximately parabolic after the end of the THz pulse so that a nontrivial influence
of the detector field can be neglected in this region. In contrast, for very low energies (|px| < 0.04 a.u.),
the projected momentum distributions are affected by the detector field and new bright structures ap-
pear. Our findings are in agreement with the momentum scale of pc =

√
2Ec ≈ 0.028 a.u. estimated by

considering the energy of Eq. (4.2).
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Figure 4.14: Integrated probabilities from 2D classical simulations versus time delay. (a) Probability of low-energy electrons
except for zero-energy electrons, obtained by integration over all momenta satisfying |px| > 0.04 a.u. (b) Probability of zero-
energy electrons with |px| < 0.04 a.u. The solid and dotted lines correspond to the four settings of Fig. 4.13 as indicated in the
legend. In addition, the dashed line shows the sum of the classical model result for a long THz pulse and a selected amount of
electron freed by the detector field (see main text). Figure is adapted from Brennecke et al. [322].

When considering both the THz pulse tail and the detector field of the VMI, the signal of zero-energy
electrons is strongly enhanced in the classical simulations. We only discuss further the integrated yield
of zero-energy electrons which is shown in Fig. 4.14(b) for the four settings introduced above. For delays
around τ = 0 fs, the main part of the THz pulse already liberates efficiently all weakly-bound electrons
and, hence, neither the tail nor the detector field leads to additional ionization. Thus, all settings give
approximately the same zero-energy yield. In contrast, for large positive and negative delays, both
the pulse tail and the detector field give rise to additional zero-energy electrons. We find that in the
presence of a long pulse tail the electrons may pick up some additional energy and, hence, a large
amount of electrons appear directly at the continuum threshold. Even though only a fraction is ionized
by the pulse tail itself, the additional excitation leads to more electrons that are freed by the detector
field compared to the short pulse case. Thus, in principle, the enhancement of the zero-energy yield
contains information on the population of Rydberg states after the main part of the THz pulse.

For a simplified treatment, we can split the process in two parts: (i) The THz pulse dominates the
dynamics as long as it is present and the detector field can be neglected. (ii) After the end of the THz
pulse, there is still population left in very weakly-bound states that is subsequently liberated by the
detector field. In Ref. [329], it was shown the static field frees approximately two-thirds of the electrons
with energies −Ec < E < 0.10 For the 2D system, we find that this simple estimate (blue dashed line)
reproduces reasonably well the result of a full classical simulation including both the THz pulse tail and
the static field (blue dotted line). Hence, we apply the analogous procedure to estimate the amount of
zero-energy electrons freed by the detector field in 3D (see blue dashed line in Fig. 4.11(b)). Despite the
simple modeling, the predicted variation of the zero-energy yield agrees with the experimental result.

4.7 Conclusion

The strong-field ionization process is often described as a sequence of two steps: (i) preparation of an
electron wave packet and (ii) its subsequent light-driven dynamics. Both stages are usually governed
by the same electromagnetic field. In this chapter, we provided a theoretical analysis of the natural
extension based on two light fields with very distinct properties so that each field is only responsible for
one of the steps. The wave packet is created by multiphoton ionization using an infrared pulse with 25 fs
duration. Afterwards, wave-packet motion is steered by a carrier-envelope-phase-stable near-single-
cycle THz pulse with a cycle length of about 1.3 ps at the central frequency. Hence, the preparation

10In their derivation, it was assumed that the energy and the cosine of the angle of the initial electron velocity in the x-y-plane
are uniformly distributed. For a uniform distribution of the energy and the angle itself, one would instead get a fraction of 2/π of
freed electrons.



66 CHAPTER 4. CONTROL OF ELECTRON WAVE PACKETS USING THZ WAVEFORMS

time of the wave packet is well localized on the scale of an optical cycle of the THz field. We mostly
concentrated on the part of the created electron wave packet at the continuum threshold with energies
extending across weakly-bound and continuum states. For these low-energy electrons, the interplay
between the Coulomb attraction and the external THz field is of major importance.

To image the electron dynamics, we considered the projections of the photoelectron momentum
distributions for a wide range of delays between both pulses. Our TDSE simulations in 3D reproduced
well the main features of the experimental results [322] in the low-energy region. The THz-field-free
situation is retrieved when the wave packet is created after the main THz pulse has already passed (large
positive delays). In contrast, chaotic ionization of Rydberg states is observed when the wave packet is
created before the main THz pulse arrives (large negative delays). Importantly, in the intermediate
delay range, the subcycle timing of the pulses allowed us to control what physical processes take place
ranging from weak deceleration of the outgoing wave packet by the Coulomb attraction to pronounced
electron-ion-scattering phenomena. We identified the different regions of electron dynamics by means
of a simple trajectory-based model.

For certain delays, recollision-free motion was observed so that the PMDs contain information on
the prepared electron wave packet for both continuum states and weakly-bound Rydberg states. Not
only the energy distribution, but also the angular structure of the wave packet leaves its imprint on
the PMD. In the future, this might be exploited to image the shape of Rydberg wave packets and may
enable a deeper understanding of electron trapping in Rydberg states during strong-field ionization in
single-color [299, 300] or two-color fields [338, 339].

In addition, we demonstrated that the electron can be driven back by the THz field to the parent
ion, resulting in scattering phenomena reminiscent of well-known strong-field processes. In the PMDs,
regions of Coulomb-focused electrons and holographic interference patterns were identified. For certain
delays, even a high-energy plateau structure is formed by electrons that undergo large-angle scattering.
Our findings show a remarkable correspondence between common strong-field dynamics in visible
or infrared laser pulses and the electron motion under scaled conditions in THz fields. Therefore, it
should be possible to transfer imaging techniques from conventional strong-field and attosecond physics
to electron dynamics at the continuum threshold with its much longer time and larger length scales.
This could pave the way for the investigation of so far unexplored dynamics of Rydberg electrons in
molecules [340, 341] or of multielectron phenomena [307]. For example, in rare gas dimers, the recapture
of multiple electrons was observed during dissociation [340]. Since the time scale of dissociation and the
THz period are comparable, THz fields could allow for the manipulation of the number of recaptured
electrons and their site of recombination.

For electrons at very-low energies, termed zero-energy electrons in this chapter, the TDSE simula-
tions based on a short THz pulse were unable to reproduce the experimental PMDs. We found that the
dynamics of these electrons is influenced by a weak, but long tail of the THz pulse that is usually present
in experimentally-accessible THz waveforms. Within the trajectory-based model, we identified that the
pulse tail directly creates zero-energy electrons and, furthermore, leads to additional excitation within
the Rydberg states. After the end of the THz pulse, the static detector field present in experiments in
combination with the long-range potential induces additional ionization of those weakly-bound Ryd-
berg states. This two-step mechanism leads to a further enhancement of zero-energy electrons.

For a clean observation of phenomena reminiscent of strong-field processes, the energy gap between
the zero-energy electrons and higher-order ATI peaks (from absorption of additional IR photons) should
be as wide as possible. In the future, this could be achieved by using visible laser pulses (for example at
400 nm wavelength). Since higher photon energies increase the spacing between the ATI peaks, back-
ground effects in the low-energy region are reduced. Furthermore, the use of short circularly-polarized
THz pulses and the control of the ATI peak positions via the ponderomotive shift in the IR field could
enable us to time resolve the wave-packet creation by means of the attoclock technique [52–54].



Chapter 5

Momentum-Resolved Attoclock

5.1 Introduction

Simple man’s picture

The attoclock technique, also known as “attosecond angular streaking”, was introduced by Eckle et al. to
measure ionization times in strong-field physics [52, 53]. The scheme is based on the idea that the light
field deflects the photoelectrons according to their ionization time t0 to a final momentum p, i.e., a time
stamp is put on the ionization process [52, 213]. In the simple man’s model, i.e., when the electron-ion
interaction is neglected, an electron starting with vanishing initial velocity v0 is mapped by the external
field to the final momentum p = −A(t0) [7, 8]. For circularly-polarized cw fields with a vector potential

A(t) = −A0

(
cos(ωt)
sin(ωt)

)
, (5.1)

this time-to-momentum mapping is particularly simple. Here, the release times t0 are uniquely related
to the electron’s emission direction φp = ∠(px,py) in the polarization plane by φp = ωt0. The situation
is schematically illustrated in Fig. 5.1(a).
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Figure 5.1: (a) Schematic illustration of the attoclock principle in circularly-polarized cw fields. Electrons released at time t0 = 0
appear at a tunnel exit r0 (here in -y-direction). If the electrons are afterwards only accelerated by the external electric field (with
force FL), they follow the dashed trajectory and are finally detected with a momentum p = A0ex, i.e., at an angleφp = 0. How-
ever, the force FC due to the electron-core interaction perturbs their motion such that the electrons are deflected to an offset angle
φoff compared to the potential-free case (see the trajectory shown as the solid line). Adapted from Refs. [161, 213]. (b) Observable
of the attoclock: slice at pz = 0 through the electron momentum distribution for strong-field ionization of hydrogen in a short
circularly-polarized laser pulse. The maximum of the distribution is rotated towards positive angles. The PMD is calculated by
numerical solution of the TDSE in 3D for a two-cycle pulse at 800 nm wavelength and 1× 1014 W/cm2 intensity.

For atoms ionized by a cw field with circular polarization, there is no preferred emission direction of
the electrons due to the cylindrical symmetry of the system. To break the symmetry and induce a clear
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maximum in the photoelectron momentum distribution, many implementations use close-to-circularly-
polarized laser fields [52–54, 342–345], e.g., slightly elliptically-polarized fields or a short pulse envelope.
Here, we choose the laser fields such that the field strength reaches a maximum at time t = 0 and the
corresponding electric field points in y-direction. In the simple man’s model, electrons liberated at
time zero (t0 = 0) are first accelerated in −y-direction and, afterwards, are deflected by the laser field
to the positive x-direction. Hence, the electron momentum distribution is expected to maximize at a
momentum p = −A(0), i.e., along the direction with φp = 0.

The influence of Coulomb effects

In the experiment (see for example Refs. [52–54]) or when solving the TDSE (see for example Refs. [346–
348]) for close-to-circularly-polarized fields, however, the presence of the ionic potential leads to a dis-
tortion of the distribution and an angular offset between the actual maximum of the momentum distri-
bution in the polarization plane and the simple man’s estimate. This measurable offset in the orientation
of the distribution is usually the main observable in attoclock experiments and it is termed global atto-
clock offset in the following. As an example, the momentum distribution for ionization of hydrogen with
a short two-cycle laser pulse is shown in Fig. 5.1(b). The distribution is clearly “rotated” forward with
respect to the handedness of the electric field [161, 346] and a global attoclock offset of φoff ≈ 18◦ can be
read off.

To interpret the photoelectron momentum distributions and to reveal the underlying physical mech-
anisms, intuitive theoretical models are required which are based on additional assumptions. Usually,
for strong-field ionization, the interpretation heavily relies on trajectory-based approaches (see for ex-
ample Refs. [52–54, 342]). In a classical two-step picture [7, 8, 210], the ionization step creates an electron
wave packet that is represented by an initial probability distribution and characterized by initial con-
ditions (release time, velocity and position). The subsequent acceleration by the laser electric field in
the presence of the electron-ion interaction deflects the wave packet to a final momentum distribution.
Qualitatively, the Coulomb-induced changes of the electron’s motion and the resulting offset angle rel-
ative to the Coulomb-free case are already evident by considering only a single trajectory launched at
t0 = 0 (see the blue solid line in Fig. 5.1(a)). More generally, the present Coulomb force of the residual
ion leads to a more complicated classical mapping of the release time t0 to the final momenta p com-
pared to the simple man’s model. This mapping depends on the tunnel-exit position r0 and the initial
velocity v0 of the electrons. For example, under adiabatic conditions, the Coulomb-induced momentum
change of an electron with vanishing initial velocity can be approximated as [210, 347]

∆p =
πZ

2
√

2r3
0E(t0)

Ê(t0) =
πZ

(2Ip)3/2 E(t0), (5.2)

where we used an approximation of the tunneling barrier width as r0 = Ip/E(t0). For circularly-
polarized fields, the classically-expected radial momentum is given by p⊥ = A0 = E0/ω such that
the momentum shift results in a global offset angle

φoff =
πωZ

(2Ip)3/2 . (5.3)

Many theoretical studies based on various techniques indeed confirmed that the global attoclock off-
set is mostly attributed to the influence of the Coulomb attraction on the outgoing electron. Examples
of recently used approaches are the analytical R-matrix theory [213], classical-trajectory Monte Carlo
simulations [349], the classical backpropagation method [211, 350, 351], a classical Rutherford scatter-
ing model [352] and trajectory-free ionization times from Dyson integrals [353]. Hence, the attoclock
scheme can be viewed as a concept to probe the interplay between laser field and Coulomb interaction
on microscopic scale in a setting where intracycle interference and recollisions are negligible. The com-
parison of experimentally-accessible photoelectron momentum distributions to theoretical simulations
allows us to study strong-field ionization on a very fundamental level and to benchmark its theoretical
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modeling.1 The detailed understanding is a key challenge, because the ionization step is the starting
point for more complex processes such as high-harmonic generation, laser-induced electron diffraction
or nonsequential double ionization. A summary of several developments in attoclock-like setups and
their interpretation can be found in Refs. [55, 56].

Modern developments and the goals of this chapter

Most previous attoclock experiments were performed on noble gases, where multielectron effects [54,
182, 213] and initial states carrying angular momentum [354, 355] may influence the ionization process.
For a long time, the simplest target, atomic hydrogen, with its well-known electronic structure defined
by the electrostatic potential of the proton was only studied theoretically. Recently, Sainadh et al. per-
formed the first attoclock experiment with atomic hydrogen to study tunnel ionization [342, 356], veri-
fying the theoretically-predicted global attoclock offsets quantitatively. Trabert et al. conducted a similar
experiment, but considered more nonadiabatic ionization conditions by using an elliptically-polarized
femtosecond laser pulse with a central wavelength of 390 nm [357]. The experiment shows four above-
threshold ionization peaks in the photoelectron energy spectrum. By determining the attoclock offset
for each peak separately, an increasing offset as a function of energy was observed. In Section 5.2.3,
we use the unique opportunity and provide numerical results from ab-initio simulations of the TDSE to
benchmark theoretical predictions against experimental findings.

More generally, the attoclock offset depends on the lateral momentum in the polarization plane and
on the momentum in the light-propagation direction. Residuals of this momentum dependence were al-
ready noted in the theoretical works [358, 359] and also observed in different experimental studies [343–
345, 357, 360]. Even though close-to-circularly-polarized fields were used in all mentioned settings, some
experiments found increasing attoclock offsets and others decreasing attoclock offsets as a function of
energy. In this chapter, we systematically study the momentum-dependent attoclock offsets. For close-to-
circularly-polarized laser fields, we show that the opposite trends are related to the geometry of the
liberated electron wave packets, i.e., to the way how the rotational symmetry of circular polarization is
broken. As motivated above, the global attoclock shift is strongly influenced by the tunnel-exit position
of the electron such that the attoclock can act as a fine “nano-ruler” [55] that measures the tunnel-barrier
width (see Eq. (5.2) and for example Ref. [54]). By analyzing higher-dimensional observables such as the
momentum-dependent attoclock offsets, we can investigate the influence of an initial electron velocity
on the ionization process. We demonstrate that momentum-dependent attoclock offset is affected by the
velocity dependence of the tunnel-exit position.

To study the momentum-dependent offsets, the attoclock setting should first be as simple as pos-
sible such that liberation of electrons by an adiabatic tunnel-ionization process is highly desirable. In
the adiabatic limit, ionization becomes a quasistatic process and, thus, it is independent of the concrete
electric-field shape. However, it is the question how to approach this limit in a simple way. In general,
the nonadiabatic corrections depend on the change of the tunneling barrier with time and, thus, on the
particular waveform. For circular polarization, the tunnel’s direction rotates, resulting in an offset of the
initial perpendicular velocities of the electrons and, thus, in an increased mean of the photoelectron en-
ergy compared to the simple man’s model [170]. The additional nonadiabatic velocity can be explained
by considering energy transfer to the electron during its under-the-barrier motion [163, 164]. In contrast,
for linear polarization, the rotational symmetry around the polarization axis enforces a symmetric distri-
bution of the perpendicular initial velocities. Importantly, the quantum-orbit model results in a nonzero
velocity component along the direction of the electric field [162] which vanishes in the vicinity of the
peak electric-field strength. In the usually studied elliptically-polarized attoclock configuration, there is
a debate on the the transverse [361] and the parallel [362–366] momentum distributions in nonadiabatic
ionization.

1Importantly, this does not mean that the attoclock method is able to select a single correct model. For example, even in a
trajectory-based picture, the origin of the offset could be explained by different features such as the effect of Coulomb attraction
on the outgoing electron, a time delay relative to the time of peak field strength or an initial velocity of the electron in instantaneous
field direction. The interpretation depends always on the concrete assumptions made in a model.
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In principle, complications due to nonadiabatic velocity offsets of the transverse distribution could
be avoided in the attoclock analysis by studying the dynamics in linearly-polarized fields. However,
pure linear polarization is not well suited. As discussed in Chapter 3, for ionization at peak electric-field
strength, recollisions in the Coulomb field strongly affect the electron dynamics [78, 79, 81, 82]. Addi-
tionally, intracycle interference distracts the signal [71, 72] and prevents an interpretation of the distri-
bution by means of a single ionization time. To avoid these problems, the strong-field dynamics can be
studied in an alternative waveform introduced by Eicke et al. [359]. They used a specific bicircularω-2ω
field composed of two counter-rotating fields (as introduced in Section 3.4.4) such that the electric field
resembles linear polarization three times per optical cycle of the fundamental field. At the same time,
the field shape provides a time-to-momentum mapping similar to the conventional attoclock [359, 367].
For this particular “bicircular” or “quasilinear” attoclock, the Coulomb attraction on the outgoing elec-
tron induces a shift of the electron momentum distribution along the instantaneous field direction [359].
Similar to pure linear polarization, the setting is nearly isotropic in the directions perpendicular to the
instantaneous field in the vicinity of the peak electric-field strength. Thus, the bicircular field provides
a clean setup to investigate the dependence of the attoclock shift on the electron’s initial velocity. The
momentum-dependent attoclock offsets for the quasilinear field are studied in Section 5.3.

In the regime of adiabatic ionization, the picture of tunneling through a potential barrier is most
useful. In a stationary one-dimensional scenario, the zero-kinetic-energy principle naturally dictates the
tunnel-exit position [368]. In higher spatial dimensions, the choice of the tunneling coordinate is not
unique and ambiguities already arise. For a Coulomb potential, the separation of Schrödinger’s equa-
tion in parabolic coordinates is possible and leads to the TIPIS tunnel-exit position [54, 260, 347] (see
Eq. (2.48)). The TIPIS result differs from the tunnel exit of the field-direction model based on Cartesian
coordinates [77, 347]. For a time-dependent barrier in a nonadiabatic ionization scenario, the situation
is even more complex, because the energy is not conserved anymore during tunneling [163]. The clas-
sical backpropagation method [211, 350, 351] offers an approach to extract characteristic features of the
ionization process from ab-initio simulations. Within this framework, the ionization step is first treated
quantum mechanically. The ejected electron wave packet is then used to define a swarm of classical
trajectories that are propagated backwards in time until a tunneling criterion is met. At that time, the
observables at the tunnel exit are extracted. In contrast to the original work [211, 350, 351], we propose
a momentum-space-based implementation to study the relation between initial velocity and initial po-
sition of the electrons. This (independent) approach on the tunneling characteristics is used to support
our understanding of the momentum-dependent attoclock shifts.

A major goal of this chapter is to provide a more complete picture of existing attoclock implemen-
tations and, especially, to address their limitations and problems in their interpretation. The first part
of this chapter considers results for the attoclock with close-to-circularly-polarized fields and is based
on joint work with the group of Reinhard Dörner in Frankfurt, especially Daniel Trabert and Sebastian
Eckart. Trabert et al. performed the attoclock experiment on atomic hydrogen using the COLTRIMS
technique whereas we provided results from TDSE simulations for the publication [357]. Inspired by
discussions with Sebastian Eckart, the momentum-resolved bicircular attoclock was studied. Parts of
this work are published in Ref. [369].

5.2 Attoclock using close-to-circularly-polarized fields

We begin to study the momentum-dependent attoclock offsets by considering the commonly-used close-
to-circularly-polarized attoclock settings. Here, we focus on three important cases:

• Circularly-polarized pulses with very short envelope represented by a vector potential

A(t) = −A0

(
cos(ωt)
sin(ωt)

)
cos4

(
ωt

4

)
. (5.4)

These pulses were used in various theoretical studies, e.g., in Refs. [213, 350, 353].
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• Two-color co-rotating bicircular fields represented by a vector potential

A(t) = −A0
2

2 +
√
R

[(
cos(ωt)
sin(ωt)

)
+

√
R

2

(
cos(2ωt)
sin(2ωt)

)]
. (5.5)

For small intensity ratios R of the two colors, the perturbation by the second-harmonic field in-
duces a single maximum of the electric field and also of the vector potential. This field shape was
recently used in Ref. [344].

• Elliptically-polarized fields with ellipticity ζ represented by a vector potential

A(t) = −A0

(
cos(ωt)

sin(ωt)/ζ

)
. (5.6)

For |ζ|→ 1, a circularly-polarized field is retrieved. For |ζ| 6= 1, the semi-major axis is aligned along
the y-axis. Elliptically-polarized fields were used in the original attoclock implementation [52, 53]
and also in the recent experiments on atomic hydrogen [342, 357].

For these choices, the Lissajous figures of the negative vector potentials at 800 nm fundamental wave-
length are shown as black dashed lines in Figs. 5.2(a). The definitions ensure that the vector potentials
at t = 0 are the same, i.e., A(0) = −A0 ex. A gray circle with radius A0 ≈ 0.66 a.u. indicates the negative
vector potential of pure circular polarization with 800 nm wavelength and 1× 1014 W/cm2 intensity.
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Figure 5.2: (a) Photoelectron momentum distributions for strong-field ionization of atomic hydrogen at 800 nm fundamental
wavelength modeled by strong-field approximation using a saddle-point method. (b) Corresponding distributions individually
normalized for each radial momentum p⊥. Results for a short circularly-polarized pulse (5.4) are shown in panels [(a1),(b1)], for
a co-rotating bicircular field (5.5) with R = 0.1 in panels [(a2),(b2)], and for an elliptically-polarized field (5.6) with ζ = 0.85 in
panels [(a3),(b3)]. The negative vector potentials are depicted as black dashed lines. The gray thick line marks a circle of radius
A0 ≈ 0.66 a.u. The white dashed lines indicate the positions of angular offsetsφoff(p⊥) for each radial momentum p⊥ (see main
text).
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5.2.1 Geometry of the electron wave packets

Before including the effects of Coulomb attraction on the momentum distributions, we first explore the
geometry of the liberated electron wave packets in the strong-field approximation.2 Slices at pz = 0
through the PMDs for ionization of atomic hydrogen are shown in Figs. 5.2(a). For short circularly-
polarized pulses and the bicircular waveform, the single maximum of the electric-field strength is re-
flected as a unique global maximum in the PMD marked with a black dot. In contrast, the elliptically-
polarized field is invariant under a time shift by Tω/2 and a simultaneous rotation by 180◦. This dynam-
ical two-fold symmetry is carried over to the PMD. Two equivalent maxima appear that are attributed
to the two instants of maximal field strength within an optical cycle (at t = 0 and t = Tω/2). Hence,
for elliptical polarization, we restrict ourselves to the half plane with px > 0 linked to one half cycle
of ionization times. As expected, for all three field shapes, the global maxima of the PMDs are on the
px-axis and are attributed to ionization at the time of peak electric-field strength.

For further characterization of the PMD’s geometry, in addition to the global attoclock maximum, we
analyze the maximum’s position φoff(p⊥) for each fixed radial momentum p⊥ separately. To improve
the visibility of the angular distributions for less probable p⊥, panels (b) of Fig. 5.2 show the distri-
butions normalized to maximum value one at each radial momentum p⊥ individually. For elliptical
polarization, Figure 5.3(a) shows 1D slices through the PMD as a function of the angle φp at various
fixed radial momenta p⊥. In agreement with Ref. [210], there is only a single maximum at φoff = 0◦ for
small momenta p⊥. However, when going towards larger p⊥, the maximum gets broader and it splits
in two maxima at p⊥ ≈ 1.05 a.u. (here a bifurcation occurs). The maximum’s angle changes continu-
ously from 0◦ to ±90◦. For the branch with increasing angle, the maximum’s angle φoff(p⊥) is shown
in Fig. 5.3(b) as a function of p⊥. Translated back into Cartesian coordinates, positions of the maxima at
fixed momenta p⊥ are reprinted in Fig. 5.2 as white dashed lines.3
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Figure 5.3: Maximum splitting of the angular distribution for elliptical polarization: (a) 1D slices through the PMD of Fig. 5.2(a3)
for fixed radial momenta p⊥ given in the legend in a.u. Each distribution is individually normalized. When going from small p⊥
towards larger p⊥, the maximum of the distribution is split in two maxima. (b) Offset angle φoff(p⊥) as a function of p⊥: SFA
results (solid lines) and results from an ADK-based model (dashed lines). Shown are the results for five different wavelengths
indicated in the legend and for the same intensity as in Fig. 5.2. The results of the ADK-based model for 400 nm to 800 nm
wavelength are on top of each other.

In the vicinity of the global maximum, the anglesφoff(p⊥) vanish for the three field shapes. However,
when going to small p⊥ and large p⊥, the three waveforms show different trends. As discussed above,
the maximum is splits into two at large p⊥ for elliptical polarization whereas this branching occurs at
small p⊥ for short circularly-polarized pulses and for the bicircular waveform. Even though the SFA
distributions are mirror symmetric in py, it is not guaranteed that there is a maximum on the px-axis for
every momentum p⊥. For angles φoff(p⊥) 6= 0, the associated real parts of the saddle-point times are not
equal to zero anymore. Since these nonzero offset angles already exist in SFA, it is questionable whether
they should be called “attoclock” or “deflection” angles.

2We apply the saddle-point approximation to the KFR amplitude and include only the contribution (2.45) of a single saddle-
point time t ′s for each final momentum p. Therefore, Fig. 5.2 does not exhibit any ATI rings.

3For a given p⊥, several equivalent maxima may appear due to the symmetry of the PMDs.
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The use of polar coordinates in the attoclock analysis is inspired by the rotational symmetry in pure
circular polarization and the resulting time-to-angle mapping. However, to observe attoclock offsets,
the introduced waveforms break this symmetry and, thus, the time-to-momentum mapping as well as
the geometry of the PMDs changes. In general, the PMDs roughly follow the negative vector potential
−A(t). For elliptical polarization, the vector potential bends (in the vicinity of t = 0) outwards com-
pared to a circle of constant radius A0. Hence, already in a simple man’s model, radial momenta with
p⊥ > A0 are preferred for angles |φp| � 0. As a result, when using polar coordinates for the final
momentum distribution, it is plausible that the offset angles are nonzero at large p⊥. In contrast, for
the short circularly-polarized pulses and the bicircular waveform, the vector potential bends inwards
compared to a circle and, hence, the opposite behavior is observed (here the splitting occurs at small
p⊥). In elliptical polarization, the problem of nonvanishing angles φoff(p⊥) could be partially cured by
analyzing the PMD in symmetry-adapted coordinates and determining the maximum’s positions along
lines of constant generalized radii [362]. For our analysis, however, we keep polar coordinates and view
the angle dependence φoff(p⊥) as one possible way to characterize the geometry of the wave packet.4

In the remaining part of this section, we quantify the branching of the offset angle, i.e., a transition
of the angles from φp = 0◦ to φp = 90◦, for elliptical polarization and consider the influence of nona-
diabaticity. The splitting of the maximum can be studied by comparing the signal along the py-axis (at
φp = 90◦ corresponding to t0 = Tω/4) to the px-axis (at φp = 0◦ corresponding to t0 = 0).5 Using a
two-step model as in Section 2.4 based on the adiabatic ADK rate (2.3), the ratio at fixed p⊥ is given by

w(p⊥,φp = 90◦)
w(p⊥,φp = 0◦)

= exp
(
−
κ

E0

(
2
3
κ2
(

1
ζ
− 1
)
+

[
(p⊥ −A0/ζ)

2

ζ
− (p⊥ −A0)

2
]))

. (5.7)

Splitting of the maxima occurs when the ratio crosses one, i.e., when the exponent has a zero crossing.
This is the case, if the following condition is fulfilled

A0 >

√
2
3
ζκ. (5.8)

For hydrogen with κ = 1 a.u. and an ellipticity of ζ = 0.85, a splitting of the maxima should only
appear for A0 & 0.75 a.u. For sufficiently adiabatic conditions, the angles φoff(p⊥) of the ADK-based
model reproduce the SFA result well (see Fig. 5.3(b)). However, the SFA predicts a maximum splitting
for all considered wavelengths. The difference compared to the ADK-based result is mostly caused by
nonadiabatic corrections of the initial lateral velocity distribution [170, 354, 370–372]. To first order in
the Keldysh parameter, the most probable initial velocity (at fixed release time t0) is shifted by [161]

∆v0 = −
Ip

3E2(t0)

(
Ė(t0) − (Ė(t0) · Ê(t0))Ê(t0)

)
. (5.9)

As a result, for elliptical polarization, the radial distribution at φp = 90◦ is further shifted outwards
by nonadiabatic effects compared to the radial distribution at φp = 0◦. This explains qualitatively that
there is also a transition of φoff(p⊥) towards 90◦ for large p⊥ in the SFA for small wavelength.6

5.2.2 The influence of the Coulomb potential

To go beyond the SFA and include the influence of the ionic potential, we perform numerical simulations
of the TDSE for a bare Coulomb potential. To this end, we use the pseudospectral method and include

4This choice works well when ATI rings are present and it is the same as in the previous experimental studies [343–345, 357].
5The radial distribution along the py-axis is located at larger p⊥ compared to the distribution along the px-axis due to a

larger magnitude of the associated vector potential |A(Tω/4)| > |A(0)|. On the other hand, the ionization rate is higher at the
maximum of the electric-field strength at t = 0 compared to t = Tω/4. This interplay determines whether branching occurs.

6In the Supplemental Material of Ref. [357], we present a systematic study of the wavelength dependence and compare results
from TDSE simulations to semiclassical models. In agreement with the results of this section, the inclusion of nonadiabatic effects
in the initial distribution is important to reproduce the offset angles φoff of about 90◦ for large perpendicular momenta p⊥ (that
are visible in the TDSE simulations for all studied wavelengths).
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spherical harmonics up to lmax = 384. More computational details are presented in the next section. For
the simulations, the elliptically-polarized field and the bicircular field are augmented by a cos2 envelope
of ten cycles total duration. The resulting distributions are averaged over eight CEPs between 0 and 2π.
Figure 5.4 shows the PMDs for the three field shapes. In order to avoid the influence of ATI rings on
the renormalized distributions of panels (b2) and (b3), these distributions were first averaged over an
energy intervalω.

Even though the overall structure of the PMDs from TDSE is quite similar compared to the SFA
results, the reflection symmetry in y-direction is broken [210, 373]. Importantly, the Coulomb-induced
deflection of the electrons is not a uniform rotation of the momentum distribution. For example, in an
adiabatic classical picture, the final momentum is shifted in the direction of the instantaneous electric
field (see Eq. (5.2)). Moreover, in a trajectory-based description, the deflection in momentum space
depends on the ionization time and the initial velocity. For radial momenta p⊥ with a single maximum
of their angular distribution in the SFA, the maximum’s angle is displaced forward with respect to the
handedness of the electric field, in analogy to the global attoclock offset. However, when the angular
distribution in the SFA has two maxima in the interval [−90◦, 90◦], the Coulomb effects lead to a selection
of one dominant maximum [210, 373].

The comparison of the PMDs from SFA (see Fig. 5.2) and from TDSE (see Fig. 5.4) shows that the over-
all dependence of the maximum’s angle φoff(p⊥) on the radial momentum p⊥ has a similar trend (see
white dashed lines). Depending on the field shape, large angles are observed either at small p⊥ (pan-
els (a1),(a2)) or at large p⊥ (panel (a3)). This explains the discrepancy of decreasing angles φoff(p⊥) as a
function of p⊥ for short circularly-polarized fields [353] as well as for co-rotating bicircular fields [344]
and the increasing angles φoff(p⊥) as a function of p⊥ for elliptical polarization [343, 345, 357]. We find
that, for either small or large p⊥, the angles are fixed by the geometric constraints and relatively insensi-
tive to the ionic potential. In the intermediate region, especially close to maximum splitting in the SFA,
the PMD is extremely flat and, thus, small perturbations can induce large angular offsets. As a result,
the maximum’s angle φoff(p⊥) is very sensitive to the ionic potential.
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Figure 5.4: Comparison of slices at pz = 0 through the photoelectron momentum distributions of hydrogen for three different
waveforms analogous to Fig. 5.2, but calculated by numerical solution of the TDSE in 3D. For the co-rotating bicircular field and
the elliptically-polarized field, ten-cycle pulses with cos2 envelope are used and the results are averaged over eight CEP values.
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5.2.3 Nonadiabatic ionization of atomic hydrogen

Atomic hydrogen with its single electron is the simplest system to study light-matter interaction. Since
multielectron effects are absent, the electron only experiences the laser field and the well-defined electro-
static potential V(r) = −1/r of a proton. As a result, the hydrogen atom is the most-frequently discussed
benchmark system in theoretical studies and textbooks. However, experiments on the strong-field ion-
ization of atomic hydrogen are rare, because the preparation of hydrogen atoms out of molecular H2

and the separation of atomic events from those resulting from nondissociated H2 is quite challenging.
Sainadh et al. [342, 356] conducted the first attoclock experiments to study adiabatic ionization of atomic
hydrogen. More recently, Trabert et al. [357] used an attoclock geometry based on elliptically-polarized
pulses to investigate nonadiabatic ionization. To this end, atomic hydrogen was irradiated using fem-
tosecond laser pulses at a central wavelength of 390 nm and a peak intensity of 1.4 × 1014 W/cm2. The
conditions correspond to a Keldysh parameter of about 3. The aim of this section is to benchmark these
experimental results against numerical simulations of the TDSE and to further explore the geometry
of the electron momentum distributions. All shown experimental data are kindly provided by Daniel
Trabert et al. [357].

Computational details

To calculate photoelectron momentum distributions in the dipole approximation, we solve numerically
the TDSE in the single-active-electron approximation by means of the pseudospectral method in length
gauge as described in the Appendix A.2.1. For the nonadiabatic conditions, the main part of the PMD
is located at small energies and, hence, a major challenge is to determine accurately the signal in this
region. To this end, we numerically propagate the wave function till the end of the laser pulse and
calculate the photoelectron momentum distribution (2.19) by projection on the exact scattering states of
the Coulomb potential.7 Elliptically-polarized laser pulses centered at a wavelength of 390 nm with an
ellipticity ζ = 0.85 and a cos2 envelope of the vector potential are used. Most of the results are calculated
for a total duration of 20 optical cycles. The PMDs are averaged over four CEPs between 0 to 2π. In
an experiment, the intensity spatially varies over the laser focus. The measured electron momentum
distributions contain the contributions of the whole laser focus. To include this focal-volume-averaging
effect, we follow the scheme introduced in the Appendix A.2.4 and assume a Gaussian beam profile.
If not stated otherwise, we use a peak intensity in the focus of Ipeak = 1.4 × 1014 W/cm2 and perform
calculations for 27 intensities ranging from 0.1× 1014 W/cm2 to 1.4× 1014 W/cm2.

During the time propagation with a time step of ∆t = 0.08 a.u., the wave function is represented in
spherical coordinates and its angular dependence is expanded in spherical harmonics. For most calcu-
lations, a maximal orbital angular momentum lmax = 192 is used. The radial coordinate is discretized
using Nr = 1000 points on a nonuniform grid (A.43) with an extension rmax = 900 a.u. and parameters
L = 300 a.u., β = 0.25.

Results

Four ATI rings are clearly visible in the projection of the electron momentum distribution onto the po-
larization plane shown in Fig. 5.5(a). These are reflected as peaks that are approximately spaced by the
photon energy of 3.18 eV in the electron energy spectrum (see Fig. 5.5(b)). In order to calibrate the laser
intensity, the experimental energy distribution was compared to the theoretical simulations. The best
agreement was found for the used peak intensity of Ipeak = 1.4×1014 W/cm2. In general, the experimen-
tal distributions and in particular the relative signal strength of the different peaks are well reproduced
by the TDSE results. The largest deviation of about 15% of the emission strength is visible for the peak
centered at ≈ 4 eV. To explore the origin of this deviation, we performed additional simulations for a

7A comparison of the global attoclock offsets from our implementation to previous works [213, 352] is shown for short
circularly-polarized laser pulses in Fig. A.8 of the appendix.
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changed beam profile of the laser focuses, i.e., a modified weighting of the PMDs for the different in-
tensities, and also for different pulse envelopes. Both properties can change the energy distributions
on the order of 10%, but are typically not precisely known in experiments. The pulse duration in the
simulations differs from the experiment: 50 fs (FWHM in intensity) pulse are used in the measurements
whereas pulses of 20 cycles total duration (corresponding to about 9.5 fs FWHM) are used for most sim-
ulations. However, for total pulse lengths in the range between 10 and 30 optical cycles, we confirmed
that all presented quantities do not significantly change.
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Figure 5.5: (a) Photoelectron momentum distribution projected onto the polarization plane for ionization of atomic hydrogen by
elliptically-polarized pulses (ζ = 0.85) at 390 nm central wavelength calculated by numerical solution of the TDSE in 3D for a total
pulse duration of 20 cycles. A peak intensity of Ipeak = 1.4× 1014 W/cm2 is used for the focal-volume averaging. (b) Simulated
energy spectra for three different pulse durations are compared to the experimental result of Trabert et al. [357]. Figure is adapted
from Trabert et al. [357].

An angular modulation of the signal on the ATI rings due to the finite ellipticity is clearly visible
in the projected PMD (see Fig. 5.5(a)). For a quantitative comparison, we calculate the angular distri-
butions w(φ) by integration of the projected PMD over a ring around each ATI peak. For the differ-
ent ATI peaks, the theoretically-simulated angular distributions are in quantitative agreement with the
experimentally-measured ones (see Fig. 5.6). The experimental uncertainty is the largest for the highest
energy, where 153 events were only detected. The major axis of the polarization ellipse is again aligned
along the y-axis. The four angular distributions show two distinct minima and maxima, but their mod-
ulation depth depends on the energy. The most probable emission angles increase with energy. To avoid
complications due to experimental noise, the offset angles are not directly determined by maximum’s
search. Instead, the angular distribution for each peak is approximated using a Fourier series

w(φ) =
B0

2
+

N∑
k=1

Bk cos(k(φ− φk)). (5.10)

The coefficients Bk and φk can be easily calculated by using the sine-cosine-form of the Fourier series.
The coefficients Bk vanish for odd k due to the two-fold symmetry of the signal after CEP averaging.
Typically, the second-order coefficients dominate the angular dependence such that the offset angles
can be approximated as φoff ≈ φ2. For the different ATI peaks, the angles φoff are shown in Fig. 5.7
as a function of their radial momentum p⊥. The quantitative comparison of the focal-volume-averaged
results presented in panel (b) again underlines the excellent agreement between TDSE simulation and
experimental measurement. The largest deviation of about 6◦ between TDSE and experiments appears
for the ATI at p⊥ ≈ 0.53 a.u. However, as discussed in the previous section, the angular distribution has
the weakest modulation depth in this intermediate energy region such that the angular distribution is
most susceptible to perturbations (see Figs. 5.3(a) and 5.4(b3)). Thus, in the simulations, the offset angle
for the ATI peak at p⊥ ≈ 0.53 a.u. can be changed by a few degrees by the ellipticity, the considered
envelope of the laser pulses or the beam profile in the laser focus.
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Figure 5.6: Angular distributions for various ATI peaks obtained by integration of the projected PMD of Fig. 5.5(a): TDSE results
(red lines) and experimental results provided by Trabert et al. [357] (black dots). Panels (a)-(d) show the results for the peaks
centered at p⊥ ≈ 0.30 a.u., p⊥ ≈ 0.53 a.u., p⊥ ≈ 0.71 a.u. and p⊥ ≈ 0.86 a.u., respectively. The TDSE distributions are
normalized to maximum signal of one. The experimental data are normalized to the same integral as the theory results.

Repeating the steps above for simulations at fixed intensity, i.e., without focal-volume averaging,
we find the offset angles φoff shown in Fig. 5.7(a). For large radial momenta, the maximum’s positions
are again mostly determined by the geometrical constraints of the electron wave packet in elliptical
polarization, i.e., the angles are close to 90◦ independently of the intensity. However, the offset angles
decrease monotonically as a function of intensity for the lowest-order peaks. Qualitatively, the same
intensity dependence was observed for short circularly-polarized pulses in Ref. [352]. In a Rutherford
(half) scattering scenario [352], the trend is explained by a decreasing final radial momentum E0/ω of
the electron. In our case, however, the radial momentum p⊥ is nearly constant for a given ATI peak.
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Figure 5.7: Offset angles φoff extracted from angular distributions for different ATI peaks shown as a function of their radial
momenta p⊥. (a) TDSE results for fixed intensity of the laser pulses indicated in the legend in W/cm2. (b) Comparison of focal-
averaged TDSE results for three pulse durations and the experimental result provided by Trabert et al. [357]. Figure is adapted
from Trabert et al. [357].
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In an experiment, contributions from the whole laser focus are collected. Since the effective inten-
sity changes over the focus, we include this effect in the simulations by adding up incoherently the
weighted distributions for fixed intensities I (see Appendix A.2.4). Here, we explore the influence of
this focal-volume averaging on the final PMD. The relative weight is determined by the spatial volume
occupied by a given intensity I in the laser focus, i.e., more precisely by the derivative −

∂V(Ipeak,I)
∂I

of
the cumulated volume function V(Ipeak, I). For each given intensity I, the weighted radial momentum
distributions in the polarization plane from TDSE simulations are shown in Fig. 5.8(a), i.e., the product
of the bare TDSE result times the volume weighting factor. The integration over the intensity I would
result in the focal-volume-averaged radial distribution. Due to the ponderomotive shift of the effective
ionization potential [172, 374], the ATI peaks move towards smaller p⊥ with the increasing intensity.
The lowest-order peak corresponding to five absorbed photons experiences a channel closing around
the peak intensity of 1.4× 1014 W/cm2, i.e., five photons are not sufficient to overcome the field-dressed
ionization threshold. The contributions of the different intensities to the several ATI peaks (the inte-
grated signal over the peaks) are shown in Fig. 5.8(b). The higher-order peaks (n > 6) are dominated by
intensities around ≈ 1.2 × 1014 W/cm2. However, the channel closing of the five-photon peak leads to
strong contributions of lower intensities, i.e., this peak is influenced by a broad range of intensities.

Even for the laser pulses of the simulations at fixed intensity, the energy bandwidth of the ATI peaks
is much smaller than the ponderomotive energy shifts when going from the smallest intensities with
finite contribution to the peak intensity. As a result, for the focal-volume-averaged data, the different
radial momenta p⊥ of an ATI peak can be attributed to different intensities within the laser focus [374].
However, as shown above, the angular distributions and their offset angles strongly depend on the
intensity. To improve the visibility, the angular distribution for each radial momentum p⊥ in the polar-
ization plane is separately normalized to one (see Fig. 5.8(c)). For the two lowest ATI peaks, the offset
angles φoff(p⊥) increase indeed as a function of p⊥ when going from the center towards higher energies
within a peak. The same trend was also observed in the experiment [357]. The momentum-dependent
maximum’s position can be explained by considering the offset angles of Fig. 5.7(a) for calculations at
fixed intensities between 3× 1013 W/cm2 and 13× 1013 W/cm2 (see black dots). When going to higher
order peaks, the observation is less clear for two reasons: (i) The dependence of φoff(p⊥) on the intensity
is weaker and (ii) a smaller range of intensities contributes.
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Figure 5.8: Investigation of the substructure for the ATI peaks. (a) Radial momentum distribution from TDSE simulations
weighted as in a Gaussian focus in 3D versus laser intensity (see main text). The other parameters are the same as in Fig. 5.5.
(b) Relative contribution for the intensities to the yield of the different ATI peaks. All four distributions are normalized to max-
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analogous to Fig. 5.7(a). Figure is adapted from Trabert et al. [357].
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Classical trajectory-based model

Trajectory-based two-step models are a common approach to interpret the strong-field dynamics in the
presence of Coulomb interaction and were successfully used to model the global attoclock shifts (see
for example Refs. [54, 371]). In these classical-trajectory Monte Carlo (CTMC) simulations, an entire
distribution of release times and initial velocities is sampled to calculate a final momentum distribution.
As introduced in Section 2.4, the basic idea is to split the dynamics into the release of an electron wave
packet and its subsequent acceleration. Here, we roughly follow the model for strong-field ionization
of Section 3.3 that can be summarized as follows: The ionization step is modeled by the strong-field
approximation using a saddle-point method. For each auxiliary momentum p̃ ′, the corresponding real
part t ′r of the saddle-point time t ′s is identified as release time. In order to represent the geometry of
the liberated wave packet well, the ionization probability is approximated by the KFR amplitude (2.45),
i.e., it includes nonadiabatic corrections. The electron is born at the tunnel-exit position r0 with an initial
velocity v0 = p̃ ′ + A(t ′r). During its acceleration in the continuum, the electron follows a real-valued
trajectory governed by Newton’s equation of motion (2.49) including the laser field and the Coulomb
attraction. Hence, the initial momentum p̃ ′ is deflected to a final momentum p = D(p̃ ′). To solve the
inversion problem, i.e., to determine the relevant initial momenta p̃ ′ for a given final momentum p, a
clustering algorithm is used (compare Section 3.3.3 for details). We restrict ourselves to the dynamics
in the polarization plane and only include release times within one optical cycle of the field. The final
probability distribution is then given by

w(p) =
|MKFR(p̃ ′)|2

|J|
. (5.11)

The Jacobian J of Eq. (3.10) is calculated numerically by considering the variation of the final momen-
tum p with the auxiliary momentum p̃ ′ for a fixed tunnel-exit point and for a release time t ′r

J = det D ′(p̃ ′). (5.12)

For the classical simulations, we use top-flat pulses with a falling edge of 12 optical cycles and only
consider a fixed intensity of 9× 1013 W/cm2. In previous works on the global attoclock offsets [54, 211,
260], tunnel-exit positions from the TIPIS model were used successfully. Here, the Stark shift of the
ionization potential can be neglected due to the small polarizability of hydrogen. The initial positions of
Eq. (2.48) include a Coulomb correction, but follow adiabatically the instantaneous electric field E(t ′r).
Hence, the tunnel exit depends solely on the release time t ′r and it explicitly is independent of the initial
velocity v0 (see Fig. 5.9(a)). The resulting PMD is used to extract the offset angle φoff(p⊥) for each radial
momentum p⊥ (see Fig. 5.9(b)). The offset angle of the classical simulation decreases for small radial
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Figure 5.9: (a) Illustration of the tunnel-exit positions as a function of the initial velocity component v0,⊥ perpendicular to the
instantaneous field Ê(t ′r) for ionization at t ′r = 0 and an intensity of 9× 1013 W/cm2. The corresponding initial velocity distri-
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trajectory-based model for three different choices of the tunnel exit (see panel a). In addition to the focal-volume averaged TDSE
result, the offset angles for a fixed intensity of 9× 1013 W/cm2 are shown. Figure is adapted from Trabert et al. [357].
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momenta p⊥. However, the geometrical constraints of the released electron wave packet lead again to a
strong increase of the angle around p⊥ ≈ 0.8 a.u. and a convergence towards 90◦ for even larger p⊥. In
the intermediate p⊥-range, the TDSE results are not well reproduced by the classical model.

In contrast to the adiabatic exit position of the TIPIS model, the tunnel-exit position rSFA from the
strong-field approximation of Eq. (3.21) contains nonadiabatic corrections, but it neglects Coulomb cor-
rections. The SFA exit position depends strongly on the velocity v0 at the release time t ′r. Thus, for the
laser conditions at hand, much shorter tunnel-barrier widths compared to the TIPIS exit point occur
around the maximum of the initial velocity distribution. These modified initial conditions give rise to
a significant increase of the offset angles and result in an improved agreement with TDSE simulations.
For an ad-hoc correction of SFA exit point due to Coulomb effects during the under-the-barrier motion,
we simply use 0.8 rSFA. This artificial exit point leads to an even better agreement with TDSE simula-
tions. Our results suggest that the offset angles and, hence, the shape of the photoelectron momentum
distributions are strongly influenced by the choice of the tunnel-exit position and the shape of the initial
electron wave packet.

5.2.4 Classical backpropagation

The fundamental question arises whether it is a good choice to consider tunnel-exit positions that de-
pend on the electron’s initial velocity and are sensitive to nonadiabatic effects. The classical backpropa-
gation method [211, 350, 351] offers the opportunity to extract characteristic features of the liberated elec-
tron wave packet from ab-initio simulations. In the attoclock discussion so far, we only considered the
experimentally-accessible momentum distributions, i.e., the modulus squared of the probability ampli-
tudes of the electron wave packet. The idea of the classical backpropagation method is to use the phase
information of the asymptotic electron wave function and to define a relation between the asymptotic
momentum and the final position of the electron. These final conditions are used to propagate classical
trajectories back in time till a tunneling criterion is reached so that release times, tunnel-exit positions
and initial velocities of the electrons can be extracted.

The classical backpropagation was already used to show that nonadiabatic effects for circular polar-
ization result in reduced tunnel-barrier widths compared to the estimates for adiabatic tunneling [211,
350, 351]. However, to the best of our knowledge, the dependence of the exit positions r0 on the initial
velocity v0 was not studied so far. Here, we close this gap to support our model of Section 5.2.3.

Introducing a momentum-space backpropagation method

The starting point is an ab-initio simulation of the TDSE till a final time tf after the end of the laser pulse,
i.e, the initial state is first propagated quantum-mechanically forward in time by solving the TDSE.
The asymptotic continuum wave packet is then transcribed to a classical phase-space distribution. In
previous implementations (for example in Refs. [211, 350, 351, 359]), the position representation ψ(r, tf)
of the wave packet was used to define the phase-space distribution. Inspired by the semiclassical physics
with its relation between action phase and canonical momenta, a local momentum is assigned to each
position by using the phase gradient of the wave function [333, 334]

pψ(r, tf) = ∇r argψ(r, tf). (5.13)

Below we will show that, even for short-range potentials, the position-space representation changes its
form due to dispersion and, hence, the defined correlation (5.13) also depends on the time tf. In contrast,
the momentum representation ψ̃(p, tf) of the wave packet only picks up a phase in such a scenario. This
motivates us to use the momentum representation to initiate the classical backpropagation. For each
final momentum p, we propose to define a local position by8

rψ̃(p, tf) = −∇p arg ψ̃(p, tf). (5.14)
8A similar idea was already used to study Wigner time delays in single-photon ionization [375]. In order to flatten the phase

in the numerical implementation, a phase of −p2tf/2 is subtracted at each momentum p before calculating the derivative in
Eq. (5.14). Afterwards, this is compensated by adding a position offset of ptf.
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The defined relation between momenta and local positions is only meaningful in the absence of inter-
ference in the final electron momentum distribution.

The pairs of momenta and positions are used to start classical trajectories that propagate backward
in time. Their dynamics follows Newton’s equation including both the electron-ion interaction and the
driving light field. For each trajectory, the backpropagation is terminated at a time t0, when a tunneling
criterion is met. Here, the velocity criterion is applied, i.e., the trajectory is stopped when the velocity of
the electron is perpendicular to the instantaneous electric field E(t0).9 Then, the time t0, the remaining
velocity component in the polarization plane v0,⊥ and the velocity component in the light-propagation
direction v0,z can be used to parameterize other quantities such as the tunnel-exit position. Both, the
momentum-space and the position-space versions define mappings of the final momenta p or final po-
sitions r to the initial coordinates

(t0, v0,⊥, v0,z) = DM(p) and (t0, v0,⊥, v0,z) = DP(r). (5.15)

The position of the electron at the ionization time t0 can be interpreted as the tunnel-exit position. Note
that the mappings DM, DP and the defined tunnel-exit positions are solely retrieved from the phase
information of the asymptotic electron wave packet (either in momentum or position representation).

The modulus squared of the amplitudes of the electron wave packets in combination with the re-
lations of Eqs. (5.13) and (5.14) define a classical phase-space distribution at time tf that can also be
propagated backwards in time. The extracted initial probability distributions read

wini(t0, v0,⊥, v0,z) =
|ψ̃(p)|2

|det D ′M(p)|
and wini(t0, v0,⊥, v0,z) =

|ψ(r)|2

|det D ′P(r)|
. (5.16)

The first equation is for the momentum-space approach, whereas the second equation is for the position-
space approach. In general, both results may differ from each other. By construction, the momentum-
space approach ensures that the quantum-mechanical PMD is exactly reproduced by classical trajecto-
ries that are launched according to the distributionwini(t0, v0,⊥, v0,z) at the velocity- and time-dependent
tunnel-exit positions. One remaining question is always whether the extracted initial distributions have
an intuitive and simple interpretation.

Initial space wini(t0, v0,⊥, v0,z) Position space ψtf(r) Momentum space ψ̃tf(p)
FTDP(r)

DM(p)

−0.2

−0.1

0.0

0.1

0.2

−0.2 0.0 0.2 0.4 0.6 0.8

−4

−2

0

2

4

−4 −2 0 2 4

−1

0

1

−1 0 1

Ti
m

e
t

0
[i

n
un

it
s

of
T
ω

]

Velocity v0,⊥ [a.u.]

Po
si

ti
on
y

[1
00

a.
u.

]

Position x [100 a.u.]

M
om

en
tu

m
p
y

[a
.u

.]

Momentum px [a.u.]

0

0.2

0.4

0.6

0.8

1
(a) (b) (c)

Figure 5.10: Classical backpropagation of an electron wave packet released in a circular attoclock configuration with 800 nm wave-
length and 1×1014 W/cm2 intensity. (a) Initial probability distributionwini of the backpropagated trajectories. (b) Position-space
probability distribution at final time tf = 3Tω. (c) Photoelectron momentum distribution, i.e., momentum-space probability
distribution at final time tf = 3Tω. The radial contour lines mark constant initial velocity with a spacing of 0.2 a.u.. The black
line shows v0,⊥ = 0. The angular contour lines mark constant time of ionization with a spacing of 0.05 Tω. The black line
shows t0 = 0. All distributions are independently normalized to maximum signal of one. Inspired by Ref. [161].

9Several other criteria were studied in Refs. [211, 350, 351].
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As a first example, we consider strong-field ionization of hydrogen in 2D modeled by a potential

V(r) = −
Z+ (Zcore − Z)e

−r2/r2
core

√
r2 + ε

(5.17)

with Z = Zcore = 1 and ε = 0.64 in order to reproduce the ionization potential Ip = 0.5 a.u. To
avoid interference, a short two-cycle circularly-polarized laser pulse of Eq. (5.4) with 1 × 1014 W/cm2

intensity is chosen. For the momentum-space approach, we solve the TDSE numerically using the split-
operator method on two grids of size 819.2 × 819.2 a.u. with spacings of ∆x = 0.2 a.u. as described
in the Appendix A.2.2. For radial distances r > 350 a.u., the potential is set flat. For the position-space
approach, only one large grid of size 1638×1638 a.u. with spacings of∆x = 0.2 a.u. is used and the wave
function is propagated up to a given time tf. Figure 5.10 shows the position-space as well as momentum-
space representation of the final wave packet in panels (b) and (c).10 The initial distribution obtained by
classical backpropagation based on the momentum-space approach is presented in panel (a). In order to
visualize the mapping D−1

M of the initial conditions (t0, v0,⊥) to the final momenta p, contour lines show
fixed ionization times and initial velocities. Due to the Coulomb interaction, the lines of constant time
strongly deviate from straight lines in the space of final momenta.
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Figure 5.11: Tunnel exits for a release time t0 = 0 as a function of the initial velocity v0,⊥ from momentum-space and position-
space backpropagation approaches using the setting of Fig. 5.10. (a) Component antiparallel to and (b) component perpendicular
to the instantaneous electric field E(0). For the position-space approach, different final times tf are used as indicated in the legend
in units of optical cycles.

Comparison of the momentum-space approach and the position-space approach

For the newly-proposed momentum-space version, two important properties need to be investigated:
(i) Are results of the classical backpropagation independent of the final time tf? (ii) What is the relation
of the proposed momentum-space version to the earlier-used position-space approach?

To address these questions, we first consider the results shown in Fig. 5.10. Here, we restrict our-
selves to ionization at time of peak electric-field strength, i.e., we only analyze those trajectories for
which the backpropagation stops at t0 = 0. The tunnel-exit positions calculated by the momentum-
space approach are shown in Fig. 5.11 as a function of the initial velocity v0,⊥. In additional simulations,
we find that the tunnel-exit positions are in good approximation independent of the time tf when the
forward quantum propagation is stopped. The stability of the momentum-space version can be seen as
follows. At a time tf, the momentum-space wave packet can be written as ψ̃(p, tf) = Ã(p) exp(iB̃(p))
with a real-valued amplitude Ã and a phase B̃. If tf is sufficiently large, the detached wave packet is
located at large distances rwhere a vanishing ionic potential can be assumed. Hence, the time evolution
over an additional interval ∆t is quantum-mechanically given by

ψ̃(p, tf + ∆t) = Ã(p)eiB̃(p)e−i p2

2 ∆t. (5.18)
10In contrast to the Monte Carlo simulations used in Refs. [211, 350, 351], we determine for each tuple of initial condi-

tions (t0,v0,⊥) the corresponding final momentum p = D−1
M (t0,v0,⊥) by using the multidimensional Newton method. Af-

terwards, the Jacobian in Eq. (5.16) is approximated by a finite-difference formula.
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According to Eq. (5.14), the associated position for the wave packet at a time tf + ∆t reads

rψ̃(p, tf + ∆t) = −∇p arg ψ̃(p, tf + ∆t) = rψ̃(p, tf) + p∆t. (5.19)

The relation between the positions for transcription at time tf and tf + ∆t is equal to a classical motion
with a momentum p. Thus, in the momentum-space version, the defined trajectories are independent of
the final time tf.

In contrast, if the position-space approach of previous implementations [211, 351] is used, the re-
trieved initial positions depend on the final time tf (see Fig. 5.11). For the special choice of t0 = 0,
the position component parallel to the instantaneous field E(t0) is nearly stable. However, in general
for t0 6= 0, we find that both components change with tf. The numerical results suggest of the position-
space approach gets closer to the momentum-space version for large tf →∞. To understand the relation
of both approaches, we need to consider the transformation between the position and momentum rep-
resentations of an electron wave packet

ψ(r, tf) =
1

(2π)D/2

∫
dp ψ̃(p, tf)eip·r =

1
(2π)D/2

∫
dp Ã(p)eiB̃(p)eip·r. (5.20)

For large times tf, the phase factor exp(iB̃(p)) is a quickly oscillating function of the momentum p (see
Eq. (5.18)). Hence, the integral can be evaluated by means of the saddle-point approximation. The
saddle-point equation reads

0 = ∇p
(
B̃(p) + p · r

)
= −rψ̃(p, tf) + r. (5.21)

For a given position r, the equation selects the corresponding saddle-point momentum, i.e., it establishes
a mapping p(r). The mapping can be explicitly calculated by inverting the positions rψ̃(p, tf) of the
local-position method (5.14). If the backpropagation is started using the position-space wave function
from the saddle-point approximation of Eq. (5.20), the associated local momentum of Eq. (5.13) is given
by

pψ(r, tf) =∇r argψ(r, tf) = ∇r
(
r · p(r) + B̃(p(r))

)
=p(r) +∇rp(r) ·

(
∇pB̃(p(r)) + r

)
= p(r).

(5.22)

In the last step, we used the saddle-point equation (5.21). The position-to-momentum mapping from
the position-space approach is the inverse of the momentum-to-position mapping from the momentum-
space approach, if the saddle-point approximation is applied to their connection via Fourier transforma-
tion. For binding potentials with finite support, the phase factor exp(iB̃(p)) oscillates more quickly as
a function of p for larger times tf. Hence, in the limit of large times tf, the saddle-point approximation
becomes exact so that position-space and momentum-space approaches become indeed equivalent.

As a result, we consider the outcome of momentum-space approach to be the correct result for the
backpropagation scheme. Importantly, the slow convergence of the position-space approach is also
present when considering short-range potentials or even in wave packets from strong-field approxima-
tion. It is mostly caused by the dispersion of the outgoing wave packet in position space. Thus, to obtain
converged results, a huge spread of the position-space wave packet needs to be covered in the theoretical
simulations. In contrast, for the momentum-space implementation, only a relatively small region of the
position space needs to be represented explicitly. This is, in particular, beneficial for long-wavelength
driving fields and in 3D simulations. In the following, we will only present backpropagation results
based on the momentum approach.

Nonadiabatic corrections to the tunnel-exit positions

The tunnel-exit positions from classical backpropagation shown in Fig. 5.11 lead to following conclu-
sions: (i) The exit positions depend strongly on the initial velocity v0,⊥, which is in agreement with the
previously-considered SFA exit points of Eq. (3.21). (ii) The results are not symmetric with respect to
v0,⊥ → −v0,⊥, which is a hint for nonadiabatic effects. (iii) A nonzero component of the initial position
perpendicular (here along x-direction) to the direction of the instantaneous field E(t0) appears.
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In order to further explore the tunnel-exit positions, we consider ionization for a long-range potential
as well as a short-range potential in an attoclock setting with identical laser conditions of 1200 nm
wavelength and 1 × 1014 W/cm2 intensity. We again use the potential (5.17) with Z = Zcore = 1 and
ε = 0.64 for a 2D long-range model of hydrogen and withZ = 0, Zcore = 1, ε = 0.344 and rcore = 3 a.u. for
a 2D short-range model with approximately the same ionization potential. For fixed release time t0 = 0,
the observables extracted from classical backpropagation simulations are shown in Fig. 5.12 as a function
of initial velocity v0,⊥. In agreement with Ref. [351], the initial velocity distributions are quite similar
for long- and short-range potentials (see panels 2 of Fig. 5.12). However, the retrieved initial positions
exhibit some qualitative differences.
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Figure 5.12: Comparison of tunnel-exit positions for a release time t0 = 0 as a function of the initial velocity v0,⊥ from different
levels of theory for two-cycle circularly-polarized pulses at 1200 nm wavelength and 1× 1014 W/cm2 intensity. (a1) Component
antiparallel to and (b1) component perpendicular to the instantaneous electric field E(0). [(a2),(b2)] Initial velocity distributions
from backpropagation.

For short-range potentials, the strong-field approximation evaluated by means of a saddle-point
method usually describes the recollision-free ionization dynamics very well. Within this simplified treat-
ment, the classical backpropagation method can be carried out analytically. For an initial 1s state, the
phase of the asymptotic wave function in momentum representation is dominated by the SFA action of
Eq. (2.41) (see the KFR amplitude (2.45)). Thus, in our momentum-space version of Eq. (5.14), we find a
final local position at time tf

rψ̃(p, tf) = −∇p Re(SSFA(p, t ′s)) = Re
(∫tf
t′s

dτ (p + A(τ)) −∇p(t
′
s(p))ṠSFA(p, t ′s)

)
= Re

(∫tf
t′s

dτ (p + A(τ))

)
,

(5.23)

where the saddle-point equation (2.44) is used in the last step. Considering classical potential-free mo-
tion to propagate backwards until a time t0, the following tunnel-exit position appears

rSFA = rψ̃(p, tf) +
∫t0

tf

dτ (p + A(τ)) = Re
(∫t0

t′s

dτ (p + A(τ))

)
. (5.24)

For a given trajectory, the corresponding time t0 is determined by the tunneling criterion. For the chosen
velocity criterion and in the vicinity of the peak electric-field strength, the time t0 is approximately equal
to the real part t ′r of the SFA saddle-point time. Hence, we find that the backpropagation result rSFA from
SFA input is equal to the well-known SFA tunnel-exit point of Eq. (3.21).
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For short-range potentials, the SFA exit points perfectly agree with the full numerical result from
TDSE simulations for a broad range of laser wavelengths (see Fig. 5.13 for results between 800 nm and
2000 nm corresponding to Keldysh parameters between 1.5 and 0.6). For a release time t ′r = t0 = 0,
the component of the exit position perpendicular to the instantaneous electric field vanishes. The com-
ponent antiparallel to the field depends strongly on the initial velocity v0,⊥. This velocity dependence
considerably changes with the degree of nonadiabaticity. For a simplified analytical analysis, Equa-
tion (3.21) can be expanded to first order in the Keldysh parameter11

rSFA ≈ −
Ieff
p

E(t ′r)
Ê(t ′r) −

Ieff
p

E(t ′r)

v0 · Ė(t ′r)
E2(t ′r)

Ê(t ′r), (5.25)

where the possible ionization times t ′r and initial velocities v0 are selected by the saddle-point equa-
tion (see Appendix A.4.1). The first term is also present in the adiabatic limit and it is dominated by
the increased effective ionization potential Ieff

p = Ip + v2
0/2 due to the initial velocity v0. It is called the

Ieff
p /E exit position in the following. For circular polarization, the first-order nonadiabatic correction is

quite crucial as it induces the asymmetry of the tunnel exits as a function of v0,⊥ (see Fig. 5.12). In the
vicinity of the maximum of the velocity distribution (for small positive v0,⊥), the nonadiabatic correc-
tion leads to reduced tunnel-barrier widths compared to the adiabatic Ieff

p /E estimate. Our analysis is in
agreement with the qualitative finding of Refs. [211, 350, 351] that the tunnel-exit positions (averaged
over the initial distribution) decrease due to nonadiabatic effects.
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Figure 5.13: Classical backpropagation results for different wavelengths as indicated in the legend either obtained for a long-
range potential (panels a) and a short-range potential (panels b). Slices through the initial distributions as well as antiparallel and
perpendicular components of tunnel-exit position are shown in the different rows. For comparison, the backpropagation results
for ARM theory are shown as dashed lines in panel (a2) and the backpropagation results for SFA are shown in panel (b2).

11A similar expression was also found in Ref. [211].
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Eckart [357] suggested to interpret the velocity-dependent exit positions as follows: Ionization under
nonadiabatic conditions allows a change of energy during the under-the-barrier motion [191]. This ion-
ization process can be modeled as nonresonant multiphoton interaction promoting the initially-bound
electron to a virtual intermediate state and as the subsequent release by adiabatic tunneling [163, 164,
376]. For pure circular polarization, change of energy is accompanied by a defined change of the angular
momentum Lz of the electron, i.e., its effective energy at the release can be expressed as −Ieff

p +ωLz. The
classical angular momentum Lz = r0,‖v0,⊥ at the release position r0 = −r0,‖ey should be equal to the
quantum-mechanical angular momentum after multiphoton interaction. Then, the tunnel-barrier width
can be defined by the intersection of a triangular tunneling barrier with the effective electron energy

r0,‖ ≈
Ieff
p

E0
−
Ieff
p ω

E2
0
v0,⊥. (5.26)

We find that the result of this model is equal to the expansion (5.25) of the SFA exit. For v0,⊥ > 0,
multiphoton absorption during tunneling increases the field-dressed energy of the electron and, hence,
results in an inward shift of the tunnel-exit position.

For long-range potentials, the components of the exit positions antiparallel to the instantaneous elec-
tric field (here negative y-direction) extracted by classical backpropagation are systematically shifted
towards smaller distances compared to the short-range results (see Fig. 5.12(a1)). The simplest adia-
batic approach assumes that the electron tunnels in a 1D slice along the direction of the instantaneous
electric field [77]. This is called field-direction model (FDM). The introduction of Cartesian coordinates
results in a one-dimensional potential barrier formed by the ionic potential −Z/r and the potential of
the light field (in length gauge). The remaining directions lead again to an increased effective ionization
potential Ieff

p and the tunnel-exit position reads [347]

r0 = −
Ieff
p +

√
(Ieff
p )2 − 4ZE

2E
Ê. (5.27)

If the binding potential is neglected (Z = 0), the exit position reduces to the simpler Ieff
p /E estimate. The

first-order Coulomb correction reads ∆r = −Z/Ieff
p . In agreement with the backpropagation result, the

tunnel-exit positions from FDM are shifted towards smaller distances and depend of the initial velocity.
However, when considering close-to-circularly-polarized fields, the interplay between nonadiabatic

corrections and the long-range potential must be included for a quantitative description. The analytical
R-matrix (ARM) theory introduced in Section 2.5 enables a simplified modeling of electron momentum
distributions, including the binding potential V to first order correctly in the exponent. We use the
analytical form (2.58) of the asymptotic electron wave packet in ARM as input for a classical backpropa-
gation calculation. It allows us to derive an analytical estimate for the Coulomb correction with respect
to the potential-free SFA exits (see Appendix A.4.2 for details). This ARM result agrees very well with
the full numerical result from TDSE (see Fig. 5.12(a1)).

When tunneling at the time of peak field strength, both the field-direction model and the strong-field
approximation predict that the electron appears exactly in the direction antiparallel the instantaneous
field E(0). Surprisingly, for both TDSE and ARM input, the backpropagation results for long-range po-
tentials show nonzero components r0,⊥ of the initial position perpendicular to the instantaneous field.
In additional 3D simulations, we find that such additional components are not limited to the dynamics
in the polarization plane, but are present in any direction that is perpendicular to the direction of the
electric field at the instant of tunneling. The exact perpendicular components r0,⊥ depend on the used
wavelengths, e.g., for 800 nm values as large as 3 a.u. are reached. Even though the components r0,⊥

decrease for more adiabatic conditions, they do not entirely vanish (not shown). Furthermore, in addi-
tional simulations, we observe that the perpendicular component changes only weakly with the laser
intensity. Importantly, we want to note that the exact outcome of a classical backpropagation simulation
depends on the used tunneling criterion [211]. In this sense, the perpendicular component can be seen
as a consequence of the chosen velocity criterion. In the future, it would be interesting to study whether
generalized tunneling criteria also show such an effect (see also Section 6.2.3).
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5.3 Bicircular attoclock

The dependence of the Coulomb-induced deflection of the photoelectrons on their initial position (see
also Eq. (5.2)) offers the opportunity to study the tunneling geometry by means of the momentum-
dependent attoclock offsets. For elliptically-polarized fields, we already found that the variation of
tunnel-exit positions as a function of the electron’s initial velocity leaves an imprint on the offset angles
(see Section 5.2.3). Unfortunately, in close-to-circularly-polarized fields, the geometry of the wave packet
as well as nonadiabatic effects complicate the analysis of the momentum-dependent attoclock offsets.
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Figure 5.14: Setup of the bicircular attoclock. 2D slices at pz = 0 through the photoelectron momentum distribution for ionization
of helium by a bicircular field with 800 nm effective wavelength and 7×1014 W/cm2 intensity: (a) strong-field approximation for a
cw field (R = 1/4) and (b) numerical simulation of the TDSE for a three-cycle pulse with an optimized intensity ratio ofR ≈ 0.292
(see Eq. (5.31)). The dashed lines show the negative vector potentials and the insets indicate the electric fields. In panel (a), the
nearly-horizontal solid contour lines mark constant time of ionization with a spacing of 0.4/Ep. The black line shows t0 = 0. The
nearly-vertical lines mark constant initial velocity with a spacing of 0.4 a.u. The black line shows v0,⊥ = 0. (c) 1D Slice through
the maximum of the PMD from TDSE as a function of py, i.e., at constant px = −Ax(0) ≈ 1.58 a.u. Figure is adapted from
Ref. [359] and from Brennecke et al. [369].

To avoid these problems, a quasilinear field can be used. In the vicinity of the maximal electric-field
strength, the direction of the field is approximately constant, and simultaneously it provides a simple
time-to-momentum mapping. This waveform was introduced to study the global attoclock shift by
Eicke et al. [161, 359]. To this end, a bicircular field similar to Eq. (3.34) consisting of two counter-rotating
circularly-polarized fields with the following vector potential

A(t) = −
1

1 +
√
R

Ep

ω

[(
cos(ωt)
sin(ωt)

)
+

√
R

2

(
− cos(2ωt)

sin(2ωt)

)]
(5.28)

is optimized. For a particular intensity ratio R = 1/4 of the fundamental to the second harmonic, the
light field resembles linear polarization three times per optical cycle of the fundamental field. The nega-
tive vector potential and electric field are presented in Fig. 5.14(a). Due to the three-fold symmetry, we
can restrict ourselves to ionization in one third cycle of the electric field centered around a peak of the
electric-field strength. In the vicinity of t = 0, we find

A(t) = Ax(0) ex −
Ep

ωeff
sin(ωefft) ey + O(t4),

E(t) = Ep cos(ωefft) ey + O(t3).
(5.29)

Hence, the field is indeed approximately linearly polarized along the y-axis with an effective frequency
ωeff =

√
2ω and a peak field strength Ep. The time-averaged intensity is given by I = 5

9cε0E
2
p and the

nonadiabaticity of the ionization process is characterized by the Keldysh parameter γeff =
√

2Ipωeff/Ep.
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Figure 5.14(a) shows a typical momentum distribution for strong-field ionization by a quasilinear cw
field. The PMD is calculated for helium in the strong-field approximation.12 It consists of three separated
cigar-like regions of high probability that belong to the three maxima of the electric-field strength per
optical cycle. Within this potential-free setting, a electron liberated at a time t0 with an initial velocity v0

is deflected by the light field to a final momentum p = −A(t0)+v0. Ionization at maximal field strength
(here at t0 = 0), with vanishing initial velocity leads to the maximum of the cigar centered at a final
momentum p = −A(0) = A0ex (see the red dot in Fig. 5.14(a)). For adiabatic conditions, the initial ve-
locity v0 must be perpendicular to the electric field E(t0) at the instant of tunneling (see Eq. (2.47)). Thus,
in the vicinity of t = 0 where the direction of the electric field is nearly constant, the v0,y-component van-
ishes and the setting is nearly isotropic in the v0,⊥-v0,z-plane perpendicular to the field E(t0). Using the
form of the initial velocity v0 ≈ v0,⊥ex + v0,zez, the final momenta are approximately given by

p⊥ = −A(t0) + v0 ≈ (v0,⊥ −Ax(0))ex + v0,zez + Ey(0)t0ey. (5.30)

Hence, the release time t0 is mapped to the py-component of the final electron momentum and the initial
velocity v0 ≈ v0,⊥ex+v0,zez to the px- and pz-components [359]. To visualize the mapping, contour lines
at fixed ionization times and initial velocities are shown in Fig. 5.14(a). A change of the release time t0

leaves the px- and pz-components of the momentum almost unchanged. On the other hand, a variation
of the initial velocity does nearly not alter the py-component. Hence, the quasilinear field provides a
clean setting to investigate the momentum dependence of attoclock offsets.

For a numerical solution of the TDSE in 3D, we use the Fourier split-operator method on two grids as
described in the Appendix A.2.2. An effective potential V for helium is chosen as by Tong et al. [324], but
with the singularity removed using a pseudopotential for the 1s state with a cutoff radius rcl=1.5 a.u.
(see Appendix A.2.3). The binding potential is fully included on the inner grid that spans 409.6 a.u. in
each dimension with a spacing of ∆x = 0.4 a.u. At the edge of the inner grid, we set the potential to a
constant and use an absorbing potential (A.53) with∆rA = 40 a.u. A 2D slice at pz = 0 through the PMD
is shown in Fig. 5.14(b). In order to avoid ATI rings, we used again a short three-cycle pulse such that
a single global maximum of the electric field is selected. The corresponding cigar is still approximately
centered in px-direction at px = −Ax(0). However, in py-direction, it is clearly displaced towards
positive momenta. This global attoclock shift of ∆pmax ≈ 0.24 a.u. is determined by the maximum of
the total distribution. It can be more clearly seen in a 1D slice through the PMD presented in Fig. 5.14(c)
and was investigated in Refs. [161, 359].
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Figure 5.15: Momentum-dependent attoclock shift for a bicircular field. (a) Signal in the px-py-plane at pz = 0 and (b) signal
in the pz-py-plane at px = −Ax(0) ≈ 1.58 a.u. In both panels, each column is individually normalized and the resulting
momentum-dependent attoclock shift ∆py is indicated as black solid line. The dotted black line at py = 0 guides the eye.
(c) Momentum-dependent attoclock shift∆py as a function of px+Ax(0) and pz. Figure is adapted from Brennecke et al. [369].

12We apply the saddle-point approximation to the KFR amplitude and include only the contribution (2.45) of a single saddle-
point time t ′s for each final momentum p. Therefore, Fig. 5.14(a) does not exhibit any ATI rings.
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Momentum-dependent attoclock shifts

The attoclock offset can be individually analyzed for each momentum in the px-pz-plane, i.e., we again
determine the momentum dependence of the attoclock shift. For an illustration, the signal in the px-
py-plane at constant pz = 0 is depicted in Fig. 5.15(a). Here, each column is normalized individually.
We determine the most probable momentum ∆py at each momentum px by means of a Gaussian fit.13

The result is shown as black line. At the maximum of the lateral distribution at px ≈ −Ax(0), the
momentum-dependent shift is equal to the global attoclock shift ∆pmax. The procedure can be repeated
for all lateral momenta in the vicinity of the global maximum. Figure 5.15(c) shows the momentum-
dependent attoclock shift as a function of px and pz. For the used laser conditions, the maximal attoclock
shift of ∆py ≈ 0.249 a.u. is not found exactly at px + Ax(0) = 0, but instead at px + Ax(0) = −0.11 a.u.
When going away from this point, the magnitude of the attoclock shift decreased as a function of px and
pz. It reaches values as small as ≈ 0.155 a.u. at pz = 0 and px +Ax(0) = 0.5 a.u. corresponding to only
≈ 65 % of the global attoclock shift. In order to check the numerical convergence, we additionally solved
the TDSE by means of the pseudospectral method introduced in the Appendix A.2.1. In these additional
simulations, we scaled the extension and the spacing of the radial grid as well as the maximal-included
orbital angular momentum. The momentum-dependent attoclock shifts from both numerical methods
are in very good agreement. From their comparison, the numerical error is estimated to be smaller than
5% for the attoclock shift in the shown region of px and pz.

The slight asymmetry of the momentum-dependent attoclock shift as a function of px + Ax(0) can
be attributed to the deviations of the quasilinear field from pure linear polarization and to the finite
nonadiabaticity of the ionization process. To minimize the former point, we did not exactly use the
intensity ratio R = 1/4 of the two colors in the TDSE simulations for the short pulse. Note that an
envelope of the vector potential of np cycles duration influences the expansion (5.29) of the electric field
around t = 0. Hence, for R = 1/4, the envelope would induce additional deviations from a pure linearly-
polarized field. To compensate for this effect, Paul Winter suggested an optimized intensity ratio which
is given by (for the cos4 envelope)

Rnp =

(
2n2
p + 2

4n2
p + 1

)2

. (5.31)

In the limit of long pulses, the ratio converges to 1/4. However, for short pulses, corrections are present,
e.g., for three-cycle pulses R3 = (20/37)2 ≈ 0.292 and for seven-cycle pulses R7 = (100/197)2 ≈ 0.258.
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Figure 5.16: Scaling of the pulse length. (a) Slice through the momentum distributions (at py = 0) and (b) momentum-dependent
attoclock shift as a function of px+Ax(0). The results are extracted from 2D TDSE simulations for 1500 nm effective wavelength,
an intensity of 7 × 1014 W/cm2 and different pulse durations indicated in the legend. The dashed lines correspond to a fixed
intensity ratio R = 1/4 whereas the solid lines use the optimized ratio of Eq. (5.31). The probability distributions in panel (a) are
on top of each other and cannot be distinguished in the graph. Figure is adapted from Brennecke et al. [369].

13An iterative procedure is used where the fit range is centered around the previous maximum’s position with a width of one
quarter of the previous standard deviation σ. Other methods such as the “power method” [161] give virtual identical results.



90 CHAPTER 5. MOMENTUM-RESOLVED ATTOCLOCK

To further study the asymmetry in the momentum-dependent attoclock shifts, additional 2D TDSE
simulations are performed for a longer effective wavelength of 1500 nm (see Fig. 5.16). For the more adi-
abatic ionization conditions and for pulses with the optimized ratio (5.31), the momentum-dependent
attoclock shifts are approximately independent of the pulse duration and the asymmetry nearly disap-
pears. In contrast, for three-cycle pulses with an intensity ratio R = 1/4, we find that the deviations from
linear polarization lead to a tiny rotation of the probability distribution (by only a few degrees in the
polarization plane). Hence, even for the considered adiabatic conditions, a slight asymmetry appears.
As expected, for longer pulses with an intensity ratio R = 1/4, the results approaches the shifts for the
optimized ratio (5.31). In the following, we only apply three-cycles pulses with the optimized intensity
ratio.

5.3.1 Classical adiabatic model

We further investigate the momentum-dependent attoclock shifts by using a trajectory-based two-step
model [210, 301, 347]. To this end, the classical connection between the initial electron velocity v0 at its
time of release t0 to the final momentum p must be established. Compared to the potential-free simple
man’s model, the momentum change∆pC due to Coulomb attraction modifies this mapping of the initial
conditions to the final momenta

p(t0, v0) = −A(t0) + v0 + ∆pC(t0, v0). (5.32)

In the following, we restrict ourselves to ionization in the vicinity of peak field strength at t = 0 and we
are only interested in the adiabatic limit reached by scaling the wavelength of the radiation.

For the calculation, it is advantageous to measure the different quantities in the natural scales of
strong-field ionization (see Section 2.1). Time is measured in units of

√
Ip/Ep (which is a multiple of

the Keldysh time
√

2Ip/Ep), i.e., t̃ = Ep/
√
Ip(t − t0). Positions are measured in units of Ip/Ep with

r̃ = Ep/Ipr. Hence, the tunnel-exit position reads r0 = Ip/Epr̃0 and the initial velocity is given by
v0 =

√
Ipṽ0. The electric field and its derivatives are written as E(n)(t) = Epω

n
effẼ

(n)(t). Since the
magnitude of the static electric field of the ion is given by Z/r2 with the asymptotic charge Z, we find
that the effective interaction strength between electron and ion is represented by

Z̃ =
Ep

I2p
Z. (5.33)

We can write the electron trajectory as the potential-free laser-driven part plus a correction ∆r̃(t̃):

r̃(t̃) =∆r̃(t̃) + r̃0 + ṽ0t̃−

∫ t̃
0

dτ ′
∫τ′

0
dτ Ẽ

(
t0 +

√
Ip/Epτ

)
=∆r̃(t̃) + r̃0 + ṽ0t̃−

1
2

Ẽ(t0)t̃
2 −

∞∑
n=1

Ẽ(n)(t0)√
2
n
(n+ 2)!

γneff t̃
n+2.

(5.34)

In the second line, the electric field is expanded around the time t0 and the appearing integrals are
performed analytically. The zeroth-order term in the effective Keldysh parameter γeff is simply the
trajectory in a constant electric field. Inserting this form (5.34) in Newton’s equation (2.49) for a bare
−Z/r potential, the time evolution of the Coulomb correction ∆r̃(t̃) is governed by

d2

dt̃2∆r̃(t̃) = −Z̃
r̃(t̃)
r̃3(t̃)

. (5.35)

Note that so far no approximation was made to the classical motion. In contrast to pure linear polar-
ization, the electron is driven by the quasilinear field away and does not come back close to the parent
ion. Importantly, the Coulomb attraction rapidly decreases as a function of the distance from the ion.
Thus, in the adiabatic limit of vanishing Keldysh parameter (γeff → 0), the Coulomb-induced momen-
tum change is mainly gained in a time interval much shorter than an optical cycle of the light field [210].
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In the quasilinear field, the derivative of the electric field Ė(0) vanishes at the time of peak electric-field
strength. Hence, the first-order correction in γeff of the trajectory (5.34) disappears. Therefore, it is a
good approximation to only consider the trajectory in a constant electric field given by14

r̃(t̃) = ∆r̃(t̃) + r̃L(t̃) ≈ ∆r̃(t̃) + r̃0 + ṽ0t̃−
1
2

Ẽ(t0)t̃
2. (5.36)

Interestingly, in scaled coordinates, the equation of motion and the tunnel exit from the field-direction
model (5.27) only depend on |Ẽ(t0)|, Z̃ and ṽ0. Around t ≈ 0, the field strength is approximately constant
(|Ẽ(t)| ≈ 1) and we find for the FDM tunnel exit

r̃0 = −
(1 + ṽ2

0/2) +
√

(1 + ṽ2
0/2)2 − 4Z̃

2
Ê(0). (5.37)

As a result, under the made assumptions, the Coulomb-induced momentum changes ∆pC in reduced
units (∆p̃C = ∆pC/

√
Ip) are also only functions of the velocity ṽ0 and the combination Z̃ =

Ep

I2
p
Z of the

peak field strength Ep, the ionization potential Ip and the asymptotic charge Z. However, it is worth to
note that for other choices of tunnel-exit positions such as the TIPIS model such a universal scaling is
not present.

To obtain a simplified analytical result, we consider the Coulomb field a weak perturbation. The
first-order correction of the final momentum in the interaction strength Z̃ is calculated by integration of
the Coulomb force along the light-driven trajectory r̃L(t̃) [210]

∆p̃C = −Z̃

∫∞
0

dτ
r̃L(τ)

r̃3
L(τ)

. (5.38)

Inserting the trajectory of Eq. (5.36) in Eq. (5.38) leads to a momentum change ∆pC =
√
Ip∆p̃C with15

∆p̃C =

π
2

Z̃√
2r̃3

0Ẽ(t0)
−

3π
16

Z̃ṽ2
0√

2r̃5
0Ẽ

3(t0)

 Ê(t0) −
1
2

Z̃

r̃2
0Ẽ(t0)

ṽ0. (5.39)

Equation (5.39) is only correct to second order in the initial velocity v0. The Coulomb attraction focuses
the wave packet in the directions perpendicular to the instantaneous electric field, resulting in a nar-
rower final transverse momentum distribution compared to the initial velocity distribution (see the last
term in Eq. (5.39)). Additionally, the wave packet is decelerated in the direction of the instantaneous
field E(t0) (see the first term in Eq. (5.39)). Thus, for the quasilinear field, the py-component of the
electron momentum is shifted.

A common assumption is that the attoclock shifts in the final momentum distribution, which are
obtained by peak search, correspond to ionization at the time of peak field strength. Then, within the
presented simple model, the momentum-dependent attoclock shifts are given by ∆pC,y of Eq. (5.39). In
the following, we will explore their dependence on the tunnel-barrier width r0 and the ability to utilize
the attoclock as a “nano-ruler”.

Before proceeding the analysis of the attoclock shift, we consider the properties of the main ingredi-
ent of the classical model: the tunnel-exit positions. For close-to-circularly-polarized fields, we found in
Section 5.2.4 that a decisive dependence of the tunnel-exit positions on the initial electron velocity v0 is
present in the classical backpropagation approach. Here, we apply this method to the quasilinear setting
and restrict ourselves again to ionization at t0 = 0, i.e., at the peak of the electric-field strength. Since the
setting is nearly isotropic in the directions perpendicular to the instantaneous field, it is sufficient to an-
alyze the tunnel-exit positions along one coordinate axis of the initial velocity. The r0,‖-component of the
initial position antiparallel to the field E(t0) shows a quadratic dependence on the initial velocity v0,z (see
Fig. 5.17(a)). For nonzero initial velocities v0, the increased effective ionization potential Ieff

p = Ip + v2
0/2

14For vanishing initial velocity, this idea was already used in Refs. [210, 301, 347].
15We assume a tunnel exit of the form r̃0 = −r̃0Ê(t0) such as in the field-direction model and assume ṽ0 · Ẽ(t0) = 0.
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Figure 5.17: (a) Component of tunnel-exit position antiparallel to the instantaneous electric field E(0) as a function of the initial
velocity v0,z for ionization at t0 = 0. The result from classical backpropagation (blue line) is compared to the Ieff

p /Emodel (black
dashed line) and the field-direction model of Eq. (5.27) with velocity dependence (gray dashed line). (b) Momentum-dependent
attoclock shift as a function of pz at fixed px = −Ax(0) ≈ 2.96 a.u. extracted from the solution of TDSE in 3D (blue line). In
addition, the momentum shift∆pC,y of the model in Eq. (5.39) is shown for the different choices of the tunnel exit from panel (a).
The intensity is 7× 1014 W/cm2 (Ep = 0.134 a.u.) and an effective wavelength of 1500 nm is used in the TDSE simulation. The
other parameters are the same as in Fig. 5.14. Figure is adapted from Brennecke et al. [369].

leads to an outward shift of the exit position. In contrast to circular polarization, the first-order nona-
diabatic corrections vanish for the quasilinear field in the vicinity of its maximum. As a result, the
backpropagation result for a long-range potential agrees very well with the adiabatic FDM of Eq. (5.27).
When repeating the backpropagation calculation for a short-range potential (not shown), we find prefect
agreement with the simple Ieff

p /E estimate.

In the classical model, the influence of the Coulomb force on the outgoing electron is smaller for a
larger tunnel-exit position (see also Eq. (5.39)). Thus, the increasing tunnel-barrier width as a function
of v2

0 results in a decreasing attoclock shift in the classical model. This explains already qualitatively the
observed momentum dependence of the attoclock shift in Fig. 5.15. It is instructive to first consider a
further simplification of the model by using the Ieff

p /E tunnel-exit position. To second order in v0, the
momentum change of Eq. (5.39) is then given by

∆p̃C,y =
π

2
√

2
Z̃−

9π
16
√

2
Z̃ ṽ2

0. (5.40)

The first term describes the global attoclock shift at v0 = 0 or equivalently at the final momentum
px + Ax(0) = 0 and pz = 0 which was already found in Refs. [210, 347]. When using the approximate
relation v0 ≈ (px+Ax(0))ex+pzez, the second velocity-dependent term in Eq. (5.40) leads to a reduction
of the attoclock shift for nonzero px + Ax(0) and pz. We find that within the model two thirds of the
velocity-dependent term are attributed to the velocity dependence of the tunnel-exit position r0 and one
third is related to the linear velocity dependence of the electron trajectory (see Eq. (5.36)).

The estimate ∆pC,y of the classical model (5.39) is depicted in Fig. 5.17(b) for different choices of the
tunnel-exit position. In all cases, a clear variation of the attoclock shift as a function of the momentum pz

is visible. If the dependence of the tunnel-barrier width on the velocity is artificially neglected by setting
Ieff
p = Ip, the dependence of the attoclock shift on pz is drastically reduced. For a comparison to results

from the numerical solution of the TDSE in 3D, we choose adiabatic ionization conditions by considering
an effective wavelength of 1500 nm (Keldysh parameter γeff ≈ 0.3). The model leads to a slightly too
large global attoclock shift compared to the TDSE result. Even though the momentum dependence
of the attoclock shift is qualitatively correctly reproduced, the simplified model is unable to precisely
predict the curvature. To investigate these deviations, we will study the influence of additional effects
such as higher-order Coulomb corrections, the initial probability distribution or the interplay between
nonadiabatic and Coulomb effects in the following Sections 5.3.2 and 5.3.3.
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5.3.2 Scaling towards the adiabatic limit

Motivated by the classical adiabatic model with its universal dependence of the attoclock shift on the
interaction strength Z̃, we further explore the attoclock shift in the adiabatic limit. Again, the TDSE
is solved numerically by means of the split-operator method on two Cartesian grids as described in
Section A.2.2, but the dynamics is only considered in a reduced 2D setting. The potential of Eq. (5.17)
is used with the parameters Zcore = 3 and ε = 0.64. One goal of this section is to study the influence of
the ionization potential Ip and the asymptotic charge Z on the attoclock shift. To this end, for a given
charge Z, the desired ionization potential is fixed by adjusting the screening distance rcore.
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Figure 5.18: Ionization probability as a function of the peak field strength for ionization with three-cycle bicircular pulses. Results
from velocity gauge (circles) are compared to results from length gauge (squares) for the same numerical parameters. For each
field strength, the vector potentialAx(0) and, hence, the Keldysh parameter are fixed (see the legend) by scaling the wavelength.
The results are calculated by numerical solution of the 2D TDSE for an initial 1s state with Ip ≈ 0.904 a.u. For comparison, the
ADK rate (2.3) is scaled by an arbitrary factor.

To determine results in the adiabatic limit, we extrapolate results for finite nonadiabaticity by scan-
ning the wavelength of the radiation. A problem is that, for a fixed ionization potential, small Keldysh
parameters are related to huge vector potentials, γeff =

√
2Ipωeff/Ep = 5/3

√
Ip/|Ax(0)|. When solving

the TDSE for helium in velocity gauge on Cartesian grids spanning 409.6 a.u. in each direction with
spacings of ∆x = 0.2 a.u. (as used in the previous chapters), we observe nonphysical behavior for those
large vector potentials. To illustrate this, Figure 5.18 shows that ionization yield as a function of the field
strength, but for fixed values of the vector potential. The comparison of the velocity-gauge TDSE results
with the ADK rate (2.3) multiplied by the pulse length reveals a large amount of artificial ionization for
low field strength. In order to avoid this numerical problem, the length gauge is chosen in this section.16

For sufficiently high field strengths related to large ionization probabilities, both gauges give virtually
identical results for the same grid sizes. In addition, for adiabatic conditions, the length-gauge result
also perfectly follows the ADK rate for smaller field strengths.

For a systematic study, we perform a series of TDSE calculations for a target (modeled by the po-
tential (5.17)) with ionization potential Ip = 1 a.u. and an asymptotic charge Z = 1 by varying the
peak field strength Ep while keeping the effective Keldysh parameter fixed. Hence, for given Ep and Ip,
we adjust the frequency ω of the radiation. As suggested by the classical model (5.40) the global at-
toclock shift varies approximately linearly with the field strength as long as the fields are sufficiently
weak (see Fig. 5.19(a)). For strong fields, we observe a turn to smaller offsets. Here, as discussed in
Refs. [213, 350, 351], depletion shifts the peak of the ionization rate to earlier times such that the atto-
clock offsets from TDSE decrease. In a model introduced in Ref. [161], it can be shown that, for fixed
field strength, the distributions for long laser wavelengths are most influenced by depletion.

16In length gauge, the field-free initial state is usually a good approximation to the state in the presence of the laser field. Since
both gauges are connected by |ψV〉 = exp(−ir ·A(t))|ψL〉, the state in the presence of the field is shifted in momentum space by
the vector potential A(t) in velocity gauge. When working on Cartesian grids, the maximal momentum in one direction pmax =

π/∆x is defined by the spacing ∆x, e.g., pmax ≈ 15.7 a.u. for a spacing of ∆x = 0.2 a.u. However, the momentum-space
representation of bound s states can be approximated as ψ̃0(k) ∝ 1/(k2 + κ2)1+Z/κ and it decreases very slowly as a function
of k on a scale given by κ =

√
2Ip. Hence, in velocity gauge, large shifts A(t) by several atomic units of the state in momentum
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Figure 5.19: (a) Global attoclock shift ∆pmax as a function of the field strength. (b) Relative variation of the attoclock shift repre-
sented by the ratioM = ∆pmax−∆pout

∆pmax
with∆pout being the attoclock shift at vout = 0.4 a.u. A sketch of the situation is shown in

the inset of panel (a). The colored lines show the TDSE results for fixed values of the Keldysh parameter γeff as indicated in the
legend. The gray lines show the adiabatic estimate (5.39) for the Ieff

p /E tunnel exit (gray solid lines) or the field-direction model
(gray dashed-dotted lines). Figure is adapted from Brennecke et al. [369].

In general, the observed attoclock shifts slightly increase for more nonadiabatic conditions. This can
be more clearly seen when studying the global attoclock shifts as a function of the Keldysh parameter
(see Fig. 5.20(a) for a fixed field strength Ep = 0.1 a.u.). As expected, in the vicinity of peak electric-
field strength, the first-order nonadiabatic corrections are small such that the shift scales approximately
quadratically with the Keldysh parameter. To extract the value ∆p0

max in the adiabatic tunneling limit
(γeff → 0), we use a quadratic fit∆pmax(γeff) = ∆p

0
max+bγ

2
eff to the range of Keldysh parameters between

0.2 and 0.5. The extrapolated results are shown in Fig. 5.22(a). To check the extraction procedure, we
performed fits including an additional linear in γeff. However, if depletion can be neglected, i.e., for not
to high intensities, both fitting functions give virtually-identical results.
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Figure 5.20: Extrapolation of the global attoclock shift (panel a) and the tunnel-barrier width (panel b) towards the adiabatic limit.
Shown are the TDSE results versus Keldysh parameter γeff for fixed field strength Ep = 0.1 a.u. and corresponding quadratic fits.

To investigate the momentum dependence of the attoclock offsets, we quantify the relative variation
of the attoclock shifts by a single figure of merit. To this end, a relative difference M between the global
attoclock shift ∆pmax and an outer attoclock shift ∆pout is defined

M =
∆pmax − ∆pout

∆pmax
(5.41)

with ∆pout being the attoclock shift at a given value of vout = px+Ax(0). The ratioM increases when us-
ing larger values of vout. However, for values between 0.3 a.u. and 0.5 a.u., we observed the same qualita-
tive behavior in the TDSE calculations. Thus, in the following, we only discuss results for vout = 0.4 a.u.
(see Fig. 5.19(b)). In the simple formula (5.40) where the Ip/E exit position is used, the relative differ-
ence M is independent of the field strength. For fixed Keldysh parameter, the relative difference M

space induce errors, if common grid parameters are used.
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from TDSE indeed increases weakly as a function of the electric-field strength.17 The trend is qualita-
tively reproduced by classical adiabatic model of Section 5.3.1 when considering the FDM tunnel exit.
Furthermore, for the TDSE results, we observe an increase of the relative variation M as a function of
the Keldysh parameter γeff. For the most adiabatic conditions with γeff = 0.2, the ratios M from TDSE
are smaller than the prediction of the classical adiabatic model of Eq. (5.39). It is evident that there is a
systematic difference between the TDSE and the model which will be further studied in Section 5.3.3.
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Figure 5.21: (a) Tunnel-barrier width rmin for vanishing initial velocity. (b) Velocity-dependent variation of the tunnel-barrier
width represented by the ratio rout−rmin

rmin
with rout being the tunnel-barrier width at vout = 0.4 a.u. The colored lines show the

backpropagation results based on TDSE input for fixed values of the Keldysh parameter γeff as indicated in the legend. The gray
lines show the Ieff

p /E tunnel exit (gray solid lines) or the field-direction model (gray dashed-dotted lines). Figure is adapted from
Brennecke et al. [369].

In the microscopic analysis of the momentum-dependent attoclock shifts, the tunnel-exit positions
play a crucial role. The results of the tunnel-barrier width at vanishing initial velocity from the classical
backpropagation method are presented in Fig. 5.21(a) for the various laser conditions. In addition, we
also quantify the variation of the tunnel-barrier width as a function of the initial velocity in a single figure
of merit (see Fig. 5.21(b)). For the considered conditions, the exit positions roughly follow the estimate
of the field-direction model. To investigate nonadiabatic effects, the tunnel-barrier width is analyzed
as a function of the Keldysh parameter for fixed field strength (see Fig. 5.20(b)). Again, the first-order
nonadiabatic correction vanishes in the vicinity of peak field strength. In agreement with the prediction
in Ref. [163], we find a nonadiabatic reduction of the barrier width that scales quadratically with the
Keldysh parameter. To determine the adiabatic limit, we again use a quadratic fit rmin(γeff) = r

0
min+bγ

2
eff

to the range of Keldysh parameters between 0.2 and 0.5. The agreement of the extrapolated results from
classical backpropagation with the field-direction model is quite remarkable (see Fig. 5.22(b)).

Repeating the steps above, we find the global attoclock shifts and the tunnel-barrier width in the
adiabatic limit for various combinations of the asymptotic charge Z and the ionization potential Ip.
As long as over-the-barrier ionization is unimportant, the tunnel-barrier width measured in units of
Ip/Ep is a universal function of the interaction strength Z̃ (see Fig. 5.22(b)). Similarly, a nearly universal
behavior of the global attoclock shift measured in units of

√
Ip on the interaction strength Z̃ is observed,

if depletion can be neglected. For small values of Z̃, the prediction of the adiabatic model (5.40) agrees
reasonably well with the TDSE result, i.e., the attoclock offset is approximately a linear function of
Z̃. Here, the TDSE solution is consistent with the assumption of vanishing ionization times. Going
to larger interaction strength, higher-order corrections in Z̃ become relevant. To consistently include
these corrections in the classical modeling, the Coulomb effects on the trajectories are determined by
numerical solution of Eq. (5.35) for the adiabatic trajectories (5.36) with vanishing initial velocities. The
resulting Coulomb-induced momentum changes∆pC,y are shown in Fig. 5.22(a) as gray lines. The initial
positions from FDM (dashed-dotted line) leads to a better agreement with the TDSE results compared
to the Ip/E exit points (solid line).

17The oscillations for large Keldysh parameters are mostly caused by weak intracycle interference of the three different cigars
in the PMD.
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Figure 5.22: Adiabatic limit of the global attoclock shift (panel a) and the tunnel-barrier width (panel b) as a function of the
interaction strength Z̃. The colored lines indicate data sets for various combinations of the asymptotic chargeZ and the ionization
potential Ip as indicated in the legend. For comparison, the classical attoclock shifts for the Ip/E tunnel exit (gray solid line) and
for the field-direction model (gray dashed-dotted line) are calculated by the numerical solution of Eq. (5.35) with the adiabatic
trajectory (5.36).

Even though the exit positions from the FDM are in perfect agreement with the positions from back-
propagation, the attoclock shifts from TDSE are slightly smaller than classical FDM-based estimate.18

It is important to note that both considered quantities are in one respect fundamentally different: The
backpropagation result for the tunnel exit is solely based on the phase information of the outgoing wave
packet in momentum-space representation [350, 377]. In contrast, the attoclock shift represents the cor-
responding modulus squared of the probability amplitude. The discrepancy can be interpreted in the
sense that, for large interaction parameters (typically related to large field strength) and even under adi-
abatic conditions, in a trajectory-based description (with the initial conditions from backpropagation)
the most probable ionization time needs to be slightly negative in order to reproduce the TDSE distri-
butions. Importantly, compared to more nonadiabatic conditions [161, 359], these time delays are quite
small (only a few attoseconds).

5.3.3 Advanced models based on probability distributions

For adiabatic conditions and small interaction strength Z̃, the variation of the attoclock shift as a function
of the momentum is overestimated by the classical adiabatic model of Section 5.3.1 (see Fig. 5.19(b)). For
an easier comparison, we also consider a quadratic fit to determine the adiabatic limit of the relative
variation M from the TDSE results. The extrapolated ratios are nearly independent of the electric-field
strength (see Fig. 5.23(b)). However, in contrast to the global attoclock shift, the extrapolation including
a linear term in the Keldysh parameter leads to slightly larger ratiosM.19

The classical adiabatic model is based on two main assumptions: (i) The process is treated adia-
batically, e.g., the initial velocity has no component along the ionizing field and the Coulomb-induced
momentum change is calculated for a trajectory in a constant electric field. (ii) The attoclock shift is
modeled by following the classical trajectories starting at the peak of the electric-field strength, i.e., in
contrast to the TDSE simulations no distribution of final momenta is considered. To “refine” the model,
a CTMC simulation based on sampling an entire initial probability distribution can be used to extract
the attoclock shifts from final momentum distributions (as done in Section 5.2.3 for elliptical polariza-
tion). If p ′ was the final momentum in the absence of the Coulomb interaction, the final momentum is
the presence of the Coulomb interaction can be written as p = p ′ + ∆pC. For small Z̃, the momentum

18For initial positions from the TIPIS model, the results are not universal functions of Z̃. However, in general, we find that the
attoclock offsets predicted for the TIPIS exits agree slightly better with the offsets from TDSE compared to the FMD model.

19For the highest-considered field strength, the results of both fits agree very well. However, when going to the weakest fields,
the ratiosM of extrapolation including a linear term systematically increase and reach values as high as 0.15 for Ep = 0.05 a.u.
We cannot rule out that this is a numerical issue.
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change ∆pC of the CTMC method can be treated by perturbation theory

∆pC = −

∫tf
t0

dt∇V
(

r0 +

∫t
t0

dτ (p + A(τ))

)
. (5.42)

Usually, the change ∆pC depends on the given final momentum p. If the initial distribution is chosen
from SFA20, the distribution of final momenta p from a CTMC simulation can be approximated as

wCTMC(p) ≈ e−2ImSSFA(p′) ≈ e−2ImSSFA(p−∆pC). (5.43)

Using the PMD of Eq. (5.43) to extract the momentum offsets analogous to the TDSE, the global atto-
clock shift is in perfect agreement with the adiabatic estimate of Eq. (5.40) (see Fig. 5.23(a)). In contrast,
the variationM is even further overestimated in a CTMC simulation compared to the classical adiabatic
model of Eq. (5.40) and the TDSE results (see panel (b) in Fig. 5.23). This systematic deviation is related
to the form of Coulomb-free momentum distribution. Its width in longitudinal direction (py-direction)
is proportional to the laser wavelength whereas the width in lateral direction is nearly wavelength inde-
pendent. In combination with nonadiabatic modifications of the classical trajectories21, a wavelength-
independent correction of the momentum-dependent attoclock offsets appears that persists in the adi-
abatic limit. Hence, the ad-hoc combination of initial distributions from quantum-mechanical theories
with the classical Newtonian trajectories leads to slight inconsistencies in the CTMC simulations.
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Figure 5.23: Comparison of different levels of approximation for the adiabatic limit of the global attoclock shifts (panel a) and of
the relative variationsM of the attoclock shifts (panel b). In addition to the results from TDSE, various approximations of ARM
theory, the CTMC model of Eq. (5.43) and the simple estimate of Eq. (5.40) (gray lines) are shown. In panel (a), the global attoclock
shifts for all versions of ARM theory and for the CTMC analogue are on top of the gray lines and cannot be distinguished. The
other parameters are the same as in Fig. 5.19.

For a simplified modeling of PMDs which includes nonadiabatic effects and Coulomb effects in a
systematic manner, we use the ARM theory introduced in Section 2.5. The ARM theory only takes the
potential V to first order in the action into account. Thus, for consistency, we perform the simulations
for Z = 0.01 and use a linear extrapolation to estimate the observables for the desired value of Z = 1.
In addition, the same extraction procedure of the attoclock shifts in the adiabatic limit as for the TDSE
is used. By construction the global attoclock shifts from ARM theory scale linearly with the parameter
Z̃ and exactly follow the classical estimate (5.40). The ARM results for the variation M agree very well
with the full numerical TDSE results and are superior compared to the classical adiabatic model of
Section 5.3.1 and the CTMC simulations.

In the following, we study the difference between the CTMC simulations and the ARM theory. For
the global attoclock shift, a similar procedure was already applied in Ref. [161]. In ARM theory, the
Coulomb correction of the action is calculated along a complex-valued quantum orbit (2.56) evolving
in complex time from the saddle point t ′s to the final time tf. When using the standard two-pronged

20Here, preexponential factors and the Jacobian are neglected.
21Both an initial velocity component along the instantaneous field and nonadiabatic corrections during the continuum motion

contribute.
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integration path from t ′s down to the real axis t ′r = Re(t ′s) and then to the final time tf, the Coulomb
correction of Eq. (2.60) can be split into two parts:

ImS↓C(p, t ′s) = −Im
∫t′r
t′s−iκ

−2
dτV(rL(τ; p, t ′s)), ImS→C (p, t ′s) = −

∫tf
t′r

dτ ImV(rL(τ; p, t ′s)). (5.44)

In the adiabatic limit, virtually-identical results are obtained, if the first part (corresponding to under-
the-barrier motion) is neglected. For the part ImS→C corresponding to the subsequent beyond-the-barrier
motion, we only need to study the quantum orbit rL for real-valued times in the interval τ ∈ [t ′r, tf]

rL(τ; p, t ′s) =
∫τ
t′s

dt ′′ (p + A(t ′′)) =

∫t′r
t′s

dt ′′ (p + A(t ′′))+

∫τ
t′r

dt ′′ (p + A(t ′′))

= i Im rL(t ′r; p, t ′s) + r0+

∫τ
t′r

dt ′′ (p + A(t ′′)).
(5.45)

The last two terms represent a classical real-valued potential-free trajectory starting at the time t ′r at
the SFA tunnel exit r0 of Eq. (3.21). However, the first purely imaginary-term does not have a classical
counterpart and can be written as [161]

Im rL(t ′r; p, t ′s) = −∇p ImSSFA(p). (5.46)

In the adiabatic limit, the SFA exit position can be approximated by the Ieff
p /E tunnel-exit position (see

Eq. (5.25)). Using the trajectory of Eq. (5.45) in combination with the Ieff
p /E tunnel-exit position, we

find nearly perfect agreement with the full ARM simulations (see Fig. 5.23(b)). However, if the velocity
dependence of the tunnel exit is artificially neglected, the attoclock shift as of function of px + Ax(0)
increases. Hence, negative values of the relative variationM appear which are in contradiction with the
TDSE results. Hence, even in ARM theory, we observe a decisive influence of the velocity-dependent
tunnel-exit positions on the momentum-resolved attoclock shifts.

Naturally, the question about the difference between the ARM theory and the CTMC model appears.
Around the global maximum of PMD, the gradient of the imaginary part of the SFA action is small. Thus,
it was suggested in Ref. [161] that the Coulomb correction ImS→C of Eq. (5.44) can be expanded in terms
of Im rL(t ′r; p, t ′s) by using Eq. (5.46). To first order in Im rL(t ′r; p, t ′s), the relevant imaginary part of the
ARM action reads

ImSARM(p, t ′s) =ImSSFA(p) + ImSC(p, t ′s) ≈ ImSSFA(p) + ImS→C (p, t ′s)

≈ImSSFA(p) − ∆pC · ∇p ImSSFA(p) ≈ ImSSFA(p − ∆pC).
(5.47)

Here, we used the classical momentum change of Eq. (5.42). If this first-order expansion in Im rL is suffi-
cient, the ARM theory gives the same results as the CTMC model of Eq. (5.43). For the global maximum
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Figure 5.24: Most probable ionization time as a function of the lateral velocity v0,⊥ extracted from classical backpropagation
simulations based on TDSE input (panel a) or on input from ARM theory (panel b). The different curves show the results for
various peak field strength as indicated in the legend in a.u. but fixed Keldysh parameter γeff = 0.3. The other parameters are the
same as in Fig. 5.19.
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of the distribution, the expansion indeed works well. Hence, for sufficiently adiabatic conditions, the
ARM theory results in the same global attoclock shift as the CTMC model [161]. However, when going
towards nonzero lateral momenta px +Ax(0), we find that Im rL is nonzero and higher-order contribu-
tions become important such that a truncation of the expansion is not even appropriate in the adiabatic
limit.

As pointed out above, CTMC simulations based on initial coordinate distributions from the SFA do
not consider these additional terms in ARM theory due to the nonzero imaginary part of the quantum
orbits. However, in principle, we can choose an initial phase-space distribution in a way that a CTMC
simulation would exactly reproduce the PMD from TDSE. One approach to determine the required
initial distribution is the backpropagation method (see Eq. (5.16)). For various field strengths and a
fixed Keldysh parameter of γeff = 0.3, we apply the classical backpropagation to the electron wave
packets from either TDSE simulations in 2D or ARM calculations. To characterize the required initial
distributions, the most probable ionization time is separately determined for each lateral velocity v0,⊥.
We find that the most probable ionization time increases as a function of |v0,⊥| (see Fig. 5.24).22 In a
(possible) CTMC simulation, this property of the initial distribution would be important to reproduce
the ratioM of the momentum-dependent attoclock shift observed in TDSE and ARM theory.

5.4 Conclusion

In this chapter, photoelectron momentum distributions from recollision-free strong-field ionization of
atoms were studied using the attoclock protocol. Two implementations were considered based either
on close-to-circularly-polarized laser fields or quasilinear fields, i.e., bicircular counter-rotating laser
fields with an intensity ratio 4 : 1 of fundamental to second harmonic field. We concentrated on the
attoclock offsets related to the influence of the Coulomb attraction on the outgoing electrons. Previ-
ous theoretical works mostly investigated the global attoclock offset, i.e., the global maximum of the
electron momentum distribution. However, in general, the attoclock offset depends on the lateral mo-
mentum component of the electron (orthogonal to the direction of the attoclock shift), i.e., it depends
on which slice through the momentum distribution is analyzed. Within a trajectory-based modeling,
these momentum-dependent attoclock offsets are sensitive to the tunnel-exit positions. Throughout the
whole chapter, we explored this concept of a “nano-ruler” [54, 55] to probe the tunnel-exit positions
with subangstrom precision. However, our study also revealed that there are several complications in
the actual implementation of this idea.

In close-to-circularly-polarized fields, we considered the angular offset in polar coordinates as a func-
tion of the electron momentum in the plane of polarization. Even in a Coulomb-free situation, we found
that the shape of the electron wave packet already leads to nonzero offset angles for radial momenta
away from the global maximum. For example in elliptically-polarized fields, the angular maxima are
aligned along the semi-minor axis of the polarization ellipse for small radial momenta whereas they are
aligned along the semi-major axis at large radial momenta. Even though the Coulomb attraction induces
finite offset angles for all radial momenta, the general trend of the angular offsets is already defined by
the shape of the released wave packet. For nonadiabatic strong-field ionization of atomic hydrogen
by elliptically-polarized laser pulses, the comparison of photoelectron momentum distributions from
TDSE simulations to a recent experimental data showed quantitative agreement [357]. There, the simple
electronic structure of atomic hydrogen and, especially, the absence of multi-electron effects provided
a clean setting to benchmark the theoretical description and the experimental capabilities against each
other. The observed attoclock offsets were also modeled in a trajectory-based simulation. We found
that the agreement with the TDSE results was greatly improved by using nonadiabatic initial conditions

22For the backpropagation of ARM results, the small negative ionization times at v0,⊥ = 0 are solely attributed to a not-
consistently-treated Jacobian in Eq. (5.16). The quadratic dependence of the most probable ionization time on the initial velocity
is nearly unchanged for a “nonadiabatic velocity criterion” (as introduced in Ref. [211]) which takes a parallel component of the
initial velocity into account.
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from the strong-field approximation and, especially, by considering tunnel-exit positions that depend
on the initial velocity of the electron.

The geometry of the liberated electron wave packet as well as nonadiabatic effects complicate the
interpretation of the momentum-dependent attoclock offsets in close-to-circularly-polarized fields. To
a certain extent, these problems can be avoided in the bicircular attoclock. In this setting, the electric
field mimics linear polarization for times close to the peak field strength while the overall shape of the
vector potential still provides a meaningful time-to-momentum mapping [359]. The special geometry
simplifies the analysis of the attoclock offset as a function of the lateral momentum. The Coulomb
attraction on the outgoing electrons basically leads to a shift of the most probable electron momentum
along the direction of the instantaneous electric field. Based on numerical simulations of the TDSE
we determined the momentum-dependent attoclock offsets for a large range of laser parameters and
extracted their adiabatic limit. Within a classical adiabatic model, we confirmed that the dependence of
the tunnel-exit position on the initial electron velocity strongly influences the momentum dependence
of the attoclock offset. However, while the classical model reproduces the global attoclock shift well, the
momentum dependence of the attoclock shift is only qualitatively described. Within the analytical R-
matrix (ARM) theory, we showed that nonclassical terms of the underlying quantum orbits play a crucial
role. However, also in ARM theory, a velocity-dependent tunnel-exit position is needed to correctly
model the momentum-dependent attoclock shifts.

To support the assumption of a velocity-dependent tunnel-exit position (as it is suggested by the
strong-field approximation), we considered the classical backpropagation method for both shapes of
the laser field. In our momentum-space backpropagation approach, the momentum-space phase of the
outgoing electron packet is used to derive initial conditions for classical electron trajectories propagating
backwards in time. For short-range potentials, we found that the exit positions based on the velocity
criterion in backpropagation are in excellent agreement with the exit positions from the strong-field ap-
proximation. For long-range Coulomb potentials, the tunnel-barrier width is systematically reduced.
By extrapolating the tunnel-exit positions from backpropagation for a quasilinear field towards the adi-
abatic limit, we found that these positions perfectly agree with the field-direction model.

In the future, it could be interesting to derive an analytical estimate for the electron wave packet from
ARM theory in the adiabatic limit and to further investigate the observed discrepancies in momentum-
dependence of the attoclock shift. In addition, the application of classical backpropagation to ARM input
might enable the derivation of an analytical tunnel-exit position including leading-order Coulomb cor-
rections. Both considerations could serve as a starting point to investigate the small negative ionization
times observed in the classical backpropagation simulations with TDSE input.

By analyzing the momentum-resolved attoclock offsets more information on the released electron
wave packet are accessible compared to the bare observation of the global attoclock offset. Thus, in
the future, this new class of experiments may enable a deeper and more sensitive study not only of
the strong-field ionization process but also of properties of the ionized target. The quasilinear attoclock
with its approximately constant direction of the electric field during the electron’s release provides an
excellent setting to investigate the orientation-dependent ionization dynamics in molecules [367]. Based
on the idea of a “nano-ruler” this offers the potential to retrieve tunnel-exit positions for molecules.
Furthermore, a deeper theoretical study of chiral molecules in close-to-circularly-polarized attoclock
configurations with their chiral-active properties could be interesting (as in Refs. [344, 360]). However,
as pointed out above, a meaningful interpretation of such a setting is difficult and requires further in-
vestigation.



Chapter 6

Position Offsets in Strong-field
Ionization of Small Molecules

6.1 Introduction

The desire to image atomic or molecular structures by means of photoelectron momentum distribu-
tions from strong-field ionization has already a long history. The first simulations and experiments
studied the orientation dependence of the total yield for small molecules such as N2, O2 or CO2 by vari-
ation of the alignment of the molecular axis relative to the polarization direction of linearly-polarized
lasers [57, 58, 378, 379]. A cleaner imaging configuration—avoiding recollisions and intracycle interfer-
ence—is offered by considering the 3D momentum distributions from ionization in attoclock-like field
configurations such as circularly-polarized fields [59–61]. If the molecular axis is fixed, then in the simple
man’s model each electron emission direction is linked to a specific relative orientation of the molecule
with respect to the instantaneous ionizing field. Hence, the ionization process in circular polarization
contains a 360◦ scan of the molecular response. Using the COLTRIMS technique, Staudte et al. [59] and
Odenweller et al. [380] measured the first molecular-frame-resolved PMDs in the polarization plane for
H2 and H +

2 . The structural information encoded in PMDs was used, for example, to study asymmet-
ric molecules [381], to probe the nodal structure of molecular orbitals for various species [382–386], to
imagine valence-orbital motion [387] or to investigate the two-path inference in dimers [388]. Further-
more, the subcycle timing of molecular ionization was explored in Refs. [389, 390] and later on refined
by using an attoclock technique with elliptical polarization [391–394].

Strong-field ionization prepares an electron wave packet in the continuum which can be represented
by a complex-valued wave function, e.g., ψ̃(p) in momentum space. However, experiments can only
measure the electron momentum distribution, i.e., the modulus square of the final momentum-space
wave function |ψ̃(p)|2 (see the definition in Section 2.2). Hence, the previously-mentioned works with
their intracycle-interference-free settings do not characterize the phase of the momentum-space wave
function. In quantum mechanics, the position and momentum representation are related to each other
by a Fourier transformation. Therefore, substantial information on the position distribution of the wave
packet is encoded in the phase of the momentum-space wave function. Inspired by the semiclassical
physics [255, 256, 375], we define the negative derivative of the spectral phase with respect to the mo-
mentum as the local position. A deeper motivation of this relation is given in Section 6.2.1.

The position distribution of an electron wave packet is determined by the release process as well
as by the subsequent continuum motion under the influence of the external field. For molecules, the
release process is especially sensitive to the orbital structure. The orbital dependence of the wave packet
can for example influence recollision-based phenomena such as laser-induced electron diffraction [70].
In general, not only the emission probability depends on the direction of the ionizing field relative to
the molecular orientation, but also the release position of the wave packet, i.e., its phase in momentum
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space [240, 408]. This important piece of knowledge is lost when only considering interference-free
PMDs. In theoretical simulations, on the other hand, the momentum-space phase of the outgoing wave
packet and, thus, the position information are directly accessible. Thus, in the first part of this section,
we perform numerical simulations based on the TDSE to investigate the spatial displacement of the
electron wave packets in molecular strong-field ionization. The influence of nonadiabaticity on the
position offsets is explored by considering both circularly-polarized fields and quasilinear fields (see
Section 5.3). The long-range molecular potential also modifies the dynamics of the outgoing electron
wave packet. To investigate its effect on the displacement of the asymptotic wave packet, we apply the
classical backpropagation method (see Refs. [211, 350, 351] and Section 5.2.4).

While the absolute phase of wave function is not experimentally accessible, relative phases can be
measured by analyzing the interference of different pathways. For single-photon ionization, the RAB-
BITT scheme [65, 66, 395] enables studying phases of electron wave packets. There, the absorption of
an infrared photon by a wave packet created via single-photon ionization in an XUV attosecond pulse
train results in two independent interfering pathways. In atoms, RABBITT is sensitive to the energy
derivative of the scattering phase which is known as the Wigner time delay [62]. In its original meaning,
a Wigner delay is caused by modulation of the electron’s wavelength upon passage over a potential
during a scattering process. As a result, the scattered wave packet is shifted in space compared to a
freely-traveling wave packet, i.e., retardation occurs. Single-photon ionization can be viewed as a “half-
scattering” process where the electron is initially located in the vicinity of its parent ion and finally es-
capes from it. Thus, for atoms, RABBITT has a well-defined interpretation using the “original” Wigner
time delay. For more complex targets as molecules [67, 396], the RABBITT scheme is sensitive to the
derivative of the phase of the complex-valued photoionization amplitude [396]. However, in general,
this quantity is not simply given by the derivative of a scattering phase and can be influenced by further
parameters such as characteristics of the interaction process that creates the electron wave packet [397]
or the initial location of the electron wave packet in a molecule [68].

In contrast to RABBITT, a huge number of photons is absorbed in strong-field ionization and, thus, a
plethora of interference pathways emerge in the energy domain. Here, a trajectory-based description of
interference in the time domain is beneficial. In principle, for linear polarization, various types of inter-
ference pattern were already introduced in Chapter 3 and could be used to explore the phase structure
of the electron wave packets. Indeed, an influence of the continuum phase in molecular strong-field
ionization was observed in photoelectron holography [29]. There, the orientation-dependent shift of
the interference fringes is related to a variation of the initial phase of the tunneled wave packets [240].
Based on this idea, photoelectron holography was also theoretically studied to resolve birth positions of
electron wave packets in molecular ionization [398, 399]. However, the main drawback of holography
is that it inherently relies on scattering of electrons such that information on the initial electron wave
packet is mixed up by orientation-dependent scattering properties (see for example Ref. [208]).

To avoid this drawback, a strong-field ionization process can be probed by a second weak field of a
different color such that—similar to the RABBITT scheme—interference is artificially created. The per-
turbation of a strong field with frequency ω by a weak field of frequency ω/2 induces an interference
pattern of electron waves liberated in two consecutive optical cycles of the ω field. The modulation
of the electron yield as a function of the relative phase between both colors was already observed for
linearly-polarized fields in 1994 [400]. By considering the variation of the interference pattern as a func-
tion of this tunable parameter, information on the ionization process in the strong fundamental field can
be extracted. Using linear polarization, the idea was first applied for the characterization of the relative
spectral phases of different ATI peaks in atomic ionization [401]. This linearly-polarized setting was fur-
ther theoretically studied by means of various methods such as the numerical solution of the TDSE or a
simplified SFA-based model [402, 403]. To avoid complications due to recollisions, it is advantageous to
use co-rotating circularly-polarized fields instead of linear polarization. This enables to retrieve of both
phases and modulus squared of the emitted electron wave packets for atoms [404] or to study the time
structure of strong-field ionization [405].
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Recently, Eckart [69] proposed a scheme called holographic angular streaking of electrons (HASE)
based on such co-rotating circularly-polarized fields in order to extract spatial displacements of the liber-
ated electron wave packets from molecular strong-field ionization. In this method, the interfering wave
packets involve slightly different initial velocities, so that the pattern contains information on the deriva-
tive of the phase in momentum space, i.e., on the local positions. For a theoretical description of the
interference pattern, a semiclassical trajectory-based model assuming adiabatic tunneling was applied
in Ref. [69]. The modeling allowed to reconstruct the derivative of the momentum-space phase of the
liberated wave packet. In the second part of this section, we will theoretically evaluate the capabilities
of the HASE interferometer. To this end, we first introduce the interference scheme in co-rotating fields.
Afterwards, we use a potential-free description in the strong-field approximation to derive analytically
a relation between the signal modulation in the two-color field and the position offsets in molecular
strong-field ionization. Compared to the original modeling in Ref. [69] our description includes impor-
tant nonadiabatic effects. Finally, we perform numerical experiments, i.e., we simulate the interference
pattern in HASE based on TDSE, and retrieve from the two-color momentum distributions the position
offsets in molecular hydrogen H2. The results from the interferometric approach are compared to the
direct calculation of the position offsets based on the phase of the outgoing wave packet.

This chapter is based on joint work with the Dörner group in Frankfurt, especially with Daniel Tra-
bert and Sebastian Eckart. In an experiment by Trabert et al. the HASE interferometer was first used to
reconstruct orientation-dependent position offsets upon strong-field ionization of H2. Afterwards, we
provided theoretical reference data for the position offsets for the joint publication [377]. These were
directly extracted based on the phase of the outgoing wave packets from the numerical solution of the
TDSE or the strong-field approximation.

6.2 Ab-initio calculation of position offsets

6.2.1 Motivation based on the PFT model

In the simple man’s model, strong-field ionization is treated as a two-step process [7, 8]. Under adiabatic
conditions, the electron is released via tunneling through a quasistatic barrier formed by bending of the
ionic potential due to the laser field. For atoms, the liberated wave packet is centered at the tunnel-exit
position r0 = −r0,‖Ê(t0), i.e., in the direction opposite to the instantaneous field E(t0) (see for example
the discussion in Chapter 5). When molecules are ionized, we expect that their structure influences
the momentum distribution as well as the position distribution of the freed electronic wave packet. In
this chapter, we will mostly consider hydrogen molecules H2. For parallel or perpendicular alignment
of the molecular axis with respect to an applied electric field, the freed wave packet is expected to
be still centered along the direction −Ê(t0) due to the system’s symmetry. However, if the molecular
axis is tilted with respect to the electric field, the situation is less obvious (see Fig. 6.1 for a schematic
illustration).

For a simplified modeling of the detached electron wave packet, the partial Fourier-transform (PFT)
approach is used first. PFT was introduced for atoms [406] and later on generalized to describe the
ionization of small molecules [407–409]. Analogous to the ARM theory, the main idea is to treat the wave
function close to the ionic core like in the field-free situation and approximate the outer dynamics by
means of the WKB method. We define the unit vectors e⊥ and e‖ that are perpendicular and antiparallel
to the instantaneous field Ê(t0).1 Then, the matching is performed along a line r0 + r⊥e⊥ perpendicular
to the atomic tunneling direction r0 = r0,‖e‖ (see the dashed line in Figs. 6.1(a1)-(c1)).2 As a result, the
shape of the liberated wave packet is influenced by the slice of the initial wave function ψM(r0 + r⊥e⊥)

1For the cases of circularly-polarized fields and quasilinear fields discussed below, the unit vector e⊥ is chosen parallel to the
negative vector potential −A(t0).

2In the PFT theory, as described in Ref. [406], the matching should be performed along a line with parallel distance rM,‖ such
that κ < rM,‖ < Ip/E(t0). However, we found that the later discussed results for the orientation-dependent position offsets
only weakly change with the exact matching point and, hence, choose rM,‖ = r0,‖ for simplicity.
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Figure 6.1: Position offsets in strong-field ionization of small molecules. (a1)-(c1) Position-space wave function ψM(r) of the
molecular orbital of H2 for three orientations (with an exaggerated bond length Reff = 2.8 a.u.). In PFT theory, the shape of
the liberated electron wave packet from tunnel ionization in an electric field (red arrow) is influenced by the slice through the
bound wave function along the dashed line (see main text). These slices are shown in panels (a2)-(c2). Due to the symmetric
configuration, the wave functions are centered at r⊥ = 0 for parallel and perpendicular alignment (β = 0◦ and β = 90◦).
However, in all other cases, the freed wave packet is not symmetric about the Ê-axis and a position offset∆r⊥ is visible.

along the perpendicular line (see panels (a2)-(c2)). Due to the structured molecular orbitals (MOs), the
central positions ∆r⊥ of the wave packets depend on the relative angle β between the molecular axis R̂
and the electron’s tunneling direction r0. As expected, for parallel and perpendicular alignment (β = 0◦

and β = 90◦), the system consisting of field and molecule is mirror symmetric and the position offsets
vanish, i.e., ∆r⊥ = 0. In all other cases, this symmetry is broken and the peak position of the wave
packet is shifted to |∆r⊥| > 0. The simple picture suggests positive offsets ∆r⊥ > 0 for angles β between
0◦ and 90◦ (see panel (b2) for β = 45◦).

After tunnel ionization, the motion of the wave packet can be described by means of classical trajecto-
ries. If the ionic potential is neglected, the classical dynamics is solely determined by the external electric
field such that an initial velocity v0 at the birth time t0 is mapped to a final momentum p = v0 − A(t0).
When starting at the exit point r0, the final position at a time tf reads

rf = r0 +

∫tf
t0

dτ (p + A(τ)) . (6.1)

In this potential-free setting, a shift of the liberated wave packet (at time t0) translates directly to an
offset of the wave packet at a later time tf. Hence, the offsets could be observed by an detector placed
far away from the parent ion. For circular polarization, the scenario is sketched in Fig. 6.2(a). Here, the
final momentum p is known to be perpendicular to the ionizing field E(t0), i.e., p = (A0 +v0,⊥)e⊥. Thus,
the introduced position offsets are parallel (antiparallel) for ∆r⊥ > 0 (∆r⊥ < 0) to the final emission
direction of the electron given by p. Hypothetically, the arrival time of an electron can be measured at a
fixed position far away from the parent ion [69]. Then, a position offset ∆r⊥ of the liberated wave packet
results in a change of the arrival time by ∆τ = −∆r⊥/p⊥. A wave packet that is shifted in the direction
parallel (antiparallel) to the final momentum arrives earlier (later) on the detector [69]. For ionization of
molecules, the delay depends on the relative molecular orientation and it is some tens of attoseconds.
For example, an offset ∆r⊥ = 1 a.u. and a final momentum p⊥ = 1 a.u. leads to an additional time delay
of ∆τ ≈ 24.18 as.

In strong-field ionization, the momentum-space representation of the outgoing electron wave pack-
ets is usually characterized in experiments. However, a basic property of quantum mechanics is that a
translation by ∆r in position space, ψ(r)→ ψ(r−∆r), manifests itself as a phase gradient in momentum
space, ψ̃(p) → exp(−i∆r · p)ψ̃(p). Thus, the position offsets in molecular ionization leaves an imprint
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Figure 6.2: (a) Illustration of the continuum motion for ionization of molecule by circularly-polarized laser pulses. At the time of
ionization t0 = 0, the electron wave packet appears approximately in -E(t0)-direction. However, due to the molecular structure,
its center may be shifted by an offset ∆r⊥. In the absence of an ionic potential, the electron follows a laser-driven trajectory.
Thus, a position offset of the released wave packet is translated into an offset of the wave packet at a final time tf after the end
of the pulse (see the trajectories shown as blue solid and dashed lines). (b) Perpendicular component ∆r⊥ of the position offsets
based on the PFT theory of Eq. (6.9) as a function of the relative angle β between the molecular axis R̂ and the negative direction
e‖ = −Ê(t0) of the electric field. Figure is adapted from Trabert et al. [377].

on the phase structure of the momentum representation. In general, for example for nonadiabatic ion-
ization, the liberated wave packets are not Fourier-transform limited. Hence, even in a potential-free
setting, they undergo a nontrivial time evolution in position space. In this situation, the local posi-
tion introduced in the momentum-space version of the classical backpropagation of Section 5.2.4 still
contains valuable information on the position distribution of the wave packet. At a time tf, the local
position is defined for each momentum p by means of the phase gradient of the momentum-space wave
function

r(p, tf) = −∇p arg ψ̃(p, tf). (6.2)

As shown in Eq. (5.19), during potential-free time evolution the local position defined in Eq. (6.2) simply
follows the classical trajectory. We can decompose the local position in a component antiparallel and a
component perpendicular to the instantaneous electric field:

r‖ = −e‖ · ∇p arg ψ̃(p) and r⊥ = −e⊥ · ∇p arg ψ̃(p). (6.3)

In the following, we will consider Eqs. (6.2) and (6.3) to determine molecular position offsets.
The time delay introduced above can be generalized by means of the local position. For the special

case of circularly-polarized fields and when only considering the polarization plane, a time τ can be
defined as [69, 375]

τ := −
r⊥

p⊥
=

1
p⊥

e⊥ · ∇p arg ψ̃(p, tf) =
1
p⊥

∂

∂p⊥
arg ψ̃(p, tf) =

∂

∂E
arg ψ̃(p, tf), (6.4)

where ψ̃ is viewed as a function of energy E and an additional angle. The last expression is usually
referred to as Wigner time delay τWigner (see for example Refs. [68, 375, 410]), because it has the same
functional form as the expression introduced by Wigner in the context of electron scattering [62]. From
a fundamental point of view, both the position offset of Eq. (6.3) and the delay of Eq. (6.4) can be viewed
as a characterization of the phase change of the wave packet in momentum representation [377, 411].

The position offsets for H2 can be estimated by means of PFT theory. For ionization at time t0, the
structural dependence of the electron wave packet as a function of the initial velocity v0 = v0,⊥e⊥ is
given by the Fourier transformation of the slice through the initial wave function ψM along the line
r0 + r⊥e⊥ (see discussion above). The resulting complex-valued amplitude reads in 2D3

Ã(v0,⊥) =
1√
2π

∫
dr⊥ψM(r0 + r⊥e⊥)e−iv0,⊥r⊥ . (6.5)

3Note that for a full representation of the liberated wave packet, the structure factor Ã(v0,⊥) must be multiplied by a Gaussian
function of the lateral velocity v0,⊥ (similar to the ADK rate of Eq. (2.3)) [406]. This can be interpreted as a filtering effect during
tunnel ionization.
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This is not the bare Fourier transformation of the bound wave function, but instead a mixed position-
momentum-space representation. In order to derive an analytical estimate, we employ a linear combi-
nation of atomic orbitals (LCAO) to approximate the molecular orbital

ψM(r) ∝ ψA

(
r −

R
2

)
+ψA

(
r +

R
2

)
(6.6)

with an internuclear distance R = 1.3983 a.u. and a molecular orientation given by R̂. The ground state
of atomic hydrogen is chosen as the orbital ψA ∝ exp(−κr). In the PFT theory, the matching position
can be approximated by the Ip/E tunnel exit, i.e., r0 = Ip/E(t0)e‖. Under these assumptions and using
|R|� r0,‖ and |r⊥|� r0,‖, the amplitude of Eq. (6.5) can be written as

Ã(v0,⊥) ≈ 2 ÃA(v0,⊥) cos
(
(v0,⊥e⊥ + iκe‖) · R

2

)
. (6.7)

Here, the first term is the amplitude for atomic orbitals whereas the second term represents the de-
pendence on the molecular structure. Note that both vectors e‖ and e⊥ depend on the direction of the
instantaneous electric field and, thus, in general on the time of ionization t0. Following the classical
potential-free dynamics, in pure circularly-polarized fields with a magnitude A0 of the vector poten-
tial, the release time t0 and the initial velocity component v0,⊥ are mapped to the final momenta by
p⊥ = v0,⊥ + A0 and φp = ωt0. Thus, for a fixed molecular orientation, a given final direction φp in
momentum space is linked to a relative angle β between molecular axis and instantaneous electric field.

The electron yield shows a well-known orientation-dependent modulation that can be approximated
by the factor cosh2(κe‖ ·R/2) = cosh2(cos(β)κR/2) (see for example Refs. [240, 409]). However, the phase
of the wave packet is also influenced by the molecular structure [240, 408]. For small initial velocities
and small internuclear distances, the orientation-dependent part of the phase reads

arg Ã(v0,⊥) = −

√
2Ip
8

R2v0,⊥ sin(2β) with v0,⊥ = p⊥ −A0. (6.8)

According to Eq. (6.2), the variation of the local position in e⊥-direction is given by

∆r⊥ =

√
2Ip
8

R2 sin(2β). (6.9)

Within this model, the position offset is independent of the initial velocity v0,⊥, i.e., the whole initial
wave packet is shifted by ∆r⊥ in position space. The predicted dependence of the position offset on
the orientation β, shown in Fig. 6.2(b), is in qualitative agreement with the simple position-space-based
argumentation presented above. For example, the offsets are positive for orientations β ∈ (0◦, 90◦) and
vanish for parallel or perpendicular alignment.

6.2.2 Computational details

The spatial information about the wave packets from strong-field ionization of small molecules can also
be extract from ab-initio calculations. To this end, we perform numerical simulations of the TDSE in
2D and analyze the phase structure of the outgoing electron wave packets. The TDSE in the dipole
approximation is solved on Cartesian grids using the Fourier split-operator method (see Section A.2.2
for details). The grids span 409.6 × 409.6 a.u. with spacings ∆x = ∆y = 0.2 a.u. and a time step of
∆t = 0.01 a.u. is used. The momentum distributions are calculated with a resolution of ∆px = ∆py =

0.0077 a.u. In two dimensions, we consider a model H2 molecule defined by the potential

V(r) = −
∑
j=1,2

Zcore√
r2
j + ε

with rj = r − Rj. (6.10)

Here, R1 = R/2 and R2 = −R/2 are the fixed positions of the nuclei at equilibrium distance R =

1.3983 a.u. The effective charges Zcore = 0.5 are used such that an asymptotic charge of Z = 1 appears.
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To reproduce the ionization potential Ip ≈ 0.56 a.u. of real H2, the parameter ε = 0.265 is chosen. Fur-
thermore, effects of the Coulomb attraction on the outgoing electrons are switched off in the simulations
for a short-range potential defined by

V(r) = −
∑
j=1,2

Zcore√
r2
j + ε

exp

(
−

(
rj
rcore

)4
)

with rj = r − Rj. (6.11)

The parameters are tuned to Zcore = 0.5, ε = 0.1975, a cutoff parameter rcore = 3 a.u. and an effective
core distance R = 1.2724 a.u. This choice ensures that: (i) The correct ionization potential of real H2 is
reproduced. (ii) The ground states of the long- and short-range potentials result in similar perpendicular
position offsets when calculated by numerical evaluation of the PFT theory based on Eqs. (6.3) and (6.5).
Mostly, we consider recollision-free ionization in circularly-polarized laser pulses of np cycles duration
defined by the vector potential

A(t) = −A0

(
cos(ωt)
sin(ωt)

)
cos4

(
ωt

2np

)
. (6.12)

If not stated otherwise, we choose a three-cycle envelope (np = 3) in order to suppress the influence of
ATI peaks. The effects due to the shortness of the pulse are minimized by only analyzing the part of
electron wave packet that is liberated in the vicinity of maximal electric-field strength. Then, to study
the orientation dependence, we use the field of Eq. (6.12) and vary the orientation of the molecular axis.

6.2.3 Results and discussion

Before proceeding with the study of the full dynamics in long-range potentials, we explore the structure
of the wave packets from ionization in a short-range potential. Within this setting, an electron detached
at the time of peak electric-field strength (here at t0 = 0) is classically deflected by the light field to a
final momentum p = −A(0) + v0 = (A0 + v0,⊥)e⊥ = (A0 + v0,⊥)ex (see the illustration in Fig. 6.2(a)).
Thus, we only analyze the observables along the px-direction.

The initial-velocity distribution as a function of v0,⊥ = p⊥ − A0 is shown in Fig. 6.3(a1) for each
relative molecular orientation.4 In agreement with earlier works (see for example Refs. [59, 378, 379])
the ionization yield maximizes when the instantaneous electric field is aligned with the molecular axis
(β = 0◦) (see Fig. 6.3(a2)). In contrast to the adiabatic prediction of the PFT model, the distributions are
centered at positive initial velocities p⊥ − A0 = v0,⊥ > 0 due to finite nonadiabaticity in the ionization
process [170, 354, 370–372]. A precise investigation shows that this nonadiabatic effect also depends on
the molecular orientation: For orthogonal alignment (β = 90◦), the distribution is centered at slightly
larger v0,⊥ = p⊥ −A0 compared to parallel alignment.

In order to study the spatial structure of the wave packet, the local positions of Eq. (6.2) are calcu-
lated from the momentum-space representation at the final time tf. Classically, the positions at time tf
are linked to the initial positions at the release time t0 (see the classical backpropagation method of Sec-
tion 5.2.4). In short-range potentials, their relation is simply given by Eq. (6.1), i.e., a shift of the positions
at time tf is equivalent to a shift of the initial positions at release time t0. For ionization at time of peak
field strength t0 = 0 or equivalently momenta along the px-direction, the initial positions r(v0,⊥,β) can
be seen as functions of the relative orientation β and the initial velocity v0,⊥. To extract the orientation
dependence of these positions, i.e., relative position offsets, we define

∆r(v0,⊥,β) = r(v0,⊥,β) − 〈r(v0,⊥,β)〉β (6.13)

by subtracting the average value 〈r(v0,⊥,β)〉β over all possible orientations β for fixed v0,⊥. We find that
the average value 〈r(v0,⊥,β)〉β resembles very well the velocity-dependent initial positions for atoms

4Formally, we use the classical backpropagation method of Section 5.2.4 to determine the velocity-dependent quantities. The
distribution of initial velocities is defined by evaluating the initial distribution wini(t0,v0,⊥) of Eq. (5.16) at t0 = 0. However,
in this potential-free situation, the final momenta are linear functions of the initial velocities at the tunnel exit such that their
distributions are the same up to a Jacobian factor which is independent of the molecular geometry.
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Figure 6.3: Properties of the electron wave packet for strong-field ionization of H2 modeled by a short-range potential with three-
cycle circularly-polarized laser pulses at 800 nm wavelength and 2× 1014 W/cm2 intensity. (a1) Initial-velocity distribution as a
function of v0,⊥ = p⊥−A0 (defined in Eq. (5.16)) and (a2) integrated yield for various molecular orientationsβ. (b1) Perpendic-
ular component∆r⊥ and (c1) antiparallel component∆r‖ of the position offsets. (b2) and (c2) Corresponding slices at a velocity
v0,⊥ = 0. The quantities are extracted from TDSE simulations (see main text). For comparison, the result from the numerical
evaluation of the PFT model (see Eqs. (6.3) and (6.5)) is shown as a gray thick line in panel (b2).

with the same ionization potential which are discussed in Section 5.2.4. For each orientation β, the rela-
tive offsets defined in Eq. (6.13) are shown in Figs. 6.3(b1) and (c1) for the perpendicular and antiparallel
components defined in Eq. (6.3).5 In agreement with the prediction by the PFT model of Eq. (6.9), the
perpendicular component ∆r⊥ extracted from TDSE simulations shows a nearly sinusoidal modulation
as a function of the orientation β. However, in contradiction with the PFT theory, the modulation depth
depends strongly on the initial velocity v0,⊥. In addition, we observe a strong variation of the antiparallel
component ∆r‖ that is on the same order of magnitude as the perpendicular component ∆r⊥.

The variation of the antiparallel component can also be modeled by the PFT approach. For circular
polarization, the derivative in e‖-direction (see Eqs. (6.2) and (6.3)) can be written as the derivative with
respect to the angle φp in the polarization plane. Importantly, slightly different angles φp correspond
to slightly different ionization times t0 and, thus, to different relative orientations β of the direction r0

and the molecular axis R. For the phase of Eq. (6.8) based on PFT theory, we find a position offset in the
antiparallel component given by

∆r‖ =

√
2Ip
4

R2 v0,⊥

A0 + v0,⊥
cos(2β). (6.14)

In qualitative agreement with this estimate, the position offsets from TDSE indeed show a nearly cosi-
nusoidal modulation as a function of β. The PFT estimate (6.14) vanishes at v0,⊥ = 0, whereas the TDSE
result vanishes at nonzero v0,⊥ = p⊥ −A0 ≈ 0.4 a.u. due to the influence of nonadiabatic effects. In con-
trast to the perpendicular offsets, the estimate of Eq. (6.14) suggests that the antiparallel offsets depend
on the laser parameters and vanish in the adiabatic limit (γ =

√
2Ip/A0 → 0). The antiparallel compo-

nents are related to the variation of the tunneling direction relative to the fixed molecular axis R induced
by a variation of the momentum p. Thus, they depend on the time-to-momentum mapping and on the
shape of the laser field. For example, in a quasilinear field (see Section 5.3), the relative orientation of the
molecular axis and the instantaneous electric field does not change in the vicinity of peak field strength.
Hence, we expect that the orientation dependence of the antiparallel component vanishes.

5In this special situation, the perpendicular component is proportional to the derivative in px-direction and the antiparallel
component is proportional to the derivative in py-direction.



6.2. AB-INITIO CALCULATION OF POSITION OFFSETS 109

The influence of nonadiabaticity

To explore the dependence of the position offsets on the initial velocity v0,⊥ and to discuss the influence
of the laser conditions, we want to quantify the orientation dependence of the offsets. Inspired by
the PFT theory of Eqs. (6.9) and (6.14), we use a Fourier expansion to represent the dependence on
the angle β for each fixed v0,⊥. For the TDSE results, we indeed find that the second-order Fourier
coefficients dominate the angular dependence. Hence, the perpendicular components of the offsets can
be approximately written as

∆r⊥ = ∆rmax
⊥ sin(2(β− βdef

⊥ )), (6.15)

whereas the antiparallel components can be written as ∆r‖ = ∆rmax
‖ cos(2(β − βdef

‖ )). For short-range
potentials, the deflection angles are given by βdef

⊥ ≈ 0 and βdef
‖ ≈ 0 or ≈ ±π/2 (due to the sign change

of this component). The retrieved modulation amplitudes ∆rmax
⊥ and ∆rmax

‖ are shown as a function
of v0,⊥ in Figs. 6.4(b2) and (c2) for various wavelengths. In all cases, the perpendicular and antiparallel
components are on the same order of magnitude and depend strongly on the initial velocity v0,⊥. The
deviations of the TDSE results relative to the PFT model decrease for increasing wavelength, i.e., for
more adiabatic ionization conditions. Hence, for a wavelength of 2000 nm corresponding to a Keldysh
parameter γ ≈ 0.45, the perpendicular offsets ∆rmax

⊥ well resemble the adiabatic PFT estimate at large
velocities v0,⊥. However, even under these conditions, the perpendicular offsets from TDSE strongly
increase when going from the high-energy to the low-energy edge of the wave packet.
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Figure 6.4: Position offsets and initial-velocity distributions corresponding to a release time t0 = 0 for strong-field ionization of H2

at various wavelengths given in the legend. The results are extracted from Fig. 6.6 for a long-range potential (panels (a1)-(c1)), from
Fig. 6.3 for a short-range potential (panels (a2)-(c2)) or based on the SFA model of Eq. (6.20) (panels (a3)-(c3)). (a) Slices through
the initial-velocity distribution for β = 0◦. (b) Modulation amplitude ∆rmax

⊥ of the perpendicular component of the position
offsets (see Eq. (6.15)). The gray thick line shows the numerical evaluation of the PFT theory. (c) Modulation amplitude∆rmax

‖ of
the antiparallel component of the position offsets. The other parameters are the same as in Fig. 6.3.

In order to investigate the huge influence of nonadiabatic effects on the phase structure in momen-
tum space, i.e., on the position offsets, the molecular strong-field approximation (MO-SFA) [196, 412–
414] can be used. In this approach, ionization is described as a transition from a field-free initial state
to a Volkov state and, hence, the influence of intermediate bound states, the other electrons and the
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Coulomb interaction are neglected. For molecules, its forecasting power strongly depends on the stud-
ied systems.6 Here, we use the favored length gauge and follow Refs. [111, 194] to rewrite the probability
amplitude. Based on a saddle-point approximation, the dominant part of the probability amplitude of
Eq. (2.40) takes the form7

ψ̃(p, tf) ∝ ψ̃M(p + A(t ′s)) e
iSSFA(p,t′s). (6.16)

Here, we include a single saddle-point time t ′s and neglect orientation-independent prefactors, e.g., the
second-order derivatives of the action in Eq. (2.45). The momentum representation ψ̃M of the initial
state is evaluated at the complex-valued quantity v(p, t ′s) = p + A(t ′s). For the local position (6.2), the
exponential of the SFA action results in an orientation-independent part (see Section 5.2.4). Information
on the molecular structure is contained in the first factor ψ̃M. For the further analysis, we rewrite this
prefactor as an exponential ψ̃M = exp(iΦ) of a complex-valued phase

Φ(v(p, t ′s)) = −i ln ψ̃M(v(p, t ′s)). (6.17)

According to Eqs. (6.2) and (6.16), the orientation dependence of the local position is contained in

r(p) = −∇p arg ψ̃M(v(p, t ′s)) = −∇p Re (Φ(v(p, t ′s))) = −Re
(
∂v(p, t ′s)
∂p

∇vΦ(v(p, t ′s))
)

=− Re (∇vΦ(v(p, t ′s))) + Re
(
[E(t ′s) · ∇vΦ(v(p, t ′s))]∇p(t

′
s(p))

)
.

(6.18)

Importantly, the position offsets are given by a derivative with respect to the momentum p. Thus, in the
first row, we use the chain rule express the p-derivative by the derivative with respect to the argument
of Φ. Then, the first term in the second line is related to the explicit p-dependence of the complex-
valued velocity v(p, t ′s). It is closely related to the adiabatic PFT result. In contrast, the second term is a
result of the implicit dependence via the saddle-point time t ′s(p). Note that in general both terms have
nonadiabatic corrections.

To get an analytical estimate for the phase structure of the wave packet of an H2 molecule in a
circularly-polarized field, we again approximate the molecular orbital by the LCAO wave function of
Eq. (6.6). Its Fourier transform results in

ψ̃M(k) ∝ ψ̃A(k) cos
(

k · R
2

)
, (6.19)

where ψ̃A is the Fourier transform of an atomic hydrogen orbital. The orientation-dependent position
offsets are caused by the phase variation of the cosine term, i.e, the relevant phase reads

Re (Φ(v(p, t ′s))) = Im ln cos
(

v · R
2

)
≈ −

1
8

Im(v · R)2 = −
1
8
R2v‖v⊥ sin(2β). (6.20)

In the second step, an expansion is performed based on a small extension |R| of the molecule. In the last
step, the explicit form of v = v⊥e⊥ + iv‖e‖ for circularly-polarized cw fields is used. The real-valued
quantities v⊥, v‖ ∈ R depend nonlinearly on the initial velocity v0,⊥ = p⊥−A0 and, hence, they influence
the modulation of the position offsets.

Despite the inclusion of nonadiabaticity in the SFA framework, the dependence of the phase and,
thus, the perpendicular position offset on the orientation β is still approximately given by a sinus func-
tion. The modulation amplitudes ∆rmax

⊥ and ∆rmax
‖ based on the phase Im ln cos

( v·R
2

)
in Eq. (6.20) are

depicted in Figs. 6.4(b3) and (c3). To account for deviations of the LCAO state from the initial state of
the TDSE calculations, we use an effective distance Reff ≈ 0.9 a.u.8 The saddle-point version of the MO-
SFA very well reproduces the features of the position offsets from TDSE simulations for a short-range

6For example, even for a simple molecule such as CO2, significant disagreement of the angular distribution between the exper-
iment and MO-ADK theory as well as MO-SFA theory was noted. This was later resolved by considering the influence of multiple
ionizing orbitals [415], multielectron effects [416], exchange interactions [126], the interplay of coordinate- and momentum-space
properties of the ionizing orbital [407] and the laser-induced orbital deformation [417].

7Usually, the transition matrix element has a pole at t ′s which will be ignored (for an improved treatment see Ref. [194]).
8This choice ensures that the position offsets of Eq. (6.9) for the LCAO state and from the numerical calculation based on the

PFT theory, Eqs. (6.3) and (6.5), for the initial TDSE state are nearly the same.
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potential. We find that the discussed deviations from the PFT theory are indeed mainly caused by nona-
diabatic corrections. Using an expansion of the vector potential as introduced in the Appendix A.3.1,
we find up to first order in the Keldysh parameter γ

Re (Φ(v(p, t ′s))) ≈ −
1
8
R2
√

2Ip + v2
0,⊥

[
v0,⊥ −

ω

E0

(
Ip + v

2
0,⊥
)]

sin(2β) + O(γ2). (6.21)

The first term in the square brackets can be considered as the adiabatic limit. It is similar to the PFT
result (6.8), except that the ionization potential Ip in the prefactor is replaced by an effective term Ieff

p =

Ip+v2
0/2. However, for the laser conditions used above, the nonadiabatic corrections in the second term

in the square brackets are equally important and modify the modulation depth of the position offsets.

The influence of a long-range potential

In a realistic neutral molecule, the ionic potential behaves like a Coulomb potential V(r) ' −1/r at large
distances r. To study its influence on the ionization process, we repeat the TDSE simulations for the long-
range potential of Eq. (6.10) under the same laser conditions as for the short-range potential. Figure 6.5
shows some characteristic observables of the asymptotic electron wave packet at time tf = 1050 a.u.
that could be measured by a detector placed far away from the ion. In Fig. 6.5, we analyze the quantities
along the px-axis, i.e., the direction of final momenta that would correspond to ionization at t0 = 0 in a
Coulomb-free setting.
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Figure 6.5: Properties of the asymptotic electron wave packet at time tf = 1050 a.u. for strong-field ionization of H2 modeled
by a long-range potential with three-cycle circularly-polarized laser pulses at 800 nm wavelength and 2× 1014 W/cm2 intensity.
(a1) Lateral momentum distribution as a function of p⊥ − A0 and (a2) integrated yield for various molecular orientations β
(measured against the negative y-direction). (b1) Perpendicular component ∆r⊥ and (c1) antiparallel component ∆r‖ of the
position offsets. (b2) and (c2) Corresponding slices at a momentump⊥ =A0. The quantities are extracted from TDSE simulations
(see main text). For comparison, the result from the numerical evaluation of the PFT model (see Eqs. (6.3) and (6.5)) is shown as a
gray thick line in (b2).

In reality, the electron-ion interaction influences the continuum motion of the liberated electron wave
packet (analogous to the attoclock discussed in Chapter 5). For example, the angular deflection of the
outgoing electrons by the ionic potential induces a “rotation” of the probability distribution. Hence,
in agreement with earlier work [61, 380], the orientations for minimal and maximal probabilities in
Fig. 6.5(a) does not correspond to β = 0◦ or β = 90◦ anymore. Qualitatively, the position offsets for the
long-range potential are similar to the short-range ones (see Figs. 6.5(b) and (c)). However, similar to the
orientation dependence of the yield, the position offsets are also slightly “rotated” in the angle β. For
example, the zero crossings of ∆r⊥ are not at β = 0◦ and β = 90◦ anymore.

In order to disentangle the modification by the Coulomb attraction of the continuum motion and
of the under-the-barrier motion, we again consider the classical backpropagation method (introduced
in Section 5.2.4). There, classical trajectories starting with momentum p at the local position r(p) of
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Figure 6.6: Properties of the initial electron wave packet corresponding to a release time t0 = 0 obtained by classical backpropaga-
tion simulations based on input from TDSE simulations for a long-range H2 model (see Fig. 6.5). (a1) Initial-velocity distribution
as a function of v0,⊥ and (a2) integrated yield for various molecular orientations β. (b1) Perpendicular component ∆r⊥ and
(c1) antiparallel component∆r‖ of the position offsets. (b2) and (c2) Corresponding slices at a velocity v0,⊥ = 0. For comparison,
the result from the numerical evaluation of the PFT model (see Eqs. (6.3) and (6.5)) is shown as a gray thick line in (b2).

Eq. (6.2) are propagated backwards in time under the influence of the laser field and of the Coulomb
interaction with the molecular ion. Here, the velocity criterion is chosen to stop the backpropagation.
For each orientation of the molecule, we use the input from a TDSE simulation and perform such a
backpropagation simulation. We again restrict ourselves to the quantities corresponding to electron
release at t0 = 0, i.e., at the time of peak field strength.

The initial-velocity distribution is shown in Fig. 6.6(a) for each relative molecular orientation. In
agreement with an adiabatic tunneling picture of the PFT theory and with the results for a short-range
potential presented above, the ionization yield at the tunnel exit maximizes for parallel alignment of the
instantaneous electric field and the molecular axis at β = 0◦ (see the integrated yield in panel (a2) of
Fig. 6.6). Similarly, the perpendicular components ∆r⊥ of the position offsets at the tunnel exit approxi-
mately vanish for parallel or perpendicular alignment of the ionizing field to the molecular axis. Within
this backpropagation approach, the attoclock-like rotation visible in the quantities for the asymptotic
wave packet (see Fig. 6.5) are indeed mostly attributed to the influence of the ionic potential on the out-
going electrons. However, the Coulomb-correction in the backpropagation leads to an overrotation for
certain initial velocities v0,⊥. For example, at intermediate initial velocities around v0,⊥ = 0.3 a.u. the
zero crossing of ∆r⊥ is located at slight positive β > 0 (compared to its location at negative β < 0 in the
asymptotic wave packet). We believe that this observation is closely related to the slight deviations of
the most probable ionization times from time zero visible in the attoclock (see Sections 5.3.2 and 5.3.3 as
well as Refs. [350, 359]).

For a quantitative comparison, we again determine the modulation amplitudes ∆rmax
⊥ and ∆rmax

‖
by considering the second-order Fourier coefficients (see Eq. (6.15)) for the backpropagation results
in Fig. 6.6. The amplitudes ∆rmax

⊥ and ∆rmax
‖ for long-range and short-range potentials are overall in

very good agreement (see Fig. 6.4). For the longest wavelength of 2000 nm, the deviations of the po-
sition offsets are less than 10%. However, for the shorter wavelengths such as 800 nm, the interplay
between nonadiabatic effects and the long-range potentials leads to quantitative deviations compared
to the short-range case. Two reasons for this are plausible: A physical deviation caused by Coulomb
corrections during the under-the-barrier motion or an inconsistency of the classical backpropagation
method due to the classical (i.e. incorrect) treatment of the continuum dynamics.

For atoms in circularly-polarized fields, the velocity criterion (used to stop the backpropagating
trajectories) results in initial probability distributions and initial positions that are in good agreement
with approximate theories such as SFA (see Section 5.2.4 and Refs. [211, 351]). In the adiabatic limit,
this criterion can be derived from the saddle-point equation in SFA for atoms (see Appendix A.3.1).



6.2. AB-INITIO CALCULATION OF POSITION OFFSETS 113

For molecules, we also studied certain modified tunneling criteria (not shown). In particular, we con-
sidered the following two additional conditions: r(t0) · v(t0) = 0 (“modified position criterion”) and
(−E(t0) − ∇V(r(t0))) · v(t0) = 0 (“force criterion”). Qualitatively, we found similar results compared
to the velocity criterion. Quantitatively, however, the modified position criterion leads to a diminished
agreement compared to the results for short-range potentials. On the other hand, the force criterion
slightly improves the agreement as it results in less overrotation (not shown).

Possible extensions

In circularly-polarized fields, the relative orientation of the laser electric field and the molecular axis
changes with time. Hence, nonadiabatic effects during the tunnel ionization and during the continuum
propagation decisively influence the position offsets in molecular strong-field ionization. In contrast, a
big advantage of the quasilinear field configuration setting introduced in Section 5.3 is that its electric
field has an approximately constant direction in the vicinity of the field-strength maximum. Hence, the
electric field has a well-defined orientation relative to the molecule over the whole release step. For
the asymmetric helium hydride molecular ion HeH+, the quasilinear configuration was already used to
probe the orientation-dependent yield as well as the subcycle timing of ionization [367].
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Figure 6.7: Properties of the asymptotic electron wave packet for strong-field ionization of H2 modeled by a long-range potential
as in Fig. 6.5, but in a quasilinear field with 2000 nm effective wavelength and 0.053 a.u. peak field strength (see main text).

To study the position offsets of the outgoing electron wave packets for ionization by a quasilinear
field, we solve the TDSE for the long-range model of H2 in the presence of a three-cycle pulse. An ef-
fective wavelength of 2000 nm is chosen and a peak electric-field strength of Ep ≈ 0.053 a.u. is used
(which is similar to the previously-considered circularly-polarized fields). The observables are only an-
alyzed along the px-direction, i.e., the direction of final momenta that would correspond to ionization
at t0 = 0 in a Coulomb-free setting. The nearly constant direction of the electric field has several im-
portant consequences: Despite the presence of the long-range potential, the ionization yield maximizes
for parallel alignment between the molecular axis and the instantaneous field (see Figs. 6.7(a)). Simi-
larly, the perpendicular components ∆r⊥ of the position offsets are perfectly symmetric functions of β,
i.e., the deflection angles are βdef

⊥ ≈ 0◦ (see Figs. 6.7(b)). Furthermore, the antiparallel components ∆r‖
approximately vanish (see Figs. 6.7(c)).

In the quasilinear configuration, the first-order nonadiabatic corrections vanish in the vicinity of peak
electric-field strength. Hence, the lateral momentum distributions are centered around p⊥−A0 = 0 (with
A0 = −Ax(0)) for each orientation (see Figs. 6.7(a)). Additionally, the extracted perpendicular offsets are
very well reproduced by the adiabatic PFT model (see Figs. 6.7(b)).9 Compared to circular polarization,
a much weaker modulation of the perpendicular offsets ∆r⊥ as a function of the “velocity” p⊥ − A0

9Note also the different scale for the position offsets compared to the previous figures for circular polarization.
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is present. For fixed β, we find that the position offsets ∆r⊥ are approximately quadratic functions of
p⊥ −A0 what can be explained by an increased effective ionization potential, i.e., Ieff

p = Ip + v
2
0,⊥/2 with

v0,⊥ ≈ p⊥−A0 (see also Eq. (6.21)). The small deviations of the TDSE results compared to the PFT model
are partially caused by Coulomb effects on the continuum motion. Using the classical backpropagation
method, we confirmed that the agreement with PFT theory even improves for the initial electron wave
packet (not shown). We ensured that these statements are also true for more nonadiabatic ionization
conditions such as a quasilinear field with only 800 nm effective wavelength.
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Figure 6.8: Position offsets for strong-field ionization of an oxygen model with itsπ∗-antibonding orbital (panel a) and of a helium
hydride model (panel b). The offsets are extracted at a momentum p = A0ex from the asymptotic electron wave packets created
by ionization in quasilinear fields with 2000 nm effective wavelength (analogous to Fig. 6.7). A peak field strength of 0.03 a.u. is
used for the oxygen model with an ionization potential of≈ 0.45 a.u. and a peak field strength of 0.12 a.u. is used for the helium
hydride model with an ionization potential of ≈ 1.66 a.u. For comparison, the results from the numerical evaluation of the PFT
model (see Eqs. (6.3) and (6.5)) are shown as gray thick lines.

To underline the sensitivity of the position offsets to the molecular structure, we present results for
two additional molecules. As a simple example of polar molecules, the helium hydride molecular ion
HeH+ is considered by using a 2D model introduced in Ref. [418]. In addition, as an example with
nodal planes in the molecular orbital, we choose a 2D toy model for an oxygen molecule O2 with its
π∗-antibonding orbital. The used 2D potential reads

V(r) = −
∑
j=1,2

Z+ (Zcore − Z) exp(−η r2
j)√

r2
j + ε

. (6.22)

Here, the parameters are R = 2.2827 a.u., Z = 0.5, Zcore = 2, ε = 0.15 and η = 0.24. We again consider
ionization by a quasilinear field of 2000 nm effective wavelength. The perpendicular components of the
position offsets at p⊥ = A0 extracted from the asymptotic electron wave packet are shown in Fig. 6.8.
Compared to the hydrogen molecule, we observe a vastly different orientation dependence which is al-
ready a clear sign of the sensitivity to the orbital structure. For example, a nodal plane in the π∗-orbital
translates to a minimum in the photoelectron momentum distribution [382–385]. However, simultane-
ously, the sign of the initial wave function changes at a nodal plane which is imprinted on the phase of
the outgoing electron wave packet. The phase jump results in a discontinuity of the derivative of the
phase when the position offset is calculated. The results from TDSE are well reproduced by numerical
evaluation of the PFT theory using the same states as in the TDSE.
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6.3 Holographic angular streaking of electrons

In our theoretical simulations, the phase of the outgoing electron wave packet is directly accessible. In
contrast, in experiments, the electron momentum distributions can only be measured, i.e., the modulus
squared of the probability amplitudes in momentum space can be studied. However, the relative phases
of two wave packets can be characterized by interferometric approaches. Recently, Eckart suggested a
scheme to measure variations of the phase gradients in momentum space [69], i.e., to study variations of
the local positions (6.2). In the so-called “holographic angular streaking of electron” (HASE) scheme, the
perturbation of the ionization process by a probe field with half of the fundamental frequency induces
an interference pattern. The pattern can be analyzed to retrieve information on the derivative of phase
in momentum space.

The original work [69] is based on an ad-hoc combination of a semiclassical description of the adi-
abatic ionization process (similar to the SCTS model of Section 2.4) and an added initial phase term
with a gradient in perpendicular direction. There, a one-to-one mapping between the variation of the
interference pattern and the inserted initial derivative of the phase naturally exists. However, in reality,
molecules also modify other quantities of the electron wave packets. For example, the yield depends on
the orientation and we found for circular polarization an orientation-dependent component of the local
position in the direction of the instantaneous electric field (see Section 6.2.3). It is apriori unclear how
such effects influence the HASE interferometer. In order to confirm the retrieval mechanism of Ref. [69],
we derive an analytical description of the HASE approach based on the molecular strong-field approx-
imation. This allows us to refine the mapping between the variation of the interference pattern and
perpendicular components of the position offsets (phase gradients). Afterwards, we perform numerical
experiments based on the solution of the TDSE and simulate the HASE interference pattern in photo-
electron momentum distributions for a hydrogen molecule. For an ab-initio verification of the HASE
approach, the retrieved position offsets from the interference patterns are compared to the theoretically-
accessible position offsets from the phase gradients of the outgoing wave packet (see the discussion in
the previous section).

6.3.1 Co-rotating two-color fields

The HASE approach probes phase gradients or local positions of the detached electron wave packets in
circular polarization. To this end, a strong circularly-polarized field Eω(t) of frequency ω is perturbed
by weak circularly-polarized probe field EP(t) of frequencyω/2 with the same helicity. These co-rotating
two-color fields can be represented by the vector potential

A(t) = Aω(t) + AP(t) = −A0

[(
cos(ωt− φCEP)

sin(ωt− φCEP)

)
+ 2ε

(
cos(ω/2t+ α/2 − φCEP/2)
sin(ω/2t+ α/2 − φCEP/2)

)]
f(t). (6.23)

An example of the negative vector potential −A(t) is shown in Fig. 6.9(a). The relative phase α between
the fields determines the orientation of the Lissajous figure in space (2π periodic). The deviations from
pure circular polarization are controlled by the relative field strength ε of the probe field compared to
the fundamental field. For a nontrivial envelope f(t) 6= 1, the carrier-envelope phase φCEP can vary
between −2π and 2π. If not stated otherwise, we use a trapezoidal envelope f(t) with ramps of 1.5 Tω
duration.

A typical photoelectron momentum distribution for ionization of a model atom by a co-rotating
two-color field with 400 nm central frequency and 2 × 1014 W/cm2 intensity is shown in Fig. 6.9(b1).10

To first investigate the Coulomb-free case, the PMD is calculated by numerical integration of the KFR
amplitude (2.40). In a pure ω-field, ATI rings with a spacing in energy of ω would only be present (see
the blue-marked peaks in Fig. 6.9(b2)). However, even a weak probe field (here ε = 0.02) leads to the
appearance of sidebands between the ATI peaks [401] (see the red-marked peaks in Fig. 6.9(b2)). When
viewing the combined co-rotating field with a total optical cycle of Tω/2 = 2Tω, both peaks would

10The ionization potential is chosen to the same value as for real H2.
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Figure 6.9: Strong-field ionization in co-rotating two-color fields. (a) Negative vector potential -A(t) for a waveform consisting
of a strong fundamental field at 400 nm wavelength and 2 × 1014 W/cm2 intensity as well as of a weak probe field at 800 nm
wavelength with a relative field strength ε = 0.02 and a relative phase α = 0. The solid and dotted lines mark the two distinct
Tω cycles. The black dot indicates a selected final momentum p that is classically reached by two different combinations of
release times tp, tm and of initial velocities vp, vm, i.e., p = −A(tp) + vp = −A(tm) + vm. Adapted from Ref. [69]. (b1) and
(c1) photoelectron momentum distributions for ionization of a model atom obtained by numerical evaluation of the SFA and by
the numerical solution of the TDSE. (b2) and (c2) Corresponding 1D slices through the PMD at py = 0. Here, the ATI peaks and
sidebands are marked in blue and red. For the numerical SFA and TDSE simulations, the field is augmented with a trapezoidal
envelope with 4Tω cycles of constant intensity and the results are averaged over 16 values of the CEP.

usually be denoted as ATI peaks. Here, we use a slightly different terminology and only denote the
peaks present in a pureω-field as ATI peaks. For the co-rotating field, the electron emission strength on
the rings depends on the direction of the final momentum [404]. For one ATI peak and one sideband, the
modulation of the yield as a function of the angle φp in the polarization plane is shown in Fig. 6.10(a).
Neglecting the influence of the Coulomb potential and considering an atom, the yield for ATI rings
maximizes atφp = α (here atφp = 0◦). In contrast, the modulation of the sidebands is shifted by 180◦; in
fact the yield approximately vanishes atφp = α. The present structure in momentum space is sometimes
called alternating half-ring (AHR) pattern [69, 419].

The yield modulation on the rings is caused by the interference of electron waves detached in two
consecutive optical cycles of the ω-field. Or, to phrase it differently, it is an intracycle interference be-
tween wave packets released in two half cycles of the probe field [404, 420]. The simple man’s model
predicts the possible final momenta p = −A(t0) + v0 for given release times t0, where the initial ve-
locities v0 should be perpendicular to the instantaneous electric field E(t0) (see Eq. (2.47)). Due to the
presence of the probe field, the vector potential and the electric field in the two consecutive cycles of
the ω-field slightly differ (see the solid and dotted lines in Fig. 6.9(a)). Hence, per optical cycle of the
probe field, two trajectories with release times tp, tm and slightly different initial velocities vp, vm are
classically deflected to the same final momentum p = −A(tp) + vp = −A(tm) + vm [69, 419]. The situa-
tion is schematically illustrated in Fig. 6.9(a) for one selected final momentum. These two contributions
interfere and result in the observed pattern. Importantly, the phase of the interfering wave packets is
probed at different initial velocities. Therefore, the pattern contains information on the derivatives of
the initial phase in momentum space [69, 419], i.e., on the local positions.

The long-range Coulomb interaction slightly alters the results. For illustration, we solve numerically
the TDSE in 2D for a model potential V(r) = −1/

√
r2 + 0.415 reproducing the ionization potential of H2.

Compared to the SFA result, the whole electron wave packet is decelerated and, thus, centered at smaller
kinetic energies (see the envelopes of the distributions in Figs. 6.9(b2) and (c2)). The modulation depth of
the half-ring pattern is slightly modified, but more importantly the pattern is rotated by a nonzero offset
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Figure 6.10: (a) Angular distribution for an ATI peak centered at p⊥ ≈ 0.67 a.u. (blue lines) and a sideband centered at p⊥ ≈
0.76 a.u. (red lines) extracted from the PMDs of Fig. 6.9: SFA results (dashed lines) and TDSE results (solid lines). The distributions
for the ATI peaks are normalized to one. In the TDSE results, the Coulomb potential leads to a slight rotation compared to the
potential-free SFA results. (b) Offset angleφoff extracted for each ATI peak (blue lines) and for each sideband peak (red lines). For
comparison, the results from ARM theory are shown as pale blue and pale red lines.

angle [404]. The angular structure can be represented by a Fourier series (5.10) that is dominated by the
fundamental components (k = 1). Analogous to the attoclock offsets in Section 5.2.3, we approximate the
offset angle compared to the Coulomb-free case by φoff = φ1 (see Fig. 6.10(b)). Interestingly, the rotation
of the AHR pattern is much smaller than the attoclock angles observed for similar laser parameters.11

Here, in contrast to the attoclock of Chapter 5, the rotation of the pattern is mainly caused by a Coulomb-
induced phase difference of the paths. Hence, the analysis of the AHR pattern and the attoclock protocol
are fundamentally different. Since we are mostly interested in a modification of the interference pattern
by the structure of small molecules, the interpretation of the Coulomb-induced rotation is left for the
future.

6.3.2 Quantum-orbit model

In the HASE scheme [69], variations of the phase gradient of the initial electron wave packet or equiva-
lently changes of the local positions influence the interference pattern in the photoelectron momentum
distribution. To measure position offsets based on the HASE scheme, the modification of the pattern
must be uniquely mapped to these offsets. Here, a few questions arise: What quantity does the HASE
scheme measure exactly, e.g., the total position offset or only a selected component? How to make sure
that the orientation-dependent ionization probability of molecules does not spoil or even dominate the
measurements? What about the influence of nonadiabatic effects on the interferometer? Before pro-
ceeding with the full numerical study based on the TDSE simulations, we explore these questions in a
Coulomb-free quantum-orbit model based on the strong-field approximation. This allows us to analyt-
ically describe the interference pattern of the HASE interferometer and investigate the influence of the
molecular structure.

Modeling of the interference pattern

The SFA framework was introduced in Section 2.3 and already used for molecules in Section 6.2.3.
Here, we again use a length-gauge version and apply a saddle-point approximation. Hence, for a sin-
gle saddle-point time, the complex-valued probability amplitude is given by Eq. (6.16). Analogous
to the discussion above, the amplitude can be written as M = exp(i(Φ + SSFA)) with a complex-
valued “phase” Φ that contains information on the electronic structure of the initial bound state ψM

(see Eq. (6.17)). For a cw field of the form (6.23) with φCEP = 0, we indeed find two relevant saddle-
point times (t ′m and t ′p) with real parts within one optical cycle of theω/2-field. The interference of both

11The offset angles from TDSE are well reproduced by a simulation based on ARM theory of Section 2.5.
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contributions leads to the angular modulation of the signal on the ATI peaks and sidebands

w(p) =
∣∣∣ei(Φ(v(p,t′m))+SSFA(p,t′m)) + ei(Φ(v(p,t′p))+SSFA(p,t′p))

∣∣∣2 . (6.24)

Here, the probe field should only slightly perturb the dominant dynamics induced by the fundamental
field. Hence, we expand the structure-dependent “phase” Φ and the SFA action of Eq. (2.41) to first
order in the relative field strength ε.

We first determine the modification of the saddle points in the co-rotating field (defined by Eq. (2.44))
compared to the saddle-point times t(0)

s of pure circular polarization. For momenta p = p⊥e⊥ in the
polarization plane, the unperturbed times can be explicitly written as [354] (in a single Tω cycle)

ωt(0)
s = φp + iωτi with ωτi = acosh (χ) and χ =

1
2A0p⊥

[
p2
⊥ +A2

0 + 2Ip
]
∈ R. (6.25)

Additionally, we define the unperturbed action for circular polarization

S
(0)
SFA(p, t ′) = −

1
2

∫tf
t′

dt (p + Aω(t))2 + Ip(t
′ − tA) (6.26)

and the perturbation

∆S(p, t ′) = −

∫tf
t′

dtAP(t) · (p + Aω(t)). (6.27)

Including only first-order corrections, the perturbed saddle-point times can be written as t ′s = t
(0)
s + t

(1)
s

with the correction due to the probe field

t(1)
s = −

∂t′∆S(p, t(0)
s )

∂2
t′S

(0)
SFA(p, t(0)

s )
=

AP(t
(0)
s ) · (p + Aω(t

(0)
s ))

Eω(t
(0)
s ) · (p + Aω(t

(0)
s ))

. (6.28)

Thus, the corresponding perturbed complex-valued velocity reads (to first order in ε)

v(p, t ′s) = v(0)(p, t(0)
s ) + ∆v(p, t(0)

s ) = p + Aω(t(0)
s ) + AP(t

(0)
s ) − Eω(t(0)

s ) t(1)
s . (6.29)

The expansion of the structure-dependent “phase”‘ leads to

Φ(v(p, t ′s)) = Φ(v(p, t(0)
s )) + ∆Φ(p, t(0)

s ) = Φ(v(0)(p, t(0)
s )) +∇Φ(v(0)(p, t(0)

s )) · ∆v(p, t(0)
s ). (6.30)

Since a first-order correction of the saddle-point time changes the SFA action only to second order, we
can evaluate the action at the unperturbed saddle-point times t(0)

s . The expansion of the action to first
order in ε is given by

SSFA(p, t ′s) = S
(0)
SFA(p, t(0)

s ) + ∆S(p, t(0)
s ). (6.31)

We only need to take ionization from two consecutive cycles of the circularly-polarized ω-field into
account. Due to its periodicity, the unperturbed quantities evaluated at the two distinct saddle points
have simple relations:

t(0)
p = t(0)

m + Tω , v(0)(p, t(0)
p ) = v(0)(p, t(0)

m ) , and Φ(v(0)(p, t(0)
p )) = Φ(v(0)(p, t(0)

m )). (6.32)

The difference of the unperturbed action phase between the two orbits is given by (with n ∈ Z)

S
(0)
SFA(p, t(0)

p ) − S
(0)
SFA(p, t(0)

m ) =

(
Ip +Up +

p2

2

)
Tω =

{
2πn , at ATI peaks

π (2n+ 1) , at sidebands.
(6.33)

In the following, we will only consider the signal on the ATI peaks and sidebands defined by the fun-
damental field. For case distinction, an upper index will always denote the ATI peak result whereas a
lower index marks the sideband result.
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We investigate the relations of the corrections of the action and “phase” for the two saddle-points t ′p
and t ′m. For the perturbation of the vector potential, we have AP(t

(0)
p ) = −AP(t

(0)
m ). Thus, we find

∆v(p, t(0)
p ) = −∆v(p, t(0)

m ) ⇒ −∆Φ(p, t(0)
p ) = ∆Φ(p, t(0)

m ) =: ∆Φ (6.34)

and similarly

− Im
[
∆S(p, t(0)

p )
]
= Im

[
∆S(p, t(0)

m )
]
:= Im∆Sm. (6.35)

We define the difference in the action ∆S = ∆S(p, t(0)
m ) − ∆S(p, t(0)

p ), which satisfies Im∆S = 2Im∆Sm.
Using the expansion of the action and of the “phase” to first order in ε, the signal of Eq. (6.24) can be

approximated as

w(p) ≈w(0)(p)
∣∣∣ei(∆Φ(p,t(0)

m )+∆S(p,t(0)
m )) ± ei(∆Φ(p,t(0)

p )+∆S(p,t(0)
p ))

∣∣∣2
=w(0)(p)

∣∣∣ei(∆Φ+i Im∆Sm) ± ei(−∆Φ−i Im∆Sm−Re∆S)
∣∣∣2 .

(6.36)

Here, w(0)(p) is the unperturbed signal for pure circular polarization. As expected, if the probe pulse
is switched off, the sideband signal vanishes due to destructive interference, whereas constructive in-
terference occurs on the ATI peaks. For weak perturbations, the arguments of the exponential func-
tion are small so that we can use a Taylor expansion. In addition, we assume that the change of the
structure-dependent “phase” ∆Φ is small compared to the difference in the action ∆S. When neglecting
second-order terms in ∆Φ and terms higher than ε2, Equation (6.36) can be rewritten as

w(p) = w(0)(p)

{
4 − Re(∆S2) − 4 Re(∆S∆Φ) + ... , at ATI peaks

|∆S|2 + 4 Re(∆S∗∆Φ) + ... , at sidebands.
(6.37)

For the further analysis, we have to explicitly evaluate the quantities ∆S and ∆Φ. To this end, we
define the real-valued coefficient functions

A1 =
1
ω
(p⊥ +A0) cosh

(ωτi
2

)
, A2 =

1
ω
(p⊥ −A0) sinh

(ωτi
2

)
,

B1 = −
A0

p⊥
cosh

(ωτi
2

)
, B2 = −

p⊥ −A0χ

p⊥
√
χ2 − 1

sinh
(ωτi

2

)
,

C1 = +
A0

p⊥
sinh

(ωτi
2

)
, C2 = −

p⊥ −A0χ

p⊥
√
χ2 − 1

cosh
(ωτi

2

)
,

(6.38)

with τi and χ defined in Eq. (6.25). Using Eq. (6.27), the action correction ∆S reads

∆S =

∫t(0)
m

t
(0)
p

dtAP(t) · (p + Aω(t)) = 8εA0

[
A1 sin

(
φp − α

2

)
− iA2 cos

(
φp − α

2

)]
. (6.39)

Importantly, according to Eq. (6.30), the correction of the “phase” ∆Φ is a linear function of the gradient
of the quantity Φ. We can write this correction as

∆Φ = 2εA0

[(
B1 cos

(
φp − α

2

)
+ iC1 sin

(
φp − α

2

))
(e⊥ · ∇Φ)

+

(
B2 sin

(
φp − α

2

)
+ iC2 cos

(
φp − α

2

))
(e‖ · ∇Φ)

]
,

(6.40)

where we use the unit vectors e⊥ and e‖ that are perpendicular and antiparallel to Eω(Re t(0)
s ). We omit

the argument v(0)(p, t(0)
s ) of the gradient∇Φ.

Using Eqs. (6.39) and (6.40), the electron signal of Eq. (6.37) for ATI rings and sidebands can be
expressed as

w(p) = w(0)(p)
[
(2± 2)∓ 32ε2A2

0
(
η± − κ± cos

(
φp − α

)
− δ± sin

(
φp − α

))]
. (6.41)
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The introduced quantities η±, κ± and δ± depend on the laser parameters, on the final momentum p and
on the gradient ∇Φ, but not on the relative phase α. An explicit calculation results in

δ± =− (A1B1 ±A2C1)Re(e⊥ · ∇Φ) + (A1C2 ∓A2B2) Im(e‖ · ∇Φ)

= −
A0

p⊥ω

(
−Re(e⊥ · ∇Φ) +

p⊥ −A0χ

A0
√
χ2 − 1

Im(e‖ · ∇Φ)

)
δ̃±

(6.42)

with the definitions δ̃+ = A0χ + p⊥ and δ̃− = p⊥χ + A0. We want to compare this expression to
the position offsets of the unperturbed electron wave packet, i.e., to the derivatives of the real-valued
momentum-space phase. In the MO-SFA framework, the perpendicular component of the position off-
sets is given by Eq. (6.18). The evaluation for a circularly-polarizedω-field leads to the expression

∆r⊥ =− e⊥ · ∇p Re
(
Φ(v(0)(p, t(0)

s ))
)
= −e⊥ · Re

(
∂v(0)(p, t(0)

s )

∂p
∇Φ

)

=
χA0

p⊥

(
−Re(e⊥ · ∇Φ) +

p⊥ −A0χ

A0
√
χ2 − 1

Im(e‖ · ∇Φ)

)
.

(6.43)

Here, the “∆” indicates that we are only considering the orientation-dependent part of the local po-
sition that is induced by the prefactor in the strong-field approximation. In general for asymmetric
molecules, the quantity in Eq. (6.43) can differ from the relative position offsets defined in Eq. (6.13) by
an orientation-independent shift. However, for the special case of H2, the symmetry enforces that the
quantities of Eqs. (6.13) and (6.43) are equal.

Importantly, we find that the quantity δ± in the signal of Eq. (6.41) is proportional to the structure-
dependent position offset ∆r⊥ of Eq. (6.43):

δ± = −
δ̃±

ωχ
∆r⊥. (6.44)

Hence, we showed within the MO-SFA framework that the experimentally-accessible electron signal in
the two-color field contains information on the perpendicular component ∆r⊥ of position offsets from
molecular strong-field ionization in the ω-field (the parallel component does not influence the signal).
This assumption was already made in Refs. [69, 377], but not formally derived.

How to extract the position offsets?

To this end, we study the electron distribution in the two-color field approximated by Eq. (6.41). In the
special case of an initial s state for an atom, the first factorw(0) for pure circular polarization is indepen-
dent of the angle φp, the coefficients η±, κ± are also isotropic and the position offsets ∆r⊥ vanish. In
agreement with the numerical results in Fig. 6.10(b), the angular modulation of the signal is determined
by the cos(φp − α) term in Eq. (6.41). Thus, a change of the relative phase α is equivalent to a change
in the orientation of the interference pattern. On the other hand, for molecules, the first factor w(0), the
coefficients η±, κ± and also the position offsets ∆r⊥ generally depend on the direction of the final mo-
mentum p. As a result, for a fixed relative phase α and a fixed molecular axis R, the dependence of the
yield on the angle φp is strongly influenced by the angle-dependent ionization probabilityw(0) for pure
circular polarization. This makes it more difficult to access the position offsets ∆r⊥. We believe that the
recent experiment on CO with a scheme similar to HASE suffers from this problem [421].

Instead of studying the yield as a function of the angle φp, the signal can also be investigated as a
function of the relative phase α between the two colors at a fixed final momentum p and for a fixed
molecular orientation. Then, the variation of the yield as a function of α is solely determined by the
cos
(
φp − α

)
term and the sin

(
φp − α

)
term in Eq. (6.41). Here, the first factor w(0) and the quanti-

ties η±, κ±, δ± are kept fixed. Thus, for a given momentum p on an ATI peak (sideband), the optimal
relative phase αopt that maximizes (minimizes) the signal is given by the simple relation

tan(φp − αopt) =
δ±

κ±
= −

δ̃±

ωχκ±
∆r⊥. (6.45)
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In Eq. (6.45), the quantities κ± have the form

κ± = A2
1 ±A2

2 + b · ∇Φ, (6.46)

with coefficients A1,A2 defined in Eq. (6.38) and a function b of the final momentum p, Ip and A0. Even
though, in principle, κ± also depends on the target structure because of the gradient ∇Φ, we find that,
in practice, the first structure-independent terms dominate for small molecules. Hence, we neglect the
last term proportional to∇Φ in κ±.

For vanishing position offsets, the yield as a function of α is maximized (minimized) at αopt = φp

for ATI peaks (sidebands). Usually, for small molecules, the offset ∆αopt = αopt − φp of the optimal
phase compared to the angle φp is sufficiently small so that Eq. (6.45) can be linearized. Hence, we get
an analytical mapping of the experimentally-accessible offset ∆αopt of the optimal phase to the position
offset ∆r⊥

∆αopt ≈
δ̃±

ωχκ±
∆r⊥, (6.47)

where the coefficients are given by κ+ = ((A2
0 +p

2
⊥)χ+ 2A0p⊥)/ω

2 and κ− = ((A2
0 +p

2
⊥)+ 2A0p⊥χ)/ω

2

as well as δ̃+ = A0χ+ p⊥ and δ̃− = p⊥χ+A0 with χ = 1
2A0p⊥

[
p2
⊥ +A2

0 + 2Ip
]
∈ R. As a result, we find

that, for a fixed momentum p and a fixed molecular axis R, the variation of the yield as the function of
the relative phase α can be considered to measure position offsets ∆r⊥. We confirm the assumption of
Refs. [377, 419] that the offset ∆αopt of the optimal phase is uniquely linked to the position offset ∆r⊥
and that this mapping is not influenced by other molecule-specific quantities (such as the orientation
dependence of the yield).

The presented scheme is similar to the phase-of-the-phase (PoP) spectroscopy [422–425]. In PoP
spectroscopy, parallel two-color fields are used and the yield is studied as a function of the relative
phase between a strong fundamental field and a weak second-harmonic probe field. Then, the phase-
of-the-phase which maximizes the ionization yield at a given momentum can be used to investigate the
ionization process. The important difference is that the HASE scheme considers changes of an interfer-
ence pattern caused by a probing field with half of the fundamental frequency.

On the first glance, the problem with an orientation-dependent yield was avoided in a slightly dif-
ferent way in the recent work [377]. In the experiment by Trabert et al. using the COLTRIMS technique,
the orientation of the two-color field in space was fixed, but the measurement contained the distribu-
tions for all possible orientations of the molecular axis. In their analysis, all configurations with a given
relative orientation β were selected. Hence, a momentum distribution for a given β (see for example
Fig. 2(b) of Ref. [377]) contains events corresponding to different absolute orientations of the molecule in
laboratory frame. On the other hand, the orientation of the Lissajous figure of the vector potential in the
laboratory frame can be varied by the relative phase α (see the schematic sketch of Fig. 6.11(a)). Hence,
the special selection of events and the analysis of the signal as a function of φp in Ref. [377] is equiva-
lent to the approach described above, i.e., using a fixed final momentum and molecular orientation (in
the laboratory frame) and analyzing the yield as a function of the relative phase α. From a theoretical
perspective, however, it is more intuitive to work with a molecule fixed in the laboratory frame.

Dependence on the laser parameters

The sensitivity of the HASE interferometer is mainly determined by modulation depth of the signal as
a function of α and by the conversion of a position offset ∆r⊥ to a phase offset ∆αopt. According to
Eq. (6.41), the signal modulation of the ATI peaks is approximately given by 8ε2A2

0κ+. For adiabatic
conditions, the modulation depth is proportional to ε2E4

0/ω
6 (at p⊥ = A0) and can be controlled by the

relative field strength ε. On the other hand, the conversion factor of Eq. (6.47) only depends on the prop-
erties of the fundamental laser field, the ionization potential and the magnitude of the momentum p⊥.
Hence, as long as the probe field is sufficiently weak, the mapping is independent of the probe-field
strength. For adiabatic ionization conditions, the conversion factor scales with ∆αopt/∆r⊥ ∝ ω2/E0, i.e.,
with the inverse of the position-space quiver amplitude of the electron in the fundamental field. Thus,
the HASE interferometer is less sensitive to position offsets for longer wavelengths.
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Figure 6.11: Geometry of the HASE interferometer. (a) The orientation of the vector potential (black line) of the co-rotating two-
color laser field can be varied by the relative phase α. For a given final momentum p and a fixed molecular orientation β, the
relative phase of the probe field α is scanned and the yield is recorded. From the offset ∆αopt = αopt − φp of the optimal
phase, the position offsets∆r⊥ can be reconstructed. (b) Conversion factor of position offsets∆r⊥ to offsets∆αopt of the optimal
phase as a function of the momentum p⊥ for 800 nm fundamental wavelength and 2× 1014 W/cm2 intensity. In addition to the
factor (6.47) from the quantum-orbit model (blue lines), the conversion factor used by Eckart in Ref. [69] is shown as gray line.

Figure 6.11(b) shows the conversion factor of Eq. (6.47) as a function of the momentum component p⊥
for 800 nm fundamental wavelength and 2×1014 W/cm2 intensity. Compared to the previously-used re-
trieval algorithm by Eckart [69] based on an adiabatic semiclassical model, we find significantly smaller
conversion factors for both ATI peaks and sidebands. Hence, once again, we observe a decisive influ-
ence of nonadiabatic effects in circularly-polarized fields. Interestingly, for p⊥ 6= A0, Equation (6.47)
predicts systematically different offsets ∆αopt for the sidebands and for the ATI rings (due to the differ-
ent conversion factors).

In the recent experimental work [377], the conversion factor by Eckart based on a semiclassical model
was used which does not discriminate between ATI peaks and sidebands. There, in order to avoid the
systematic difference between both kinds of peaks, the authors first determined the envelope of the mo-
mentum distribution as a function of p⊥ for fixed α and fixed φp, e.g., by Fourier filtering. Afterwards
a “normalized” distribution, i.e., the division of the full distribution by the envelope, was considered
in the analysis. When applying this normalization approach to the distribution of Eq. (6.41) obtained
in the quantum-orbit model, we can approximate the envelope at each p⊥ by the sum of the expres-
sions for ATI peaks and for sidebands. For the corresponding normalized distribution, we find that
the systematic difference of the phase offset ∆αopt between ATI peaks and sidebands indeed vanishes.
The effective conversion factor is then given by the factor for the sidebands in Eq. (6.47). However, for
numerical reasons, we do not use this normalization approach in the following and instead we stick to
the theory of Eq. (6.47) with different conversion factors for ATI peaks and for sidebands.

6.3.3 Results for a short-range potential

In this section, we conduct numerical experiments to simulate the HASE interferometer by means of
TDSE calculations. We extract the orientation-dependent position offsets in molecular ionization by an-
alyzing experimentally-accessible interference structures in the photoelectron momentum distributions
for the two-color field. In addition, we independently determine the offsets from the momentum-space
phase of the liberated electron wave packet created by strong-field ionization in a circularly-polarized
field with fundamental frequency ω (see Eq. (6.2)). To verify the HASE scheme, both results are com-
pared to each other.

We first avoid the complications by a Coulombic tail of the potential by studying the HASE interfer-
ometer for a short-range model of H2 with the potential (6.11). To calculate the photoelectron momen-
tum distributions for ionization by the co-rotating two-color field (6.23), we solve the TDSE numerically
on Cartesian grids as described in Section 6.2.2. Here, the molecular axis is fixed along the x-direction,
i.e., the molecular frame is equal to the laboratory frame. The laser pulse has a trapezoidal envelope with



6.3. HOLOGRAPHIC ANGULAR STREAKING OF ELECTRONS 123

8 Tω-cycles of constant intensity. To minimize envelope effects, the electron momentum distributions are
averaged over 16 values of the CEP between −2π and 2π.12 The fundamental field has a wavelength of
800 nm wavelength and an intensity of 2 × 1014 W/cm2, i.e., a vector potential of A0 = 0.932 a.u. The
applied probe field has a relative field strength ε = 0.003. For these parameters, the modulation of the
yield on the ATI rings is on the order of 20%. The simulations are repeated for 180 values of the relative
phase α between the fundamental and the probe field, using the range from −π to π. The setting is
sketched in Fig. 6.11(a).
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Figure 6.12: Experimentally-accessible observables to retrieve the orientation-dependent position offsets. (a) Signal modulation as
a function of the relative phase α for a given final momentum p = (0.948, 0.460) a.u. (φp = 25.9◦) on a sideband extracted from
TDSE simulations (blue line). The truncated Fourier series is shown as black line and the retrieved optimal phaseαopt is indicated
as dashed vertical line. (c) Phase offset ∆αopt = αopt −φp in degrees as a function of the momenta p. (b) Lineout of the phase
offset as a function of the relative orientation β for a sideband centered at p⊥ ≈ 1.05 a.u. The (small) orange points indicate the
results for all neighboring momenta on the Cartesian grid. The blue curve shows the extracted dependence on an equally-spaced
grid in β.

The TDSE simulations provide a sequence of 2D electron momentum distributions parameterized
by the relative phase α. Each distribution corresponds to another orientation of the vector potential of
the two color field in the laboratory frame. For a given final electron momentum p, we consider the
variation of the signal as a function of the relative phase α. An example for a momentum on a sideband
is shown in Fig. 6.12(a). As explained above, the variation of the yield is caused by the interference
between two wave packets detached in two consecutive cycles of the fundamental field. Since the signal
versus α is 2π-periodic, for each final momentum p, the change of the yield can be represented by a
Fourier series

w(p,α) =
B0(p)

2
+

N∑
k=1

Bk(p) cos(k(α− αk(p))). (6.48)

In agreement with the predicted α-dependence of the quantum-orbit model (6.41), the fundamental
component with k = 1 is found to dominate over higher-harmonic contributions for sufficiently small
relative field strength ε. An example for the truncation of the series at N = 1 is shown as black line in
Fig. 6.12(a). For each final momentum p, the optimal phase αopt is approximated by the value α1(p).
As expected from the quantum-orbit model (6.45), for a short-range potential, the optimal phase αopt

roughly follows the angle φp in the polarization plane.
The subtraction of the structure-independent angle φp from the optimal phase αopt results in the

offset ∆αopt = αopt − φp of the optimal phase. This offset ∆αopt clearly shows an orientation-dependent
modulation with sign changes for the different quadrants (see Fig. 6.12(c)). Here, we selected regions

12We sample the CEPs on a equally-spaced grid with an offset ofα. This offset ensures that, for each relative phaseα, the same
(rotated) Lissajous figures of the field are included in the simulations.
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around the ATI rings and sidebands to avoid problems for low signal in between the peaks. The phase
offsets vary on the order of one degree as a function of both the angle φp as well as the magnitude p⊥.
Due to the fixed molecular axis (along the x-axis), a variation of the optimal phase as a function of φp

is directly related to a modulation with respect to the relative orientation between the final momentum
and the molecular axis. The mapping of the angle φp of the momentum in the polarization plane and
the relative angle β is given by β = 90◦ − φp. To extract the offset ∆αopt as a function of the relative
angle β for a given peak, we consider the offsets for all momenta on the Cartesian grid in the vicinity
of the peak and apply a moving average to define a single value on an equally-spaced grid for β. For a
sideband at p⊥ ≈ 1.05 a.u., Figure 6.12(b) shows the phase offsets ∆αopt at the selected momenta on the
Cartesian grid as orange points and the extracted smooth function as blue line.

The offsets ∆αopt of the phase as a function of the lateral momenta p⊥ and the relative orientation β
contain all information that is needed to reconstruct the perpendicular component ∆r⊥ of the position
offsets or, to phrase it otherwise, of the phase gradients of the wave packet. To this end, we use the
mapping (6.47) derived in the quantum-orbit model and convert the phase offsets ∆αopt to the position
offset ∆r⊥. For selected ATI rings and sidebands, the results ∆r⊥ are shown as a function of the orienta-
tion β in Fig. 6.13. Importantly, we only used the experimentally-accessible information on the variation
of the yield as a function of the relative phase α in this numerical experiment.
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Figure 6.13: Reconstructed orientation-dependent position offsets for a short-range potential. The results based on the HASE
scheme are shown for selected sidebands and ATI peaks in panels (a) and (b), respectively. The corresponding momenta p⊥ are
indicated in the legends. For comparison, the results based on the phase gradient of the continuum wave packet from ionization
in the fundamental field are shown as dashed lines in panel (a).

To benchmark the results from HASE, we consider ionization of H2 by the fundamental field and
determine the position offsets from the phase of the continuum wave packet (similar to Section 6.2.3).
This purely theoretical approach is independent of the numerical HASE experiment performed above.
Since the position offsets are influenced by nonadiabatic effects (see Section 6.2.3), we use the same en-
velope of the laser pulse as in the HASE simulations. Due to intercycle interference, we can only extract
the phase of the wave packet in momentum space at the positions of the ATI peaks. At the sidebands of
HASE scheme, the derivative of the phase in Eq. (6.2) can be approximated by using the neighboring ATI
peaks. For each sideband, we extract the orientation-dependent variation of the position offsets by sub-
traction of the average value over all possible orientations β (analogous to the procedure in Eq. (6.13)).
The theoretical results from the derivative of the phase are shown in Fig. 6.13(a) as dashed lines. For
the shown peaks, the phase gradient results from TDSE are in remarkable agreement with the position
offsets extracted using the HASE scheme. In agreement with Section 6.2, the orientation dependence of
the position offsets approximately follows a sin(2β) function.

To quantitatively compare the position offsets, we use again the ansatz ∆r⊥ = ∆rmax
⊥ sin(2(β−βdef

⊥ ))

of Eq. (6.15).13 Here, ∆rmax
⊥ represents the modulation depth of the position offset and the deflection

angle βdef
⊥ determines for which orientations β the offsets vanish. The results are presented in Fig. 6.14(a)

and (b). The deflection angles βdef
⊥ are very small over the main part of the lateral distribution indicating

13We use a fit to determine the parameters (in contrast to Section 6.2.3).
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Figure 6.14: Reconstructed quantities of the HASE interferometer for a short-range potential. (a) Amplitude ∆rmax
⊥ of the

orientation-dependent position offsets and (b) deflection angle βdef
⊥ calculated by a Fourier expansion (see Eq. (6.15)). (c) Ex-

pectation value of the phase offset ∆αopt. In addition to the results from the interferometric approach for ATI peaks (solid blue
lines) and sidebands (dashed blue lines), the results based on the phase gradient of the continuum wave packet from ionization
in the fundamental field are depicted as gray thick line in panel (a). (d)-(f) Lateral momentum distribution for the two-color field.

that the perpendicular position offsets maximize (minimize) at 45◦ (−45◦) and vanish for parallel or
perpendicular alignment. The modulation amplitudes ∆rmax

⊥ extracted from the ATI peaks and from the
sidebands are in perfect agreement. This shows that the separate conversion factors of Eq. (6.47) for
both types of peaks work well. The results from the HASE interferometer are in excellent agreement
with the directly-calculated phase derivatives (see Fig. 6.14(a)). Especially, the decisive momentum
dependence related to nonadiabatic effects is well reproduced by the interferometric approach. The
small, but visible deviations in Fig. 6.14(a) at large perpendicular momenta are likely to be caused by an
insufficient resolution of the ATI rings in the simulations on Cartesian grids.

6.3.4 Results for a long-range potential

For a more realistic investigation, we apply the HASE interferometer to molecular hydrogen modeled
by a potential V that behaves at large distances r like a Coulomb potential −1/r. To this end, we repeat
the TDSE simulations for the long-range potential of Eq. (6.10).14 Due to Coulomb interaction, even for
atoms, the optimal phase αopt differs from the angleφp in the polarization plane (see also Fig. 6.10). This
effect is also present in the simulations for molecules. For the short-range potential used in Section 6.3.3,
the expectation value 〈∆αopt〉β obtained by averaging∆αopt = αopt−φp over all molecular orientation at
fixed perpendicular momentum p⊥ vanishes in agreement wit the potential-free quantum-orbit model
(see Fig. 6.14(c)). However, for long-range potentials, the expectation value 〈∆αopt〉β is nonzero (see
Fig. 6.16(c)). Since this offset is mostly induced by the long-range tail of the potential, we expect that it
depends only weakly on the molecular orientation.

To convert the offsets ∆αopt of the optimal phase to the position offset ∆r⊥, we still want to use
the conversion factor (6.47) that was derived in the Coulomb-free quantum-orbit model. Furthermore,
we are only interested in the relative change of the position offsets as a function of the emission di-
rection relative to the molecular axis. Hence, similar to Ref. [377], we first subtract the reference val-
ues 〈∆αopt〉β from the phase offsets ∆αopt and, afterwards, we apply the conversion factor to extract
the position offsets.15 Figure 6.15 shows the reconstructed results as a function of the relative orien-
tation β = 90◦ − φp for selected sidebands and ATI peaks. Despite the presence of the long-range
potential, the reconstructed position offsets are similar to the short-range simulation. For comparison,

14At the edges of the inner grid used in the simulations, the ionic potential is truncated over a distance of 40 a.u. using a sin2

function (see also Appendix A.2.2). This ensures that, even for finite box sizes, the correct ionization potential is obtained.
15This is similar to the procedure used in Eq. (6.13).
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Figure 6.15: Reconstructed orientation-dependent position offsets as in Fig. 6.13, but for a long-range potential. The results based
on the HASE scheme are shown for selected sidebands and ATI peaks in panels (a) and (b), respectively. For comparison, the
results based on the phase gradient of the continuum wave packet from ionization in the fundamental field are shown as dashed
lines in panel (a).

we again consider ionization of the long-range model by the fundamental field and determined the po-
sition offsets from the phase of the continuum wave packet. The position offsets from the derivative of
the continuum phase are shown in Fig. 6.15(a) as dashed lines. Generally, the results from the HASE
scheme and from the phase derivative also match well for the used long-range potential.

In agreement with the findings in Section 6.2.3, the derivative of the (asymptotic) phase shows an
attoclock-like rotation with deflection angles βdef

⊥ between six and eight degrees in the relevant p⊥-
range. However, the orientation dependence of the position offset from HASE is nearly uninfluenced
by the Coulomb potential. The deflection angles βdef

⊥ are about two degrees for momenta close to the
maximum of the lateral distribution (see Fig. 6.16(b)). The approximate invisibility of Coulomb effects
was also observed in other approaches with two-color fields. An example is the streaking of electron
with a weak external electric field that is polarized perpendicular to a strong linear driving field [367,
426]. Similar to these situations, we believe that the absence of an attoclock rotation is at least partially
related to the use of a Coulomb-free phase-offset-to-position-offset mapping.

The amplitudes ∆rmax
⊥ of the position offsets depend strongly on the momentum p⊥ (see Fig. 6.16(a)).

For the laser parameters at hand, the comparison with the short-range potential shows that this is again
mostly caused by the influence of nonadiabaticity. For momenta p⊥ slightly smaller than the maximum
of the lateral distribution, the amplitudes ∆rmax

⊥ from the HASE scheme and from the derivative of the
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Figure 6.16: Reconstructed quantities of the HASE interferometer as in Fig. 6.16, but for a long-range potential (red lines). For
comparison, the results for a short-range potential are shown as pale blue lines. In addition, the results based on the phase gradient
of the continuum wave packet from ionization in the fundamental field are shown in panel (a) for the long-range potential (black
thick line) and for the short-range potential (gray thick line).
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phase are in very good agreement. However, at large p⊥, the HASE interferometer leads to systemati-
cally smaller values compared to the derivative of the phase. Interestingly, the results from HASE for a
long-range and a short-range potential are also in very good agreement for large p⊥.

Our theoretical study based on TDSE simulations shows that, for a fundamental field with 800 nm
wavelength, Coulomb effects modify only weakly the operating principle of the HASE interferometer.
Using the Coulomb-free retrieval procedure based on a quantum-orbital model, the reconstructed posi-
tion offsets are in satisfying agreement with the results from the derivative of the phase in a single-color
simulation. Thus, the presented results confirm many predictions that were made in Ref. [69] based on
a semiclassical model. However, the weak influence of the long-range potential on the HASE interfer-
ometer leaves some room for speculations. For example, whether the HASE scheme measures (in the
presence of a long-range potential) the asymptotic position offsets at the detector or the position offsets
at the tunnel exit, i.e., at the time of ionization.

In the recent pioneering experiment [377] that implemented the HASE scheme to study electron
wave packets from strong-field ionization of molecular hydrogen, a fundamental wavelength of 390 nm
was used. There, the situation is more delicate, because both nonadiabatic and Coulomb effects are
very prominent. Thus, a Coulomb-free modeling of the HASE interferometer as used in our simula-
tions is questionable. Therefore, the experimental data were interpreted based on a semiclassical model
with adiabatic initial conditions that includes the Coulomb potential during the continuum motion [69].
However, unfortunately, we found in Section 6.3.2 that this semiclassical model does not give quan-
titatively correct results in a potential-free setting due the improper treatment of nonadiabaticity (see
also in Fig. 6.11(b)). To resolve this problem in the interpretation of the HASE scheme for long-range
potentials, more sophisticated modeling is needed which should properly include nonadiabatic as well
as Coulomb effects. We expect that a good starting point for future work would be the ARM theory
introduced in Section 2.5.

6.4 Conclusion

In this chapter, we studied electron wave packets produced by recollision-free strong-field ionization of
small (aligned) molecules. The properties of the released wave packet depend on the relative orientation
of the molecular axis with respect to the tunneling direction. Usually, only the modulus squared of the
probability amplitudes in momentum space of the outgoing wave packets is characterized by consid-
ering interference-free photoelectron momentum distributions. However, the phase of the momentum-
space wave functions carries important spatial information on the ionized molecular orbital and the
ionization process itself. For the hydrogen molecule H2, a prototypical dimer, we examined the ori-
entation dependence of the local positions—defined as the negative derivative of the spectral phase
with respect to the momentum. The simple prolate shape of the molecular orbital allows for an intu-
itive analytical interpretation of the observed changes in the local positions. These spatial offsets are
related to the variations of the wave-packet’s release position after tunnel ionization, leading to elon-
gated/shortened travel paths of the wave packets. We followed two independent approaches to extract
the local positions from TDSE simulations: (i) We directly analyzed the theoretically-accessible phase
of the continuum wave function after the end of the laser pulse. (ii) We performed numerical experi-
ments based on an interferometric scheme [69] to reconstruct the variation of the local positions from
experimentally-accessible photoelectron momentum distributions.

Based on the phase of the continuum wave function, the local positions were determined for fields
with circular polarization. We found that both the component perpendicular and the component an-
tiparallel to the instantaneous electric field depend on the relative alignment of the molecular axis. For
H2, the perpendicular position offsets basically show a sinusoidal modulation as a function of the molec-
ular orientation. However, we found that the modulation depth strongly varies with the lateral momen-
tum of the electrons in the polarization plane. As shown in a simple model based on the strong-field
approximation, the enhancement of the modulation depth is related to nonadiabatic effects during the



128 CHAPTER 6. POSITION OFFSETS IN STRONG-FIELD IONIZATION OF MOLECULES

release of the electron wave packets. We demonstrated that this complication due to nonadiabaticity
can be avoided by considering ionization in a quasilinear field geometry with a nearly constant direc-
tion of the electric field around the time of peak field strength. The long-range Coulomb potential also
influences the position offsets of the asymptotic wave packets. To disentangle the effect of the potential
during tunnel ionization and during subsequent continuum motion, we performed classical backprop-
agation simulations.

Experimentally, the phase of the electron wave packets is not directly accessible. In the HASE
scheme, a weak probe field with twice the wavelength of the fundamental circularly-polarized field is
applied and the resulting interference pattern is considered to reconstruct position offsets [69]. A major
goal of this chapter was to evaluate and to refine this interferometric scheme. Based on the strong-field
approximation, we proved that there is a one-to-one correspondence between the optimal phase of the
measurable interference pattern and the perpendicular component of the position offsets in molecular
strong-field ionization. It turned out that this mapping based on the SFA contains important nonadia-
batic corrections which were not included in the previous adiabatic modeling [69]. For the special case of
a fundamental field with 800 nm wavelength, we performed TDSE simulations and directly compared
the position offsets from the continuum wave packet to the position offsets retrieved from the HASE
scheme. For a short-range model of H2, both results are in perfect agreement. For the considered laser
parameters, we found that the long-range tail of a more realistic potential for H2 only weakly influences
the position offsets from the HASE scheme. This theoretical ab-initio study of the HASE interferometer
in combination with the recent pioneering experimental implementation [377] demonstrated that the
orbital imprint on the spatial information of the emitted electron wave packets is indeed experimentally
accessible in strong-field ionization.

To improve the HASE scheme in the future, it would be advantageous to minimize the influence
of nonadiabaticity on the measurement. To this end, the quasilinear field could be considered and the
appearing position offsets could be probed by means of a linearly-polarized orthogonal streaking field
of twice the effective wavelength. Similar to the co-rotating circularly-polarized fields, we expect that
a scan of the yield as a function of the relative phase should encode the position information for small
molecules. Furthermore, an obvious extension is the study of molecules with additional molecular
orbitals as in nitrogen N2 or with nodal planes as in oxygen O2. Furthermore, the influence of Stark
effects in polar molecules such as helium hydride molecular ion HeH+ or carbon monoxide CO (as
recently used in Ref. [421]) on the position offsets would be worth studying. In principle, it should also
be possible to perform pump-probe schemes and characterize the time-dependent change of the bound
wave functions in position space. The simple analysis of the HASE scheme provided in this chapter was
mainly based on the assumption that the molecular orbital can be interpreted as a single ionizing center,
i.e., that its shape only weakly differs from typical atomic orbitals. However, when stretching the bond
length, the double-slit interference of the two electron wave packets released at the two centers [388]
becomes important. Recently, a HASE experiment on argon dimers was already performed in the group
of Reinhard Dörner. It would be interesting to theoretically study the evolution of the position offsets
when varying the internuclear distance from small molecules such as H2 or N2 to large molecules such
as noble gas dimers. In TDSE simulations, this should be (artificially) possible by simply stretching the
bond length.



Chapter 7

Nondipole Modification of the AC
Stark Effect in Above-Threshold
Ionization

7.1 Introduction

Placing an electronic system in a static external electric field leads to a shift of its energy levels compared
to the field-free situation. This dc Stark effect is the textbook example for perturbation theory in quantum
mechanics. Similarly, the electronic structure of matter is modified by an oscillating electromagnetic
field, known as dynamical or ac Stark effect. In contrast to the dc Stark effect, the available intense
laser pulses can strongly disturb the electronic systems. Resonant dipole transitions between bound
electronic states are affected by the ac Stark effect, leading to a plethora of observations such as the
Autler-Townes effect [427] and the Mollow triplet in resonance fluorescence [428, 429]. Here, we only
focus on the nonresonant ac Stark effect in intense laser pulses which have important implications for
the shaping of potential energy surfaces [430], the time-dependent modification of propagating laser
pulses [431, 432] or the alignment of molecules [433].

The absorption of more photons than necessary to overcome the ionization threshold results in
above-threshold ionization [5]. The electron energy spectra consist of peaks that are separated by the
photon energy ω and correspond to the various numbers of absorbed photons. In the photoelectron
momentum distributions, this is reflected as rings. As explained in Section 2.1.1, both continuum states
and weakly-bound states are approximately shifted by the ponderomotive potential Up. In strong laser
pulses, the ponderomotive potential can reach several tens of electron volts. In contrast, the nonreso-
nant ac Stark effect only weakly affects the tightly-bound states. For multi-cycle subpicosecond laser
pulses, the electrons stay in the laser focus till the end of the pulse. Hence, the positions of the ATI rings
are modified by the continuum ac Stark effect [171–173]. For nonresonant ionization (as for example in
circularly-polarized fields), the positions of the ATI rings are usually estimated as

nω = Ip +
p2

2
+Up (7.1)

with n ∈ N being interpreted as the number of absorbed photons [171, 374]. The situation is more
complex, when Rydberg states are shifted by the ac Stark effect into resonance with the ground state
and are populated during the laser pulse [172, 434]. These Freeman resonances result in a rich additional
substructure of the ATI peaks. Here, we restrict ourselves to circularly-polarized fields to avoid Freeman
resonances [374].

Above-threshold ionization is usually discussed in the electric dipole approximation. In this case,
the photoelectron momentum distributions from ionization of atoms are symmetric under reflection
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about the laser polarization plane, i.e., under the transformation pz → −pz. The ATI rings are centered
at momentum p = 0 (see Eq. (7.1)). However, nondipole effects cause the breaking of the forward-
backward symmetry (see also Section 2.1.2 for an introduction). In recent experiments, the transfer
of photon momentum to the photoelectrons and, hence, nondipole-induced shifts of the photoelectron
momentum distributions were observed [51, 146, 152, 157, 435, 436]. The investigations of nondipole ef-
fects in strong-field ionization mostly considered the shift of the envelope of the probability distribution
(usually represented by the average momentum in the light-propagation direction) or rescattering phe-
nomena. These aspects will be discussed in detail in Chapters 8, 9 and 10. However, even though ATI
peaks were one of the earliest manifestations of multiphoton effects in light-matter interaction, so far
the influence of nondipole effects on the ATI peak geometry received little attention. The question arises
whether the positions of the ATI rings in momentum space and, thus, the corresponding photoelec-
tron energy depends on the electron’s emission direction. This question was only addressed in various
implementations of the strong-field approximation [147, 437, 438]. Here, we present the first ab-initio
TDSE simulations for circularly-polarized laser pulses that resolve the nondipole effects on individual
ATI rings. We find that the ATI rings are not lines of constant kinetic energy anymore. Interestingly, the
centers of the ATI rings are displaced into the direction that is opposite to the on-average transferred
photon momentum. We attribute the shift of the ATI rings to the influence of nondipole effects on the
ac Stark effect for continuum electrons.

Most of the results discussed in this chapter are published in Ref. [439]. Simultaneously, a theoretical
work based on the strong-field approximation discussed the positions of the ATI rings [440] and a mea-
surement on molecular hydrogen ionized by linearly-polarized laser pulses experimentally confirmed
the shift of the rings [441].

7.2 Ponderomotive shift of ATI rings

The nondipole modification of the ac Stark effect can be classically motivated by considering the pon-
deromotive energy of an electron in an electromagnetic field (see Section 7.2.1). Its influence on the
photoelectron momentum distributions is afterwards studied. The appearance of ATI rings can be ex-
plained by means of two complementary pictures. In Section 7.2.2, we introduce a nondipole version
of the multiphoton picture. Here, ATI rings appear due to the absorption of multiple photons with quan-
tized energy ω and the energy conservation dictates the possible final kinetic energies of the liberated
electrons. Alternatively, ATI rings can be explained in a time-domain picture as interference between elec-
tron bursts liberated in the various cycles of a sufficiently-long laser pulse. The latter picture is closely
related to the nondipole SFA-based calculations in Refs. [147, 437, 438] and will be shortly discussed in
Section 7.2.3.
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Figure 7.1: Classical kinetic energy of an electron in a circularly-polarized trapezoidal laser pulse (E0 = 0.1 a.u.,ω = 0.05695 a.u.).
The gray line shows the result from the electric dipole approximation for an initial momentum p = (0.5, 0.0,±2.0) a.u. For both
momenta, the full nondipole dynamics under the influence of the Lorentz force (magnetic field and spatially-inhomogeneous
electric field) is also considered: pz = 2 a.u. (blue line) and pz = −2 a.u. (red line).



7.2. PONDEROMOTIVE SHIFT OF ATI RINGS 131

7.2.1 The (classical) ponderomotive energy

When a (potential-free) electron with an initial momentum p is accelerated by an electromagnetic field,
its classical kinetic energy is modified (see Fig. 7.1). In general, the average kinetic energy 〈K〉 of the
quivering electron is increased compared to the field-free case, i.e., the electron experiences a pondero-
motive shift of its energy. The electron loses this additional energy, when the laser pulse is switched off.
Afterwards, the electron’s momentum is again equal to p, i.e., a potential-free electron is not accelerated
by a laser pulse. When considering a Tω-periodic field, i.e., A(t) = A(t+ Tω), the kinetic energy K(t) is
also a Tω-periodic function in the dipole approximation. Hence, the ponderomotive energy is obtained
by averaging over a single optical cycle Tω (see also Eq. (2.6)):

Up = 〈K〉− p2

2
=

1
Tω

∫Tω
0

dt
1
2

A2(t). (7.2)

The inclusion of nondipole corrections in the Lorentz force leads to a modified oscillatory behavior of
the kinetic energy (see Fig. 7.1). Both the period and the magnitude of the oscillation depend on the ini-
tial momentum component pz of the electron in the light-propagation direction. The changed periodicity
can be explained in analogy to the Doppler effect.1 In the laboratory frame, the Lorentz force depends
on the argumentωη = ω(t− z/c) (see Eq. (2.13)). Therefore, electrons that move with a velocity pz 6= 0
effectively feel an oscillating force with a slightly-changed frequency ωeff(pz) = ω(1 − pz/c). Electrons
propagating parallel (antiparallel) to the light-propagation direction experience a slightly lower (higher)
frequency compared to the frequency ω of the incident laser field. As a result, even for a Tω-periodic
laser field, the kinetic energy of the electrons is not Tω-periodic, but instead we expect (to first order
in 1/c) a period of Teff(pz) = Tω(1 + pz/c).

The changed magnitude of the field-dressed energy results in a nondipole modification of the pon-
deromotive shift. This nondipole modification of the ponderomotive potential was already noted in
several works based on the strong-field approximation [147, 437, 438]. To classically determine the
leading-order correction, we treat the terms beyond the dipole approximation as a perturbation and
evaluate their contribution to the electron’s velocity by integration of the nondipole part of the Lorentz
force along a trajectory in the dipole approximation (for a detailed calculation with slightly different
initial conditions see also Section 8.3.1). For an electron starting at a position r0 with an initial momen-
tum p (at time t0 before the laser pulse arrives), the time-dependent velocity is given by (to first order
in 1/c)

ṙ⊥(t) = p⊥ + A(t) +
z0 + pz(t− t0)

c
E(t) + O

(
1
c2

)
(7.3)

for the components in the polarization plane and

ż(t) = pz +
1
c

[
p ·A(t) +

1
2

A2(t)

]
+ O

(
1
c2

)
(7.4)

for the component in the propagation direction of light. Hence, the kinetic energy reads

K(t) =
1
2

p2 +
(

1 +
pz

c

)[
p ·A(t) +

1
2

A2(t)

]
+
z0 + pz(t− t0)

c
(p + A(t)) · E(t) + O

(
1
c2

)
. (7.5)

For a Tω-periodic laser field, we find that K(t + Teff(pz)) = K(t) + O
( 1
c2

)
, i.e., the kinetic energy has

indeed a period of Teff (to first order in 1/c). Hence, it is only meaningful to calculate the average kinetic
energy in the presence of the field by taking the mean value over an interval Teff instead of Tω. To first
order in 1/c, this results in

〈K〉 = 1
Teff(pz)

∫tb+Teff(pz)

tb

dt K(t) =
p2

2
+
(

1 +
pz

c

)
Up + O

(
1
c2

)
, (7.6)

for arbitrary times tb in the cw part of the pulse. Thus, we find an effective ponderomotive energy(
1 + pz

c

)
Up.2 As in the dipole approximation, the electrons are shifted up in energy due to the presence

1A further discussion of Doppler-like effects in strong-field physics is presented in our work [436] and in Chapter 8.
2In SFA-based descriptions, the same expression was already found in Refs. [147, 437, 438].
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of an electromagnetic field. However, the nondipole correction depends on the momentum compo-
nent pz in the light-propagation direction. Hence, electrons traveling in the light-propagation direction
(pz > 0) experience a larger ponderomotive shift compared to those electrons that travel against the
light-propagation direction (pz < 0).

7.2.2 Multiphoton picture using the ac Stark effect

If an atom is placed in an intense low-frequency radiation field, its electronic structure is modified. In
this situation, it is advantageous to consider the “dressed” quasienergy states of an atom in a periodic
electromagnetic field instead of the eigenstate of the field-free Hamiltonian [442, 443]. Here, we treat the
electromagnetic fields classically and use Floquet theory to describe the dressed electron. For a time-
periodic Hamiltonian H(t) = H(t+ Tω), the Floquet theorem guarantees that the TDSE has solutions of
the form

∣∣γF(t)〉 = e−iEFt
∣∣θ(t)〉with quasienergies EF and time-periodic states

∣∣θ(t)〉 = ∣∣θ(t+ Tω)〉. We
assume that it is possible to associate a unique field-free state to a time-periodic Floquet state (see for
example the review [444] for a discussion). Then, the ac Stark shift of the state is given by the difference
between its quasienergy and its field-free energy eigenvalue.

For infrared or visible radiation, the photon energies are much smaller than the transition energies
from the tightly-bound ground state of an atom (such as helium) to its excited states. Hence, the ac Stark
shift of the ground state is given by a quasistatic Stark shift and can at first be neglected, i.e., EF,g ≈ −Ip.
We will discuss the influence of the ac Stark shift of the initial state in Section 7.3.3. On the other hand,
the ac Stark shifts of the continuum states are much larger in strong fields. To estimate their nondipole
corrections, we consider the potential-free TDSE. Here, we treat the system in the natural gauge of
Section 2.2.2, but the argumentation can be adapted to the generalized length or velocity gauge. To first
order in 1/c, the solutions of the potential-free TDSE are given by (see Section 2.2.3)∣∣ψFp(t)〉 = eiSF(p,t)

∣∣p〉 (7.7)

with plane-wave states
∣∣p〉 and the generalized action SF of Eq. (2.33). For Tω-periodic fields, the time-

periodic Floquet states can be expressed using the Volkov states by
∣∣θp(t)

〉
=
∣∣ψFp(t)〉eiEF,c(p). Hence,

the quasienergy of a continuum state with label p reads

EF,c(p) =
p2

2
+
(

1 +
pz

c

)
Up. (7.8)

For sufficiently short pulses, the electrons stay in the laser focus throughout the whole pulse.3 Thus,
electrons in a Floquet state with label p will be detected with a final momentum p, when the laser field
is switched off adiabatically. Hence, the quasienergy of Eq. (7.8) can be interpreted as the ac-Stark-
shifted energy of a continuum state with momentum p. As in the dipole approximation, the ac Stark
shift (1 + pz

c
)Up of the continuum states agrees with the classical ponderomotive energy of a potential-

free electron in the presence of an electromagnetic field (see Section 7.2.1).
In the argumentation above, the bound states and the potential-free continuum were treated sep-

arately. In reality, however, the light field induces transitions between the bound and the contin-
uum states.4 The energy conservation dictates: An electron that starts in a field-dressed state with
quasienergy EF,g and that absorbs n photons can only reach continuum states with quasienergies EF,c =

EF,g + nω. Inserting the approximations for the quasienergies, we find the condition

p2

2
+
(

1 +
pz

c

)
Up = nω− Ip. (7.9)

Here, the energy conservation (7.9) selects all final electron momenta p that may be reached by absorbing
n photons. These momenta still form spheres (analogous to the dipole limit). However, the centers of

3On the other hand, the pulses must be sufficiently long such that they resemble a periodic field in the vicinity of the pulse
maximum. Both requirements can be fulfilled by visible or infrared pulses in the subpicosecond range.

4In a Floquet calculation including bound as well as continuum states, this leads to complex quasienergies and decaying states.
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Figure 7.2: Schematic illustration of the ac-Stark-shifted quasienergies (with exaggerated value of 1/c). The blue line shows the
quasienergies (7.8) of the potential-free continuum states as the function of thepz-momentum component in the light-propagation
direction (for fixedp2

x+p
2
y). If a continuum state with a given momentumpz > 0 can be reached by the absorption ofn photons,

then the continuum state with −pz cannot be reached by the absorption of the same number of photons. Figure is adapted from
Brennecke et al. [439].

the spheres are uniformly shifted towards negative pz

pATI
z = −

Up

c
< 0. (7.10)

Interestingly, the possible momenta for a given number n do not correspond to the same final kinetic en-
ergy p2/2. As an example, consider the situation that a continuum state with momentum component pz
can be populated by the absorption of n photons (see Eq. (7.9)). Then, the continuum state with mo-
mentum component −pz (but the same p2

x + p
2
y) is not accessible by the absorption of the same number

of photons due to their different ac Stark shifts. Figure 7.2(a) schematically illustrates the situation.

7.2.3 Time-domain picture

Alternatively, the appearance of ATI rings can be modeled by considering the interference of electron
wave packets liberated in each optical cycle of the laser field. In the strong-field approximation beyond
the dipole approximation (introduced in Section 2.3), this was done in Refs. [147, 437, 438]. There, the
probability density is given by

w(p) = |MKFR(p)|2 =

∣∣∣∣∫tf
tA

dt ′D(p, t ′) eiSSFA(p,t′)
∣∣∣∣2 (7.11)

with the action (2.41) and the matrix elements (2.42). For laser pulses of np cycles duration, the integral
can be split into

w(p) =

∣∣∣∣∣∣
np−1∑
n=0

∫tA+Tω(n+1)

tA+Tωn

dt ′D(p, t ′) eiSSFA(p,t′)

∣∣∣∣∣∣
2

. (7.12)

This sum can be interpreted as the superposition of emitted electron bursts that are freed in each cycle
of the field. When the intensity of the pulse is constant, the transition matrix element is Tω periodic and
the action fulfills (to first order in 1/c)

SSFA(p, t ′ + Tω) = SSFA(p, t ′) +
[

p2

2
+ Ip +

(
1 +

pz

c

)
Up

]
Tω := SSFA(p, t ′) + ∆S. (7.13)

Thus, the phase difference ∆S between the emission in consecutive laser cycles determines the inter-
ference pattern in the PMD. The positions of the maxima are defined by the condition for constructive
interference, ∆S = 2πj with j ∈ Z. This condition was already found in Refs. [147, 437, 438] and it
is equivalent to the energy conservation of Eq. (7.9). However, its implications on the photoelectron
momentum distribution was neither discussed in detail nor was it verified by numerical ab-initio simu-
lations.
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7.3 TDSE results

7.3.1 Computational details

To simulate the quantum dynamics of the light-driven system, we numerically solve the 3D TDSE in
the single-active-electron approximation for a plane-wave light pulse. To mimic a helium atom, we
choose the ionic binding potential proposed by Tong and Lin [324], but remove the singularity by using
a pseudopotential for the 1s state with a cutoff radius rcl = 1.5 a.u. The procedure is described in
Appendix A.2.3 and the used parameters of the potential are given in Table A.2. The circularly-polarized
light pulse is defined by

A(η) =
E0

ω
f(η)

(
cos(ωη)
− sin(ωη)

)
(7.14)

with the light-cone coordinate η = t−z/c and the frequencyω. The parameter E0 characterizes the peak
electric-field strength and is chosen to reproduce a presumed intensity. In order to minimize effects
of a changing pulse envelope f(η), we either use (i) trapezoidal pulses of two ascending cycles, then
5.5 cycles of constant intensity and afterwards two descending cycles; or (ii) pulses with a cos2 envelope
of 14 cycles total duration.

The natural gauge introduced in Section 2.2 is applied such that the theory covers the dynamics
within the magnetic dipole and the electric quadrupole approximation. For the numerical solution, the
Fourier split-operator technique on two Cartesian grids is used (see Appendix A.2.2). Here, the full
electronic state is divided into an inner and an outer part. The inner wave function is represented on
Cartesian grids of size 409.6 × 409.6 × 409.6 a.u. with spacings ∆x = ∆y = ∆z = 0.4 a.u. and a time
step of 0.03 a.u. is used. The complex absorbing potential starts at a distance rA = 160 a.u. from the
grid center. Before the absorber starts, the ionic potential is truncated over a distance of 25 a.u. using
a sin2 function. This ensures that, even for finite box sizes, the correct field-free ionization potential is
obtained. The electron momentum distribution is calculated from the outer wave function. We use slices
through the full 3D momentum distributions in the px-py-, px-pz- and py-pz-planes with a resolution
of ∆px = ∆py = ∆pz = 0.0019 a.u.

7.3.2 Nondipole shift of the ATI rings

Figure 7.3(a) shows a slice in the polarization plane through the photoelectron momentum distribution
from ionization of helium by a trapezoidal laser pulse with 800 nm wavelength and an intensity of
4×1014 W/cm2. As expected for circularly-polarized multi-cycle laser pulses, the PMD has a donut-like
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Figure 7.3: 2D slices through the photoelectron momentum distributions atpz = 0 (panel a) and atpy = 0 (panel b) for ionization
of helium by a trapezoidal laser pulse with 4× 1014 W/cm2 intensity and 800 nm wavelength. The black dashed line in panel (b)
indicates the position pnx (pz) of one selected ATI ring. Figure is adapted from Brennecke et al. [439].
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shape, i.e., it is approximately rotationally symmetric in the polarization plane. Formally, the whole
distribution can be separated in an envelope of the distribution and an underlying ATI-peak pattern. In
order to study the nondipole modification of the ATI ring structure, we restrict ourselves to a 2D slice
in the px-pz-plane (see Fig. 7.3(b)). In the dipole approximation, the PMDs would be symmetric under
interchange of the forward and backward directions. However, the comparison of 1D slices through the
distribution at pz = ±0.5 a.u. (see gray dashed lines in Fig. 7.3(b)) clearly reveals the symmetry breaking
in propagation direction due to nondipole effects (see Fig. 7.4(a)). In agreement with earlier works (see
for example Ref. [146]), the envelope of the momentum distribution is shifted in forward direction, i.e.,
the probability in forward direction is higher than in backward direction. This radiation pressure effect
will be further discussed in Chapter 8. However, in addition, we find a difference in the positions of
the ATI peaks in forward and backward direction. The observation is already a sign of a nondipole
modification of the ac Stark effect (see the prediction of Section 7.2.2). The TDSE simulations confirm
that the ATI peaks are still approximately given by spheres in momentum space that are shifted in the
direction opposite to the propagation direction of the radiation. Hence, the envelope of the momentum
distribution and the ATI-peak structure are displaced in opposite directions.
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Figure 7.4: (a) 1D slices at pz = ±0.5 a.u. (py = 0) through the distribution of Fig. 7.3. (b) Shift pATI
z of the ATI rings against the

propagation direction of the light shown as a function of pnx (pATI
z ) for various ATI rings. For comparison, the simple estimate of

Eq. (7.10) is depicted as gray thick line. Figure is adapted from Brennecke et al. [439].

To quantify the offsets of the ATI rings, we numerically determine their positions. For every ATI
ring labeled with n, the position of the peak maximum in px-direction is calculated at each fixed pz.5

The resulting function pnx (pz) represents the geometry of the ATI ring in px-pz-plane (see for example
the ATI ring indicated as black dashed line in Fig. 7.3(b)). The center of the ATI ring is identified with
position pATI

z of the maximum of pnx (pz).6 The selected ring is shifted slightly backwards by nondipole
effects and is centered at pATI

z ≈ −0.0064 a.u. The analysis is repeated for a large range of ATI rings and
the corresponding results are shown in Fig. 7.4(b). For all analyzed rings, the numerically-determined
positions perfectly agree with the simple model of Eq. (7.10): the rings are centered at pATI

z = −Up/c

(independently of the number of absorbed photons).

5For each ATI peak, a small region around the maximum’s position on the numerical momentum grid is selected and the
“power method” [161] is applied to determine the peak position.

6This position is numerically determined by means of a quadratic fit to the pz-range between -0.3 and 0.3 a.u.
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Intensity and wavelength scaling

In the dipole domain, the ponderomotive shifts of the ATI peaks were first identified by scaling the
intensity of the radiation [172, 374, 434]. The ponderomotive potential Up depends linearly on the laser
intensity and quadratically on its wavelength. Hence, Equation (7.10) predicts that both the radius of
the ATI rings and the positions of their centers depend on these laser parameters. The nondipole shift
of the center along the pz-direction is shown in Fig. 7.5 for various intensities ranging from 3 × 1014 to
8× 1014 W/cm2. Both for 800 nm and 400 nm wavelength (shown in panel (a) and panel (b)), the results
from TDSE simulations are in perfect agreement with the simple estimate of Eq. (7.10), i.e., we indeed
observe a linear scaling of the center’s position with the ponderomotive potential Up.

In a real experiment, focal-volume averaging complicates the observation of well-separated ATI rings
in circularly-polarized laser pulses with 800 nm wavelength. In addition, a trapezoidal pulse envelope
used so far for the TDSE simulations is quite unrealistic. To study the influence of stronger contributions
from the leading and falling edges of the pulse with smaller instantaneous intensities, we repeat the cal-
culations for a more-realistic cos2 pulse of 14 optical cycles duration with 400 nm central wavelength.
The extracted positions of the ATI peaks are also in perfect agreement with the −Up/c estimate, indicat-
ing that the detailed form of the laser pulse is only of minor importance (see the crosses in Fig. 7.5(b)).
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Figure 7.5: Shift of the ATI ring positions pATI
z and expectation value 〈pz〉 of the momentum in the light-propagation direction as

a function of the ponderomotive potential. The results are extracted from PMDs obtained by numerical solution of the TDSE for
various laser parameters: (a) 800 nm wavelength and (b) 400 nm wavelength. The results for trapezoidal pulses (squares) or for
pulses with a cos2 envelope (crosses) at 400 nm wavelength are very close to each other. For comparison, the red line indicates
the simple estimate for the ATI peak position of Eq. (7.10) and the blue line shows a simple estimate for the average momentum
〈pz〉 =

Up
c +

Ip
3c in circularly-polarized fields. For the black dots, the expectation value of the energy is numerically calculated

from the TDSE distributions. Figure is adapted from Brennecke et al. [439].

For comparison, Figure 7.5 also shows the average values 〈pz〉 of the momentum component in the
light-propagation direction for all studied laser parameters. The positive expectation value 〈pz〉 indi-
cates that the envelope of the momentum distribution is slightly displaced in the propagation direction
of light. This is expected for recollision-free strong-field ionization [51, 150, 151, 190]. We find that the
shifts of the ATI ring positions pATI

z are in the same order of magnitude as the expectation values 〈pz〉 but
point in the opposite direction. Previously, an estimate for the average momentum transfer in circularly-
polarized light was given by 〈pz〉 ≈ 〈E〉/c + Ip/(3c) (see for example Refs. [150, 190]). For 800 nm
wavelength, the TDSE results indeed follow this simple scaling (in agreement with the earlier work in
Ref. [445]). However, a systematic deviation between TDSE result and estimate for 〈pz〉 is present for the
more nonadiabatic ionization conditions at 400 nm wavelength. The momentum transfer will be further
discussed in Chapter 8.
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7.3.3 AC Stark shift of the ground state

The tightly-bound ground state of helium also experiences an ac Stark shift [434]. Even tough the shift is
quite small, it influences the final energies of the photoelectrons. To test the accuracy of the simulations,
we retrieve the ac-Stark-shifted ground-state energy EF,g from the absolute positions of the ATI peaks.
These results are compared to numerical calculations of the quasi-energies using Floquet theory.

To calculate the ac Stark shift in Floquet theory, we again solve numerically the TDSE for a nearly
monochromatic laser field [446].7 The modulus of the Fourier transform of the autocorrelation func-
tion 〈ψ0|ψ(t)〉 of the time-evolved state

∣∣ψ(t)〉with the ground state
∣∣ψ0
〉

has peaks at the quasienergies
of the field-dressed system [447]. The extracted ac-Stark-shifted energy EF,g of the ground state is shown
in Fig. 7.6(b) as a function of the intensity for a wavelength of 800 nm. Since the dipole moment of the
ground state vanishes, the ac Stark shift scales linearly with the intensity in the considered parameter
range. In the limit of vanishing electric-field strength, the quasienergy EF,g converges to the field-free
energy of the ground state represented on the numerical grid (Eg ≈ −0.9025 a.u.). The small discrepancy
to the exact ground-state energy of the Tong-Lin potential of about −0.9038 a.u. is caused by our finite
resolution of the used Cartesian grids.
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Figure 7.6: AC-Stark-shifted energy of the ground state at 800 nm wavelength. (a) Energies retrieved from the ATI peaks along
px-direction for different photon numbers n. The colors indicate the results for three intensities given in the legend in units of
1014 W/cm2. (b) Comparison of the quasienergies calculated using Floquet theory and the energies retrieved from the ATI peaks.
The black curves show the results obtained from peaks along±px-directions and±py-directions, respectively.

On the other hand, the ac-Stark-shifted energy of the ground state also influences the exact locations
of the ATI rings or more precisely their radii (see also the argumentation of Section 7.2.2). Here, we
restrict ourselves to the polarization plane (px-py-plane) and determine the positions pn of the ATI
peaks (associated to the absorption of n photons). The field-dressed energy is then approximated as

EF,g =
p2
n

2
+Up − nω. (7.15)

The retrieved ac-Stark-shifted energy is shown separately for each ATI ring in Fig. 7.6(a). For the selected
intensities, we find that the variation of the reconstructed energy with respect to n is much smaller
than the ac Stark shift. Note that the spacing of the ATI rings in momentum spaceof the ATI rings
decreases with increasing energy. Since the momentum distribution for the highest-considered intensity
of 8 × 1014 W/cm2 is located at the largest momenta, this case involves the largest uncertainty in the
reconstructed field-dressed energy.

For each intensity, the retrieved energies are averaged over several ATI rings around the maximum
of the lateral distribution. These averaged energies EF,g are shown in Fig. 7.6(b). To check for effects of
the carrier-envelope phase, the procedure is applied along all four directions of the coordinate axes. We
believe that the small deviations of the results from the py-direction (compared to the other directions)
are caused by larger contributions from the leading and falling edge of the laser pulse. Nevertheless,
the results retrieved from the PMDs are generally in good agreement with the results from Floquet
calculations. The difference between both approaches is much smaller than the ac Stark shift itself.

7We use a trapezoidal pulse with two ascending cycles and 20 cycles of constant intensity.
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7.4 Conclusion

In the dipole approximation, the multiphoton generalization of Einstein’s photoeffect law predicts above-
threshold ionization rings that are centered at zero momentum, i.e., the photoelectrons on a ring all have
the same final kinetic energy. In this chapter, we theoretically analyzed the beyond-dipole modifications
of the structure of the ATI rings based on the numerical solution of the TDSE for helium. For nonreso-
nant ionization in circularly-polarized fields, we observed that the centers of the ATI rings are uniformly
shifted against the light-propagation direction, in agreement with the prediction of the strong-field ap-
proximation [147, 437, 438]. Therefore, the ring centers are displaced to the opposite direction of the
radiation pressure.

We explained the shift of the ATI peaks by a nondipole modification of the ac Stark effect for con-
tinuum states. Motivated by the classical ponderomotive energy, we showed that the upward shift in
energy of the continuum states depends on the electron momentum in the light-propagation direction.
Electrons that travel with the light wave experience larger ponderomotive shifts compared to those elec-
trons that travel against the light-propagation direction. Assuming energy conservation for transitions
from the initial bound state to the field-dressed continuum states, the shift of the ATI ring position is sim-
ply given by pATI

z = −Up/c with the common ponderomotive potential Up. This estimate is in perfect
agreement with the results from the numerical TDSE solutions for a broad range of laser parameters.

We expect that similar nondipole shifts of the ATI rings are also present for other waveforms as long
as nonresonant ionization dominates. However, the appearance of Stark-shifted bound-state resonances
(Freeman resonances) [172] may alter the ATI peak structure. This might be a reason why in the recent
measurement on molecular hydrogen ionized by linearly-polarized laser pulses, deviations from the
theoretically-predicted peak positions were observed [441].



Chapter 8

Microscopic Study of Nondipole Effects
in Recollision-Free Ionization

8.1 Introduction

Motivation: Linear-momentum transfer in strong-field ionization

In strong light fields, atoms or molecules may absorb multiple photons (typically tens or hundreds).
The well-known conservation laws imply that energy, angular momentum and linear momentum of
the photons are transferred to the total system consisting of electron and ion. Even though in strong-
field physics the external electromagnetic field is usually treated as a classical plane-wave field (see also
Chapter 2), these classical fields also carry energy and linear momentum.1 The associated linear mo-
mentum is related to the cycle-averaged Poynting vector S ∝ E × B of the field and manifests itself
for example as radiation pressure on matter. For both classical light fields and photons, every portion
of energy Eγ traveling with speed of light c is accompanied by a linear momentum of pγ = Eγ/c in
the light-propagation direction. However, an amount of energy E transferred from the photons to the
electrons leads to photoelectron momenta on the scale pel ∼

√
2E. As a result, the imparted energy usu-

ally dominates the observations in the photoelectron momentum distribution compared to the “small”
linear momentum.2 Thus, the transfer of energy to the system is very well understood, but there are
many open questions regarding linear-momentum transfer. As in the electric dipole approximation the
magnetic field is neglected and furthermore the incident electric field is assumed to be spatially homo-
geneous over the field-atom interaction region, the transfer of linear momentum is not covered by this
approximation (see also Section 2.1.2). In this chapter, we include leading-order nondipole corrections
to describe various effects in recollision-free strong-field ionization. Especially, the amount of linear mo-
mentum delivered to the photoelectrons, resulting in a forward shift of the photoelectron momentum
distribution, is considered. Recollision-based phenomena will be discussed in Chapters 9 and 10.

Important previous investigations

In a pioneering work on strong-field ionization at very high intensities on the order to 1018 W/cm2,
Moore et al. [450, 451] demonstrated that the angle between the electron momentum and the propagation
direction of the light is on average smaller than 90◦. There, an average of 90◦ would be expected within
the dipole approximation. This observation of nondipole effects was in agreement with the earlier clas-
sical predictions (see for example Ref. [177]) and the pioneering calculations of photoelectron momen-
tum distributions beyond the dipole approximation using SFA-based approaches [147, 452–454]. After-

1Hence, strictly speaking, quantization effects of the radiation field and “photons” (interpreted as elementary excitations of
normal modes of the field) are not considered.

2Other properties of light-matter interaction such as angular momentum or helicity were also investigated in strong-field
ionization (see for example Refs. [354, 355, 448, 449]).

139



140 CHAPTER 8. MICROSCOPIC STUDY OF NONDIPOLE EFFECTS IN IONIZATION

wards, the total transition rate as well as photoelectron energy and angular distributions were calculated
for circularly-polarized as well as linearly-polarized strong fields based on SFA-like treatments of the
Dirac equation [147, 455, 456], of the Klein-Gordon equation [453, 456, 457] or of the TDSE [192, 458].
Interestingly, even under relativistic ionization conditions, the Klein-Gordon equation can be exactly
solved for an electron in a short-range separable potential interacting with a circularly-polarized laser
field [459]. The asymptotics of the SFA theory and simple expressions for the direct ionization rates
were developed based on WKB theory [460–462]. Quasi-classical approaches (more precisely an adia-
batic Landau-Dykhne approximation) lead to simple analytical expressions for the angular and energy
distributions of photoelectrons beyond the electric dipole approximation [463–469].

For moderate intensities in the region of 1014 W/cm2, the influence of the radiation pressure on single
ionization in circularly-polarized fields was first experimentally studied by Smeenk et al. in 2011 [146].
At 800 nm and 1400 nm wavelength, they observed an overall shift of the photoelectron momentum dis-
tributions in the propagation direction of the laser beam such that the average momentum component in
the light-propagation direction is positive. Within the error bars, the shift is consistent with the forward
momentum of 〈pz〉 = A2

0/(2c) as classically predicted for the acceleration of an electron with zero initial
velocity by the electromagnetic field (see also Section 2.1.2). This important result was already earlier
derived in Refs. [147, 149] and later on is was theoretically supported by SFA-based calculations [148]
and by classical simulations [470].

Importantly, refined theoretical simulations showed that a part of the linear momentum transferred
during the laser-induced tunnel ionization is also given to the photoelectron [150, 151, 471]. In a WKB
approximation, the additional momentum shift can be modeled as the action of the laser’s magnetic field
on the electron during the under-the-barrier motion [151, 471].3 Based on numerical SFA simulations, it
was suggested to parameterize the on-average transferred momentum as [150, 190]

〈pz〉 =
〈K〉
c

+ β
Ip

c
, (8.1)

where K = p2/2 is the final kinetic energy of the electron. In a sense, the fraction of the momentum trans-
ferred to the electron during tunnel ionization is represented by β. For the ground state of a hydrogen
atom, values between 0.3 and 1/3 were found [150, 151, 190, 471]. Deviations from β ≈ 1/3 are expected
for other initial states [190] and for exotic atoms [185]. The first TDSE simulations beyond the electric
dipole approximation for hydrogen ionized by circularly-polarized pulses at 800 nm wavelength lead
to values β ≈ 0.1 for I = 0.5× 1014 W/cm2 and β ≈ 0.26 for I = 3.0× 1014 W/cm2 [445].4

The goals of this chapter

To reveal the physical origin of the forward shift of the momentum distribution, the ionization process
can be interpreted as a sequence of (i) laser-induced ionization and (ii) potential-free acceleration of
the electron as a classical particle by the electromagnetic field (similar to Section 2.1.1). Classically, the
deflection of the electron in the light-propagation direction is caused by the effects of the temporospatial-
dependent electric field and magnetic field. For an electron that is released at time t0 with an initial
velocity v0, the final momentum p after the end of the light pulse is given by (to first order in 1/c)

p⊥ = v0,⊥ − A⊥(t0) (8.2)

for the components in the polarization plane and

pz = v0,z −
1
c

(
p ·A(t0) +

1
2

A2(t0)

)
≈ v0,z +

1
c

(
p2

2
−

v2
0

2

)
(8.3)

3Interestingly, the result was already found but not discussed in Refs. [466, 467].
4For linearly-polarized fields, two-dimensional simulations of the TDSE [153] and the Dirac equation [151, 471] already existed.

However, targets with ionization potential Ip ≈ 9000 a.u. are considered in Refs. [151, 471] and scattering phenomena dominate
the dynamics in Ref. [153].



8.1. INTRODUCTION 141

for the component in the propagation direction of the light.5 The last terms of Eq. (8.3) are quite intuitive
as the classical momentum gain in the field is equal to the energy gain during the continuum motion
divided by c. For vanishing initial velocity v0 = 0, the well-known heuristic estimate of pz = A2

0/(2c) is
retrieved. However, for nonzero initial velocity v0 6= 0, classical mechanics suggests that only the energy
gain rather than the total kinetic energy determines the final momentum component pz of the electron
in the light-propagation direction.

Within in the simple man’s model, Equation (8.2) defines the possible release time t0 and the required
initial velocity v0,⊥ for a given momentum component p⊥ in the polarization plane.6 Hence, according to
Eq. (8.3), we expect that the momentum gain during the continuum motion depends on both the release
time t0 and the initial velocity v0,⊥. However, most of the previous works only discussed the entire
momentum transfer induced by the laser pulse, i.e., the main observable is the total average 〈pz〉 of the
momentum component in the light-propagation direction.7 It is difficult to observe effects of the initial
velocity v0,⊥ and of the release time t0 on the momentum transfer in the total expectation value 〈pz〉.
In order to extract additional information on the nondipole effects, the average value of the momentum
component in the light-propagation direction can be separately studied for each momentum p⊥ in the
polarization plane8

〈pz〉(p⊥) =
∫

dpz pzw(p⊥,pz)∫
dpzw(p⊥,pz)

. (8.4)

Here, w is the photoelectron momentum distribution. The differential quantity (8.4) is referred to as
partial average and it is the central observable of this chapter. The main goal of our studies is to develop
a more complete picture of the physical mechanisms underlying the nondipole effects in recollision-free
strong-field ionization. To this end, we discuss the following aspects.

For circular polarization, the initial velocity in the polarization plane is simply linked to the radial
momentum p⊥ in the polarization plane (see Chapter 5). Hence, using numerical simulations of the
TDSE and a simplified theoretical description based on the strong-field approximation, we study the
most probable momentum pmax

z (p⊥) in the light-propagation direction or equivalently 〈pz〉(p⊥) as a
function of the radial momentum. This allows us to investigate the dependence of the nondipole shift
on the initial electron’s velocity. Especially, we evaluate whether the total kinetic electron energy or
only its energy gain during the continuum acceleration determines the nondipole shift. In a pioneering
experiment based on the COLTRIMS technique, Hartung et al. were able to measure the deflection of
the momentum distribution as a function of the radial momentum with high accuracy [473]. A part of
this chapter is based on our joint work where we directly compared the nondipole shift from theoretical
simulations to experimental measurements [51].

Usually, in previous studies, nondipole effects were included to a given order in 1/c, i.e., both effects
of the magnetic field and of the electric-field inhomogeneity were simultaneously considered. Recently,
it was suggested in Alexander Hartung’s thesis to separately study both influences on the photoelectron
momentum distributions [473]. To this end, the most probable radial momentum pmax

⊥ (pz) was ana-
lyzed as a function of the momentum pz in the light-propagation direction (analogous to the previous
work [170]). The observed forward-backward asymmetry of this observable is mainly related to the
temporospatial dependence of the electric field. My main contribution to the joint publication [436] was
to provide an ab-initio verification based on TDSE simulations and to work out a simplified theoretical
description of the observed phenomenon. To this end, we introduce a simple classical adiabatic model
which allows the separate investigation of magnetic and electric nondipole effects. This enables us to
show that the observations on the momentum dependence of the non dipole shift pmax

z (p⊥) and the

5Note that this classical solution is known (see for example Ref. [177]).
6In principle, one additional condition is need (see for example Eq. (2.47) for adiabatic ionization conditions).
7Exceptions are Refs. [151, 471, 472] that study recollision-free ionization in linearly-polarized fields and consider the depen-

dence of the nondipole shift on the momentum along the polarization direction.
8This observable was already introduced in my master thesis [160] and calculated for circular as well as bicircular fields.

However, in Ref. [160], the physical interpretation was only barely considered. Here, we close this gap by presenting many
additional numerical results and by exploring the underlying physics.
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nondipole modifications of pmax
⊥ (pz) are two sides of the same coin, i.e., both have the same physical

origin.
In close-to-circularly-polarized fields, the release time t0 of the electron is approximately mapped to

the angle φp of the electron in the polarization plane (see Chapter 5). Based on this attoclock concept,
Willenberg et al. experimentally studied the angular dependence of the nondipole shift for strong-field
ionization with elliptical polarization [435] and, hence, “time-resolved” the momentum transfer within
an optical cycle of the field. In general, attoclock-like settings provide an excellent ground for studying
the interplay between nondipole and Coulomb effects acting on the outgoing electrons. This stimu-
lates us to theoretically analyze and model nondipole effects in the elliptical attoclock as well as in the
quasilinear attoclock setting introduced in Section 5.3. Some of these results are published in Ref. [367].

From a theoretical perspective, it is interesting disentangle the momentum transfer during the tunnel
ionization and during the subsequent continuum motion of the electrons. Hongcheng Ni suggested to
apply the classical backpropagation method [211, 350, 351] for this purpose (see also Section 5.2.4 for an
introduction). This allows us to consider the previously-unexplored interplay between nonadiabatic and
nondipole effects. In the joint work, my main contribution was to perform SFA-based simulations and
to derive a simplified model that includes leading-order nonadiabatic corrections [474]. Here, this work
is further extended with a particular focus on the influence of the long-range electron-ion interaction.

To study recollision-free ionization, we mainly use three laser geometries: circular polarization, el-
liptical polarization and a quasilinear field. For didactic reasons, the work is not presented in chrono-
logical order. Instead, we will first study the effect of the Coulomb attraction on the outgoing electrons
in attoclock settings. Afterwards, the electron wave packet is analyzed by means of the classical back-
propagation method and the influence of nonadiabaticity is considered. With this important knowledge
on the released electron wave packet, we investigate the interplay of magnetic and electric nondipole
effects and reveal their imprint on photoelectron momentum distributions.

8.2 The influence of Coulomb and nonadiabatic effects

8.2.1 Computational details

To describe the dynamics of the electron in the light field beyond the electric dipole approximation, we
numerically solve the 3D TDSE for a plane-wave laser pulse. Analogous to Chapter 7, we use the Fourier
split-operator technique (see Appendix A.2.2) and employ the natural gauge introduced in Section 2.2.
If not stated otherwise, a helium atom is considered and described by a pseudopotential for the 1s state.
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Figure 8.1: Nondipole effects in recollision-free strong-field ionization by elliptically-polarized fields: (a) 2D slice at pz = 0
through the photoelectron momentum distribution obtained by numerical solution of the TDSE for helium ionized by a three-
cycle laser pulse (ζ = 0.75) with 800 nm wavelength and 5× 1014 W/cm2 intensity. The black dashed line shows the negative
vector potential. The distribution is normalized to maximum signal of one. (b) Nondipole shift of the momentum distribution
represented by the momentum-resolved partial average 〈pz〉(p⊥) of Eq. (8.4).
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The numerical propagation scheme based on two grids is explained in the Appendix A.2.2. The
inner wave function is represented on a Cartesian grid of size 409.6 × 409.6 × 409.6 a.u. with spacings
∆x = ∆y = ∆z = 0.4 a.u. and a time step of 0.03 a.u. is used. The absorbing boundary starts at a
distance of rA = 160 a.u. from the grid center. The ionic potential is set to a constant value in the
absorption region. The photoelectron momentum distribution in 3D is calculated using the outer wave
function with a resolution of ∆px = ∆py = ∆pz = 0.0077 a.u.

8.2.2 Angle-resolved nondipole shifts for elliptical polarization

To time-resolve the momentum transfer in the light-propagation direction, Willenberg et al. [435] per-
formed an experiment using an attoclock protocol based on elliptically-polarized laser fields. Within
this attoclock setting (see Chapter 5), the angle detection angle φp of the photoelectron in the polariza-
tion plane is related to the release time t0 of the electron. Hence, the measurement of the nondipole shift
in the light-propagation direction as a function of the angle φp allows us to study the momentum trans-
fer on a sub-optical-cycle time scale. This so far unexplored aspect of the momentum sharing between
ejected electron and its parent ion is studied in the following theoretically.

We consider ionization of helium by an elliptically-polarized laser pulse of the form

A(η) = −
E0

ω
√

1 + ζ2

(
ζ cos(ωη)
sin(ωη)

)
f(η) (8.5)

with the light-cone coordinate η = t− z/c and the frequency ω. The parameter E0 is determined by the
chosen intensity of the field and the parameter ζ represents the ellipticity (circularly-polarized light is
retrieved for |ζ| = 1). Here, we use an ellipticity ζ = 0.75, a central wavelength of 800 nm and an intensity
of 5×1014 W/cm2. In order to avoid ATI rings, short three-cycle pulses with a cos4 envelope are applied.
The electric field is chosen such that the maximum of the electric-field strength corresponds to t = 0. In
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malized to maximum signal of one). [(a2),(a3)] Projection of the PMD onto the p⊥-φp-plane from TDSE simulation and from SFA
in saddle-point approximation. Both distributions are normalized to maximum signal of one. (b1) Nondipole shift 〈pz〉(φp) as
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10−2 a.u. The gray lines show the classical estimate of Eqs. (8.2) and (8.3) with v0 = Ip/(3c)ez. Figure is adapted from Ni et
al. [474].
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the simple man’s model, ionization at time t0 = 0 corresponds to final momenta p with angle φp = 0.
A slice (pz = 0) through the photoelectron momentum distribution calculated by numerical solution
of the TDSE in 3D is shown in Fig. 8.1(a). Due to the shortness of the pulse, only one clear maximum
of the momentum distribution in the vicinity of the positive px-axis is present that roughly follows the
negative vector potential (see black dashed line). For each momentum p⊥ in the polarization plane, we
separately determine the average momentum 〈pz〉(p⊥) in the light-propagation direction (see Eq. (8.4)).
In the vicinity of the probability maximum, the result is a smooth function (see Fig. 8.1(b)), depending
on both the radial momentum p⊥ and the angle φp in the polarization plane.9

To study the angular dependence of the nondipole shift, we convert the momentum distribution to
cylindrical coordinates. The projection of the 3D distribution from TDSE on the polarization plane is
shown in Fig. 8.2(a2) and the partial average in Fig. 8.2(b2). By integration of the projected distribu-
tion along the p⊥-momentum component in the polarization plane, the angular distribution w(φp) is
obtained (see Fig. 8.2(a1)). In an analogous way, by averaging the partial average (8.4) over p⊥, the
angle-resolved nondipole shift is calculated

〈pz〉(φp) =

∫
dp⊥

∫
dpz pz p⊥w(p⊥,φp,pz)∫

dp⊥
∫

dpz p⊥w(p⊥,φp,pz)
. (8.6)

The result from TDSE is shown in Fig. 8.2(b1). As discussed in Chapter 5, the peak position of the
angular distribution is shifted towards nonzero angles φoff ≈ 7.8◦ due the influence of the Coulomb at-
traction on the outgoing electron. The angle-resolved nondipole shift 〈pz〉(φp) shows also a clear modu-
lation with a pronounced minimum at φmin ≈ 2◦. In agreement with the experimental results [435], the
angle φmin corresponding to minimal momentum transfer is much smaller compared to the attoclock
offset φoff. In the next sections, we explore this variation of the nondipole shift and study the influence
of Coulomb effects during the continuum motion.

8.2.3 Coulomb effects during the continuum motion

As discussed in Chapter 5, for close-to-circularly-polarized attoclock settings, some difficulties arise in
the interpretation of the observables (e.g. due to nonadiabatic effects). To avoid these complications,
we first use the quasilinear field configuration created by a bicircular ω-2ω-field (see Section 5.3 for an
introduction) and study the interplay between Coulomb effects on the outgoing electrons and nondipole
effects.

A slice at pz = 0 through the momentum distribution for ionization of helium in the quasilinear
setting is shown in Fig. 8.3(a). We again use a three-cycle laser pulse with an effective wavelength of
800 nm. The global maximum corresponds to the region of almost linear polarization in the vicinity of
the peak of the pulse at t = 0. In the dipole approximation, the flow of time t0 through the PMD follows
the py-momentum component and initial velocities v0 ≈ v0,xex + v0,zez are mapped to the px- and pz-
momentum components (see Section 5.3 for details). We only analyze a slice through the maximum of
the PMD that corresponds approximately to vanishing initial velocities v0,⊥ ≈ v0,x = 0 and, thus, the fi-
nal momentum components in the polarization plane are given by p⊥ = −A(t0) ≈ −Ax(0)ex+Ey(0)t0ey
(see the black vertical line in Fig. 8.3(a)). The maximum’s position of the probability distribution is lo-
cated at positive momenta py. As discussed in Section 5.3, this attoclock shift is a well-known signature
of Coulomb effects (see also Fig. 8.3(b)). The nondipole shifts 〈pz〉(−Ax(0),py) of Eq. (8.4) from TDSE
simulations are perfectly quadratic functions of py with a pronounced minimum centered very close to
py ≈ 0 (see the dashed-dotted lines in Fig. 8.3(c)). In agreement with the observation for elliptical po-
larization, the point of minimum momentum transfer is also unaffected by Coulomb effects compared
to the attoclock shift of the probability distribution.10

When first neglecting Coulomb effects and treating the continuum motion classically, the nondipole
part of the Lorentz force leads to a deflection of the electrons in the light-propagation direction (see

9We only analyze 〈pz〉(p⊥) in regions with sufficiently high probability. In the remaining part, 〈pz〉(p⊥) is set to zero.
10For example at an intensity of 1015 W/cm2, the point of minimal nondipole shift is at py ≈ 0.015 a.u. and the probability

maximizes at py ≈ 0.276 a.u.
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Figure 8.3: Nondipole effects in recollision-free strong-field ionization by quasilinear fields: 2D slice at pz = 0 through the
photoelectron momentum distribution obtained by numerical solution of the TDSE for helium ionized by a three-cycle laser pulse
with 800 nm effective wavelength and 10× 1014 W/cm2 intensity. The distribution is normalized to maximum signal of one. The
black dashed line shows the negative vector potential and the inset shows the electric field. (b) 1D slices through the maximum of
the PMD calculated along a line at fixed px = −Ax(0) as a function of py (see black vertical line in panel (a)) for three different
intensities (independently normalized to maximum signal of one). (c) Corresponding nondipole shift 〈pz〉(py) of Eq. (8.4). The
gray lines show the classical estimate of Eqs. (8.2) and (8.3) with v0 = Ip/(3c)ez. Figure is adapted from Eicke et al. [367].

Eq. (8.3)) and, hence, we expect an average transferred momentum

〈pz〉(px,py) ≈ 〈v0,z〉+
1
c

(
p2

2
−

v2
0

2

)
. (8.7)

The slice (considered in Fig. 8.3(c)) corresponds to vanishing initial velocity in the polarization plane.
Thus, this potential-free simple man’s model predicts a quadratic dependence of the nondipole shift on
the py-momentum component. This classical result for the quasilinear field is similar to the recollision-
free result in pure linearly-polarized light except for a constant offset by≈ p2

x/(2c) = A2
x(0)/(2c) caused

by the displacement of the momentum distribution in px-direction.11 The model is in almost perfect
agreement with the TDSE result. In particular, the point of minimal momentum transfer corresponds to
py = 0. In the remaining part of this section, we further explore the influence of Coulomb effects on the
classical motion of the electron.

To this end, we consider the classical motion of the released electron, but include the electron-ion
interaction as well as the nondipole effects perturbatively (similar to the model introduced in Sec-
tion 5.3.1). For simplicity, we still restrict ourselves to the slice with v0,x ≈ 0 and, thus, assume an
initial velocity v0 = v0,zez. We calculate the deflection of the electron by the Coulomb attraction by
evaluating the Coulomb force (see Eq. (5.38)) along the adiabatic light-driven trajectory of Eq. (5.36). If
the electron starts at the Ip/E tunnel-exit position of Eq. (5.25), its velocity as a function of time t in the
dipole approximation is approximately given by

ṙD(t) = A(t) − A(t0) + v0 + ∆ṙC(t, t0) (8.8)

with the Coulomb correction (to first order in Z and in v0)

∆ṙC(t, t0) ≈
Z√

2
E(t0)

I
3/2
p

Ê(t0)

[
τ(t, t0)

τ2(t, t0) + 1
+ arctan(τ(t, t0))

]
−
Z

2
E(t0)

I2p
v0

[
1 −

1
(τ2(t, t0) + 1)2

]
(8.9)

and the dimensionless time τ(t, t0) = E(t0)/
√

2Ip(t− t0). To include leading-order nondipole effects for
the motion in the light-propagation direction, we again use perturbation theory. For plane waves (2.1)
with B = ez × E/c and, thus, |B| = |E|/c, the shift z(t)/c in the argument of the magnetic part of the

11The result for pure linear polarization was already given in Refs. [151, 471, 472]. However, in reality, the recollisions taking
place in linearly-polarized fields prevent an observation of the recollision-free scenario (see Chapter 10).
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Lorentz force can be neglected, if we are only interested in the corrections to first order in 1/c. The
integration of the Lorentz force along the dipole trajectory rD(t) results in12

∆pND,z =−

∫∞
t0

dt (ṙD(t)× B(t))z =
A2(t0)

2c
−

1
c

∫∞
t0

dt∆ṙC(t, t0) · E(t)

≈A2(t0)

2c
−

1
c
∆pC ·A(t0) +

Z

c

E(t0)

Ip
.

(8.10)

Here, we used the momentum change in the dipole approximation due to the Coulomb force given by
∆pC = πZE(t0)/(2Ip)3/2 (see Eqs. (5.40) and (8.9)). The first two terms were already used in Ref. [435].
There is was argued that the attoclock shift is gained in a time interval much shorter than an optical
cycle of the light field and, hence, the influence of the Coulomb potential can be viewed as an initial
velocity offset in the potential-free mapping of Eq. (8.3). We find that the nonzero time of deceleration
compared to a short-kick picture, however, leads to the last term in Eq. (8.10). In conclusion, for given
release time t0, the Coulomb-induced change of the velocity in the polarization plane affects the final
momentum in the light-propagation direction through the magnetic part of the Lorentz force (see the
last two terms in Eq. (8.10)).

However, importantly, the Coulomb effects also change the time-to-momentum mapping for com-
ponents in the polarization plane: p⊥ ≈ −A(t0) + ∆pC. As a result, for example, the final momen-
tum p = −Ax(0)ex on the py-axis does not correspond to ionization at t0 = 0 anymore, but instead it
corresponds to ionization at a slightly negative time t0 < 0. To analyze the nondipole shift as a function
of the final momentum, we have to account for this Coulomb-corrected mapping. The final momentum
in the light-propagation direction can be expressed as

pz =

(
1 −

Z

2
E(t0)

I2p

)
v0,z +

p2

2c
−

(∆pC)
2

2c
+
Z

c

E(t0)

Ip
. (8.11)

The first term represents the focusing of the initial velocity distribution in z-direction due to the Coulomb
attraction (see also Eq. (5.39)). The second term represents the nondipole shift in the absence of the po-
tential whereas the last terms are the Coulomb-induced corrections. Here, in a short-kick picture, the
Coulomb corrections of the time-to-momentum mapping and of the nondipole shift in Eq. (8.10) com-
pensate each other to first order in the charge Z. Thus, the third term in Eq. (8.11) remains which is
of second order in Z. Only the nonzero time of deceleration leads to a term proportional to Z (see the
fourth term in Eq. (8.11)) . For usual system parameters like Ip = 0.9 a.u., E0 = 0.15 a.u., we find
(∆pC)

2

2c ≈ 1.4 × 10−4 a.u. as well as Z
c
E(t0)
Ip
≈ 1.2 × 10−3 a.u. indicating that the last term in Eq. (8.11) is

usually the dominant Coulomb correction.
In the vicinity of the attoclock maximum, the electric-field strength is approximately constant and

the corrections of the nondipole shift of Eq. (8.11) only depend very weakly on the momentum com-
ponent py. Hence, the Coulomb corrections lead to an overall increase of the nondipole shift, but they
do not affect the momentum py at which the minimal nondipole shift occurs. Qualitatively, the same
arguments can also be applied for elliptically-polarized fields (see also Ref. [435]), explaining the much
smaller angleφmin corresponding to minimal momentum transfer compared to the attoclock offsetφoff.13

Within the classical model (including the Coulomb effects), the maximum of the probability distribution
corresponds to the time t0 = 0 of peak field strength. In contrast, the point of minimal momentum trans-
fer corresponds to ionization at a slightly negative release time t0 < 0. A similar effect was observed in
the streaking of electrons with a weak external electric field that is polarized perpendicular to a strong
driving field [367, 426]. Both for HHG [426] as well as photoelectrons [367], the reconstructed ionization
times are in agreement with the ionization times of the strong-field approximation, i.e., these methods

12To arrive at the second line, we wrote∆ṙC(t, t0) = ∆pC + (∆ṙC(t, t0) −∆pC) in the integral. Afterwards, the integral over
the first term proportional to ∆pC can be directly evaluated. For the second term, we applied an adiabatic approximation of the
electric field E(t) ≈ E(t0).

13The approximately two degrees offset from the potential-free estimate is likely to be caused by geometric effects as well as
nonadiabatic effects. We expect that for larger field strength its relative importance decreases compared to the attoclock offset.
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measure ionization times as if the outgoing electron did not experience the Coulomb attraction [161].
All these observations have in common that the perturbing forces act in the direction perpendicular to
the ionizing electric field.

8.2.4 The influence of nonadiabaticity on the momentum transfer

Now, we turn back to the slightly more complicated situation in elliptically-polarized fields. Similar to
the quasilinear field, the angular dependence of the nondipole shift 〈pz〉 can be qualitatively explained
by the classical motion of a potential-free electron in the laser field [435]. When neglecting nonadiabatic
corrections, the distribution of initial velocities in the polarization plane is centered around v0,⊥ = 0.
Hence, for each angle φp in the polarization plane, the final momentum distribution is approximately
centered at −A(t0(φp)), where t0(φp) is the classical time-to-momentum mapping defined by Eq. (8.2).
The deflection due to the full Lorentz force again leads to a momentum component in forward direction
pz ≈ v0,z + A

2(t0(φp))/(2c) (see the gray line in Fig. 8.2(b2)). Here, the variation of the average final
electron energy as a function of the angle φp mostly determines the angular dependence of the average
momentum 〈pz〉. For example, the local minimum of the vector potential |A(t)| at t = 0 is mapped
to an angle φp = 0◦ and, hence, results in a local minimum of the nondipole shift 〈pz〉. However, in
contrast to the perfect agreement of the classical model with the TDSE result for the quasilinear setting
(see Fig. 8.3(c)), there are two obvious differences visible for elliptical polarization: (i) In this classical
adiabatic model, the nondipole shift is systematically underestimated and (ii) the difference between
TDSE and classical adiabatic model increase as a function of |φp|. These observations are also present in
the experimental results in Ref. [435] and raise questions about their physical origins.

For further investigation, we consider a simplified description in the strong-field approximation be-
yond the electric dipole approximation of Section 2.3. The application of a saddle-point approximation
offers a useful analytical treatment in a quantum-orbit model (see Section 2.3 for an introduction). This
approach covers nonadiabatic effects, but neglects the Coulomb potential after interaction with the field.
We only include the signal for a single saddle-point time t ′s = t ′r + it ′i defined by the following equation

ṠSFA(p, t ′s) =
1
2

[
p + A(t ′s) +

ez
c

(
p ·A(t ′s) +

1
2

A2(t ′s)

)]2

+ Ip = 0 (8.12)

with the generalized action

SSFA(p, t ′) = −
1
2

∫tf
t′

dt
[

p + A(t) +
ez
c

(
p ·A(t) +

1
2

A2(t)

)]2

+ Ip(t
′ − tA). (8.13)

For an 1s initial state, the electron momentum distribution is given by (to first order in 1/c and up to a
normalization factor)

w(p) ≈ 1
|S̈SFA(p, t ′s)|α

e−2 ImSSFA(p,t′s). (8.14)

In length gauge, the parameter α in the preexponential factor is given by α = 1 + Z/
√

2Ip, where Z
is the asymptotic charge of the ion.14 Even though the SFA neglects Coulomb effects, the SFA result
agrees well with the nondipole shift from the TDSE for elliptically-polarized fields (see Figs. 8.2(b2)
and 8.2(b3)). Especially, the angular dependence of 〈pz〉(φp) is quantitatively reproduced by the SFA
result.

To explain the difference between the classical adiabatic model and the more advanced theories, it
is important to note that we average 〈pz〉(p⊥) over the p⊥-distribution to calculate the angle-resolved
quantity 〈pz〉(φp) of Fig. 8.2(b1). The momentum transfer during the continuum motion (see the terms
1/c

(
p2/2 − v2

0/2
)

in Eq. (8.7)) leads to a strong increase of the average 〈pz〉(p⊥) as a function of the mo-
mentum component p⊥ (see Figs. 8.2(b2) and 8.2(b3)). However, for close-to-circularly-polarized fields,

14The parameter α can be derived by considering a generalized saddle-point approximation which takes the pole in the transi-
tion matrix element into account [194].
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the most probable momenta p⊥ are increased due to the well-known nonadiabatic offset of the initial ve-
locity distribution as discussed in Refs. [170, 354, 370–372] (see also Figs. 8.2(a2) and 8.2(a3)). As a result,
the averaged nondipole shift 〈pz〉(φp) is enhanced compared to the simple adiabatic model. The more
nonadiabatic ionization conditions at the minima of the electric-field strength lead to a further increase
of 〈p⊥〉 and thus of 〈pz〉(φp) around φp ≈ ±90◦ compared to ionization at the time of peak electric-field
strength corresponding to φp ≈ 0◦. This explains the enhanced angular modulation of 〈pz〉(φp) visible
in the TDSE and SFA compared to the classical adiabatic model.

The asymptotic nondipole shift 〈pz〉 is also influenced by the initial velocity 〈v0,z〉 in the light-
propagation direction, i.e., by possible momentum transfer during the tunneling process. Hence, a
nontrivial dependence of 〈v0,z〉 on the liberation time t0 would modify the angle-resolved nondipole
shift 〈pz〉(φp). To study the initial velocity 〈v0,z〉 and, thus, to disentangle the nondipole effects during
the tunnel ionization and during the subsequent acceleration of the electron on a subcycle time scale,
Hongcheng Ni suggested to employ the classical backpropagation method introduced in Section 5.2.4.

The basic idea is to classically propagate the asymptotic electron wave packet back in time until a de-
fined tunneling criterion is reached. This enables the calculation of various observables of the liberated
electron wave packet at the tunnel exit. Here, we define an initial distributionwini(t0, v0,⊥, v0,z) as a func-
tion of the release time t0, of the initial velocity component v0,⊥, which is in the polarization plane and
perpendicular to the instantaneous electric field E(t0), and of the initial velocity component v0,z in the
light-propagation direction. Before proceeding with the full numerical calculation using TDSE input, we
explore the potential-free case by using the SFA input (see also Appendix A.3). In this special case, the
mapping of the initial coordinates (t0, v0,⊥, v0,z) to the final momenta p is given by Eqs. (8.2) and (8.3).
For ionization by an elliptically-polarized pulse, the initial probability distribution of Eq. (5.16) is calcu-
lated based on the wave packet of Eq. (8.14). The projection of the initial distribution on the t0-v0,⊥-plane
is shown in Fig. 8.4(a2). To quantify the momentum transfer during the tunneling process, we define
the expectation value of the initial velocity in the light-propagation direction for each t0 and v0,⊥

〈v0,z〉(t0, v0,⊥) =

∫
dv0,z v0,zwini(t0, v0,⊥, v0,z)∫

dv0,zwini(t0, v0,⊥, v0,z)
. (8.15)

To further quantify the temporal evolution of the sub-barrier momentum transfer, 〈v0,z〉(t0) is calculated
by additional averaging over the perpendicular velocity v0,⊥. The results for 〈v0,z〉(t0, v0,⊥) and 〈v0,z〉(t0)
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Figure is adapted from Ni et al. [474].
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are presented in Figs. 8.4(b2) and (b1), respectively. In agreement with earlier works [150, 151], the aver-
age initial velocity is on the order of Ip/(3c) ≈ 2.2 × 10−3 a.u. for helium. However, the average initial
velocity 〈v0,z〉 shows a small variation with the initial velocity v0,⊥ and the ionization time t0 within an
optical cycle. Note that for times around t0 ± 0.25 T , the two saddle points in time corresponding to
different half cycles of the electric field approach each other in the region with v0,⊥ < 0. Hence, the
saddle-point approximation breaks down [202, 203]. This prevents a meaningful time-resolved study
within the backpropagation method, i.e., the observed large values of 〈v0,z〉 in Fig. 8.4(b2) have no phys-
ical significance.

For the laser parameters at hand (Keldysh parameter ≈ 0.8), nonadiabatic effects during tunnel ion-
ization must be considered. To study further the properties of the ionized wave packet, we derived an
analytical expression based on SFA in saddle-point approximation which takes leading-order nonadia-
batic corrections into account. When neglecting the preexponential factor in Eq. (8.14) (α = 0), the initial
wave packet is given to first order in the Keldysh parameter γ by (see Appendix A.3.2)

wSFA(t0, v0,⊥, v0,z) ≈ exp
(
−

2
3E(t0)

[
2Ip + v2

0,⊥ + (v0,z − 〈v0,z〉)2
]3/2

[
1 +

1
2

v0 · Ė(t0)

E2(t0)

])
. (8.16)

The expectation value of the initial velocity can be approximated as (to first order in 1/c)

〈v0,z〉(t0, v0,⊥) ≈
Ip + v

2
0,⊥/2

3c
. (8.17)

Importantly, for fixed v0,⊥ and t0, we find that the first-order nonadiabatic corrections to the under-
the-barrier momentum transfer vanishes. Thus, the first term of Eq. (8.17) is in agreement with earlier
works [150, 151, 471]. Here, however, a nonzero initial velocity v0,⊥ increases the effective ionization
potential Ip + v2

0,⊥/2. This explains qualitatively the quadratic dependence of the nondipole shift 〈v0,z〉
on v0,⊥ visible in Fig. 8.4(b2) in the vicinity of t0 = 0. The observed variation of 〈v0,z〉(t0) as a function of
release time t0 is caused by the interplay between nonadiabatic and nondipole effects (see Fig. 8.4(b1)).
Even though the v2

0,⊥ term in Eq. (8.17) induces a weak subcycle modulation of 〈v0,z〉(t0) (see gray line in
Fig. 8.4(b1)), we find that the time dependence of 〈v0,z〉(t0) is mostly caused by nonadiabatic corrections
in second order of the Keldysh parameter.

Our results show that the subcycle variation of the initial velocity 〈v0,z〉(t0) is approximately one
order of magnitude smaller than the angular modulation of the nondipole shift 〈pz〉(φp) in the final
momentum distribution. Hence, for the considered elliptical attoclock, the time dependence of the initial
velocity 〈v0,z〉(t0) influences the measurable quantity 〈pz〉(φp) only weakly.15

8.2.5 Momentum transfer during the under-the-barrier motion

The classical backpropagation simulations can also be performed with input from TDSE for a long-
range potential. For elliptical polarization, the initial velocity 〈v0,z〉(t0) at the tunnel exit shows a
weak subcycle modulation (see Fig. 8.4(b1)).16 However, the average value 〈v0,z〉(t0) is significantly
smaller than the value Ip/(3c) expected for a short-range potential (the minimal nondipole shift is
about 1.6×10−3 a.u.≈ 0.24 Ip/c). To investigate this reduced sub-barrier momentum transfer and avoid
complications due to nonadiabaticity, we again consider the quasilinear attoclock configuration. For
the quasilinear setting and a long-range potential, the average initial velocity 〈v0,z〉 for ionization at
t0 = 0 from backpropagation with input from TDSE is shown in Fig. 8.5(a) as a function of the veloc-
ity v0,⊥ in the polarization plane. In agreement with the potential-free estimate of Eq. (8.17), 〈v0,z〉 is a
quadratic function of v0,⊥. However, similar to the simulations for elliptical polarization, we find that
the nondipole shifts are significantly reduced compared to Ip/(3c). For a further study, we repeat the

15This observation is in contrast to the speculations in Ref. [435] about an additional ellipticity-dependent initial velocity in the
light-propagation direction.

16This backpropagation result for elliptical polarization was kindly provided by Hongcheng Ni [474].
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Figure 8.5: Under-the-barrier momentum transfer in strong-field ionization by a quasilinear field of Fig. 8.3 from TDSE simula-
tions: (a) Average velocity 〈v0,z〉 in the light-propagation direction as a function of the initial velocity v0,⊥ = v0,x at fixed release
time t0 = 0 for an intensity of 10× 1014 W/cm2. The solid and dashed lines are calculated by subtracting the classical potential-
free nondipole shift during the continuum motion (see Eq. (8.3)) from the asymptotic average momentum 〈pz〉. In addition, for
the long-range potential, results from full classical backpropagation calculations including the electron-ion interaction during the
continuum motion are shown as the dotted lines. (b) Average velocity 〈v0,z〉 at v0,⊥ = 0 as a function of the peak electric-field
strength. The gray thick line is the simple estimate of Eq. (8.17) and the gray dashed-dotted line is numerically calculated by WKB
approximation (see Eq. (8.19)).

simulations for the short-range potential

V(r) = −
6.15 exp(−1.26

√
r2 + 0.2)√

r2 + 0.35
(8.18)

with the same ionization potential as helium. The corresponding initial velocity 〈v0,z〉 is in much better
agreement with the simple estimate of Eq. (8.17). Their small difference can be attributed to corrections
from the preexponential factor in SFA that depend on the initial state of the electron [474]. This indicates
the reduction of the under-the-barrier nondipole shift for long-range potentials is indeed caused by the
presence of the Coulomb interaction.

In the adiabatic limit, the tunneling process can be quasi-classically described by means of a Wentzel-
Kramers-Brillouin (WKB) approximation. Within this framework, Klaiber and Yakaboylu et al. [151, 471]
included magnetic nondipole effects on the under-the-barrier motion. We follow their approach and
consider the static situation of an electric field of strength Ep pointing in positive y-direction and a
magnetic field pointing in negative x-direction. During its quasi one-dimensional motion the electron
tunnels through the barrier Veff(y) = V(y)+yEp formed by the binding potential V and the electric field.
Here, the magnetic field can be included by means of a nonvanishing vector potentialAz = −yEp/c such
that the velocity in propagation direction of the light reads vz = pz − yEp/c. Assuming px = 0, the total
energy of the electron ε(y) = −Ip − (pz − yEp/c)

2/2 is position dependent and the WKB tunneling
probability

wtunnel ∝ exp
(
−2
∫y0

yi

dy
√

2(Veff(y) − ε(y))

)
(8.19)

through the classically-forbidden region y0 < y < yi is changed compared to the dipole approxima-
tion.17 For a short-range potential, the integral can be evaluated analytically. In agreement with the
adiabatic limit of the SFA (8.17), the velocity distribution in v0,z-direction at the tunnel exit maximizes
at vmax

0,z = Ip/(3c) [151]. A long-range Coulomb potential V(r) = −Z/r leads to a reduced tunnel-barrier
width reflected by a reduced amount of transferred momentum [471] (see gray dashed-dotted line in
Fig. 8.5(b)). Qualitatively, this simple model reproduces the observed reduction of the under-the-barrier
momentum transfer present in the backpropagation calculations.

Experiments can only access the nondipole shifts in the asymptotic momentum distributions and do
not measure the electron wave packets at the tunnel exit. However, we found that during the continuum

17Note that this approximation does not properly consider the dynamics very close to the center of the potential. For an im-
proved treatment, the WKB solution should be matched to the initial state (analogous to ARM theory [113]).
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motion of the electron, a long-range Coulomb potential enhances the nondipole shift by approximately
ZEp/(cIp) (see the last term in Eq. (8.11)). Thus, the Coulomb effects on the nondipole shift in the
tunneling step and in the subsequent continuum motion nearly compensate each other. In all studied
cases, we find that the nondipole shift in the final momentum distribution agrees well with the potential-
free estimate of Eq. (8.7) in combination with the initial velocity of Eq. (8.17). To underline this, we
subtract the nondipole contribution of the potential-free continuum motion from the asymptotic average
momentum transfer 〈pz〉 for a long-range potential. The results are shown as solid lines in Fig. 8.5 and
match very well the Ip/(3c) estimate of Eq. (8.17). Hence, for us, it seems that the separation of the
momentum transfer into under-the-barrier and continuum motion in the backpropagation is to a certain
extent artificial.

8.3 Disentanglement of magnetic and electric nondipole effects

In previous studies, nondipole effects were included to a given order in 1/c, i.e., both the effect of
the magnetic field and the electric-field inhomogeneity were simultaneously incorporated. Commonly,
in strong-field ionization, the magnetic component of the light field was considered as the dominat-
ing source of nondipole effects (see for example the review [475]). Alexander Hartung [473] proposed
to study the effects of the magnetic field and the temporospatial dependence of the electric field sepa-
rately.18 In Ref. [473], (numerical) simulations based on single trajectories and an ensemble of trajectories
were used to study the nondipole asymmetry of the maximum’s position of the radial momenta p⊥ as a
function of the momentum pz. In Section 8.3.1, we follow this idea, but derive an analytical description.
In a quantum-mechanical calculation based on a Hamiltonian of the form (2.20) it is not possible to in-
clude only one of the two nondipole contributions. Thus, we use a two-step model where the influence
of the laser magnetic field and electric-field inhomogeneity on the classical motion of the electron can
be studied separately. In Sections 8.3.2 and 8.3.3, the model used to interpret photoelectron momentum
distributions from numerical TDSE simulations and especially the influence of nonadiabatic effects is
considered.

8.3.1 Simple man’s model

The release of the electron is a nonclassical process. In this section, we use an adiabatic approximation
for the distribution of the initial coordinates. According to Eq. (8.16), the released wave packet is then
given by

wadia(t0, v0,⊥, v0,z) ≈ exp

−
2

3E(t0)

2Ip + v2
0,⊥ +

(
v0,z −

Ip + v
2
0,⊥/2

3c

)2
3/2

 . (8.20)

A schematic sketch of a slice in the v0,⊥-v0,z-plane at fixed t0 through the initial distribution is shown in
Fig. 8.6(a). To characterize the geometry of the wave packet, we determine the most probable electron
velocity vmax

0,z for each fixed v0,⊥. Similarly, we can also consider the most probable velocity vmax
0,⊥ in the

polarization plane for each fixed v0,z. For the adiabatic distribution, these lines of maxima are given by

vmax
0,z (v0,⊥) =

1
3c

(
Ip +

v2
0,⊥

2

)
and vmax

0,⊥ (v0,z) = 0. (8.21)

Thus, the global maximum of the distribution is approximately located at

vmax
0,z =

Ip

3c
and vmax

0,⊥ = 0. (8.22)

In the vicinity of the global maximum, the initial distribution of Eq. (8.20) is approximately rotationally
symmetric, i.e., its Hessian matrix evaluated at the maximum is invariant under rotations.

18A similar approach was also earlier used in my master thesis [160] to disentangle electric and magnetic nondipole effects in
the high-energy rescattering region.
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Figure 8.6: Schematic visualization of the effects of the magnetic field and the electric-field inhomogeneity on the photoelectron
momentum distributions for an exaggerated value of 1/c. (a) Initial-velocity distribution of Eq. (8.20) for fixed t0. The gray and
white lines indicate the position of the maxima for fixed v0,z or for fixed v0,⊥ (see Eq. (8.21)), respectively. (b) Slice through the final
momentum distribution when only taking spatially-homogeneous electric and magnetic fields into account. The gray and white
lines again indicate the position of the maxima for fixed pz or for fixed p⊥ (see Eq. (8.29)), respectively. (c) Slice through the final
momentum distribution when only taking the spatially-inhomogeneous electric field into account (and neglecting the magnetic
field). The gray and white lines again indicate the maximum’s position (see Eq. (8.32)). Figure is adapted from Hartung et al. [436].

Classical dynamics

The light-induced dynamics during the continuum motion deflects the initial wave packet to its final
asymptotic shape. The continuum motion is approximated by means of classical mechanics. When the
electron-ion interaction is neglected, the classical dynamics is governed by the Newton equation

r̈(t) = −E
(
t−
z(t)

c

)
−ṙ(t)× B

(
t−

z(t)

c

)
. (8.23)

The term due to the magnetic field is printed in red and the term due to the electric-field inhomogeneity
is printed in blue, respectively. In the dipole approximation, only a spatially-homogeneous electric field
is present and the mapping of the initial velocity v0 to the final momentum p is given by p = v0 −A(t0).
For plane waves (2.1) with B = ez × E/c and, thus, |B| = |E|/c, the shift z(t)/c in the argument of the
magnetic part of the Lorentz force can be neglected, if we are only interested in the corrections to first
order in 1/c. To include leading-order nondipole corrections for the components in the polarization
plane, the force of Eq. (8.23) is integrated along the dipole trajectory in the light-propagation direction
(here along zD(t) = v0,z(t− t0)):

p⊥ = v0,⊥ −

∫∞
t0

dt
[

E
((

1−
v0,z

c

)
t+
v0,zt0

c

)
+v0,zez × B(t)

]
+ O

(
1
c2

)
= v0,⊥ −

1
1−v0,z

c

A(t0)+
v0,z

c
A(t0) + O

(
1
c2

)
= v0,⊥ − A(t0) + O

(
1
c2

)
.

(8.24)

Here, we use the definition of A(t) in Eq. (2.5).
The effect of the temporospatial dependence of the electric field can be interpreted in analogy to the

Doppler effect. In the laboratory frame, electrons traveling in (against) the light-propagation direction
feel an oscillating force due to the electric field with an effective frequency which is lower (higher)
than the frequency of the external light field. The effective frequency ωeff(v0,z) = ω(1 − v0,z/c) can be
read off the upper line in Eq. (8.24). As discussed in Section 7.2.1, the effective frequency changes the
ponderomotive energy of the electron. In addition, its drift momentum (in the dipole approximation
given by v0 − A(t0)) is also modified, because the quantity A scales with the inverse of the frequency
(see the blue-marked correction in the lower line of Eq. (8.24)). To confirm that the electron “feels” an
electric field with frequency ωeff, we can analyze the motion in an inertial frame Σ ′ that moves with
velocity v = v0,zez relative to the rest frame of the ionic core. In Σ ′, because t = t ′ + O

(
1/c2

)
and

z = z ′ + v0,zt
′ + O

(
1/c2

)
, the electric and magnetic fields read according to the Lorentz transformation
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(to first order in 1/c)

E ′(r ′, t ′) =E(r, t)+v0,zez × B(r, t)

=
(

1−
v0,z

c

)
E
(
t−
z

c

)
=
(

1−
v0,z

c

)
E
((

1−
v0,z

c

)
t ′−

z ′

c

)
,

B ′(r ′, t ′) =B(r, t).

(8.25)

The electric-field inhomogeneity results indeed in a modified effective frequency in the moving frameΣ ′.
However, for a correct description of the dynamics in the moving frame Σ ′, a modification of the mag-
nitude of the electric field appears that is related to the magnetic field in the rest frame. This is a well-
known ambiguity in the separation of the total electromagnetic field into electric and magnetic field
components. In an ionization process, the fixed position of the nucleus defines a natural rest frame, to
which we will restrict ourselves in the following.

The motion in the light-propagation direction is solely influenced by the magnetic part of the field.
Analogous to Eq. (8.24), the nondipole correction is determined perturbatively along the dipole trajec-
tory. The final momentum in the light-propagation direction is given by (to first order in 1/c)

pz = v0,z+
1
c

(
1
2

A2(t0) − v0,⊥ ·A(t0)

)
+ O

(
1
c2

)
= v0,z+

1
c

(
p2

2
−

v2
0

2

)
+ O

(
1
c2

)
. (8.26)

The relations between the initial conditions and the final momenta (see Eqs. (8.24) and (8.26)) are the
well-known results of Eqs. (8.2) and (8.3). In the final result, nondipole corrections are solely given
by magnetic-field-induced terms in the light-propagation direction. However, it is important that the
nondipole corrections in the p⊥-momentum component due to the magnetic field and due to the tem-
porospatial dependence of the electric field cancel each other (to first order in 1/c).

The initial distribution of Eq. (8.20) is transformed into the final electron momentum distribution
by the light-induced dynamics in the continuum. Hence, these distributions are classiclly related by
the mappings of Eqs. (8.24) and (8.26). In the following, we will separately consider the effects of both
nondipole contributions (electric and magnetic) on the experimentally-measurable momentum distri-
butions. To simplify the discussion, we restrict ourselves to times t0 with A(t0) · E(t0) = 0 such that
under adiabatic conditions the initial velocity v0 is parallel or antiparallel to the vector potential A(t0)

(see Eq. (2.47)). Thus, for fixed t0, the plane of final momenta spanned by −A(t0) and ez must only be
considered. This simplification is possible for the usual attoclock settings close to their maxima of the
electric-field strength (see Section 5.2.1).

Spatially-homogeneous fields

Taking only a homogeneous electric field and the magnetic field into account (and neglecting the spatial
dependence of the electric field) gives the mapping19(

p⊥

pz

)
=

(
A0

K0/c

)
+

(
1 −A0/c

A0/c 1

)(
v0,⊥

v0,z

)
. (8.27)

Here, A(t0) = A0Â(t0) and K0 = A2
0/2 is the kinetic drift energy. The first term describes the effect of an

homogeneous electric field (i.e. a shift by A0 in the polarization plane) and the well-known nondipole
shift of the electron momentum distribution by K0/c in the light-propagation direction. In addition, the
second term represents a small rotation of the distribution by an angle of about A0/c around the origin.
To first order in 1/c, the initial distribution of Eq. (8.20) is invariant under small rotations. To exponen-
tial accuracy, the resulting final momentum distribution is still approximately rotationally symmetric
around the global maximum of the distribution at

pmax
z ≈ K0

c
+
Ip

3c
and pmax

⊥ ≈ A0. (8.28)

19For the discussion, the upper components of the vectors correspond to a basis vector −Â(t0), e.g., v0,⊥ = −v0 · Â(t0).
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Hence, it is effectively only displaced in the p⊥-pz-momentum plane compared to the initial-velocity
distribution (see Fig. 8.6(b)). For each fixed p⊥, we represent the forward shift of the distribution in
the light-propagation direction by the most probable momentum pmax

z . Similarly, the most probable
momentum pmax

⊥ in the polarization plane can be determined for each fixed value of pz. We find

pmax
z (p⊥) ≈

K0

c
+

1
3c

(
Ip +

(p⊥ −A0)
2

2

)
and pmax

⊥ (pz) ≈ A0. (8.29)

pmax
⊥ is constant in this case. The nondipole shift pmax

z is nearly constant, i.e., its slope vanishes at the
global maximum at p⊥ = A0.

Spatially-inhomogeneous electric field

Taking only the temporospatial dependence of the electric field into account (and neglecting the mag-
netic field) gives the simplified mapping(

p⊥

pz

)
=

(
A0

0

)
+

(
1 A0/c

0 1

)(
v0,⊥

v0,z

)
. (8.30)

The electric-field inhomogeneity results in a shearing of the electron momentum distribution that is
schematically shown in Fig. 8.6(c). The global maximum of the distribution is approximately located at

pmax
z ≈ Ip

3c
and pmax

⊥ ≈ A0. (8.31)

Importantly, the electric-field inhomogeneity induces the breaking of the rotational symmetry. Close to
the global maximum, the electron momentum distribution has an elliptic shape with semi-minor axis
1 − A0

c
and semi-major axis 1 + A0

c
both tilted by 45◦ compared to the p⊥-pz-axis. Hence, the lines of

maxima at fixed p⊥ and at fixed pz are given by

pmax
z (p⊥) ≈

1
3c

(
Ip +

(p⊥ −A0)
2

2

)
+
A0

c
(p⊥ −A0) and pmax

⊥ (pz) ≈ A0 +
A0

c
pz. (8.32)

Both the momentum dependencies of pmax
⊥ (pz) and of pmax

z (p⊥) have a nonzero slope of A0/c in the
vicinity of the maximum. The comparison with the homogeneous-field setting shows that this nonzero
slope is a characteristic property of the temporospatial dependence of the electric field. For the depen-
dence of pmax

⊥ (pz) on pz, this was already noted in Ref. [473]. Here, we have additionally shown that
the electric-field inhomogeneity also influences the nondipole shift of the momentum distribution in the
light-propagation direction.

Spatially-inhomogeneous electric field and magnetic field

Taking the spatially-inhomogeneous electric field and the magnetic field into account results in the map-
ping of Eqs. (8.24) and (8.26). The global maximum of the final electron momentum distribution is then
approximately located at

pmax
z ≈ K0

c
+
Ip

3c
and pmax

⊥ ≈ A0. (8.33)

The magnetic-field effect during the continuum motion causes a forward shift of K0
c

. However, the influ-
ence of the electric-field inhomogeneity again leads to a shearing of the electron momentum distribution.
The lines of maxima at fixed p⊥ and at fixed pz are given by

pmax
z (p⊥) ≈

K0

c
+

1
3c

(
Ip +

(p⊥ −A0)
2

2

)
+
A0

c
(p⊥ −A0) and pmax

⊥ (pz) ≈ A0 +
A0

c
pz. (8.34)

Similar to the electric-field-only case, we find a nonzero slope of these lines of maxima in the vicinity of
the global maximum.
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8.3.2 Results for quasilinear fields

In the simple man’s model of the previous section, an adiabatic ionization process was considered. In a
quasilinear attoclock configuration, the first-order nonadiabatic corrections vanish in the vicinity of the
field-strength maximum. Thus, the setting is well-suited to begin the study of nondipole effects. Af-
terwards, we discuss the ionization process in circularly-polarized fields which are easier to implement
in experiments. However, for circular polarization, the distribution of initial velocities perpendicular to
the instantaneous field is modified by nonadiabatic effects [170, 354, 370–372].

The cigar-like photoelectron momentum distribution from ionization of helium by a quasilinear field
is shown in Fig. 8.3(a). To analyze the effects of the spatial dependence of the electric field, we restrict
ourselves to a slice through the PMD at py = 0 (see black horizontal line in Fig. 8.3(a)). This slice would
correspond to ionization at the time of peak field strength (t0 = 0) in the absence of Coulomb effects.
For fixed momenta p⊥ = px, the forward shift pmax

z (px) of the distribution in the light-propagation
direction can be approximated by the partial average 〈pz〉(px,py = 0) of Eq. (8.4). For the recollision-free
and interference-free ionization, we find that the partial average 〈pz〉(px,py) perfectly agrees with the
maximum’s position extracted by a quadratic fit. The result pmax

z (px) from TDSE is in perfect agreement
with the simple man’s model including both the magnetic field and the electric field inhomogeneity
(see Fig. 8.7(a1)). At the global maximum located at px + Ax(0) ≈ 0, the nondipole shift is indeed
given by p2/(2c) + Ip/(3c) = K0/c + Ip/(3c). In the vicinity of the maximum, the nondipole shift pmax

z

varies linearly as a function of px + Ax(0). For the studied intensity range between 5 × 1014 W/cm2

and 10 × 1014 W/cm2, we find that the slope is in perfect agreement with the estimate A0/c. If the
temporospatial dependence of the electric field is neglected, the momentum dependence is not correctly
reproduced (see gray dashes line).

Importantly, for nonzero initial velocities (here given by v0,⊥ ≈ px+Ax(0)), the TDSE results system-
atically deviate from the often-used (parabolic) estimate K/c+Ip/(3c) = p2/(2c)+Ip/(3c). It shows that
the final kinetic energy does not determine the nondipole shift or to phrase it differently the momentum
transfer. Instead, according to Eq. (8.34), the electron picks up a momentum of (Ip + v2

0,⊥/2)/(3c) in for-
ward direction during the tunnel ionization process (see also Eq. (8.17)). In the subsequent continuum
motion, the kinetic energy of the electron changes by ∆E = p2/2 − v2

0/2. In this step, only the light-field
momentum associated with the gain in energy is transferred to the electron (see also Eq. (8.26)).
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Figure 8.7: Momentum-resolved nondipole observables for a quasilinear field of Fig. 8.3(a): (a1) most probable momentum pmax
z
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TDSE. The gray dashed lines show the estimate (8.29) neglecting the temporospatial dependence of the fields whereas the gray
solid lines include both the effect of the magnetic field and the temporospatial dependence of the electric field (see Eq. (8.34)). In
addition, the dashed-dotted gray line in panel (a1) depicts the often-used parabolic estimate. (a2) and (b2) Slices through the PMD
at fixed pz = 0 or at fixed px +Ax(0) = 0 (individually normalized to maximal value of one), respectively.
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For a deeper study, we also determine the most probable momentum pmax
x in the polarization plane

for each fixed momentum pz.20 The TDSE result is shown in Fig. 8.7(b1). As suggested by the simple
man’s model including the temporospatial dependence of the electric field, we find that pmax

x (pz) is ap-
proximately a linear function of pz. Thus, electrons flying in forward direction (pz > 0) have on average
larger momenta in the polarization plane (here in px-direction) than those emitted into backward direc-
tion (pz < 0). The slope of pmax

x (pz) at pz = 0 is again in good agreement with the simple estimate given
by A0/c. However, compared to the simple man’s model, the lateral distribution in TDSE is systemati-
cally shifted to smaller px-momenta. This is caused by the deceleration of the outgoing electrons by the
long-range Coulomb attraction. An additional calculation showed that this difference is already present
in the dipole approximation.

8.3.3 Results for circularly-polarized fields

Circular polarization provides the simplest experimentally-accessible setting for recollision-free ion-
ization. For multi-cycle femtosecond laser pulses, the resulting photoelectron momentum distribu-
tions have a donut-like shape, i.e., they are approximately rotationally symmetric around the light-
propagation direction (see also Fig. 7.3). Hence, it is sufficient to study a slice in the p⊥-pz-plane
with p⊥ > 0 through the PMD. For the field defined in Eq. (8.5), the actual electric-field strength is
|E| = Ep = E0/

√
2 and the magnitude of the vector potential is given by |A| = A0 = E0/(

√
2ω).

Before proceeding with the full numerical solution of the TDSE, we study the PMD by means of
the strong-field approximation, i.e., neglecting the long-range potential after interaction with the laser
field. The following equations for a circularly-polarized cw field were already derived in my master
thesis [160]. To obtain an analytical expression, we apply the saddle-point approximation. The resulting
saddle-point equation (2.44) can be analytically solved (to first order in 1/c)

ωt ′s = φp + 2πn+ i acosh(χ) with n ∈ Z. (8.35)

Here, we defined the auxiliary quantity

χ =
1

A0p⊥

1
2 p2 + Ip +

(
1 + pz

c

)
K0

1 + pz
c

with K0 = A2
0/2. (8.36)

Neglecting preexponential factors, the momentum distribution can be approximated as

w(p) ≈ e−2 ImSSFA(p,t′s) (8.37)

with the imaginary part of the SFA action given by

ImSSFA(p, t ′s) =
(

1 +
pz

c

) p⊥A0

ω

(
χacosh(χ) −

√
χ2 − 1

)
. (8.38)

This is the nondipole generalization of the result in Ref. [354]. As expected, the PMD is independent of
the angle φp in the polarization plane and of the rotation sense of the field.

Nondipole forward shift

Based the SFA distribution of Eqs. (8.37) and (8.38) for circular polarization, the forward shift pmax
z of the

distribution is determined for each lateral momentum p⊥, we find to first order in 1/c [160]

pmax
z (p⊥) =

1
c

p⊥A0

√
χ2
⊥ − 1

acosh(χ⊥)
− K0

 with χ⊥ =
1

A0p⊥

(
1
2
p2
⊥ + Ip + K0

)
. (8.39)

This expression includes all orders of nonadiabatic corrections. In agreement with the approximation in
Section 8.2.4, we find that the first-order nonadiabatic corrections (that are proportional to the Keldysh
parameter) vanish. When only considering small initial velocities v0,⊥ = p⊥ − A0, the shift of Eq. (8.39)
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Figure 8.8: Nondipole shiftpmax
z (p⊥) of the PMD from ionization of argon by circularly-polarized laser pulses with 800 nm central

wavelength and 1.6× 1014 W/cm2 intensity. (a1) and (b1) Results for three-cycle and for ten-cycle laser pulses with cos2 envelope
(see main text). (a2) and (b2) Corresponding momentum distributions obtained by integration over pz (arbitrarily normalized).
For the TDSE simulations, the initial state is chosen as p+ or p− orbital (red solid or dashed-dotted lines). For comparison, the
blue line shows the SFA result (8.39). The gray dashed lines show the estimate (8.29) of the simple man’s model neglecting the
electric-field inhomogeneity whereas the gray solid lines include both the effects of the magnetic field and of the temporospatial
dependence of the electric field (see Eq. (8.34)).

can be expanded. This leads to the same result for pmax
z (p⊥) as in the simple man’s model of Eq. (8.34)

when taking both magnetic corrections and the electric-field inhomogeneity into account.
In an experiment by Hartung et al. [51], the momentum transfer in recollision-free strong-field ioniza-

tion was studied for argon atoms. To model this system, we choose a Tong-Lin potential with singular-
ity removed by using a pseudopotential for the 3p states (see Appendix A.2.3). The valance shell of the
ground state with an ionization potential Ip ≈ 0.58 a.u. consists of three degenerate p orbitals (p+, p−

and p0), where the index indicates the magnetic quantum number m of the orbital angular momentum
in the light-propagation direction. We first consider short circularly-polarized pulses with a three-cycle
cos2 envelope, 800 nm central wavelength and 1.6× 1014 W/cm2 intensity. From the photoelectron mo-
mentum distributions from the numerical solution of the TDSE (as described in Section 8.2.1), we again
approximate the nondipole shift pmax

z as a function of p⊥ by means of the partial average 〈pz〉(p⊥) of
Eq. (8.4) calculated for electrons in the vicinity of the px-axis.

For electrons in initial p± states, the momentum-dependent nondipole shifts pmax
z (p⊥) ≈ 〈pz〉(p⊥)

are separately shown in Fig. 8.8(a1).21 The momentum-dependent nondipole shifts are only weakly
affected by the angular momentum of the initial state.22 In the central region of the distributions, the
TDSE results are well reproduced by the saddle-point SFA of Eq. (8.39) and the simple man’s model of
Eq. (8.34). For small lateral momenta p⊥, the SFA result slightly overestimates the nondipole shifts
compared to the TDSE solution. In additional simulations for a short-range argon model, we con-
firmed that this deviation is mainly caused by the long-range tail of the potential [160]. In agreement
with Refs. [170, 354], the lateral distributions for the p± orbitals are centered at different momenta (see
Fig. 8.8(a2)). Thus, the total average 〈pz〉 over the whole distribution is different for the p± orbitals [190].

In the experiment [51], laser pulses of 25 fs duration were used. To study the dependence of the
nondipole shift on the pulse length, we repeat the simulations for ten-cycle laser pulses. The resulting
PMDs are converted to cylindrical coordinates. Afterwards, 2D projections are calculated by integration
of the signal along the angle φp in the polarization plane. To reduce the influence of ATI rings, the 2D
distributionsw(p⊥,pz) are averaged in p⊥-direction over slices of ∆p⊥ = 0.1 a.u. width. The nondipole
shift is again represented by the partial average 〈pz〉(p⊥) (see Fig. 8.8(b1)). Except for small oscillations

20The “power method” [161] is applied to determine the peak position for each fixed momentum pz.
21This observable was already considered for helium in my master thesis [160].
22The difference between the p+ and p− states is on the order of 10−4 a.u.
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caused by the ATI rings, the TDSE results for the short and long laser pulses agree reasonably well.
Hence, in the present situation, the pulse length is only of minor importance for the momentum transfer.
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Figure 8.9: (a) Nondipole shift pmax
z (p⊥) of the PMD from ionization of argon by circularly-polarized laser pulses with 800 nm

central wavelength and a peak intensity of 1.6× 1014 W/cm2: experimental result provided by Hartung et al. [51] (black symbols)
and focal-volume-averaged result obtained from the numerical solution of the TDSE (red line). For comparison, the blue line
and the gray line show the SFA result (8.39) and the simple man’s estimate (8.34) for a fixed intensity of 1.6× 1014 W/cm2. The
arbitrarily-normalized momentum distributions are depicted in panel (b) for visual orientation. Figure is adapted from Hartung et
al. [51].

For a more realistic comparison, the electron momentum distributions are also averaged over the
focal-volume distribution for a peak intensity of Ipeak = 1.6 × 1014 W/cm2 (see the scheme introduced
in Appendix A.2.4). To this end, 13 TDSE simulations are performed for ten-cycle laser pulses with a
central wavelength of 800 nm and intensities ranging from 0.4× 1014 W/cm2 to 1.6× 1014 W/cm2. Since
ionization in circularly-polarized fields preferentially depletes the states co- and counter rotating with
respect to the field compared to the p0 states, we only consider the incoherent sum of the momentum dis-
tributions for the p± states. The good agreement between the lateral distribution of the experiment and
the focal-averaged TDSE result confirms the intensity calibration (see Fig. 8.9(b)). We find that intensity
averaging changes the nondipole shift only slightly compared to the simulations for a single fixed inten-
sity (see Figs. 8.8(b1) and 8.9(a)). Both the TDSE simulations and the simplified model well reproduce
the experimental dependence of the nondipole shift on the momentum p⊥. The approximately linear
increase of the nondipole shift as a function of p⊥ can be seen as the first experimental observation of an
electric nondipole effect (see the discussion in Section 8.3.1).

The forward shift of Ip/(3c) caused by the influence of the magnetic field on the electron during its
laser-induced tunnel ionization [151] is given by≈ 1.4× 10−3 a.u. Thus, for the present laser conditions,
Ip/(3c) is on the same order of magnitude as the transferred momentum during the continuum motion
of the electron (K0/c ≈ 2.7 × 10−3 a.u.). Since the experimental result [51] is closely described by our
simulations, the data show the first experimental evidence of magnetic-field effects acting during the
tunnel-ionization step.

Nondipole modification of the most probable radial momentum

The dependence of the most probable radial momentum pmax
⊥ on the momentum pz is an alternative

observable to study the effect of the electric-field inhomogeneity. This idea was first used in Ref. [473].
Here, we follow the scheme introduced therein for the analysis of our simulation data. In order to first
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Figure 8.10: Analysis of the photoelectron momentum distributions from ionization of argon by circularly-polarized three-cycle
laser pulses of 800 nm wavelength and 2× 1014 W/cm2 intensity calculated by numerical solution of the TDSE. (a) Distribution
in the pz-p⊥-plane at py = 0. To study the most probable radial momentum for each pz, every column is normalized individ-
ually. The resulting momentum-dependent maximum’s position pmax

⊥ (pz) is shown as black line. A magnification of the line of
maxima pmax

⊥ (pz) is shown in panel (b). There, the simplified result (8.45) for a nonadiabatic initial-velocity distribution is also
depicted as gray dashed-dotted line. The thin dotted vertical line indicates the position of the minimal value of pmax

⊥ (pz) from
TDSE. (c) AntisymmetrizationA(pmax

⊥ (pz)) as defined in Eq. (8.41) for the TDSE result as well as the simple man’s estimates for
an adiabatic (κ = 1) and a nonadiabatic initial distribution (κ = 5/6).

avoid the further complications of initial states carrying angular momentum, we use the potential

V(r) = −
1 + exp(−0.66r)√

r2 + 0.5
. (8.40)

The resulting 1s state reproduces the ionization potential of argon and is considered as initial state in
the TDSE simulations. We numerically calculate the photoelectron momentum distribution for ioniza-
tion by circularly-polarized three-cycle pulses. Analogous to the approach in Ref. [170], we analyze a
slice at py = 0 through the momentum distribution and normalize the radial distribution for fixed pz
individually (see Fig. 8.10(a)). For each pz, the most probable momentum pmax

⊥ is determined by means
of a Gaussian fit.23 The maxima are located at larger radial momenta compared to the simple man’s es-
timate of p⊥ = A0 and have a close to parabolic shape as a function of pz (see black line in Fig. 8.10(a)).
In the dipole approximation, the function pmax

⊥ (pz) is forward-backward symmetric and the deviation
compared to p⊥ = A0 is mostly caused by nonadiabatic effects as described in Refs. [170, 354, 370–372].
In reality, as first experimentally observed in Ref. [473], the forward-backward symmetry is broken, i.e.,
the minimum of pmax

⊥ (pz) is not located at pz = 0. The TDSE simulations confirm that the minimum is
shifted to slightly negative pz (see dotted vertical line in Fig. 8.10 (b)).

The parabolic shape of pmax
⊥ (pz) (already present in the dipole approximation) complicates the anal-

ysis of nondipole effects for circular polarization. To disentangle the (leading-order) nondipole effects
from the symmetric contributions, the antisymmetrization of pmax

⊥ (pz) is considered

A(pmax
⊥ (pz)) =

pmax
⊥ (pz) − p

max
⊥ (−pz)

2
. (8.41)

In the dipole approximation, A(pmax
⊥ (pz)) vanishes. However, the results from TDSE beyond the dipole

approximation show an approximately linear dependence of A(pmax
⊥ (pz)) on pz (see Fig. 8.10(c)). The

slope of A(pmax
⊥ (pz)) around pz = 0 can be determined by means of a fit

A(pmax
⊥ (pz)) = κ

A0

c
pz + ... (8.42)

23An iterative procedure is used where the fit range is centered around the previous maximum’s position with a width of one
quarter of the previous standard deviation σ.



160 CHAPTER 8. MICROSCOPIC STUDY OF NONDIPOLE EFFECTS IN IONIZATION

Here, we introduced a dimensionless parameter κ. In the simple man’s model of Section 8.3.1 based
on an adiabatic initial-velocity distribution, we find κ = 1. However, the TDSE simulation for circular
polarization of Fig. 8.10 only results in κ ≈ 0.75.24

The interplay between nonadiabatic initial-velocity offsets and nondipole effects can be studied
by considering the momentum distributions of Eq. (8.38) from the SFA. We are only interested the
in leading-order nonadiabatic corrections and, hence, expand the SFA expression to first order in the
Keldysh parameter γ. Alternatively, the same results can also be obtained by using the initial distribu-
tion of Eq. (8.16) and the mappings of initial velocities to final moment of Eqs. (8.24) and (8.26) (similar to
the analysis in simple man’s model of Section 8.3.1). We find that the global maximum of the distribution
is located at (to first order in 1/c)

pmax
z ≈ K0

c
+

2Ip
3c

and pmax
⊥ ≈ A0 +

Ip

3A0
. (8.43)

Already in the dipole approximation, the nonadiabatic effects displace the radial distribution by Ip
3A0

(see also Eq. (5.9) and Ref. [354]). When inserting pmax
⊥ into Eq. (8.34), the nondipole shift pmax

z of the
global maximum is obtained in Eq. (8.43). Within this SFA treatment, we find that the most probable
radial momentum as a function of pz is given by

pmax,SFA
⊥ (pz) ≈ A0 +

1
3A0

(
Ip +

p ′2z
2

)
+
A0

c
pz, (8.44)

where p ′z = pz − (K0 + 2Ip/3)/c is the momentum relative to the global maximum. In the second
term, an increased effective ionization potential results in a quadratic dependence of the nonadiabatic
offset on the momentum p ′z in the light-propagation direction [170]. The gray dashed-dotted line in
Fig. 8.10(b) shows the analytical result of Eq. (8.44). The too large nonadiabatic offset and the slightly
different curvature compared to the TDSE result can be partially attributed to higher-order nonadiabatic
corrections as well as to the influence of the electron-ion interaction [170].

At the global maximum (see Eq. (8.43)), the slope of pmax,SFA
⊥ (pz) in Eq. (8.44) is to first order in 1/c

given by A0/c. Importantly, the quadratic term in Eq. (8.44) is centered at the global maximum of the
distribution and not at pz = 0. Hence, when using the SFA result of Eq. (8.44) for the antisymmetrization
in Eq. (8.41), we find25

A(pmax,SFA
⊥ (pz)) ≈

5
6
A0

c
pz. (8.45)

Even in the adiabatic limit (γ → 0), the slope κ = 5/6 ≈ 0.83 is changed compared to the simple man’s
model based on the adiabatic initial distribution. The difference is caused by the forward shift ∼ K0/c of
the distribution induced by the magnetic field. When only taking spatially-homogeneous fields during
the continuum propagation into account, the SFA-based model already predicts a nonvanishing slope
for the antisymmetrization that is given by κ = −1/6. We can conclude that the deviation between the
slope from TDSE and the simple man’s model (κ = 1) can be mainly attributed to the interplay between
nonadiabatic initial-velocity offsets and nondipole effects.

Wavelength and intensity scaling

In the simple man’s model, the slope of the nondipole shift pmax
z (p⊥) as a function of p⊥ and the slope of

the antisymmetrizationA(pmax
⊥ (pz)) as a function of pz scale linearly with the parameterA0/c. Thus, we

expect both slopes to increase with the intensity and wavelength of the radiation. For the argon model
of Eq. (8.40) with an 1s initial state and short three-cycle laser pulses, we perform two parameter scans:
The wavelength is scaled between 454 nm and 2400 nm for a fixed intensity of 2.5× 1014 W/cm2 or the
intensity is scaled between 1.0 × 1014 W/cm2 and 5.0 × 1014 W/cm2 for a fixed central wavelength of
800 nm. The results cover a range of Keldysh parameters between 0.34 and 1.8. The slopes of pmax

z (p⊥)

24The slope is determined by means of a cubic fit to the pz-range between -0.1 and 0.1 a.u.
25In principle, a second term of the form (Ippz)/(A0c) appears. However, compared toA0/c, this term is on the order of γ2,

but our derivation is only consistent to first order in γ.
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at p⊥ = A0 and of A(pmax
⊥ (pz)) at pz = 0 are determined as explained above. The results are shown in

units of A0/c in Figs. 8.11 and 8.12. In addition, TDSE results for a short-range potential given by

V(r) = −
3.36 exp(−0.7

√
r2 + 0.2)√

r2 + 0.5
(8.46)

with an 1s initial state and the same ionization potential as argon are presented.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.5 1.0 1.5 2.0

Sl
op

e
of
p

m
ax
z

in
A

0/
c

Keldysh parameter γ

TDSE, short-range potential

TDSE, long-range potential

(a) (b)

Sl
op

e
of
A
(p

m
ax
⊥

)
in
A

0/
c

Keldysh parameter γ

SFA, cw

SFA, pulse

Figure 8.11: Dependence of the electric nondipole effect on the laser wavelength at a constant intensity of 2.5 × 1014 W/cm2.
(a) Slope of the function pmax

z (p⊥) evaluated at p⊥ = A0 and (b) slope of the function A(pmax
⊥ (pz)) evaluated at pz = 0 in

units of A0/c. The blue and red lines are the TDSE results for an argon atom modeled by a short-range potential (8.46) and a
long-range potential (8.40), respectively. The gray lines show the adiabatic estimates of one for panel (a) and of 5/6 for panel (b).
In addition, the black lines in panel (b) indicate the results from the saddle-point SFA for a cw field (solid line) and for a three-cycle
pulse (dotted line) as used in the TDSE simulations.
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Figure 8.12: Dependence of the electric nondipole effect analogous to Fig. 8.11, but for various intensities at a fixed central wave-
length of 800 nm. The SFA results are the same as in Fig. 8.11.

For the short-range potential, the slope of pmax
z (p⊥) perfectly follows the adiabatic result A0/c of

Eq. (8.34) for all studied laser parameters. Here, nonadiabatic corrections to the slope of A(pmax
⊥ (pz))

are also visible for the short-range potential. For a circularly-polarized cw field, it can be shown in
the SFA framework that both slopes expressed in units of A0/c only depend on the Keldysh param-
eter γ. Already in the strong-field approximation, we find that higher-order nonadiabatic corrections
appear for the slope of A(pmax

⊥ (pz)) (compared to the first-order nonadiabatic estimate of Eq. (8.45)).
The numerically-determined slope for the PMD in SFA (see Eq. (8.37)) is shown as black solid lines in
panels (b) of Figs. 8.11 and 8.12 and very well reproduces the TDSE results for the short-range potential.

For sufficiently adiabatic ionization conditions, the slopes for short-range and long-range potentials
are in very good agreement. However, deviations arise when the Keldysh parameter increases, i.e.,
when the ionization process becomes more nonadiabatic.26 To include the influence of the ionic poten-
tial in the SFA framework, we extended the analytical R-matrix (ARM) method introduced in Section 2.5

26Note that even for a Keldysh parameter of one the deviations are smaller than 10%.
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beyond the electric dipole approximation. The resulting theory systematically includes nondipole ef-
fects, nonadiabaticity and the ionic potential. Additional simulation showed that the nondipole ARM
method is capable of reproducing the differences between long-range and short-range simulations.

Finally, we compare the theoretical simulations to experimental results. The slope of pmax
z (p⊥) ob-

served in the experiment [51] for argon is in very good agreement with the theoretical prediction (see
Fig. 8.9). However, for the same data set, Hartung et al. also determined slope ofA(pmax

⊥ (pz)) and found
a value of (1.69 ± 0.62)A0/c [436, 473] which is larger than the theoretical prediction. Surprisingly, for
xenon ionized by laser pulses with 800 nm wavelength, slopes of (1.51± 0.31)A0/c at 6.8× 1013 W/cm2

intensity and of (3.1± 0.1)A0/c at 1.2× 1014 W/cm2 were measured by Hartung and Lin et al. [436].27

To model the measurements for xenon atoms, we repeat the TDSE simulations and use a pseudopo-
tential based on the Tong-Lin potential for the 5p states (see Appendix A.2.3). Again, three-cycle laser
pulses with 800 nm central wavelength are considered. If the spin-orbit splitting is neglected, the out-
ermost sub-shell of the ground state of xenon is formed by three degenerate p orbitals (p+, p− and p0).
Figure 8.13 separately shows the dependence of the slope of A(pmax

⊥ (pz)) on the intensity for the p±
initial states. Even though the slopes for both states differ slightly, the difference compared to the SFA
result (for an 1s state) is smaller than 15% for all studied intensities. As expected, using the incoherent
sum of the distributions for p± states, the result for the slope is in between the results for the individual
p states. We also confirmed that the inclusion of the remaining p0 orbital leads only to insignificantly
smaller values of the slope.28 Therefore, for a broad range of laser intensities and wavelength, our sim-
ulations predict significantly smaller slopes compared to the experimental measurements.
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Figure 8.13: Dependence of the slope ofA(pmax
⊥ (pz)) evaluated at pz = 0 on the light intensity for xenon ionized by three-cycle

laser pulses with 800 nm central wavelength: results for initial p+ and p− orbitals from TDSE (red solid and dashed-dotted lines),
the result for the incoherent sum of their distributions (red dashed line), and the SFA result (black line). The gray dashed-dotted
line indicates the adiabatic limit of 5/6. Figure is adapted from Hartung et al. [436].

We performed several additional calculations to explore the quantitative difference between the
slopes in experiment and theory. Using the SFA as well as the nondipole version of ARM theory, we
found that, for reduced ellipticity of the radiation, the slope of A(pmax

⊥ (pz)) depends on the angle φp in
the polarization plane. For an ellipticity of 0.75, the slope is increased by about 60% along the directions
of the major axis of the polarization ellipse compared to the directions along the minor axis. However,
when averaging the distribution over the angle φp, the resulting slope is only increased by about 25%
compared to circular polarization. Furthermore, focal-volume averaging causes insignificant changes
of the slopes. In principle, the spin-orbit splitting of the valence states in the xenon ion is quite signifi-
cant. We investigated this effect in the SFA framework following the ideas in Ref. [476] which is able to
predict the spin polarization in strong-field ionization of heavy noble gas atoms [477]. However, for the
nondipole effects, we found that spin-orbit splitting changes the extracted slopes by less than 5%.

All these uncertainties in the experiment and in the theoretical modeling can potentially explain the
moderate deviations of the slopes observed for argon and xenon at the lower laser intensities. However,

27The stated errors are statistical errors.
28For the experimentally-relevant intensities, the slope changes by less than 10%.
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the significantly-increased slope observed in the xenon experiment at higher intensity warrants further
research. Possibly, some of the applied theoretical approximations need to be reconsidered. For exam-
ple, the ionic potential was approximated by means of a pseudopotential and, thus, the initial state is
effectively treated as a 2p state in contrast to the physical 5p state. In addition, this possibly leads to
a nonphysical structure of the excited states and, hence, could influence the field dressing of the initial
state present at high intensities [478]. Multielectron effects were also not considered in the simulations
either.

8.4 Conclusion

In this chapter, an in-depth analysis of photoelectron momentum distributions from strong-field ioniza-
tion beyond the electric dipole approximation was presented. The total linear momentum of the photons
absorbed during ionization is transferred to the photoelectron and the residual ion. For recollision-free
ionization, we investigated the amount of momentum delivered to the photoelectron which results in
an overall shift of the photoelectron momentum distribution in the light-propagation direction, i.e., a
nonzero average forward momentum. Most previous studies observed the total average momentum in
the light-propagation direction. However, in order to extract additional information, we considered the
partial average and showed that the momentum transfer depends on the final momentum of the elec-
tron in the polarization plane. Studying this differential observable allowed us to deepen the picture
of the underlying physical mechanisms. Previously, the forward momentum was divided into a contri-
bution from the tunnel ionization [150, 151] and a contribution from the continuum motion [147, 149].
An important message of this chapter is that the continuum contribution is proportional to the kinetic
energy ∆E gained due to the acceleration in the laser field and not to the final kinetic energy of the
electrons.

In order to time resolve the momentum transfer on a subcycle time scale, attoclock settings can be
used [435]. We theoretically studied this protocol for both an elliptical and a quasilinear attoclock con-
figuration. In agreement with the experimental observation in Ref. [435], we found that the point of
minimal momentum transfer corresponds rather to the point where the maximum yield in a Coulomb-
free situation is expected than to the actual Coulomb-shifted attoclock maximum of the yield. Con-
sidering a classical model, we showed that, to leading order, the Coulomb interaction does indeed not
shift the point of minimal momentum transfer. In contrast to the quasilinear setting, nonadiabatic tun-
neling modifies the angle-resolved momentum transfer in elliptically-polarized fields. To explore the
influence of nonadiabaticity on the liberated electron wave packet at the tunnel exit, we applied the
classical backpropagation approach. For elliptical polarization, nonadiabatic effects cause a slight sub-
cycle modulation of the average forward velocity at the tunnel exit. However, since this modulation is
much smaller than the angular dependence of momentum transfer in the final electron wave packet, it is
hard to observe the subcycle variation experimentally. The Coulomb interaction does not only influence
the continuum motion, but also the tunneling step. Surprisingly, we found that the Coulomb effects on
the momentum transfer during both steps nearly cancel each other. Hence, the nondipole forward shifts
of the experimentally-accessible final electron momentum distributions are usually well approximated
by the potential-free estimate.

When considering both the laser magnetic field and the spatial inhomogeneity of the electric field
during the continuum propagation, their effects compensate each other for the motion along the polar-
ization plane and, effectively, only the final momentum along the light-propagation direction is influ-
enced by nondipole effects. However, within a classical description, we can separately study magnetic
and electric nondipole effects on the photoelectron momentum distributions. To characterize their im-
print, we analyzed two observables: (i) the most probable momentum pmax

z (p⊥) in the light-propagation
direction as a function of the radial momentum in the polarization plane and (ii) the most probable ra-
dial momentum pmax

⊥ (pz) as a function of the momentum in the light-propagation direction. Under
adiabatic conditions, the magnetic field effectively leads to a uniform forward shift of the electron mo-
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mentum distribution, i.e., the slopes of pmax
z (p⊥) and pmax

⊥ (pz) vanish. However, for different initial
electron velocities in the light-propagation direction, the spatial dependence of the electric field induces
slightly different effective frequencies of the force due to the laser field experienced by electrons. This
leads to a shearing of the momentum distribution and is reflected by finite slopes of both pmax

z (p⊥) and
pmax
⊥ (pz). Analyzing the momentum distributions from the numerical solution of the TDSE for a quasi-

linear field, we indeed found nonvanishing slopes for both observables and a perfect agreement with
the simple man’s prediction. For circularly-polarized fields, the momentum dependence of the forward
shift pmax

z (p⊥) from TDSE also follows the simple man’s model and agrees very well with experimental
data [51]. However, in circular polarization, we discovered that the momentum dependence of the most
probable radial momentum pmax

⊥ (pz) is influenced by nonadiabatic effects.
In the future, the application of tailored laser fields could improve the visibility and allow for a sepa-

ration of the different nondipole contributions in photoelectron momentum distributions. For example,
the comparison of the momentum transfer between co- and counter-rotating bicircular fields [170] could
enable a cleaner experimental observation of the interplay between nonadiabatic and nondipole effects.
To this end, the combination of an elliptically-polarized field with its circularly-polarized third harmonic
could also be advantageous, because this field configuration may provide a constant magnitude of the
vector potential combined with a time-dependent magnitude of the electric field. In addition, the inter-
play between nondipole and Coulomb effects is only barely investigated for recollision-free ionization
(see for example Refs. [479–481]). In the first preliminary simulations, we found that the nondipole
effects also influence the momentum-dependent attoclock offsets discussed in Chapter 5. This might
allow the investigation of nondipole corrections of the tunnel-exit positions. Such a study would also be
particularly important to rule out nondipole contributions in the attoclock studies of chiral molecules as
in Refs. [344, 360].

Usually, the nondipole effects in recollision-free strong-field ionization are dominated by the influ-
ence of the electromagnetic field far away from the parent ion. Hence, the nondipole modifications of
photoelectron momentum distributions are only weakly susceptible to the electronic structure of the tar-
get. However, the disagreement between the experimental measurement for xenon [436] and our theo-
retical prediction for the momentum dependence of the most probable radial momentum pmax

⊥ (pz) could
suggest that the nondipole effects are influenced by the complex electronic structure. To resolve the
differences, the development of theoretical methods including both multielectron and nondipole effects
could be crucial. Furthermore, in order to study the target dependence of nondipole effects in recollision-
free scenarios, it could be interesting to scale the internuclear distance of diatomic molecules [482] and
observe the transition from an “atomic-like” behavior for small distances to a molecular-interference-
dominated regime for large distances.



Chapter 9

High-Order Above-Threshold
Ionization Beyond the Electric Dipole
Approximation

9.1 Introduction

During the ionization process in linearly-polarized fields liberated electrons may be driven back to the
parent ion and may elastically scatter off the ionic potential (see Chapter 3). Electrons that are scattered
into large angles and that are subsequently further accelerated by the laser field can reach high kinetic
energies. Thus, this process is known as high-order above threshold ionization (HATI). The high-energy
contributions form a plateau in the photoelectron energy spectra reaching up to the famous ≈ 10Up
cutoff [16, 17]. Classically, for large angle scattering, the electrons need to come close to the parent ion
during recollision. Hence, the HATI process is very sensitive to the details of the ionic potential and can
be used for atomic and molecular imaging (as suggested in Refs. [33, 34]). In the laser-induced electron
diffraction (LIED) technique, structural information of the ionic species is encoded in the diffraction
pattern visible in the photoelectron momentum distributions. LIED was used to retrieve differential
cross sections (DCS) of atoms [36–38] and to measure static bond lengths in molecules [41]. Since the
rescattering process occurs within an optical cycle after the liberation of the electrons, the nuclear dy-
namics in molecules [40, 42] as well as the electronic valence-shell dynamics [31] can be monitored. In
almost all works on HATI, the dipole approximation is employed to interpret the electron momentum
distributions. However, recently mid-infrared few-cycle laser sources were used in LIED to achieve
high scattering energies and to drive recollisions in the quasistatic regime (see for example Ref. [42]). As
motivated in Section 2.1.2, for these long wavelengths, the dipole approximation is questionable.

In general, the theory of recollision-based phenomena in strong fields beyond the electric dipole
approximation has already a considerable history. However, most works on high-energy recollisions
focus on high-harmonic generation [186, 189, 483–486] or nonsequential double ionization [487–491].
For single ionization, recollision-based processes were either studied at low kinetic energies (see Chap-
ter 10) or in extremely intense fields [192, 457, 492, 493]. In our previous work [187] that was related
to my master thesis [160], we discussed the high-energy region of the photoelectron momentum dis-
tributions for ionization of helium in the regime of moderate laser intensities. The distributions were
calculated by numerical solution of the TDSE in 2D beyond the electric dipole approximation. Com-
pared to recollision-free ionization (see Chapter 8), the nondipole effects and, especially, the momentum
transfer to the photoelectrons are vastly different in HATI. The central finding in Ref. [187] was a modi-
fication of the shape of the plateau region, which can be explained in terms of a nondipole extension of
the three-step model. In addition, the emission probability differs in forward and backward directions,
which is outside the scope of a purely kinematic model. During the recollision of the electron with the
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much heavier ion an arbitrary amount of momentum can be exchanged and, thus, no universal scaling
of the transferred momentum with respect to the light parameters exists. Instead, the asymmetry and,
hence, the transferred momentum strongly depend on the target gas [160].

To properly model the emission strength of the photoelectron momentum distributions, quantum-
mechanical theories need to be considered. As introduced in Section 2.3, scattering can be included in the
context of the strong-field approximation by means of Born series what was introduced in Refs. [197, 494]
and later on extended beyond the dipole approximation in Ref. [457]. The application of a saddle-point
approximation leads to a simplified analytical treatment and provides an intuitive interpretation of the
physical processes [110, 111]. In the improved SFA, the scattering process is treated in the first Born
approximation (1BA). Hence, the quality of the results strongly depends on the energy of the scattering
electrons, on the dimensionality of the problem and on the shape of the potential. To describe laser-
assisted scattering beyond the 1BA, Kroll and Watson derived a low-frequency approximation (LFA) in
the context of laser-assisted electron-atom scattering [495]. The LFA was later introduced to the context
of HATI (in the dipole approximation) by Milošević et al. [496, 497]. This approach enables a derivation
of the factorization of probability amplitudes in HATI into one factor describing the field-free elastic
scattering and another factor representing the returning electron wave packet. Under additional as-
sumptions, this results in the quantitative rescattering theory (QRS) [36, 498].

In this chapter, the nondipole effects in the HATI process are further investigated and, especially,
their sensitivity to the atomic and molecular structure is explored. The various nondipole modifica-
tions of the photoelectron momentum distributions are first introduced by considering distributions for
ionization of small molecules from the numerical solution of the TDSE. As a prototypical of diatomic
molecules, the hydrogen molecular ion H +

2 is considered for the special cases of parallel and perpen-
dicular alignment of the molecular axis relative to the ionizing field.1 We show that the nondipole
modifications of the molecular-interference pattern are orientation dependent. To shed light on the on-
going processes, we consider a nondipole three-step model as introduced in my master thesis [160] and
Ref. [187]. Later, in the first experiment on nondipole effects in HATI by Lin et al. [500], xenon was
ionized by strong laser pulses and the nondipole shift of the central maximum in the momentum distri-
bution was analyzed. We consider a quantum-orbit model based on a nondipole generalization of the
low-frequency approximation to quantitatively interpret the photoelectron momentum distributions for
xenon. The appearing nondipole shift can also be intuitively explained based on the classical three-step
model. Interestingly, we find that the nondipole shifts of the central maximum are different for atoms
such as xenon and molecules such as H +

2 .
The first part of this chapter considers strong-field ionization of the hydrogen molecular ion H +

2

beyond the electric dipole approximation. Some of these results are published in Ref. [501]. The second
part of this chapter on the HATI process for xenon is based on joint work with the group of Reinhard
Dörner in Frankfurt, especially Kang Lin. For the publication [500], Lin et al. performed the experiment
based on the COLTRIMS technique, Ni et al. provided data from TDSE simulations and we developed a
simplified interpretation based on the three-step model as well as a more advance description based on
the LFA.

9.2 Anatomy of nondipole effects in HATI

9.2.1 Computational details

We focus on the dynamics in linearly-polarized fields. To this end, np-cycle laser pulses described by
the following vector potential are used

A(η) = −
E0

ω
sin(ωη− φCEP) cos4

(
ωη

2np

)
ex. (9.1)

1At about the same time, the photon-momentum transfer in strong-field ionization of H +
2 was also considered in Ref. [499].

There, however, the main focus was on the total momentum transfer in recollision-free ionization.
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Here, η = t − z/c is the light-cone coordinate. The chosen frequency of ω = 0.05695 a.u. corresponds
to 800 nm wavelength and E0 is the electric-field strength. If not stated otherwise, the carrier-envelope
phase isφCEP = 0. The electric field points along the x-axis of the coordinate system and the correspond-
ing magnetic field points along the y-axis (see also Eq. (2.1)).

To illustrate the dependence of the nondipole effects on the structure of the target, we first study the
hydrogen molecular ion modeled in 2D as described in Ref. [502] with the potential

V(r) =
−1√

(r − R/2)2 + ε
+

−1√
(r + R/2)2 + ε

. (9.2)

The soft-core parameter is chosen as ε = 0.5 such that the ground-state energy of ≈ −1.11 a.u. is
reproduced. The nuclei are kept fixed during the time evolution at the equilibrium internuclear distance
of R = 2 a.u. The molecular axis R is either aligned parallel or perpendicular to the electric field. This
choice ensures that in the dipole approximation the system is symmetric under the interchange of the
forward and backward directions (invariant under reflections at the x-axis).

For the introduced plane-wave laser pulse, the electron dynamics is modeled by numerical simula-
tions of the TDSE in 2D. Analogous to Chapter 7, we use Fourier split-operator technique on Cartesian
grids (see Appendix A.2.2) and employ the natural gauge introduced in Section 2.2. A numerical grid
of size 409.6× 409.6 a.u. with spacings of ∆x = ∆z = 0.1 a.u. and a time step of ∆t = 0.003 a.u. is used.
After the end of the laser pulse, the electron momentum distributions are calculated with a resolution of
∆px = 0.0077 a.u. and ∆pz = 0.0038 a.u.
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Figure 9.1: Photoelectron momentum distributions for ionization of H +
2 with parallel (panel a1) and perpendicular (panel b1)

alignment of the molecular axis with respect to the electric field by four-cycle pulses with 8× 1014 W/cm2 intensity from TDSE
simulations. The red lines in panel b1 indicate the numerically-determined positions of the molecular-interference maximum and
minima. [(a2),(b2)] Corresponding partial averages 〈pz〉(px) and the heuristic estimate p2

x/(2c) (gray lines). Figure is adapted
from Brennecke et al. [501].
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9.2.2 TDSE results for the hydrogen molecular ion

The photoelectron momentum distributions for ionization of the hydrogen molecular ion H +
2 by four-

cycle laser pulses obtained by the numerical solution of the TDSE are shown in Fig. 9.1. Panel (a1)
and panel (b1) contain the results for parallel and perpendicular alignment of the molecular axis with
respect to the electric field. Both PMDs exhibit the same overall structures that are familiar for linearly-
polarized pulses (see Chapter 3 for an introduction). The strong contributions of direct and forward-
scattered electrons are concentrated along the px-axis and approximately reach up to the classical cutoff
for nonscattered electrons (here at |px| ≈ 2.8 a.u.). This region of the PMD will be further discussed in
Chapter 10.

HATI leads to the weaker contribution of high-energy electrons, covering a large range of lateral
momenta pz [16, 17]. The asymmetry of the PMD along the polarization axis (between the positive and
the negative px-direction) is caused by the shortness of the laser pulse [111, 249–251]. For the chosen
CEP (φCEP = 0), the rescattering electrons with the highest energies are emitted in positive px-direction.
However, the observations in this chapter can also be transferred to multi-cycle femtosecond laser pulses
usually used in strong-field experiments. The plateau-like structure for px > 0 is overlaid by nearly-
circular interference rings caused by the interference of long and short rescattering trajectories [18, 202,
503]. The outermost ring, i.e., the boundary of this plateau-like structure, is significantly broader than
the other interference fringes and is called backward rescattering ridge (BRR) [36].

The shape of the electron momentum distribution in the HATI region is influenced strongly by the
differential cross section that depends on the target structure [36, 498]. For the H +

2 , the returning electron
wave packets scatter off the two centers of the diatomic molecular ion. The interference of these two
possible pathways creates a double-slit interference pattern in the DCS and, hence, results in a nontrivial
structure-dependent variation of the yield [39, 504]. For perpendicular alignment, pronounced minima
appear parallel to the px-axis (see the red lines in Fig. 9.1(b1)). For parallel alignment, a reduced emission
strength is also visible along a line nearly parallel to the pz-axis at px ≈ 3.3 a.u.

Due to the inclusion of nondipole effects, the PMDs are not forward-backward symmetric along
the light-propagation direction (z-direction). For each momentum px in polarization direction, the
nondipole effects can be quantified by means of the partial average 〈pz〉(px) of Eq. (8.4) (see Figs. 9.1(a2)
and (b2)). For momenta smaller than the classical cutoff, the average 〈pz〉 roughly follows the simplest
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Figure 9.2: 1D slices at px = 4 a.u. through the photoelectron momentum distributions for perpendicular alignment (blue lines):
result for a single intensity of 8 × 1014 W/cm2 as in Fig. 9.1 (panel a) and focal-volume-averaged result for a peak intensity
of 9.5 × 1014 W/cm2 (panel b). To highlight the nondipole effects, the mirror images, i.e., 1D slices through w(px,−pz), are
shown additionally (gray lines).
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classical estimate p2
x/(2c) for recollision-free ionization (see Chapter 8). In contrast, the average 〈pz〉

deviates strongly from the parabolic estimate at high electron energies [187]. For parallel alignment, the
partial average is approximately independent on px between px ≈ 3.5 a.u. and px ≈ 6 a.u. and, thus, it
is quite similar to our findings for helium [187]. However, for perpendicular alignment, a pronounced
local minimum appears in the partial average. This shows already that the nondipole effects in the HATI
region are highly sensitive to the molecular orientation and more generally to the target structure.

The nondipole modifications are only barely visible in the full 2D distributions. Therefore, a slice
through the PMD for perpendicular alignment at px = 4 a.u. is shown in Fig. 9.2(a). The following three
major deviations compared to the dipole approximation are visible:

(i) The boundary of the rescattering plateau represented by the location of the BRR structure is shifted
along the light-propagation direction [187]. In addition, the interference extrema caused by the
superposition of the short and long rescattering trajectories are displaced [187]. We find that these
shifts are nearly independent of the molecular alignment and they agree with the result for helium
within the numerical accuracy [187].

(ii) When considering one interference maximum in forward direction and one in backward direction,
their probabilities are in general different [187]. For example, the signal on the BRR in forward
direction is up to 17% higher than in backward direction for perpendicular alignment. We find
that this effect depends strongly on the used targets and, for molecules, also on their orientation.

(iii) The molecular-interference pattern is modified. The positions of the corresponding broad minima
and maxima are shifted in the light-propagation direction (see the red solid lines in Fig. 9.1(b)
and the dashed vertical lines in Fig. 9.2(a)). We find that the shifts depend on the momentum
component along the polarization direction and increases from ≈ 0.05 a.u. at px ≈ 4 a.u. to
≈ 0.12 a.u. at px ≈ 6 a.u.

In a real experiment, the contributions of the whole laser focus influence the the measured signal. We
mimic this effect by averaging several TDSE distributions for different intensities (see Section A.2.4). For
a peak intensity of Ipeak = 9.5 × 1014 W/cm2, a slice at px = 4 a.u. through the focal-volume-averaged
distribution is shown in Fig. 9.2(b). Since the interference pattern of long and short trajectories is very
susceptible to changes of the light intensity [18], these fringes are not visible in the averaged distribu-
tion. Even though the boundary of the scattering plateau is smeared out, the shift of the BRR and the
asymmetry of the yield can in principle be observed. Importantly, the molecular-interference pattern are
very prominent in the averaged distribution and, especially, their nondipole shift is preserved. Hence,
the nondipole modifications of these structure-dependent features in the PMD are very promising for
experimental observation of nondipole effects in HATI.

9.3 Simple man’s model beyond the dipole approximation

To reveal the physics beyond high-order above-threshold ionization, we use a nondipole extension of
the three-step model [10, 16] (see Section 2.1.1). The model was first introduced in Ref. [187] and in my
master thesis [160] such that the following section is based on these previous works. Here, the dynamics
is divided into a sequence of four well-separated steps: (i) laser-induced ionization, (ii) acceleration of
the released electron away and back to the parent ion by the light field, (iii) scattering off the ionic
potential, and (iv) further acceleration by the electromagnetic field.

Tunneling ionization launches electrons at each release time t0 with initial velocities v0 ⊥ E(t0). The
subsequent motion of the electron in the presence of the electromagnetic field is described classically by
Newton’s equation. For certain ionization times, a part of the electron wave packet is driven back to the
vicinity of the ionic core at r = 0. If we neglect the influence of the ionic potential, the time-dependent
velocity of an electron starting at r = 0 can be determined similar to Section 2.1.2 and it is to first order
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in 1/c given by

ṙ(t) = v0 − A(t0) + A(t) +
ez
c

(
1
2

A2(t0) − v0 ·A(t0)

)
+

ez
c

(
(v0 − A(t0)) ·A(t) +

1
2

A2(t)

)
. (9.3)

Integrating (9.3) again, the electron’s position reads

r(t) = (v0 − A(t0)) (t− t0) + α(t, t0)

+
ez
c

(
1
2

A2(t0) − v0 ·A(t0)

)
(t− t0) +

ez
c

(
(v0 − A(t0)) · α(t, t0) +

1
2
α2(t, t0)

) (9.4)

with α and α2 defined in Eq. (2.11). To first order in 1/c, the nondipole part of the Lorentz force only
modifies the trajectory (9.4) along the light-propagation direction. Hence, for an exact return to the ionic
core at r = 0, the motion in polarization direction leads to the condition

0 = x(t0) = x(tc) = −Ax(t0)(tc − t0) + αx(tc, t0). (9.5)

The condition defines the relation between the release time t0 and the return (or collision) time tc. For
the four-cycle laser pulses used in Fig. 9.1, only one half cycle of ionization times is relevant for the high-
energy region with px > 0. Figure 9.3(a) shows the corresponding mapping of excursion time tc−t0 as a
function of the energy at time of return tc. Due to the shortness of the pulse, the maximal return energy
of about 2.79 E2

0
4ω2 is slightly reduced compared to the maximal energy of about 3.17 E2

0
4ω2 in a cw field [10].

Below this classical cutoff, there are two distinct times of ionization with the same return energy. For
each energy, the trajectory with larger excursion time is referred to as long trajectory whereas the other
is denoted as short trajectory.
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Figure 9.3: Properties of the simple man’s trajectories as a function of the recollision energy in units of Up =
E2

0
4ω2 for the laser

parameters of Fig. 9.1. (a) Time difference between ionization and recollision in units of optical cycles Tω. (b) Components in
the light-propagation direction of the initial velocity v0,z and of the incoming velocity vin,z. (c) Offset angle ∆θ of the incoming
electron with respect to the polarization axis. The observables for short (long) trajectories are shown as dashed (solid) lines. Figure
is adapted from Brennecke et al. [501].

As illustrated in Fig. 2.3(b), the magnetic part of the Lorentz force causes a drift motion of the electron
in the light-propagation direction such that the center of the electron wave packet does not exactly return
to its initial position [189]. Classically, small impact parameters only lead to large scattering angles. For
an exact return to the initial position r = 0 at the collision time tc, a small initial velocity v0 = −|v0|ez
of the electron pointing against the propagation direction of the light is necessary. The required initial
velocity is given by

v0,z = −
1

2c(tc − t0)

∫tc
t0

dτ (A(τ) − A(t0))
2 (9.6)

and is shown in Figure 9.3(b) as a function of the return energy. The absolute values of the initial velocity
are larger for long trajectories, because these are more strongly displaced by the Lorentz force than short
trajectories.
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Figure 9.4: Schematic illustrations with exaggerated value of 1/c: (a) scattering circle in the vx-vz-plane on which the possible
outgoing velocities vout (shortly after scattering) lie for a given incoming velocity vin (shortly before scattering). Due to the
nondipole part of the Lorentz force, the incoming velocity is at an angle ∆θ relative to the vx-axis. (b) The acceleration by the
laser field after scattering maps a circle of outgoing velocities to an ellipse in the final momentum space. Its center is located at
δpx = −Ax(tc) and δpz =A2

x(tc)/(2c). The black line shows the classical boundary, i.e., the envelope of all possible ellipses.
Figure is adapted from Brennecke et al. [187]. (c) Hypothetical scattering probability on the scattering circle of panel (a) for a given
incoming velocity vin. Due to the offset ∆θ (here 20◦) the scattering probability is not invariant under the transformation given
by vout,z→ −vout,z.

Neglecting the ionic potential, the returning electron (at r = 0) has an incoming velocity

vin = A(tc) − A(t0) +
1
2c

(A(tc) − A(t0))
2 ez + v0. (9.7)

During the scattering the electron motion is strongly influenced by the ionic potential. We assume that
the light-induced change of the electron velocity is small while the electron passes over the nonzero
part of the potential. For short-range potentials, the assumption is appropriate, if the kinetic energy of
the incident electrons is high and the optical cycle of the laser field is sufficiently long. Naturally, the
assumption is questionable for long-range potentials. The energy conservation during rescattering then
reads

1
2

v2
out =

1
2

v2
in. (9.8)

Hence, for a given return time tc, the possible outgoing velocities vout of the electron (directly after the
scattering event) form a sphere of radius vscat(tc, t0) = |A(tc) − A(t0)|+ O

( 1
c2

)
.

The scattering process is usually not isotropic, i.e., the probability of the outgoing velocities on the
scattering sphere depend on their relative orientation with respect to the incoming velocity and, for
molecules, also on the molecular structure. Assuming a field-free elastic scattering process, the scatter-
ing probability can be approximated by means of the elastic scattering differential cross section

σ(vout ← vin) = |f(vout ← vin)|
2 (9.9)

with the scattering amplitude f. An introduction to scattering theory is given in Section A.1. First, we
restrict ourselves to atoms, where the DCS only depends on the relative scattering angle θ = ^(vout, vin)

and on the magnitude of the velocity vscat. In the dipole approximation, the electron moves along the
polarization axis during its first stage of acceleration. Hence, the scattering probabilities for opposite
outgoing velocities vout,z and −vout,z but the same vout,x are equal. However, when taking nondipole ef-
fects into account, the z-component of the incoming velocity is nonzero. Thus, the scattering probability
is rotated by an angle ∆θ = | arctan(vin,z/vin,x)| ≈ |vin,z/vin,x| with respect to the polarization axis com-
pared to the dipole approximation. As a result, the symmetry of the scattering probability for outgoing
velocities vout with respect to the polarization axis is broken (see the schematic illustration in Figs. 9.4(a)
and (c)).

The z-component of the incoming velocity is shown in Fig. 9.3(b). For high return energies v2
scat/2

close to the cutoff, the momentum gain v2
scat/(2c) of the electron associated with the first stage of accel-

eration dominates vin,z. In this region, the initial velocity v0,z is approximately smaller by a factor of≈ 4.
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For the laser parameters of Fig. 9.1, the offset angles ∆θ are mostly positive and reach a maximum of
about 0.5◦ close to the cutoff energy (see Fig. 9.3(c)). In general, the x-component of the incoming veloc-
ity scale linearly with the electric-field strength E0 and the wavelength λ. In contrast, the z-component
varies quadratically in both parameters. As a result, the offset angle increases linearly with the field
strength and the wavelength.

The motion of the electron after scattering is again solely determined by the light field. This step
is similar to the classical motion in the recollision-free ionization discussed in Section 8.3.1. Here, the
second stage of acceleration maps the outgoing velocities vout to the final measurable momenta p. From
Eq. (9.3) applied to the motion starting at tc, the mapping is given by (to first order in 1/c)

vout = p + A(tc) +
ez
c

(
p ·A(tc) +

1
2

A2(tc)

)
or p = vout − A(tc) +

ez
c

(
p2

2
−

v2
out

2

)
. (9.10)

In Eq. (9.10), p2/2 is the final kinetic energy of the electron and v2
out/2 the kinetic energy immediately

after the scattering event. Thus, as intuitively expected, the linear momentum gain associated with the
second acceleration stage is given by the energy gain over the speed of light c. Again, the temporospatial
dependence of the electric field leads to a deformation of the scattering spheres of outgoing velocities
(defined by the energy conservation (9.8)) to ellipsoids in the final momentum space. The magnetic field
shifts the centers of the ellipsoids in the light-propagation direction, i.e., they are located at a momentum
δp = −A(tc) + A2(tc)/(2c)ez. For return times tc with Ax(tc) < 0, the centers are displaced to positive
px > 0 and pz > 0. Classically, the total momentum distribution is formed by adding up the ellipsoids
corresponding to all possible times of return. A schematic illustration of a few ellipses in 2D is shown
in Fig. 9.4(b).

For comparison of the simple man’s model to TDSE results in 2D, we consider the dynamics in a
short-range soft-core potential

VY(r) = −
2.0√
r2 + 0.5

e−0.41 r. (9.11)

Its ground state reproduces the ionization potential Ip ≈ 0.905 a.u. of helium. For the used laser pa-
rameters, the excursion amplitude of the electron can be estimated as E0/ω

2 ≈ 47 a.u. Thus, the region
of nonnegligible ionic potential (represented by the cutoff radius ≈ 2.4 a.u.) is much smaller than the
distance of excursion in the light field. In PMDs from the numerical solution of the TDSE, we again find
a shift of the rescattering plateau and a forward-backward asymmetry in the emission strength.
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quantified as the ratio of the signal strength at fixed px for the short-range potential (9.11). Shown are numerical TDSE results
(blue lines) and results of the simple man’s model (gray lines) for ionization by four-cycle laser pulses with 800 nm wavelength
and 8× 1014 W/cm2 intensity. Figure is adapted from Brennecke et al. [187, 501].
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Shift of the rescattering plateau

In the PMDs from TDSE, we identify the boundary of the rescattering plateau with the position of the
BRR structure. The shift of this boundary in the light-propagation direction is then quantified by

∆pBz (px) =
p+z + p−z

2
, (9.12)

where p+z and p−z are the maxima’s position of the BBR structure at fixed px in forward direction and
backward direction, respectively. The classical boundary of all ellipses in the simple man’s model is in
perfect agreement with the TDSE result (see Fig. 9.5(a)). The shift can be approximated by using the two
opposite points on a single ellipse with the same px. According to Eq. (9.10), this results in [160, 187]

∆pBz (px) ≈
1
c

(
p2

2
−
v2

scat(tc, t0)

2

)
. (9.13)

Within the simple man’s model, the shift of the BRR structure is caused by the electron’s deflection in the
electromagnetic field after the scattering event. Here, the gained momentum in the light-propagation
direction is equal to the light-field momentum associated with the energy gain of the electrons after
rescattering.

Forward-backward asymmetry of the emission strength

To quantity the forward-backward asymmetry of the emission strength (see Section 9.2), we determine
the signals on the BBR structure in forward and in backward directions at each px. For each px, the
asymmetry is then quantified by the ratio of these signal strengths. For the short-range potential, the
TDSE result is shown in Fig. 9.5(b). The asymmetry is mostly attributed to a different scattering proba-
bility and effects such as the ionization probability and the spreading of the electron wave packet during
the first acceleration stage are neglected.2 In the simple man’s model, the asymmetry is approximated by
taking the ratio of the DCSs calculated on the classical boundary in forward direction and in backward
direction. Despite the simplicity, the model reproduces well the asymmetry from TDSE [160].

For the considered short-range potential, the DCS is basically a monotonic falling function of the
return energy and of the scattering angle θ (between 0◦ and 180◦) in the relevant energy range. Hence,
for each return energy, it has a minimum at θ = 180◦ corresponding to a backreflection of electron direc-
tion during scattering. For high return energies, the electrons have a positive vin,z-component of their
incoming velocity (see Fig. 9.3(b)). Hence, the scattering angle for an electron with positive component
vout,z > 0 is smaller than the scattering angle for an electron with velocity component −vout,z < 0 (but the
same vout,x). As a result, directly after the scattering event, electrons with positive component vout,z > 0
are more probable than electrons with velocity component −vout,z < 0. Qualitatively, this explains the
asymmetry ratios larger than one for the studied potential (see also my master thesis [160]).

The asymmetry effect is mostly related to the scattering process, i.e., to the relative angle of the
incoming velocity with respect to the polarization axis and to the exact shape of the field-free DCS.
Thus, the asymmetry is very susceptible to the structure of the target. For example, in the limiting case
of a zero-range potential [457] with a flat DCS, the signals in forward and backward directions are nearly
equal. In this case, the information on the incoming velocity and, thus, the momentum transfer before
the recollision is removed in the scattering process [160].

9.4 Low-frequency approximation model

For simplified quantum-mechanical simulations of the HATI process, we introduce a nondipole ver-
sion of the low-frequency approximation and consider a quantum-orbit description. In my master the-
sis [160], the correct formulation of LFA was already guessed by means of the similarity to the descrip-
tion in the dipole approximation. Thus, the following section is in parts similar to my previous work.

2This is possible, because opposite points on the classical boundary with the same px nearly belong to the same ellipse in the
simple man’s model and, hence, their corresponding ionization and return times hardly differ.
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For short-range potentials, the model is able to quantitatively interpret the high-energy part of the
PMDs. The starting point is the rescattering amplitude derived in Eq. (2.39) in generalized length gauge.
Approximating the exact final scattering state by a plane-wave state

∣∣p〉, the amplitude reads3

MR(p) = (−i)2
∫tf
tA

dt ′
∫tf
t′

dt 〈p|UF(tf, t)VU(t, t ′)HI(t
′)U0(t

′, tA)
∣∣ψ0
〉
. (9.14)

If the time-evolution operator U was replaced by the Volkov propagator of Eq. (2.34), the nondipole
version of the improved SFA would arise (see Section 2.3). Then, the laser-assisted scattering would be
treated in first Born approximation (1BA). For field-free scattering in 3D, the 1BA gives the correct DCS
for a bare Coulomb potential. However, in general, effective single-active-electron potentials contain
additional short-range contributions so that the DCS within 1BA and the exact quantum-mechanical
DCS agree only asymptotically at large energies. Usually, for typical energies involved in HATI, the
1BA is not reliable.

Low-frequency approximation

To model the scattering process beyond the 1BA, we use the low-frequency approximation introduced to
the context of HATI in the dipole approximation by Milošević et al. [496, 497]. Following the three-step
model and the improved SFA, the electron dynamics is divided into stages of potential-free acceleration
of the electron wave packet by the electromagnetic field and a field-free scattering event. If the light-
induced change of the electron’s velocity is small during the scattering process, i.e., while the electron
passes over the nonzero part of the potential, it is expected that the separation works well [497]. As a
prerequisite, the light-driven dynamics should take place on a much longer time scale than the scattering
process. Hence, ideally, the region in space with nonzero ionic potential should be much smaller than
the excursion amplitude of the electron in the light field.

In order to derive the LFA, we rewrite Eq. (9.14) by inserting the Volkov propagator of Eq. (2.34)

MR(p) = (−i)2
∫tf
tA

dt ′
∫tf
t′

dt
∫

dk eiSF(p,tf)Rp,k(t, t ′)
〈
ψFk(t

′)
∣∣HI(t

′)U0(t
′, tA)

∣∣ψ0
〉

(9.15)

and introduce the laser-assisted scattering amplitude

Rp,k(t, t ′) = 〈ψFp(t)|VU(t, t ′)|ψFk(t ′)〉. (9.16)

Here, the action SF of Eq. (2.33) and the Volkov states
∣∣ψFm(τ)

〉
of Eq. (2.32) are used. In order to incorpo-

rate the idea of different timescales in the theoretical description, the laser-assisted scattering amplitude
is expanded in powers of the laser frequency ω. Following the derivation in Ref. [497], the LFA only
considers the zeroth-order term of this expansion. When including leading-order nondipole corrections,
the amplitude can be rewritten as (for a derivation see Appendix A.5)

RLFA
p,k (t, t ′) = 〈ψFp(t)|V + VG0(Ẽ(k, t) + i0)V |ψFk(t)〉 (9.17)

with the “kinetic energy" of the light-driven electron

Ẽ(k, t) =
v2(k, t)

2
. (9.18)

The field-free Green’s operator is defined as (see also Appendix A.1)

G0(z) = (z−H0)
−1. (9.19)

Using the Volkov states of Eq. (2.32) and the Lippmann-Schwinger equation (A.7) for the scattering
states

∣∣m(+)
〉
, the amplitude reads

RLFA
p,k (t, t ′) = 〈v(p, t)|V |v(k, t)(+)〉 ei(SF(k,t)−SF(p,t)) =

−1
(2π)2 f(v(p, t)← v(k, t)) ei(SF(k,t)−SF(p,t)). (9.20)

3For short-range potentials, this expression is still exact for large times tf [497].
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The modulus squared of the field-free scattering amplitude f is the DCS σ for scattering of an electron
with incoming velocity vin to an outgoing velocity vout, where f is given by

f(vout ← vin) = −(2π)2〈vout|V |v
(+)
in 〉. (9.21)

Finally, the amplitude (9.15) for rescattered electrons in the low-frequency approximation can be ex-
pressed as

MLFA(p) =
1

(2π)2

∫tf
tA

dt ′
∫tf
t′

dt
∫

dk f(v(p, t)← v(k, t))D(k, t ′)eiSp,k(t,t′) (9.22)

with a transition matrix element associated with the ionization step (see also Eq. (2.42))

D(k, t ′) = 〈v(k, t ′)|HI(t
′)|ψ0〉 (9.23)

and an effective combination of the actions

Sp,k(t, t ′) =
1
2

∫t
tf

dζv2(p, ζ) +
1
2

∫t′
t

dζv2(k, ζ) + Ip(t ′ − tA). (9.24)

In Eq. (9.22), the calculation of the off-shell scattering amplitude is quite demanding.4 In addition, the
five integrations prevent a simple physical interpretation of the HATI process. Thus, for further simpli-
fication, we approximate the integrals by means of the saddle-point method introduced in Section 2.3.1
(similar to Refs. [18, 192, 199, 202]).

Saddle-point analysis

The stationary points of the action Sp,k with respect to the different integration variables are defined by
∂xSp,k(t, t ′) = 0 with x ∈ {t ′, t, k}. For the three kinds of integrals over the ionization time t ′, the return
time t and the intermediate momentum k, we give a short physical interpretation that is closely related
to the one in the dipole approximation [199, 202].

The saddle-point equation for the intermediate momentum ks can be solved analytically

ks = −
α(ts, t ′s)
ts − t ′s

+
1
c

(
α2(ts, t ′s)
(ts − t ′s)

2 −
α2(ts, t ′s)
2(ts − t ′s)

)
ez + O

(
1
c2

)
. (9.25)

The first term of Eq. (9.25) represents the constraint that the electron needs to return at time ts to
the initial position at time t ′s in the polarization plane (see also Eq. (9.5) in the classical model). To
compensate for the electron’s drift motion along the light-propagation direction, an initial velocity is
required (see also Eq. (9.6) in the classical model), leading to the nondipole corrections in Eq. (9.25).

The saddle-point equation for the ionization time t ′s is familiar from direct ionization (see Eq. (8.12))

1
2

v2(ks, t ′s) =
1
2

(
ks + A(t ′s) +

ez
c

(
ks ·A(t ′s) +

1
2

A2(t ′s)

))2

= −Ip. (9.26)

The initial velocity required for exact return leads to an increased effective ionization potential. Hence,
in contrast to the dipole approximation, the solutions t ′s are not even real when Ip = 0 and the ionization
rate is slightly reduced [189, 192].

The saddle-point equation for the recollision time ts is given by

1
2

(
ks + A(ts) +

ez
c

(
ks ·A(ts) +

1
2

A2(ts)

))2

=
1
2

(
p + A(ts) +

ez
c

(
p ·A(ts) +

1
2

A2(ts)

))2

. (9.27)

It can be interpreted as the energy conservation in the scattering process (see also Eq. (9.8) in the classical
model). This ensures that the scattering amplitude f in Eq. (9.22) is restricted to the “scattering sphere”
in velocity space defined by the value of the incoming velocity.

4In general, the incoming and outgoing velocities have different magnitudes and the energy is not conserved during scattering.
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Since the intermediate momentum ks(ts, t ′s) of Eq. (9.25) depends on both ionization time and return
time, the saddle-point equations (9.26) and (9.27) are coupled. To determine the complex-valued ioniza-
tion time t ′s and return time ts, we numerically solve the system of equations using Newton’s method.
Trajectories with travel times Re(ts − t ′s) exceeding one optical cycle are discarded. Hence, two main
branches of trajectories are only considered: the “short” and “long” trajectories [202].

Within the approximations, the probability amplitude of a single quantum orbit can be written as

MLFA,s(p) =
1

(2π)2 CpCi,r D̃ f(v(p, ts)← v(ks, ts)) eiSp,ks(ts,t′s). (9.28)

Here, the ionization matrix element D (which has a pole at the saddle points [194]) is replaced by a
reduced factor D̃. D̃ is chosen as one for initial s states and as vx(ks, t ′s) for initial px states.5 Since the
considered orbits are launched in a small time range close to the point of maximal electric-field strength,
this prefactor only has little influence on the PMD in HATI. The prefactors from the Hessian matrix
elements in the integrals are given by

Cp =

√
(2πi)D

(t ′s − ts)
D

+ O

(
1
c2

)
and Ci,r =

√
(2πi)2

det(Ht,t′ [Sp,ks(ts, t ′s)])
. (9.29)

Here, the factor Cp is related to the spreading of the wave packet between ionization and recollision.
In the high-energy region, the interference structures are mostly determined by the action Sp,k. The

dependence on the target structure is caused by the scattering amplitude f which is calculated as de-
scribed in Appendix A.1. However, in Eq. (9.28) the arguments of f, i.e., v(p, ts) and v(ks, ts), have
nonzero imaginary parts which are neglected for simplicity.6 In the usual saddle-point approximation,
the total probability amplitude is given by the coherent superposition of the contributions (9.28) of all
relevant solutions. In the center of the scattering plateau in the PMD, the two branches are well sepa-
rated and the saddle-point approximation works well. However, in the vicinity of the BRR structure,
both solutions merge. For large energies, only the long trajectory has to be considered [202]. For an
adequate treatment of this situation, we use the uniform approximation [204] to obtain a description of
the whole rescattering region. We refer to the resulting model as LFA model or quantum-orbit model.

9.5 Hydrogen molecular ion

The double-slit experiment with electrons [505] is a prime example of the interference of matter waves
in quantum mechanics. In HATI, the liberated electron wave packet is driven back to its parent ion
and scatters off the potential. Thus, for diatomic molecules, the returning wave is diffracted at both
centers of the ion [41]. The situation resembles a double-slit scenario such that two-source interference
effects appear (see Fig. 9.6(a) for a schematic illustration). In this section, we will explore the nondipole
modifications of the molecular-interference pattern visible in the HATI region for ionization of H +

2 .
In general, the HATI process for diatomic molecules can be described by considering four geomet-

rical paths of the recolliding electron depending on its initial position at one or the other center of the
dimer as well as the center where it scatters off [39, 504]. However, for small molecules with a σs bond
(such as H +

2 with its equilibrium internuclear distance of R = 2 a.u.), the initial molecular orbital is
highly localized and does not have nodal planes. Hence, we can neglect the influence of the molecu-
lar structure on the recolliding part of the liberated electron wave packet.7 Hence, in the simple man’s
model and also in LFA, the structure dependence is solely determined by the two-center interference in
the scattering amplitude.

5To approximate the matrix element, we imitate the direct SFA of Eq. (6.16) and we use that the px state can be written in the
form ψ̃(p) = pxb(p2). We neglect the function b, because it is constant according to Eq. (9.26).

6For a Yukawa potential in 1BA, we found that the nondipole observables are only weakly influenced by these imaginary parts.
7For more complex orbitals such as in Ref. [70], this is not possible.
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Figure 9.6: (a) Schematic illustration of electron diffraction at the two centers of a homonuclear diatomic molecule. Shown is the
probability density in position space for an electron wave packet with initial velocity vin = −3 ex. The dashed lines indicate the
nodal lines of the molecular-interference pattern for large-angle-scattered electrons. Inspired by Ref. [41]. (b) Differential cross
section (arbitrarily normalized) for scattering of electrons with incoming velocities vin = −|vin|ex off a single ionic center and
(c) off the two centers of the H +

2 molecular ion aligned along the z-axis (see Eq. (9.30)). The positions of the molecular-interference
minima are indicated as dashed lines (see Eq. (9.31)).

For dimers, the molecular potential can be written as sum of potentials of the individual centers:
V(r) = VA(r + R/2) + VA(r − R/2). The scattering amplitude within 1BA can be approximated as [506]

−
1

(2π)2 f(vout ← vin) ≈〈vout|V |vin〉 = 〈vout|VA(r + R/2) + VA(r − R/2)|vin〉

=〈vout|VA(r)|vin〉
(
e+i(vout−vin)·R/2 + e−i(vout−vin)·R/2

)
≈−

1
(2π)2 fA(vout ← vin) 2 cos

(
R · (vout − vin)

2

) (9.30)

with the amplitude fA representing elastic electron scattering off an atomic ion. The differential cross
section σA = |fA|

2 for an atomic ion is simply a monotonic function of the energy (in the relevant region)
and is free of any essential structure (see Fig. 9.6(b) for the potential of Eq. (9.2)). In the second line of
Eq. (9.30), the scattering amplitudes of the two centers are a product of the atomic amplitude fA with a
position-dependent phase factor. Hence, the DCS of the H +

2 ion shows an interference pattern on top
of the atomic DCS (see Fig. 9.6(c) for an incoming velocity vin ⊥ R). According to the cosine term in
Eq. (9.30), lines of constructive or destructive interference are given by [33, 39]

R · (vout − vin) = nπ (9.31)

with n being even for maxima and odd for minima. To observe the molecular-interference pattern in
photoelectron momentum distributions, the de-Broglie wavelength of the electrons λdB = 2π/vscat needs
to be on the same order of magnitude as the spatial extension of the molecule [41].

After scattering, the electrons are accelerated by the light field for a second time (see the simple man’s
model of Section 9.3). Electrons with given outgoing velocities vout are deflected by the electromagnetic
field to their final momenta p and, thus, the structure of the DCS is imprinted on the photoelectron
momentum distribution. The condition of Eq. (9.31) and the mapping of the incoming and outgoing
velocities to final momenta based on the simple man’s model (see Eqs. (9.7) and (9.10)) predict the po-
sitions of interference extrema in final momentum space. For perpendicular alignment, these positions
are defined by vout,z − vin,z = nπ

R
. Hence, for a given scattering event specified by an ionization time t0

and a collision time tc, the corresponding velocity vin,z fixes the outgoing velocity

vout,z = vin,z +
nπ

R
(9.32)

for each extremum labeled by n. In the dipole approximation, we have vin,z = 0 and the mapping of the
outgoing velocity vout,z to pz is trivial: vout,z = pz. Thus, in the dipole approximation, the positions of
the extrema in the PMD are simply given by [33]

p
dip
z =

nπ

R
with n ∈ Z. (9.33)
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Hence, for each classically-reachable momentum px in the scattering plateau, the same positions of
interference extrema in pz-direction are expected.

Figure 9.7(a) shows a magnification of the scattering plateau from ionization of H +
2 by an electric

field perpendicular to the molecular axis (see Fig. 9.1(b1)). The zeroth-order maximum as well as the
first-order minima are indicated as black lines. Even though the positions pdip

z = ±π/2 ≈ ±1.57 a.u.
predicted by the double-slit model for the first-order minima are slightly too large, the positions from
TDSE are indeed nearly independent of px for large px. For lower momenta px, the lines are bend
inwards towards smaller |pz| what can be explained by using an eikonal model [507]. According to
Eq. (9.33), the positions of the extrema are independent of the laser parameters and are the same for the
long and short trajectories. Hence, the molecular-interference structure is nearly unaffected by focal-
volume averaging (see Fig. 9.7(b)).

In contrast, for parallel alignment of the field and the molecular axis, the positions of the minima are
determined by the x-component of the incoming and outgoing velocities. In agreement with the TDSE
result of Fig. 9.1(a1), the nodal lines are nearly parallel to the pz-axis. However, the condition (9.31)
suggest that the exact positions depend on the vector potential at the ionization and return times [39,
504]. Hence, already in PMDs for a single laser intensity, the molecular-interference structures are less
pronounced. Focal averaging reduces the contrast of the interference pattern even further.
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Figure 9.7: Photoelectron momentum distribution for ionization of H +
2 with perpendicular alignment of the molecular axis rela-

tive to the electric field from TDSE simulations: (a) result for a single intensity of 8× 1014 W/cm2 and (b) focal-volume-averaged
result assuming a peak intensity of 9.5 × 1014 W/cm2. The black lines indicate the numerically-determined positions of the
molecular-interference maximum and minima. The white dashed line marks the boundary of the rescattering plateau. (c) Signal
on this boundary in the region of the two-center interference minima for positive pz (green line) and negative pz (orange line)
extracted from panel (a). Figure is adapted from Brennecke et al. [501].

Nondipole shift of the molecular-interference pattern

For perpendicular alignment, the signal of the PMD from TDSE along the classical boundary of the sim-
ple man’s model is depicted in Fig. 9.7(c) as a function of pz in the vicinity of the molecular-interference
minima. Here, the nondipole effects modify the positions of these minima, i.e., they are not symmet-
ric in forward and backward directions with respect to the polarization axis. Using a quadratic fit,
we find that the minima are located pz ≈ 1.569 a.u. and pz ≈ −1.372 a.u. Thus, compared to the
dipole limit, their positions are approximately shifted by ∆pMz ≈ 0.099 a.u. Interestingly, the shift of the
molecular-interference pattern is larger than the classical deflection of the electron after scattering (see
Eq. (9.10)). For comparison, the shift of the classical boundary of the plateau region has a maximal value
of ∆pBz ≈ 0.077 a.u. (see Eq. (9.13)).

To derive a simple estimate for the nondipole shift of the molecular-interference structures, we fol-
low the ideas of the double-slit model described above but consider the nondipole corrections for the
classical electron motion before and after recollision. We are only interested in the first-order nondipole
corrections, i.e., the positions of the extrema are written as pz = p

dip
z +∆pz with pdip

z of Eq. (9.33). Using
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the nondipole mapping of the outgoing velocities to the final momenta (see Eq. (9.10)), the condition of
Eq. (9.32) implies (to first order in 1/c)

∆pz = vin,z +
1
c

(
p2

2
−

v2
out

2

)
= v0,z +

v2
in

2c
+

1
c

(
p2

2
−

v2
in

2

)
=

p2

2c
+ v0,z. (9.34)

Here, the energy conservation of Eq. (9.8) and the incoming velocity of Eq. (9.7) were used. For a given
final momentum px and a given interference order n, Eq. (9.34) estimates the nondipole shift in pz-
direction. In Eq. (9.34), the (positive) velocity vin,z of the incoming electron and the momentum gain

after scattering ∆pBz = 1
c

(
p2

2 −
v2

out
2

)
are added up. Hence, the total momentum gain before and after

collision determines the shift of the molecular-interference pattern, i.e., it is basically given by the final
kinetic energy p2/2 over the speed of light c. For the considered laser conditions, the required initial
velocity v0,z of Eq. (9.6) is only a small correction. The model of Eq. (9.34) predicts a shift of ≈ 0.095 a.u.
for the parameters used in Fig. 9.7(a) and, thus, reproduces the TDSE result well.8
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Figure 9.8: Nondipole shift of the molecular-interference minima for H +
2 on the classical boundary as a function of the laser

intensity. The TDSE result is calculated as described in the main text. The black and gray lines show the estimate of Eq. (9.34) with
and without initial velocity v0,z. The second axis illustrates the position px of the interference minimum extracted from TDSE.

The nondipole shift of the interference pattern depends on the energy of the outgoing electrons (see
Eq. (9.34)). The cutoff energy increases with the laser intensity and wavelength. Hence, when con-
sidering the pattern shift always along the BRR structure, we expect the shift to vary with the laser
parameters. The dependence on the intensity for a constant wavelength of 800 nm is investigated in
Fig. 9.8. Here, for each intensity, the signal from a TDSE simulation is considered along the (intensity-
dependent) classical boundary (analogous to Fig. 9.7) and the positions of the minima are determined
(with momentum components p+z and p−z in the light-propagation direction). The shift is then calcu-
lated as ∆pz = (p+z + p−z )/2. The TDSE result is well reproduced by the estimate of Eq. (9.34) and, thus,
it basically follows the total momentum transfer p2/(2c) (see the gray line). However, even though the
effect of the initial velocity v0,z in the model (9.34) is small, its inclusion slightly improves the overall
agreement with the TDSE data. Note that the extension of the scattering plateau in pz-direction shrinks
for smaller intensities. For the lowest-considered intensities, the interference maxima are located close
to the highest classically-possible momenta in pz-direction such that the minima of the signal along the
classical boundary are quite flat. This complication could be a reason for the slightly too small shifts
observed in the TDSE.

Alternatively, the shift of the pattern can be individually determined at each momentum px across
the scattering plateau. We consider the focal-averaged distribution of Fig. 9.7(b) and use quadratic fits
of the distribution along the pz-direction to determine the positions of the extrema for each px. The
shift of the interference minima is shown as a function of px in Fig. 9.9(b). For comparison, the simple

8In the model, we use v0,z of Eq. (9.6) and insert the positions of the minima in the dipole approximation as momentum p.
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Figure 9.9: (a) Position of the central molecular-interference maximum and (b) shift of the positions of the minima as a function of
px for H +

2 . The TDSE results are extracted from the focal-averaged PMD of Fig. 9.7. The black and gray lines show the estimate
of Eq. (9.34) with and without initial velocity v0,z. For the model, we use pz ≈ π/2.25 a.u. and evaluate v0,z for a single intensity
of 9× 1014 W/cm2. The dashed lines correspond to short trajectories, whereas the solid lines correspond to long trajectories.

estimate of Eq. (9.34) including v0,z is presented for a single fixed intensity of 9 × 1014 W/cm2 and a
fixed pz ≈ π/2.25 a.u. Here, an effective internuclear distance of Reff = 2.25 a.u. is used to better match
the positions of the interference minima of the TDSE simulations.9 In the model, the shift of the minima
at fixed px solely depends on the laser intensity through the initial velocity v0,z. Thus, this nondipole
effect is quite stable under focal averaging and, for the whole range of momenta px, the TDSE results
are in fair agreement with the results of the simple model. Close to the classical cutoff, where only
the highest intensities dominate and the short and long trajectories merge, the model predicts a unique
value. However, for smaller px, the initial velocities v0,z for both trajectories differ (and depend on the
laser intensity).

The position of the central molecular-interference maximum is also influenced by nondipole effects
(see Fig. 9.9(a)). According to the double-slit model, the central position has the same functional form
as the shift of the interference minima and it is given by Eq. (9.34). The maximum’s positions from
TDSE approximately follow the estimate of the double-slit model for the short trajectories. According to
Eq. (9.34), the shift is mostly determined by the final kinetic energy of the electrons. Hence, at fixed px,
the nondipole shift of the central maximum is slightly smaller than the shift of the first-order minima,
because the minima are located at larger values of |pz|. This interesting non-uniformity of the nondipole
shift is also qualitatively visible for the TDSE results.

For large px close to the high-energy cutoff, the maximum’s position turns to smaller pz compared
to the model results. However, the model is only reliable, if the shape of the PMD is determined by
the molecular interference. For the inner part of the rescattering plateau and for adiabatic ionization
conditions, other influences such as the atomic DCS or the complex-valued action in the LFA model (see
for example Eq. (9.28)) only cause minor changes of the shape of the momentum distribution. However,
within the LFA model (not shown), close to and especially beyond the classical cutoff, the imaginary
part of the action changes strongly such that it significantly affects the shape of the PMD and influences
the maximum’s position.

Forward-backward asymmetry

The molecular structure also influences the forward-backward asymmetry of the yield (quantified analo-
gous to Section 9.3). The asymmetries on the BRR structure extracted from TDSE simulations are shown
in Fig. 9.10(a) for parallel and perpendicular alignment of the H +

2 molecular ion. For both configura-
tions, the overall dependence of the asymmetry on px is well reproduced by the simple man’s model
with the DCS of Eq. (9.30) (see Fig. 9.10(b)).

For parallel alignment, the ratio from TDSE is above one for all px indicating a stronger emission in
forward than in backward direction. In the vicinity of the molecular-interference minima at px ≈ 3.5 a.u.

9The use of the numerically-determined positions pz from the TDSE leads to similar results.
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Figure 9.10: Forward-backward asymmetry of the emission strength on the BRR structure quantified as the ratio of the signal
strengths at fixed px for H +

2 at parallel or perpendicular alignment. (a) TDSE results and (b) results of the simple man’s model
using the DCS of Eq. (9.30) with an effective internuclear distance Reff = 2.25 a.u. Additionally, the result for a single ionic center
is shown as gray line. Figure is adapted from Brennecke et al. [501].

a modulation feature is visible. The yield of the model exactly vanishes at the molecular interference
minima, resulting in a much sharper modulation structure compared to TDSE. In the simple man’s
model, the cos2 molecular-interference term of the DCS only depends on the velocity along the po-
larization direction. Hence, the molecular interference would not influence the asymmetry, if the two
opposite points on the BRR structure at fixed px would belong exactly to the same scattering event, i.e.,
would have the same ionization and return times. However, in reality, these points belong to slightly
different scattering events, i.e., they do not belong to the same ellipse in final momentum space shown
in Fig. 9.4(b). Thus, the molecular-interference factor in the DCS has slightly different values in for-
ward direction and in backward direction, inducing the sharp structure. Besides the modulation, the
asymmetry follows roughly the shape of the atomic DCS shown as gray line in Fig. 9.10(b).

For the perpendicular alignment, the ratio has a single broad maximum with values as high as≈ 1.17.
When going towards larger px, the emission asymmetry decreases and becomes inverted for px larger
than ≈ 4.5 a.u., i.e., the emission in backward direction is stronger than in forward direction. In contrast
to parallel alignment, the cos2 molecular-interference term of the DCS is influenced by the nondipole
correction of the incoming velocity vin along the light-propagation direction, inducing strong deviations
compared to a single atomic ion. In agreement with the mechanism for atomic targets, we find that the
asymmetry of the yield for H +

2 can be mostly attributed to the electron dynamics before scattering and
the scattering process itself.

9.6 Xenon

Scattering of electrons off atomic ions can be interpreted as diffraction at a single slit, i.e., the incoming
electron wave packet is diffracted by the ionic potential. Depending on the target, this may lead to an
interference structure in the DCS.10 Classically, for large-angle scattering, the electron needs to return
close to the ion such that the scattering process and the corresponding DCS are quite susceptible to
the short-range part of the electron-ion interaction. Hence, even for atoms, the high-energy region of
the PMD [36–38] and also its nondipole modification are very sensitive to the target. As an example,
Figure 9.11(b) shows that the partial average 〈pz〉(px) in the HATI region depends indeed strongly
on the used DCS. These results are calculated by means of LFA simulations (see Section 9.4) with the
scattering amplitudes for various noble gases modeled by Tong-Lin potentials (see Section A.2.3).11

10More precisely, the interference between the Coulomb scattering amplitude and the additional scattering amplitude due to
the short-range potential may result in a nontrivial diffraction pattern (see also Eq. (A.15)).

11For simple comparability, we artificially use the same ionization potential Ip = 0.905 a.u. for all simulations, i.e., only the
scattering amplitudes are different.
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Figure 9.11: Dependence of the nondipole effects in HATI on the differential cross section. (a) Projection of the PMD on thepx-axis
and (b) corresponding partial average 〈pz〉(px) of Eq. (8.4). The gray thick line shows the heuristic estimate p2

x/(2c) and guides
the eye. The PMDs are calculated in the px-pz-plane by means of the LFA model of Section 9.4 using the scattering amplitudes f
for various rare gases based on the Tong-Lin potential. For all simulations, the same laser parameters as in Fig. 9.1 and the same
ionization potential Ip = 0.905 a.u. are used. In panel (a), the result for helium is magnified by a factor 100.

Recently, Lin et al. [500] performed the first experimental study of nondipole effects in HATI. To this
end, xenon atoms were ionized by femtosecond laser pulses at a central wavelength of 800 nm and a
peak intensity of 7 × 1013 W/cm2. The resulting electron momentum distributions were measured by
means of the COLTRIMS technique. In the remaining part of this chapter, we theoretically investigate the
nondipole modifications of the momentum distributions for this special case of xenon atoms. First, we
consider the overall structure of the PMD in the HATI region. To this end, we perform LFA simulations
with the scattering amplitudes for xenon modeled by the Tong-Lin potential (see Section A.2.3). A laser
pulse of Eq. (9.1) with ten cycles total duration and an intensity of 6 × 1013 W/cm2 is chosen. In the
LFA simulations, we consider three branches of long and short trajectories around the peak of the pulse.
To avoid the influence of ATI rings, the contributions of the three branches are added incoherently.
The results are averaged over eight values of the CEP. The projection of the 3D PMD on the px-pz-
plane is shown in Fig. 9.12(c). For comparison, the result from TDSE simulations (kindly provided by
Hongcheng Ni [500]) is presented in Fig. 9.12(b). Here, the classical cutoff for direct ionization is around
px ≈ 0.8 a.u. For both levels of theory, a nontrivial angular and energy dependence of the PMD is
visible in the high-energy region. As discussed above, the additional structure on the scattering plateau
is mostly induced by the differential cross section [36, 37].
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Figure 9.12: (a) Differential cross section of the Xe+ ion for a Tong-Lin potential (arbitrarily normalized). (b) CEP-averaged
projections of the 3D PMDs on the px-pz-plane from TDSE simulations (provided by Hongcheng Ni [500]) and (c) from LFA
simulations. Here, xenon is ionized by ten-cycle laser pulses with 800 nm central wavelength and an intensity of 6× 1013 W/cm2

(see main text).

In the experiment, the pz-component of the momentum is restricted to a range of about [−0.3, 0.3] a.u.
Hence, it is not possible to analyze the partial average 〈pz〉(px). Instead, we concentrate ourselves on
the PMD in the vicinity of the polarization axis. The DCS of the Xe+ ion is shown in Fig. 9.12(a) in
the relevant angular and velocity range. For each velocity vscat, the DCS has a local maximum at a
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scattering angle of θ = 180◦ corresponding to a backreflection of electron direction during scattering.
After scattering, the acceleration by the laser field maps electron’s with outgoing velocities vout to final
momenta p (see Eq. (9.10)). Hence, for each px in the HATI region, the maximum of the DCS induces
a maximum in pz-direction in the PMD near the polarization axis (see Figs. 9.12(b) and (c)). Compared
to the dipole approximation, the position of this maximum is shifted in the light-propagation direction.
This is on the first glance similar to the maximum’s shift for molecular H +

2 (see Section 9.5).

Simple backreflection model

Since the maximum in the vicinity of the polarization axis is caused by the maximum of the DCS at 180◦,
we can estimate its nondipole shift by only considering electrons that are exactly backward scattered.12

Hence, when modeling the electron dynamics in the simple man’s approach of Section 9.3, the velocity
of the electron is reversed during scattering at time tc: vout = −vin. During its acceleration in the light
field after scattering, the electron is deflected to its final momentum p. According to Eqs. (9.7) and (9.10),
the final momenta of backscattered electrons are given by (to first order in 1/c)

p = −vin − A(tc) +
1
c

(
p2

2
−

v2
in

2

)
ez = A(t0) − 2A(tc) − v0 −

v2
in

2c
ez +

1
c

(
p2

2
−

v2
in

2

)
ez

= A(t0) − 2A(tc) − v0,zez +
1
c

(
p2

2
− 2

v2
in

2

)
ez

(9.35)

with |vout| = |vin| = vscat. For the classically-reachable momenta px = Ax(t0) − 2Ax(tc) along the
polarization axis, Eq. (9.35) predicts the nondipole shift of the maximum’s position in pz-direction.

The initial velocity v0,z and the momentum gain v2
in

2c associated with the first stage of acceleration by
the electromagnetic field result in a component of incoming electron velocity vin along light-propagation
direction (see Eq. (9.7)). During backward scattering twice the electron momentum is transferred to the
parent ion and, hence, the forward momentum vin,z before rescattering is inverted to the backward direc-
tion (see the terms with −v0 and −

v2
in

2c ez in the first line of Eq. (9.35)). After recollision the electron picks
up some additional forward momentum due to the second stage of acceleration by the electromagnetic
(see the last term in the first line Eq. (9.35)).
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Figure 9.13: Nondipole shift of the central maximum for atomic targets as a function of px: simple backreflection model of
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solid lines correspond to long trajectories. In all cases, a cw laser field with 6× 1013 W/cm2 intensity is used. The quantum-orbit
analysis is based on an artificial DCS with a pronounced maximum at θ = 180◦. Figure is adapted from Lin et al. [500].

Interestingly, the predicted nondipole shifts by the backreflection model (9.35) for atoms and by
the molecular-interference condition (9.34) for molecules are different. Even though the PMDs show a
maximum in the vicinity of the polarization axis for both xenon atoms and H +

2 molecules, these targets
have an important difference. In H +

2 , the molecular axis defines a preferred direction that determines

12To the best of my knowledge, the idea was first proposed by Reinhard Dörner. Here, it is worked out and discussed.
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the DCS and, thus, the exact shape of the molecular-interference pattern in the PMD, i.e., it fixes the
positions of the extrema (see also Eq. (9.31)). In contrast, for spherically-symmetric targets like xenon,
the scattering probability solely depends on the energy of the electron and the angle between incoming
and outgoing electron velocity. Hence, only the relative direction of the outgoing electron with respect
to its incoming direction determines the structure of the probability distribution.

The result for the nondipole shift of the backreflection model is shown in Fig. 9.13 with an initial
velocity v0,z of Eq. (9.6) being included (black lines) or neglected (gray lines). Due to the momentum
transfer from the electron to the ion during scattering, the predicted shifts are significantly smaller than
p2/(2c) for both long and short rescattering trajectories. To also consider the backreflection situation in
the quantum-orbit model of Section 9.4, we calculate the PMDs based on an artificial DCS that is constant
as a function of energy, but its angular distribution has a sharp maximum at θ = 180◦.13 In this special
situation, it is possible to separately analyze the PMDs for long and short trajectories and determine
the corresponding positions of the central maximum at each px by a Gaussian fit. For small ionization
potentials as Ip = 0.05 a.u., the QOM results reproduce well the backreflection model including an initial
velocity v0,z 6= 0 (see Fig. 9.13). However, nonadiabatic effects modify the dynamics, when considering
the laser conditions in the experiment [500] and the real ionization potential Ip ≈ 0.44 a.u. of xenon.
We find that the nondipole shifts in the QOM for Ip ≈ 0.44 a.u. are systematically smaller than for
Ip = 0.05 a.u. and roughly follow the trend of the backreflection model with v0,z = 0. However, the
difference between the shifts for short and long rescattering trajectories is larger in the QOM compared
to the classical backreflection model.
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Figure 9.14: Properties of the rescattering trajectories for conditions analogous to Fig. 9.13. (a) Components of the initial velocity v0

and (b) components of the incoming velocity vin shortly before scattering. We interpret the following expression for the quantum-
orbit model as “velocities”: v0 = Re v(ks, Re(t ′s)) and vin = Re v(ks, Re(ts)). The dashed lines correspond to short trajectories,
whereas the solid lines correspond to long trajectories.

In the quantum-orbit model, the position of the backscattering maximum is defined by the scattering
amplitude f(v(p, ts) ← v(ks, ts)) and, hence, it is influenced by the “velocities” v(ks, ts) and v(p, ts)
(see Eq. (9.28)). The imaginary part of the recollision time ts can be neglected on the scattering plateau.

13For the artificial scattering amplitude f, we use f = exp(−(cosθ + 1)/θw) with a width θw = 0.005 corresponding to a
FWHM in the angle θ of about 10◦.
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Thus, v(p, ts) provides basically the same mapping of the outgoing velocities to the final momenta
as in the simple man’s model. The deviations of the QOM from the simple man’s model are mostly
caused by the “velocity” v(ks, ts), i.e., by nonadiabatic modifications of the tunnel ionization and of
the propagation in the continuum before rescattering. The velocity vin of the electron shortly before
the recollision and the velocity v0 of the electron at the tunnel exit are shown in Fig. 9.14 as a function
of the final momentum px for the simple man’s model and the quantum-orbit model. For the QOM,
the real part of the complex-valued velocity v(ks, t) of Eq. (2.31) is used (v0 = Re v(ks, Re(t ′s)) and
vin = Re v(ks, Re(ts))). As expected, the QOM results for Ip = 0.05 a.u. agree very well with the simple
man’s model including an initial velocity v0,z 6= 0. Additional nonadiabatic corrections are visible for
the ionization potential Ip = 0.44 a.u. Since long trajectories are released closer to the peak of the
electric-field strength, their nonadiabatic corrections are smaller compared to the short trajectories. In
agreement with the strong-field approximation for direct ionization, we find that nonadiabaticity leads
to a nonzero initial velocity v0,x along the polarization axis [116–118, 191]. Here, in addition, the v0,z-
and vin,z-components are increased by nonadiabatic effects. Hence, the inversion of the velocity vectors
during backscattering results in smaller final momenta pz compared to adiabatic conditions (see also
Fig. 9.13).

Comparison to experimental results

In the experiment [500], the photoelectron momentum distribution has also a maximum in the vicinity of
the polarization axis. For each momentum px, its position in pz-direction is determined by a Gaussian fit
to the central region with |pz| < 0.2 a.u. The experimental nondipole shifts are depicted in Fig. 9.15(a) for
momenta px in the HATI region. In agreement with the simple backreflection model, the experimental
nondipole shifts are much smaller than p2

x/(2c). Interestingly, a pronounced local minimum of the
nondipole shift is present in the high-energy region that cannot be explained by the purely kinematic
backreflection model.

−2.0

0.0

2.0

4.0

6.0

8.0

0.0

0.5

1.0

0.8 1.0 1.2 1.4 1.6 1.8 2.0

Sh
if

t∆
p
z

[1
0−

3
a.

u.
]

SM, v0 = 0

LFA
Experiment

(a)

(b)

Yi
el

d
[a

rb
.u

ni
ts

]

Momentum px [a.u.]

Uniform approximation

Long trajectory

Short trajectory

Figure 9.15: (a) Nondipole shift ∆pz of the central maximum of the PMD for ionization of xenon by linearly-polarized laser
pulses with 800 nm central wavelength and a peak intensity of 7× 1013 W/cm2: experimental result provided by Lin et al. [500]
(black dots), focal-volume-averaged result obtained from LFA simulations with the DCS for the Tong-Lin potential including
both long and short trajectories (red line) and simple backreflection model of Eq. (9.35) with v0 = 0 (gray line). (b) Probabilities
of the individual long and short quantum orbits at pz = 0 (dark red solid and dashed lines) as well as the resulting uniform
approximation result (pale red line). For panel (b), a cw field with an intensity of 6× 1013 W/cm2 is used. Figure is adapted from
Lin et al. [500].
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For a more realistic theoretical description, LFA simulations are performed with the scattering am-
plitudes for a Tong-Lin potential (analogous to those in Fig. 9.12). Here, however, the PMDs are also
averaged over the focal-volume distribution for a peak intensity of Ipeak = 7 × 1013 W/cm2. To this
end, we follow the scheme introduced in Appendix A.2.4 and perform calculations for nine intensities
between 3×1013 W/cm2 and 7×1013 W/cm2. Based on the LFA distributions, the nondipole shifts of the
maximum are extracted analogous to the experiment (see Fig. 9.15(a)). The focal-averaged LFA results
well reproduce the experimentally-observed local minimum of the nondipole shift around px = 1.5 a.u.

In LFA, both long and short quantum orbits contribute to the measurable PMD. When only con-
sidering a single branch of long and short trajectories for fixed CEP and intensity, the superposition of
both contributions creates the well-known interference pattern in the plateau region (see Fig. 9.15(b)).
However, the pattern is largely washed out when averaging over the CEP and over the focal-volume
distribution. In the simplified backreflection calculations shown in Fig. 9.13, the nondipole shifts for the
short trajectories are significantly smaller than the shifts for long trajectories.14 Thus, in the simplest
picture, the nondipole shift of the central maximum is mostly related to the shift of the individual orbits
and their relative weight (see Fig. 9.15(b)). The probability of the orbits is influenced by the ionization
rate and the energy dependence of the DCS. We find that in the inner part of the plateau region with
px / 1.3 a.u. the long trajectory dominates for the Tong-Lin potential. The short trajectory becomes
more important in the intermediate region between px ' 1.3 a.u. and the cutoff at about 1.75 a.u. In the
vicinity of the cutoff, both solutions merge, a separation in long and short orbits is meaningless [18, 202]
and the commonly-used saddle-point approximation breaks down [204]. For even higher px, only the
long orbit should be included in the calculation. These constrains are automatically properly treated in
the uniform approximation [204]. To summarize, the distributions are dominated by the long orbits for
small px followed by the short orbits at intermediate px and again determined by the long orbits for
large px. When considering the different nondipole shifts for both orbits, this simple picture already
predicts a minimum of the nondipole shift as a function of px in the region where the short trajectories
dominate.

Target dependence

The differential cross section depends on the exact shape of the single-active-electron potential that is
used to model xenon. Following the simple argumentation above, we expect a different weighting of
the trajectories and, hence, modifications of the nondipole shifts for other potentials. We perform LFA
simulations for a GSZ potential (as in Section 4.3) and for the following model potential

V(r) = −
1 + 1.985e−0.5 r

r
. (9.36)

All three potentials have a p state with the correct ionization potential of xenon and behave as −1/r
at large distances r. However, they have different short-range contributions. For simplicity, a cw
field is used, but the distributions are focal-volume-averaged (assuming a peak intensity of Ipeak =

7 × 1013 W/cm2). The averaged PMDs have a pronounced maximum in the vicinity of the polarization
axis for all three potentials. Hence, we again determine the maximum’s position in pz-direction for each
px by a Gaussian fit.

The nondipole shifts of the central maximum are shown in Fig. 9.16(a). The distinct energy de-
pendence of the DCS and, hence, the modified weighting of the long and short orbits lead to different
nondipole shifts as a function of px for the used potentials. For the potential (9.36), the PMD is mostly
dominated by the long trajectory and the nondipole shift roughly follows the prediction of the backre-
flection model for the long orbit. On the other hand, for the GSZ potential, both long and short trajec-
tories have a similar weight between px ' 1 a.u. and the classical cutoff such that a broad minimum in
the nondipole shift appears. The focal-averaged LFA results are in qualitative agreement with the TDSE
results for a fixed intensity presented in Ref. [500].

14Qualitatively, this simple picture is also correct when considering the DCS for the Tong-Lin potential.
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Figure 9.16: (a) Dependence of the nondipole shift of the central maximum on the single-active-electron potential used to model
xenon. For better comparison, all three panels show the same results from focal-averaged LFA calculations in 2D for a cw field
assuming a peak intensity of 7× 1013 W/cm2. (b) Probabilities of the individual long and short quantum orbits (solid and dashed
lines) at pz = 0 for a fixed intensity of 6× 1013 W/cm2 as in Fig. 9.15(b).

A prerequisite for the simple interpretation given above is that the shape of the PMD (in the vicinity
of the polarization axis) is dominated by the DCS and that the PMD has a pronounced maximum in pz-
direction for each px.15 The first condition is not fulfilled for momenta px above the classical high-energy
cutoff (see also the argumentation for H +

2 in Section 9.5). In addition, a meaningful separation of long
and short trajectories is only possible in the plateau region sufficiently far away from the BRR structure.
Furthermore, in reality, direct ionization and photoelectron holography dominates the PMD for small
px / 0.8 a.u. The exact nondipole shifts are also modified, if the interference structure of long and short
orbits is not fully washed out by focal-volume averaging (see for example the weak modulation of the
nondipole shift for the potential (9.36) in Fig. 9.16(a)). In particular, this is critical when the DCS as a
function of velocity vscat changes on the same scale as the interference pattern (see for example the region
around the minimum of the DCS at about vscat = 0.8 a.u. for the Tong-Lin potential). It is beyond the
scope of this work to prove that such a minimum of the DCS in combination with the interference does
not influence the nondipole shift. Most of the described problems could be avoided by using a driving
field with longer wavelength (see for example Ref. [42]). The increased ponderomotive potential would
lead to a more extended HATI region in the PMD and a smaller momentum scale for the interference
between short and long trajectories.

9.7 Conclusion

In this chapter, the nondipole modifications of high-order above-threshold ionization (HATI) were stud-
ied in linearly-polarized fields. HATI relies on the large-angle scattering of recolliding electrons. In con-
trast to recollision-free strong-field ionization, the electronic structure of the target strongly influences
the nondipole electron dynamics and the resulting modifications of the photoelectron momentum dis-
tributions. We considered a generalization of the three-step model beyond the dipole approximation to
explain the overall physical mechanisms. During a first stage of acceleration, the electron drifts in the
light-propagation direction so that the corresponding velocity component of the recolliding electron is
positive. Therefore, the scattering probability is not symmetric about the polarization axis. Importantly,
the shape of the final photoelectron momentum distribution is mainly determined by this scattering
probability represented by the target-specific field-free differential cross section. We analyzed the ap-
pearing nondipole effects for prototypical atomic as well as molecular targets: the xenon atom and the
hydrogen molecular ion H +

2 .

15This is for example not fulfilled for helium or other possible model potentials for xenon.
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For the hydrogen molecular ion H +
2 , we presented photoelectron momentum distributions from the

numerical solution of the TDSE. In agreement with our earlier work on helium [187], we observed a
nondipole shift of the boundary of the high-energy plateau region and a shift of interference structures
resulting from long and short rescattering trajectories. These observations are both nearly independent
of the target. However, the diffraction of electrons at both centers of the parent ion results in a double-
slit-like molecular-interference pattern in the differential cross section. As a result, other observables
such as the forward-backward asymmetry in the signal strength strongly depend on the relative direc-
tion of the molecular axis with respect to the electric field. For perpendicular alignment, the pattern
has extrema roughly parallel to the polarization axis. A close inspection showed that the positions of
the extrema are shifted in the light-propagation direction compared to the dipole limit. Considering the
double-slit-like interference within the three-step model, the nondipole shifts of the extrema are given
mainly by the total momentum gain of the electron before and after scattering. We demonstrated that,
in contrast to other nondipole modifications in HATI, the shift of the molecular-interference pattern sur-
vives focal-volume averaging, opening the possibility to experimentally observe structure-dependent
nondipole effects in strong-field ionization.

The high-energy photoelectron momentum distributions for xenon also exhibit a pronounced maxi-
mum near the polarization axis. This extremum is induced by a local maximum of the differential cross
section of the xenon ion at a scattering angle of 180◦, i.e., it is attributed to backscattered electrons. Dur-
ing recollision the velocity vectors of these electrons are reversed and a considerable amount of electron
momentum is transferred to the ion. Hence, for those backscattered electrons, the final momenta in
the light-propagation direction are significantly reduced. As a result, the three-step model predicts sys-
tematically smaller nondipole shifts of the central maximum for xenon compared to the shifts for small
diatomic molecules. For a more sophisticated modeling of the photoelectron momentum distributions
in the HATI region, we considered the low-frequency approximation (LFA) beyond the electric dipole
approximation, i.e., we approximated the laser-assisted scattering amplitude by the field-free scattering
amplitude. The corresponding quantum-orbit model allows us to take into account interference be-
tween long and short rescattering trajectories, and at the same time represents the scattering properties
of the system well. We demonstrated that the nondipole shifts of the central maximum from LFA are
in excellent agreement with the experimental results for xenon [500]. The short and long rescattering
trajectories are generally deflected differently in the light-propagation direction. By considering several
ionic potentials, we found that this enables the control of the nondipole shift through the relative weight-
ing of these trajectories. Importantly, in this study on xenon, we considered the position of the central
maximum. Since other targets such as helium do not show a backscattering maximum, this choice is not
always possible (see also our previous work [187]).

In the future, a direct comparison of the nondipole shifts for atoms and molecules would be illu-
minating. To this end, the well-known combination of molecular nitrogen N2 and argon atoms with
approximately the same ionization potential could be used [36]. Even though both targets exhibit a
pronounced maximum of the momentum distribution in the vicinity of the polarization axis, we expect
different nondipole shifts for the atomic and molecular case.

In general, nondipole effects in the high-energy region are amplified with increasing laser inten-
sity or wavelength. With the further development of mid-infrared high-power lasers to perform laser-
induced electron diffraction experiments such as in Ref. [42], the consideration of nondipole effects in
the interpretation of experimental data will be indispensable. For example, if the molecular-interference
pattern is used to determine bond lengths in molecules and probe the nuclear dynamics, the neglect of
nondipole corrections can lead to errors in the reconstructed lengths that have similar size as today’s
experimental accuracy [40, 42]. Here, we laid the foundation to avoid such systematic errors in the
future.



Chapter 10

Strong-Field Photoelectron Holography
Beyond the Dipole Approximation

10.1 Introduction

Strong-field photoelectron holography experiments are commonly performed with linearly-polarized
infrared or even mid-infrared light sources [208] (see also Chapter 3 for an introduction). However,
longer wavelengths enable higher kinetic energies of the light-driven electrons such that nondipole ef-
fects become already prominent at moderate light intensities. For example, Ludwig et al. [152] used
a 3.4 µm light source to observe effects beyond the electric dipole approximation in linearly-polarized
fields at a moderate intensity on the order of 5 × 1013 W/cm2. Nevertheless, strong-field photoelectron
holography is usually studied in the dipole approximation. To close this gap, this chapter provides a
theoretical investigation of the nondipole modifications of the holographic pattern.

In recollision-free ionization, the transfer of linear momentum from the light field to the electrons
results in a forward shift of the photoelectron momentum distribution (see Chapter 8 for a discus-
sion). In contrast, the first experiments on nondipole effects with linearly-polarized light at 3.4 µm
central wavelength revealed a shift of the momentum distribution for the low-energy electrons against
the light-propagation direction [152]. Later, a similar observation was also made at 800 nm wave-
length [51, 508]. TDSE simulation beyond the dipole approximation confirmed these experimental find-
ings [153, 154, 508]. By scanning the ellipticity of the driving field, Maurer et al. attributed the backward
shift to a sharp ridge of rescattered electrons [157]. Based on classical-trajectory Monte Carlo (CTMC)
simulations, the unexpected backward shift was explained by the interplay between the electron-ion
interaction and the magnetic-field-induced motion of the liberated electrons [152, 509]. The shift of the
low-energy electrons was also investigated in CTMC simulations which include the nondipole effects
on both ions and photoelectrons [155] as well as semiclassical Coulomb-corrected strong-field approxi-
mation calculations [156].

The TDSE simulations [153] and the classical simulations [155, 156] reveal that the shift is not uni-
form, i.e., it depends on the momentum component along the polarization axis. As introduced in Sec-
tion 3.4, Coulomb focusing in 3D results in an enhanced signal in the vicinity of the polarization axis,
reflected as a caustic in classical simulations [77, 78]. The shift of the caustic along the light-propagation
direction was analyzed in a classical analytical model, showing that the displacement is negative for
low-energy electrons and becomes positive for higher energies [510]. However, the appearance of a
caustic indicates the breakdown of the semiclassical approximation [158, 256], i.e., any classical model
becomes questionable. For regularization of the nonphysical behavior, the interference of the manifold
of focused electron trajectories needs to be considered properly, recently done in a glory-rescattering
model in the dipole approximation [158, 511].

189
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In linearly-polarized fields, photoelectron holography patterns resulting from the superposition of a
“signal” wave that is scattered upon return to the parent ion and a nonscattered “reference” wave are
very prominent in the photoelectron momentum distributions [28, 74, 239]. Qualitatively, modifications
of the interference fringes due to nondipole effects were already observed by Chelkowski et al. [153, 512].
Classically, these were attributed to changes of the direct and rescattering electron trajectories by the
laser magnetic field. However, from a fundamental point of view, the holographic pattern is formed
by interference and, thus, determined by the phase difference between the interfering paths (see also
Chapter 3). In general, the variations of the kinematics of the trajectories and of their associated phases
can differ.

In this chapter, we extend the semiclassical modeling beyond the electric dipole approximation to
account for the interference in a trajectory-based description (see also the models in the dipole approxi-
mation in Refs. [121, 122] and in Section 3.3). Considering a nondipole correction of the phase associated
with each trajectory, the model is able to explain the shift of the holographic fingers in 2D. An analytical
simple man’s model beyond the dipole approximations is derived by neglecting the ionic potential dur-
ing the acceleration stages of the electron trajectories, providing a deeper intuitive understanding of the
physical processes. In 3D, Coulomb focusing prevents the interpretation of the momentum distribution
in the vicinity of the central maximum by means of a two-path-interference picture. Therefore, we ana-
lyze the interplay between Coulomb focusing and nondipole effects by extending the glory-rescattering
model [158].

This study was inspired by our joint work with the group of Reinhard Dörner in Frankfurt, especially
Alexander Hartung. The first part of this chapter is based on the resulting publication [51]. Most results
of the second part of this chapter are already published in Ref. [245]. Shortly after our publications,
a joint experimental and theoretical work also discussed the nondipole modification of photoelectron
holography [513]. Their findings are in agreement with the theoretical study presented in this chapter.

10.2 Anatomy of nondipole effects in photoelectron holography

Nondipole effects in recollision-free ionization were analyzed in Chapter 8. For pure linearly-polarized
fields, the nondipole shift of the lateral distribution in the light-propagation direction pz can be analyti-
cally estimated in the adiabatic limit as [151, 471, 472]

pmax
z (px,py) =

p2
x

2c
+

1
3c

(
Ip +

p2
y

2

)
+ O

(
γ2) . (10.1)

The result depends quadratically on the momentum px along the polarization direction and also on
the third direction py. However, in contrast to the recollision-free ionization geometries described in
Chapter 8, the liberated electrons may be driven back to the parent ion in linearly-polarized fields. The
appearing scattering processes vastly modify the dynamics (see also Chapter 3 for an introduction in
the dipole approximation).

In a recent experiment, Hartung et al. [51] considered strong-field ionization of argon by femtosecond
laser pulses with 800 nm central wavelength. For each momentum px, the nondipole shift of the peak
position of the momentum distribution in pz-direction was analyzed. As expected, the post-ionization
Coulomb interaction between parent ion and photoelectron influences the displacement of the PMD
shown in Fig. 10.1(a) compared to the recollision-free SFA estimate. The aim of this section is to present
theoretical results from the numerical solution of the TDSE in 3D for the conditions in Ref. [51]. These
results will underline the need for a proper theoretical description of nondipole effects in photoelectron
holography.

Computational details for argon

The photoelectron momentum distributions are calculated numerically in the single-active-electron ap-
proximation by using the Fourier split-operator technique on Cartesian grids (see Appendix A.2.2).
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Figure 10.1: Nondipole effects for ionization of argon by linearly-polarized laser pulses at 800 nm central wavelength and a peak
intensity of 1.1 × 1014 W/cm2. (a) Shift of the central lobe extracted by using a Gaussian fit: experimental result provided by
Hartung et al. [51] (black dots), focal-volume-averaged result obtained from the numerical solution of the 3D TDSE (red line) and
result from the SFA in the saddle-point approximation (blue line). Additionally, the heuristic estimate ∆pz = p2

x/(2c) (gray
solid line) and the adiabatic limit (10.1) of the SFA (gray dashed line) are shown. The errors of the TDSE simulation are estimated
as explained in the main text. (b) For visual orientation, the projection of the PMD from TDSE onto the px-pz-plane is presented.
The white dashed lines indicate the fit range to extract the shifts of panel (a). Figure is adapted from Hartung et al. [51].

Analogous to Chapter 7, a plane-wave laser pulse is considered and the natural gauge (introduced
in Section 2.2) is used such that the theory covers the dynamics within the electric quadrupole and
magnetic dipole approximations.

The linearly-polarized laser pulses are modeled using a cos2 envelope for the electric field with a full
duration of ten optical cycles as in Ref. [51]. Here, a central frequency of ω = 0.0569 a.u. corresponding
to ≈ 800 nm wavelength is used. In order to mimic the focal-volume distribution, we follow the scheme
introduced in Appendix A.2.4 and assume a peak intensity of Ipeak = 1.1× 1014 W/cm2. To this end, the
PMDs of 15 calculation with intensities ranging from 0.4×1014 W/cm2 to 1.1×1014 W/cm2 are averaged.
A pseudopotential for the 3p state with a cutoff radius rcl = 1.5 a.u. based on the Tong-Lin potential is
used to model the argon atom (see Appendix A.2.3). Only ionization of the px orbital aligned along the
polarization axis is considered.

The inner wave function is represented on a Cartesian grid with an extension of 269 a.u. and spacings
of ∆x = 0.35 a.u. in all directions. The momentum distribution is calculated from the outer grid after
propagating the wave function for four additional cycles after the end of the pulse (resolution ∆px =

∆py = 0.0116 a.u. and ∆pz = 0.0088 a.u.). To avoid artifacts of ATI rings, the PMDs are averaged over
slices of ∆px = 0.1 a.u. in px-direction. The 3D PMDs are projected onto the px-pz-plane (as shown in
Fig. 10.1(b)). For each momentum px, the position of the lateral maximum is obtained from a Gaussian
fit to the central region. To only select the central maximum (analogous to the experiment), the fit range
depends on px and it is indicated by white dashed lines in Fig. 10.1(b). We find that the positions of the
maximum obtained for projection or for a slice at py = 0 through the PMD differ only slightly.

For very low energies, rich structures appear in the PMDs and, in addition, Rydberg states cause
some problems in the simulations based on a two-grid scheme. In order to check the stability of the
simulations and of the extraction procedure, various additional simulations in two dimensions with
different position and momentum grids were performed. Furthermore, we also considered remaining
“continuum electrons” on the inner grid by means of a projection on plane-wave states. We estimate
the error for the maximum’s position by using the maximal difference between 2D results with very
high resolution and calculations with the same grid parameters as in 3D. For sufficiently high momenta
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(|px| ' 0.3 a.u.), the nondipole shifts are very stable with respect to the numerical procedure. However,
at low energies, only qualitative accuracy is reached in these 3D simulations.

Results

Figure 10.1(a) shows both the positions of the central maximum of the lateral distribution of the exper-
iment along with the results from TDSE. Overall the TDSE simulations reproduces the findings of the
experiment well.1 For small momenta, rich structures are visible in the photoelectron momentum distri-
butions. Soft recollisions result in a bunching of electrons [83–86, 118], reflected as low-energy structures
in the PMDs [81–84] (here for |px| / 0.2 a.u.). In this low-energy region, as introduced above, peak po-
sitions are shifted against the light-propagation direction (see for example Refs. [152, 157, 509]). In an
intuitive picture, the magnetic part of the Lorentz force first pushes the low-energy electron slightly for-
ward [475]. However, in a swing-by-process, the electron returns to the parent ion with an offset in the
light-propagation direction such that the electron-ion interaction slingshots the electron into the back-
ward direction. For |px| ' 0.2 a.u., a holographic pattern is visible in the PMD along the polarization
(see Chapter 3 for an introduction). Here, the maximum’s position is determined by the position of the
central fringe. The nondipole shift from TDSE is systematically smaller compared to the recollision-free
SFA result and it approaches the heuristic parabolic estimate p2

x/(2c) close to classical cutoff for “direct”
ionization (here at ≈ 1 a.u.).
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Figure 10.2: Comparison of the nondipole effects for recollision-free ionization (dominates for px < 0) and for photoelectron
holography (dominates for px > 0). (a) Shift of the central lobe of the lateral distribution calculated by a Gaussian fit with a
range of |pz| < 0.1 a.u. for px < 0 and of |pz| < 0.02 a.u. for px > 0. Shown are focal-volume-averaged results for ionization
of helium modeled by a short-range potential (9.11) or a long-range potential (10.2) in 2D in two-cycle laser pulses of Eq. 10.3
with a cos4 envelope, 800 nm wavelength and a peak intensity of Ipeak = 8.0× 1014 W/cm2. Additionally, results from the SFA
in the saddle-point approximation (blue line), the adiabatic limit (10.1) of the SFA (gray dashed line) and the heuristic estimate
∆pz = p

2
x/(2c) (gray solid line) are shown. (b) Focal-volume-averaged PMD for the long-range potential.

When considering the dynamics in 2D or short-range potentials in 3D, Coulomb focusing is absent
and, hence, no ridge structure appears in classical simulations (see also Section 3.4). Figure 10.2(a)
shows the nondipole shifts of the central maximum from focal-volume-averaged PMDs for ionization
of 2D helium modeled by either a short-range potential (9.11) or a long-range potential (10.2). Details
on the numerical simulations are given in the next section. For illustrative purposes, a very short two-
cycle laser pulse is used. Nonscattered electrons dominate the main part of distribution for px < 0 and,
thus, the shift of the lateral distribution is approximately given by the recollision-free SFA result. For
momenta px / −1.3 a.u. close to the classical cutoff, we believe that the deviations visible for the long-
range potential are caused by other types of electron scattering [205]. For px > 0, a pronounced pattern

1It is conspicuous that the experimental values are systematically shifted up by≈ 5× 10−4 a.u. compared to the TDSE results.
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of holographic fringes is visible (see the distribution in Fig. 10.2(b)). In 2D, the constructive interference
between forward-scattered trajectories departing in the same quarter cycle of the electric field “shapes”
the central holographic finger out of the classical distribution (see also Section 3.4.1). Importantly, we
find nearly the same momentum-dependent nondipole shift of the central fringe for the long-range and
short-range potentials. Hence, in contrast to recent studies [153, 156, 509], this observation suggests
that the classical (interference-free) probability cannot provide a complete and consistent view on the
momentum-dependent shift in the lateral distribution for linearly-polarized fields.

10.2.1 Computational details for helium

In order to simplify the numerical TDSE simulations and the interpretation of the results, we will use
helium as the target atom in the remaining part of the chapter. Many of the simulations are performed
in reduced dimension (2D) where the target is modeled by the following potential

V2D(r) = −
e−0.575 r + 1√
r2 + 0.75

, (10.2)

which reproduces the ionization potential of the helium atom Ip ≈ 0.9 a.u. For more realistic 3D sim-
ulations, a pseudopotential for the 1s state of helium with a cutoff radius rcl = 1.5 a.u. based on the
Tong-Lin potential is used (see Appendix A.2.3). The linearly-polarized laser pulses of np cycles dura-
tion are chosen as

A(η) = −
E0

ω
sin(ωη) cosk

(
ωη

2np

)
ex (10.3)

with central frequency of ω = 0.0569 a.u. corresponding to ≈ 800 nm wavelength. The exponent k is
either two or four and an intensity of I = 7.5× 1014 W/cm2 is used for most simulations.

As described above, the TDSE is solved numerically by means of the split-operator method on Carte-
sian grids. In 2D, the inner grid has a size of 819 a.u. in each direction with spacings of ∆x = 0.2 a.u.
A time step of ∆t = 0.01 a.u. is used. The PMDs in 2D have a resolution ∆px = 0.0038 a.u. and
∆pz = 0.0019 a.u. In 3D, the size of the inner grid is 358 a.u. in each direction with spacings of
∆x = 0.35 a.u. A time step of ∆t = 0.02 a.u. is used. We only consider slices at py = 0 through the
3D PMDs with a resolution of ∆px = ∆pz = 0.0044 a.u. To increase the quality of the PMDs at low
energies, we add up coherently the momentum-space amplitude of the outer grid and the continuum
part that is still present on the inner grid (at the end of the propagation). To approximate the latter one,
the localized bound states are removed from the inner wave function using a mask function and the
remaining part of this wave function is projected on eikonal states as described in Appendix A.2.2.

10.3 Semiclassical model beyond the electric dipole approximation

A semiclassical treatment of the quantum mechanics offers the possibility to interpret the electron’s
dynamics on the basis of classical physics. To model photoelectron holography beyond the electric
dipole approximation, we basically follow the semiclassical model introduced in Chapter 3, but include
nondipole corrections.2 In the spirit of the two-step model of Section 2.1.1, the electron’s motion is split
in two stages: In the first step, the initially-bound electron is released. Here, we neglect the ionic poten-
tial V so that this step is described within the SFA beyond the dipole approximation. In the subsequent
acceleration of the freed electron, the semiclassical approximation of Feynman’s path integral is used
to model the dynamics such that the Lorentz force of the electromagnetic field as well as the Coulomb
attraction are included in a nonperturbative manner. We use the minimal coupling Hamiltonian (2.20) in
Coulomb gauge (H = 1

2 (p̂ + A(η))2+V(r)) that governs the dynamics in a potential V and a plane-wave
laser pulse represented by a vector potential A(r, t) = A(η) with η = t− z/c.

2Chronologically, the model presented in Chapter 10 was developed before the model in the dipole approximation of Chapter 3.
Hence, certain details in the actual implementation are different.
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Formally, the probability amplitude can be expressed using a Dyson representation as in Eq. (3.2).
First, the system evolves in its initial state. At a time t ′, the electron is “kicked” by the electromagnetic
field and subsequently it interacts with the ionic core and the laser field. Hence, the mixed position-
momentum-space propagator 〈p|U(tf, t ′)|r̃〉 appears in the integral. As introduced in Section 3.3.1, the
propagator is evaluated in a semiclassical approximation based on Feynman’s path integral. To this
end, we consider the classical trajectories with positions rcl(t) and canonical momenta kcl(t) that fulfill
the boundary conditions: rcl(t

′) = r̃ and kcl(tf) = p. These classical trajectories follow the classical
Hamilton’s equations of motion (EOM) (3.6) including both electric- and magnetic-field contributions:

k̇cl(t) = −∇rV(rcl(t)) −
ez
c

E
(
t−

zcl(t)

c

)
· ṙcl(t),

ṙcl(t) =kcl(t) + A
(
t−

zcl(t)

c

)
.

(10.4)

These EOM are equivalent to Newton’s equation of motion that include the Coulomb attraction and the
well-known Lorentz force. In principle, for every times t ′ and for every initial position r̃, we would have
to determine the trajectories that are deflected to a given final momentum p. However, for simplification,
we again introduce a relation between the auxiliary momenta p̃ ′ and the initial positions r̃ of the classical
trajectories and we only select a finite number of ionization times t ′.

To this end, we follow the ideas introduced in Section 3.3.2. In the spirit of complex-time quantum-
orbit models, we use the two-pronged integration path of Fig. 2.5 in the complex time. The acceleration
of the liberated electron from the release time t ′r = Re(t ′s) up to the final time tf under the influence of
the combined laser and Coulomb fields is approximated by real-valued trajectories. In contrast, during
under-the-barrier motion associated with the contour from the complex-valued saddle-point time t ′s
down to the real axis (t ′s → Re(t ′s)) the potential V is neglected, i.e., the dynamics is effectively treated
like in the strong-field approximation. Hence, to first order of 1/c, the equations of motion (10.4) can
be solved analytically for the release step (see for example Section 8.3.1). The canonical momentum in
Coulomb gauge can be written to first order in 1/c as

kcl(t) = p̃ ′ +
ez
c

(
p̃ ′ ·A(t) +

1
2

A2(t)

)
. (10.5)

Here, the canonical momentum p̃ ′ in the natural gauge of Section 2.2.2 is conserved and would be equal
to the final momentum, if the potential would also be neglected in the acceleration step.

We use the momentum p̃ ′ to parameterize the initial conditions of the trajectories. Analogous to
previous approaches in the dipole approximation (see for example Ref. [118]), for a given p̃ ′, the inte-
gration constants at time t ′r are fixed by the conditions Im(rcl(t

′
r)) = 0 and Re(rcl(t

′
s)) = 0.3 Under these

assumptions, the tunnel-exit position r0 at the release time t ′r is given by (to first order in 1/c)4

r0 = Re
((

1 +
p̃ ′z
c

)
α(t ′r, t

′
s) +

(t ′s − t
′
r)p̃
′
z

c
A(t ′s)

)
+

ez
c

Re
(

p̃ ′ · α(t ′r, t ′s) +
1
2
α2(t

′
r, t
′
s)

)
(10.6)

with α and α2 of Eq. (2.11). The corresponding initial velocity at t ′r reads (to first order in 1/c)

v0 = v(p̃ ′, t ′r) = p̃ ′ + A(t ′r) +
ez
c

(
p̃ ′ ·A(t ′r) +

1
2

A2(t ′r)

)
(10.7)

with the vector v defined in Eq. (2.31). For each p̃ ′, the complex-valued time t ′s is defined by the
potential-free saddle-point equation (to first order in 1/c)

v2(p̃ ′, t ′s)
2

=
1
2

(
p̃ ′ + A(t ′s) +

ez
c

(
p̃ ′ ·A(t ′s) +

1
2

A2(t ′s)

))2

= −Ip. (10.8)

Equation (10.8) has the same form as Eq. (8.12) in the plain nondipole SFA. However, for V 6= 0, the
auxiliary variable p̃ ′ is in general not equal to the final momentum p.

3The choice Im(rcl(t
′
r)) = 0 helps to avoid problems with branch cuts (see for example Refs. [205, 206]).

4This is only one possible choice. For example, in a more recent work [479], other initial conditions were used.
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The action phase associated with each orbit can also be divided into a complex-valued part cor-
responding to the under-the-barrier motion and a real-valued part corresponding to the acceleration
step. Using the EOMs (10.4) and Eq. (10.5), the semiclassical action of Eq. (3.4) can be simplified for the
potential-free under-the-barrier part:

S0
↓ =−

∫t′r
t′s

dt [H(rcl(t), kcl(t), t) + rcl(t) · k̇cl(t)]

= −

∫t′r
t′s

dt
[

1
2
(kcl(t) + A(t))2 +

zcl(t)

c
E(t) · ṙcl(t) + rcl(t) · k̇cl(t)

]
+ O

(
1
c2

)
=−

∫t′r
t′s

dt
1
2
(kcl(t) + A(t))2 + O

(
1
c2

)
= −

∫t′r
t′s

dt
1
2

v2(p̃ ′, t) + O

(
1
c2

)
.

(10.9)

The phase (3.4) associated with the acceleration step can also be rewritten using the EOMs (10.4)

S→ = −

∫tf
t′r

dt
[

1
2

ṙ2
cl(t) + V(rcl(t)) − rcl(t) · ∇V(rcl(t)) − zcl(t) · (ṙcl(t)× B(t− zcl(t)/c))

]
. (10.10)

This phase includes both the Coulomb potential and the nondipole effects in a nonperturbative manner.5

In the limit of vanishing potential V = 0, the correct action (2.33) of the Volkov states, i.e., the action
entering the nondipole SFA, is recovered to first order of 1/c. To this end, the last term of Eq. (10.10)
proportional to the magnetic part of the Lorentz force is important. This term is not present in the
previously-developed CCSFA beyond dipole approximation [156].

In the model, preexponential parts of the amplitude related to the release step are neglected. For each
trajectory, the associated ionization probability is determined by the imaginary part Im(S0

↓+Ipt
′
s). Thus,

the model includes the nondipole shift of the initial-velocity distribution in the light-propagation direc-
tion, attributed the under-the-barrier magnetic-field effects [150, 151] (see also Section 8.2.4). Empiri-
cally, we find the observables discussed below are only weakly influenced by the nondipole corrections
of the tunnel exit (10.6). In contrast, the additional nondipole part of phase as well as the modifications
of the initial-velocity distribution are essential for a quantitative modeling of the probability distribu-
tions.

For an explicit calculation of the probability amplitude for a final momentum p, we follow the steps:

• Solve the nondipole saddle-point equation (10.8) for each auxiliary momentum p̃ ′ to obtain the
corresponding saddle-point times t ′s = t ′r + it ′i. Establish a connection between p̃ ′ and the initial
conditions for the trajectories of the acceleration step, i.e., determine for each p̃ ′ the corresponding
tunnel-exit position r0 of Eq. (10.6) and initial velocity v0 of Eq. (10.7).

• Solve the inversion problem, i.e., find all auxiliary momenta p̃ ′ that are mapped by the classical
dynamics to the given final momentum p. Here, we only consider the most important types of
trajectories. Thus, in contrast to the model of Chapter 3, we directly tackle the inversion prob-
lem by using a combination of the multi-dimensional Newton method and the conjugate-gradient
method.

• Calculate the ingredients of the probability amplitude for each solution p̃ ′µ of the inversion prob-
lem. To determine the phase S→ of Eq. (10.10), we add an equation to the system of differential
equations for the EOMs. The Jacobian J(tf) of Eq. (3.10) is numerically approximated by consider-
ing the variation of the final momenta p with the auxiliary momentum p̃ ′ for a fxied release time
t ′r and a fixed exit point6

J(tf) ≈ det
[
∆p
∆p̃ ′

]
. (10.11)

For the different branches of trajectories, we use the same Maslov indices ν as in the dipole ap-
proximation (see Chapter 3).

5Equation (10.10) does not use a 1/c expansion.
6The PMDs are only weakly modified and the conclusions of this chapter are untouched, if the exit point and the time t ′r are

also varied with the momentum p̃ ′ according to Eqs. (10.6) and (10.8).
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• Evaluate the transition amplitude for a given p by using the ingredients for the trajectories

M(p) ≈
∑
µ

e−iνµ π2√
|Jµ(tf)|

ei(S→,µ+S
0
↓,µ+Ip(t

′
s,µ−tA)), (10.12)

where µ labels all possible initial momenta p̃ ′µ that are solutions of the inversion problem.

10.4 Simple man’s model beyond the dipole approximation

The model introduced in Section 10.3 includes both nondipole effects and effects of the long-range po-
tentials. However, for a qualitative interpretation of certain aspects of photoelectron holography, a sim-
pler Coulomb-free semiclassical model is sufficient. To this end, we roughly follow the ideas presented
in Refs. [28, 239], but include leading-order nondipole effects. The holographic pattern is modeled as the
interference of a nonscattered reference wave packet and a scattered signal wave packet. The dynamics
of the electron wave packets is treated analogous to the simple man’s model introduced in Chapter 9
for high-order above-threshold ionization. This allows for an analytical description of the influence of
nondipole effects on the interference pattern.

Tunnel ionization launches electrons at each possible release time t0 with initial velocities v0 ⊥ E(t0)

(see Eq. (2.47)). The subsequent potential-free motion of the electrons in the electromagnetic field can be
described classically. To first order in 1/c, the canonical momentum p̃ ′ in natural gauge can be expressed
in terms of the initial velocity v0 as (see Eq. (10.7))

p̃ ′ = −A(t0) +
A2(t0)

2c
ez + v0. (10.13)

The reference wave packet does not feel the Coulomb force of the parent ion so that the final momen-
tum p is equal to the auxiliary momentum p̃ ′. Hence, Equation (10.13) defines the mapping of the final
momentum p to the release time tref

0 and the initial velocity vref
0 . To first order in 1/c, the associated

semiclassical phase is given by (see Eqs. (10.9) and (10.10))7

Sref = −

∫tf
tref

0

dt
v2(p, t)

2
, (10.14)

where v is the auxiliary velocity of Eq. (2.31). For certain ionization times, the electrons are driven back
to the vicinity of the ionic core and may scatter off such that a signal wave packet is created. For an exact
return to its initial position, the electron has to start with an initial velocity (see Eq. (9.6))

v0,z = −
1

2c(tc − t
sig
0 )

∫tc
t

sig
0

dτ (A(τ) − A(t
sig
0 ))2. (10.15)

This is caused by the drift motion in the light-propagation direction induced by the laser magnetic field.
The return time tc is determined by the motion along the polarization direction: x(tsig

0 ) = x(tc). During
the scattering, the direction of the electron’s velocity and, hence, its associated auxiliary momentum is
usually changed (see Section 9.3). After the scattering, the electron is again accelerated by the electro-
magnetic field. Hence, its outgoing velocity is mapped to the final momentum p. Neglecting the phase
change associated with the scattering process, the phase for the signal electron reads

Ssig = −

∫tc
t

sig
0

dt
v2(p̃ ′, t)

2
−

∫tf
tc

dt
v2(p, t)

2
. (10.16)

For a given final momentum p, the interference is determined by the acquired phase difference between
the reference path and the signal path

∆S =

∫tc
tref

0

dt
v2(p, t)

2
−

∫tc
t

sig
0

dt
v2(p̃ ′, t)

2
. (10.17)

7The phase has the same form as the continuum part of the SFA action (2.41).
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As described in Section 3.4.1, the superposition of signal and reference trajectories starting in the same
quarter cycle of the field induces the holographic fingers. For final momenta close to the polarization
axis, their release times (tsig

0 and tref
0 ) are quite similar and can be approximated by the values from the

dipole approximation.
The condition for constructive interference in Eq. (10.17), ∆S = 2πn with n ∈ N0, defines the posi-

tions of the holographic fingers. Here, the central holographic finger corresponds to forward scattering
of the signal trajectory [239] such that we find p̃ ′ = p. Since reference and signal trajectories are then
equivalent, their phase difference of Eq. (10.17) is zero. The position of the central finger is determined
by Eqs. (10.13) and (10.15) for the signal trajectory

pcentral
z =

A2(t
sig
0 )

2c
+ v0,z = −

1
c

1

tc − t
sig
0

∫tc
t

sig
0

dt
(
−A(t

sig
0 ) ·A(t) +

1
2

A2(t)

)
=−

1
c

1
tc − t

ref
0

∫tc
tref

0

dt
(

p ·A(t) +
1
2

A2(t)

)
.

(10.18)

In the last line, we used that px = −Ax(t
sig
0 ) and that the release times of the signal and the reference

trajectory are equal. Interestingly, the obtained position of the central interference fringe coincides with
the position of the classical caustic in 3D derived in Refs. [157, 510].

To estimate the nondipole shift of the higher-order fringes, we restrict ourselves to the px-pz-plane.
Similar to Refs. [74, 239] in the dipole approximation, we find that the z-component of the first term of
Eq. (10.17) dominates the phase difference. Thus, the phase difference can be approximated as

∆S ≈
∫tc
tref

0

dt
[
p2
z

2
+
pz

c

(
p ·A(t) +

1
2

A2(t)

)]
. (10.19)

In the dipole approximation, the positions of the extrema are given by [234]

p
dip
z = ±

√
4πn
tc − t

ref
0

. (10.20)

Since we are only interested in the first-order nondipole corrections ∆pz, the positions are written as
pz = p

dip
z + ∆pz and the phase difference (10.19) is expanded in ∆pz. To first order in 1/c, the resulting

equation can be solved analytically for the shift

∆pz ≈ −
1
c

1
tc − t

ref
0

∫tc
tref

0

dt
(

p ·A(t) +
1
2

A2(t)

)
. (10.21)

Close to the polarization axis, the whole holographic interference pattern is uniformly displaced for
fixed px, i.e., the central fringe as well as all higher-order fringes approximately experience the same
shift. In agreement with the TDSE results presented in Section 10.2, the nondipole offset depends on the
momentum px in polarization direction.

10.5 Results and discussion

10.5.1 The central holographic fringe without Coulomb focusing

When considering the electron dynamics in 2D, Coulomb focusing is absent and the central holographic
finger is created by two-path interference between one nonscattered trajectory and one forward scattered
trajectory. For simplicity, we first choose very short two-cycle pulses (as used in Fig. 10.2) such that the
light-driven electrons can only undergo a single forward scattering. The PMDs from the numerical
solution of the TDSE in 2D are used to extract the shifts of the central holographic fringe. To this end,
the distributions are first averaged over an interval ∆px = 0.1 a.u. Afterwards, for each px, a Gaussian
fit to the central region with |pz| < 0.02 a.u. is used to calculate the peak position in pz-direction. We
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Figure 10.3: Shift of the central holographic fringe for ionization of helium extracted from 2D TDSE simulations (solid lines) and
the estimate (10.21) of the simple man’s model (dashed lines). (a) Results for short two-cycle cos4 pulses at various intensities
given in the legend in W/cm2. (b) Results for two durations of cos2 pulses. The results of panel (b) are obtained summing up
the PMDs for intensities 7 × 1014, 7.5 × 1014 and 8 × 1014 W/cm2. To guide the eye, the gray thick line indicates the heuristic
estimate p2

x/(2c). Figure is adapted from Brennecke et al. [245].

find that the nondipole shifts from TDSE are in perfect agreement with the simple man’s estimate (10.21)
(see the results for three different intensities in Fig. 10.3(a)). Close to the classical cutoff, the excursion
times tc − t

sig
0 ≈ tc − tref

0 of the electrons approach zero in the simple man’s model. Hence, the initial
velocity v0 of Eq. (10.15) also vanishes so that the nondipole shift is solely determined by the “second”
stage of acceleration by the electromagnetic field. In this limit, Equation (10.21) simplifies to the heuristic
parabolic estimate ∆pz ≈ A2(tref

0 )/(2c) ≈ p2
x/(2c) with px ≈ −Ax(t

ref
0 ).

In agreement with the TDSE simulations in Ref. [153], the central holographic fringe is shifted in
backward direction (∆pz < 0) for small momenta px. For the two-cycle waveform, signal electrons
corresponding to small final momenta px scatter after the end of the pulse and their excursion times
tc − t

sig
0 become large. Thus, according to Eq. (10.21), the shift of the simple man’s model vanishes in

the limit px → 0. The simple man’s results for different pulse lengths are shown in Fig. 10.3. For long
laser pulses, the simple man’s model predicts a shift ∆pz ∝ −Up/c at px = 0. Since these low-energy
electrons usually dominate the peak position of the lateral momentum distributions, the simple man’s
model qualitatively explains the linear scaling of the backward shift with the laser intensity as observed
in Ref. [153] for the solution of the 2D TDSE. For four-cycle or ten-cycle pulses, the simple man’s model
still works well for large momenta. However, at low energies, the position of the central maximum in
TDSE is less shifted to negative pz compared to the simple man’s estimate (see Fig. 10.3(b)). Here, in
order to avoid the influence of intracycle interference on the extracted maximum’s shift, the PMDs from
TDSE corresponding to intensities 7.0× 1014, 7.5× 1014 and 8.0× 1014 W/cm2 were averaged.
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Figure 10.4: (a) Electric field of a ten-cycle cos2 pulse at an intensity of 7.5× 1014 W/cm2 with color-marked half cycles. (b) Il-
lustration of trajectories leading to photoelectron holography on the polarization axis at pz = 0. For large px ' 0.45 a.u., the
electrons only pass by the ionic core for a single time. In contrast, for small px / 0.45 a.u., the electrons pass by the ionic core
multiple times. Figure is adapted from Brennecke et al. [245].
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To resolve this difference between the modeling and the TDSE results, the interplay between electro-
magnetic field and long-range electron-ion interaction needs to be included. For this purpose, we focus
on the ten-cycle pulse and we only study the half plane with px > 0. We apply the semiclassical model
developed in Section 10.3 where the potential is approximated as a bare Coulomb potential V(r) = −1/r,
but the correct ionization potential of helium Ip ≈ 0.9 a.u. is used. The ionization probability (repre-
sented by exp[−2Im(S0

↓+ Ipt
′
s)]) depends strongly on the electric-field strength (see also Eq. (2.3)). Thus,

only trajectories starting in the vicinity of the peak of the pulse envelope are taken into account (see the
color-marked branches in Fig. 10.4(a)).

As described in the simple man’s model of Section 2.1.1, for final momenta with px > 0, release times
in branches b±1 and b±3 do not undergo rescattering and, hence, create a contribution of nonscattered
electrons. On the other hand, for px > 0, the trajectories of branches b0 and b±2 depart in descend-
ing quarter cycles of the electric-field strength. Hence, the electrons are first accelerated away, but are
afterwards driven back to the parent ion and scatter off. For photoelectron holography close to the
polarization axis, we restrict ourselves to forward-scattered trajectories. In each color-marked branch
b0 and b±2, two distinct trajectories depart that lead to the same final momentum p. As discussed in
Chapter 3, one of the trajectories passes the ion with z > 0 and the other with z < 0 (see Fig. 10.4(b)).
Their interference leads to the finger-like holographic pattern. In contrast to the simple man’s model,
for momenta close to the polarization axis, both interfering trajectories have a similar shape in a long-
range potential, just on the opposite sides of the polarization axis. Qualitatively, the correct number of
fringes of the TDSE result and also their positions are well reproduced by the model, if only the trajec-
tories starting in the central branch b0 are considered (see Fig. 10.5). The inclusion of the branches b±1

of nonscattered electrons improves the modulation depth of the interference pattern (see also Fig. 1(e)
of Ref. [245]). For |px| ' 0.45 a.u., the PMDs are only weakly modified, if more branches are added.
However, the consideration of additional branches leads to more complicated interference structure at
low energies.

The nondipole shifts of the central fringe extracted from the semiclassical model are in perfect
agreement with the TDSE results (see Fig. 10.6(a)). In contrast, an adaptation of the earlier proposed
CCSFA beyond dipole approximation [156] cannot quantitatively reproduce the TDSE findings. The
overestimated magnitude of the nondipole shift is mainly attributed to the different phase used in
CCSFA that is obtained from the phase of Eq. (10.10) by omitting the terms −rcl(t) · ∇V(rcl(t)) and
−zcl(t) ·(ṙcl(t)×B(t−zcl(t)/c)) in the integral. For a quantitative modeling of the maximum’s shift, both
terms are important. Neglecting the interference of the trajectories, the semiclassical simulation reduces
to a classical-trajectory Monte Carlo (CTMC) simulation in 2D. The resulting CTMC distribution has a
much too broad central maximum and its peak position cannot fully reproduce the TDSE result. Thus,
we find that the position of the central lobe in 2D cannot be entirely understood by considering only the
kinematics of the classical trajectories (as it was done in Refs. [153, 156]).
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Figure 10.5: (a) Photoelectron momentum distribution for ionization of helium by ten-cycle cos2 pulses obtained by 2D TDSE
simulations. For the result, the PMDs for intensities 7.0× 1014, 7.5× 1014 and 8.0× 1014 W/cm2 are averaged. (b) Interference
pattern of holography trajectories starting in branch b0, i.e., we show cos2 (∆S/2) with their phase difference∆S in 2D based on
the semiclassical model. Figure is adapted from Brennecke et al. [245].
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The central finger can already be modeled by only considering the two trajectories starting in the
branch b0. Their interference pattern, w ∝ | exp(iS1) + exp(iS2)|

2 = 4 cos2(∆S/2), defined by the phase
difference ∆S is shown in Fig. 10.5(b). In contrast to the simple man’s model, the phase difference ∆S in
a long-range potential varies linearly with pz around the position of the maximum. Hence, for each px,
∆S has a first-order zero crossing which we call the point of constructive interference (POCI). The POCI
mostly determines the position of the central lobe in the PMD (see Fig. 10.6(b)). For large px, the trajecto-
ries only pass by the ionic core for a single time such that the POCI and the simple man’s estimate are in
very good agreement. At low energies, however, there are trajectories that pass by the ionic core multi-
ple times [85, 86, 235] (see for example the trajectories in Fig. 10.4(b) for px = 0.3 a.u.).8 At the boundary
between a single pass-by and multiple pass-bys, the electrons undergo soft recollisions [83–86, 118],
leading to low-energy structures in the PMDs [81–84]. The positions of the low-energy structures can
be estimated as px ≈ E0

ω
1

π(n+1/2) with n ∈ N [86]. For the laser parameters at hand, px ≈ 0.53 a.u. for
n = 1. Hence, at this boundary, the topology of the trajectories change what is reflected as a disconti-
nuity in the phase difference at px ≈ 0.45 a.u. (see Fig. 10.5(b)). Even though the low-energy structures
are only barely visible in the PMD from TDSE, the interference pattern and, especially, the width of the
fringes change around px ≈ 0.45 a.u. As expected, multiple pass-bys present at low energies also mod-
ify the nondipole dynamics [510]. In agreement with the investigation of the Coulomb-focused caustic
in Ref. [510], the magnitude of the nondipole shift of the central fringe decreases at small px for both
TDSE and semiclassical simulations. In the semiclassical model, multiple pass-bys change the phases
associated with each trajectory and, thus, the POCI, explaining the difference compared to the simple
man’s model (which only considers a single forward scattering event).

The width of the central interference fringe is quite small at low energies such that the POCI fully
specifies the maximum’s position of the semiclassical PMD. In contrast, a small difference between
nondipole shift of the semiclassical PMD and the POCI is present at intermediate px. The difference
is mostly caused by nonscattered electrons starting in branches b±1. Since the lateral distribution for
recollision-free ionization is shifted in forward direction (see Eq. (10.1)), the maximum of the complete
distribution in the semiclassical simulation is slightly displaced towards larger pz compared to the POCI.
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10.5.2 Higher-order holographic fringes

For large lateral momenta |pz| where higher-order holographic fringes appear, the two interfering trajec-
tories of branch b0 are quite distinct even in the semiclassical model. One trajectory makes a wide turn

8Strikingly speaking, trajectories with a single pass-by are also deflected to low energies and, hence, the interference structures
visible in the PMD from TDSE are very complex.
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around the ion and it is only weakly perturbed by the ionic potential. In contrast, the other trajectory is
driven back to the vicinity of the parent ion and it is strongly deflected during scattering (see also Sec-
tion 3.4.1). Hence, a clear separation into signal and reference trajectories as in the simple man’s model
is appropriate.

To calculate the position of the higher-order interference fringes for the PMDs from TDSE simulations
or from semiclassical simulations, the distributions are first averaged over an interval ∆px = 0.1 a.u.
Afterwards, for each interference fringe, we determine its position in pz-direction at each px by means
of Gaussian fit in the region around that respective maximum. For a given order of interference maxima,
we quantify the nondipole shift by taking the average value

∆pz(px) =
p+z + p−z

2
, (10.22)

where p+z and p−z are the positions of one maximum in forward direction and one in backward direction.
To further reduce the influence of ATI rings, the extracted shifts as a function of px are again smoothed
by averaging over intervals ∆px = 0.1 a.u. The shifts of the first- and second-order maxima from 2D
TDSE calculations and from the semiclassical model are in very good agreement (see Fig. 10.7(a)). Even
though the absolute positions of the holographic fringes are not correctly predicted by the simple man’s
model of Eq. (10.20) (see also Refs. [122, 234]), the nondipole shifts of the higher-order fringes are well
reproduced by Eq. (10.21). Hence, the modification of the holographic pattern can be mostly attributed
to the phase of the signal wave packet picked up in the electromagnetic field between liberation and
return. For a given px, the shifts of the holographic fringes are indeed nearly independent of the fringe
order and approximately follows the position of the central maximum. Interestingly, the higher-order
fringes are also displaced backwards for momenta px / 1.3 a.u.
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Figure 10.7: (a) Shift of the holographic fringes and (b) forward-backward asymmetry quantified as the ratio of the signal strengths
for the first-order (red lines) and second-order (blue lines) maxima: TDSE results in 2D (pale thick lines) and results from the
semiclassical model including only trajectories starting in branch b0 (dashed lines). In panel (a), the simple man’s model of
Eq. (10.21) is also shown as gray thick line. In panel (b), a semiclassical simulation using the Jacobian in Eq. (10.12) instead of its
square root is additionally presented (dashed-dotted line). Figure is adapted from Brennecke et al. [245].

According to Eq. (10.21), the shift of the interference fringes increases quadratically with the electric-
field strength E0 and the wavelength λ. However, as predicted by Eq. (10.20) and further discussed in
Section 3.4.1, the spacings of the fringes decrease with increasing excursion times of electrons and, thus,
with increasing wavelength [234]. As a result, the fringe spacings and their nondipole displacement are
on the same order of magnitude for mid-infrared laser fields that are often used in today’s experiments.
As an example, a PMD for ionization of helium by laser pulses with 3400 nm wavelength and an inten-
sity of 1.0× 1014 W/cm2 (as used in Refs. [152, 435]) is shown in Fig. 10.8(a). Due to the fringe structure,
the normalized difference ND offers an alternative representation to observe signatures of nondipole ef-
fects in strong-field ionization. This quantity well-known from photoelectron circular dichroism studies
is defined as

ND =
w(px,pz) −w(px,−pz)
w(px,pz) +w(px,−pz)

. (10.23)
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In the dipole approximation, the distributions are forward-backward symmetric and the normalized dif-
ference vanishes. However, beyond the dipole approximation, the normalized difference nearly reaches
the extreme values of ±1 for small and large px (see Fig. 10.8(b)). Around px ≈ 1.3 a.u., the nondipole
shift of the interference pattern is approximately zero and, hence, the normalized difference nearly van-
ishes.
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Figure 10.8: Nondipole effects in photoelectron holography for mid-infrared fields. (a) Photoelectron momentum distributions
for ionization of helium by two-cycle cos4 pulses with 3400 nm wavelength and 1.0 × 1014 W/cm2 intensity from TDSE in 2D.
(b) Corresponding normalized difference of Eq. (10.23). Figure is adapted from Brennecke et al. [245].

The holographic fringes are not only shifted, but their relative emission strength is also modified by
nondipole effects. To quantify the forward-back asymmetry for each px, the ratio of the signal of one
holographic interference maximum in forward and the corresponding one in backward direction is used
(analogous to Section 9.3). The ratios from 2D simulations are again smoothed and shown in Fig. 10.7(b)
as a function of px. The ratios larger one indicate stronger emission in forward than in backward direc-
tion. Asymmetries as large as 1.15 are reached for small px at the second-order maximum. We find that
the semiclassical model already reproduces well the TDSE results for the first and second-order maxima
if the two dominating trajectories departing in branch b0 are only considered. The inclusion of nonscat-
tered electrons of branches b±1 only improves minorly the results for the second-order maximum (not
shown).

In contrast to the HATI process discussed in Chapter 9, forward scattering in long-range potentials
leading to holography cannot be interpreted as a single hard scattering event [208]. Hence, the asymme-
try is influenced by various ingredients. In the semiclassical model, the Jacobian J somehow represents
the “cross section” of the scattering process. By artificially using the Jacobian instead of its square root
in Eq. (10.12), we show that this property of the scattering process is important for a quantitative mod-
eling of the asymmetry (see the dashed-dotted line in Fig. 10.7(b)). Additionally, the distribution of
initial velocities has a decisive influence. The asymmetry ratios decrease by 0.03 for the first-order holo-
graphic maxima (not shown), if the initial distribution from the dipole approximation is used in the
semiclassical model. Hence, even though the influence of the combined laser and Coulomb fields dur-
ing the continuum motion mainly determines the photoelectron holography signal, the distributions of
initial velocities and, thus, under-the-barrier nondipole effects [151] still leave an imprint on the final
momentum distributions.

10.5.3 The central holographic fringe including Coulomb focusing

In two dimensions, the holographic pattern can be described as two-path interference. For large lateral
momenta p⊥, this simple picture is still applicable in 3D. Near the polarization axis, however, Coulomb
focusing leads to a breakdown of the semiclassical approximation such that the physics underlying
the central holographic fringe is modified. In the dipole approximation, a one-dimensional manifold
of classical trajectories with the same magnitude of their transverse initial velocities is mapped to the
same final momentum on the polarization plane, inducing an axial singularity (see Section 3.4 for a
detailed discussion). In contrast to the semiclassical model, in slices through the photoelectron momen-
tum distributions from TDSE simulations in 3D only maxima of finite signal strength appear close to
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the polarization axis, i.e., no nonphysical divergence is present (see Figure 10.9(b)). In this section, we
will study Coulomb focusing beyond the electric dipole approximation and work out an approximate
renormalization of the divergent signal in the semiclassical model.
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Caustic structure

In the semiclassical simulations beyond the dipole approximation in 3D, the probability amplitude also
diverges what is related to zeros of the Jacobian J(tf) in Eq. (10.12). As introduced in Section 3.3.1, a
vanishing Jacobian J(tf) for a given trajectory indicates that there is at least one direction d such that
infinitesimal changes of the initial momenta p̃ → p̃ + εd leave the corresponding final momentum p
invariant to first order of ε. Thus, a plethora of initial momenta is deflected to approximately the same
momentum p, i.e., focusing occurs. This motivates to define a (momentum-space) caustic as the set of
final momenta p with vanishing Jacobian J(tf) for the trajectories starting in branch b0. The nondipole
modifications of caustic were already discussed by Maurer et al. and Daněk et al. [157, 509].

To regularize the singularities in the semiclassical simulations, it is important to study the structure
of the caustic as well as the underlying classical trajectories. To this end, we determine the caustic with
very high resolution, i.e., we determine all lateral momenta {py,pz} with vanishing Jacobian J(tf) for
each momentum px. A slice at fixed px through the resulting structure is shown in Fig. 10.10(a). In
contrast to the dipole approximation where the caustic at fixed px consists of only one point at p⊥ = 0, a
complicated one-dimensional manifold in the space of transverse momenta is visible beyond the dipole
approximation. We find that the size of this structure is proportional to 1/c2. Importantly, the caustic’s
center pcusp

z in the light-propagation direction changes as a function of the momentum px [157, 509] (see
Figs. 10.9(c) and 10.10(b)). This shift along the propagation direction of the light is much larger compared
to the lateral width. Thus, although strictly speaking the type of the caustic is changed (compared to the
dipole approximation), we neglect the finite size of the caustic and treat it like an axial singularity.

For a better understanding, we now consider the trajectories that end up on the caustic. For fixed
final px, these trajectories approximately correspond to the same release time and in the space of initial
transverse velocities they belong to a circle of nonzero radius [155] (see Figs. 10.10(c) and (d)). In a very
simple picture, the nondipole deviation of the electron’s motion can be described as follows [510]. Com-
pared to a potential-free motion, the momentum change during Coulomb focusing can be modeled by
a single scattering event. For the same momentum changes during scattering as in the dipole approx-
imation, the electrons must have the same impact parameters. Thus, to compensate the magnetically
induced drift motion before scattering, the electrons need to start with a small velocity against the light-
propagation direction (analogous to Eq. (10.7) in the simple man’s model). Using these assumptions,
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the position of the classical caustic can be described analytically [510] and coincides with the position of
the central holographic fringe derived in the simple man’s model (see Eq. (10.21)). This simplified result
suggests that the position of the caustic (or to phrase it otherwise the focal point) and the point of con-
structive interference between the electron trajectories coincide. We will use this important observation
to regularize the probability amplitude.
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Figure 10.10: Geometry of the momentum-space caustic present in 3D semiclassical simulations and represented as the two-
dimensional manifold of points with vanishing Jacobian J(tf). (a) Slice at fixed px = 1.5 a.u. through the caustic and (b)
center pcusp

z of the caustic. For all trajectories ending up on the caustic, the initial velocities v0 and the final positions r at the end
of the laser pulse are determined. For fixed final px = 1.5 a.u., the corresponding initial velocities and final positions are shown
in panels (c) and (e). In addition, slices through these structures at fixed v0,y = 0 or y = 0 are shown as a function of px in
panels (d) and (f). The dashed lines indicate the centers for each px. Figure is adapted from Brennecke et al. [245].

Regularization based on the position-space description

To this end, we consider the semiclassical approximation of the propagator 〈p|U(tf, t ′)|r̃〉 which is at
the heart of the semiclassical model of Section 10.3. The semiclassical propagator is obtained from a
path integral formulation by applying a stationary-phase approximation (as described in Section 3.3.1).
Importantly, this is only possible, if the classical trajectories for the given boundary conditions are well
separated [229]. Hence, a vanishing Jacobian J(tf) and the appearance of caustics indicate the break-
down of the semiclassical approximation for the chosen representation of the propagator [263, 511].
Importantly, a caustic is usually not related to a trajectory itself but to the representation of the propaga-
tor [229], i.e., when using another representation finite signal can be obtained. This can be motivated as
follows [229]. For a fixed time tf, we define a manifold in the r-p-phase space of all final positions rcl(tf)

and final momenta kcl(tf) of classical trajectories starting at time t ′ at the position r̃ with arbitrary initial
momenta p̃. If the (momentum-space) Jacobian J(tf) of Eq. (10.11) vanishes at some point on the mani-
fold, the final momenta p are not “good” coordinates for a chart of the manifold in the relevant region.
However, other coordinates as the final positions r may well parameterize a chart in this region.
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The basic idea to regularize the propagator 〈p|U(tf, t ′)|r̃〉 in a certain region of final momenta is to
use the semiclassical approximation for another representation of the propagator that should be regular
in the corresponding region [229]. Here, instead of directly evaluating the amplitude M(p) in the semi-
classical approximation, we first calculate the position representationM(r) of the released electron wave
packet at a time tf. The momentum-space amplitude is afterwards calculated by Fourier transformation

M(p) =
1

(2π)3/2

∫
drM(r)e−ip·r. (10.24)

This regularization procedure was recently applied to Coulomb focusing in the dipole approxima-
tion [158]. There, it has been argued that the laser-induced rescattering process can be treated similar to
glory scattering [514, 515]. Here, we extend this regularization beyond the dipole approximation.

For the semiclassical treatment of M(r), the same initial conditions and associated probabilities are
used for the real-valued trajectories during continuum motion as in the model of Section 10.3. A semi-
classical treatment of the propagator 〈r|U(tf, t ′)|r̃〉 in position space can be found in the textbook [256].
To evaluate the position-space amplitudeM(r), all classical trajectories leading to a given final position r
at time tf need to be determined. Analogous to the momentum-space representation, we identify two
relevant trajectories for each position r that start in the half cycle b0 and that form the holographic pat-
tern.9 For final y > 0 and small z, one trajectory passes the parent ion in the range y > 0 and the other
in the range y < 0. Using the position-space amplitude M(r) in the semiclassical approximation for a
single branch of trajectories, we approximate the corresponding momentum-space amplitude as (up to
an overall phase)

M(p) ≈ 1
(2πi)3/2

∫
dr |Mion|

∣∣∣∣det
[
∂r(tf)
∂p̃

]∣∣∣∣−1/2

ei(Re(S0
↓)+Ip(t

′
r−tA)+S→+(kcl(tf)−p)·r). (10.25)

Here, compared to the momentum-space phase S→ of Eq. (10.10) used earlier, an additional phase
term (kcl(tf) −p) · r appears in the position-space description (see for example Ref. [122]). We neglected
Maslov’s phase and introduced the ionization amplitude |Mion| = | exp(i(S0

↓ + Ipt
′
s))|. To check the ac-

curacy of Eq. (10.25), we calculated the amplitude in 2D by numerical integration and found perfect
agreement with the result of the semiclassical model (10.12) (not shown).

However, for an analytical description, simplifications of Eq. (10.25) are needed. If the saddle-
point method (see Section 2.3.1) would be applied to the position integral in Eq. (10.25), the ampli-
tude (10.12) of the semiclassical model would be retrieved [229] and, hence, a caustic close to the po-
larization axis would appear again. However, importantly, the Coulomb focusing mainly “acts” in
the lateral directions. Thus, in order to avoid nonphysical behavior, we only apply the saddle-point
method to the x-integration (polarization direction). The associated saddle-point equation is given by
px ≈ ∂x(S→ + kcl(tf) · r). Importantly, in Eq. (10.10), S→ is a function of the final momentum p. When
using the chain rule and rcl(tf) = −∇pS→, one finds px ≈ kcl,x(tf) [229]. Hence, in the trajectory simu-
lations, we now need to determine all trajectories ending up at time tf with a given momentum px and
given lateral positions y and z. After the SPA, Equation (10.25) can be approximated as (up to an overall
phase)

M(p) ≈ 1
2πi

∫
dydz P(px,y, z) ei(Re(S0

↓)+Ip(t
′
r−tA)+S→+(kcl,y(tf)−py)y+(kcl,z(tf)−pz)z). (10.26)

We introduced the preexponential factor

P(px,y, z) = |Mion|

∣∣∣∣det
[
∂(kx(tf),y(tf), z(tf))

∂p̃

]∣∣∣∣−1/2

, (10.27)

where mixed-space determinant can be calculated numerically (similar to the Jacobian J). The remaining
integrals over the lateral positions need to be considered more carefully. To this end, we analyze the
properties of the integrand.

9Strictly speaking, there is also a caustic region in the position-space amplitude where this simple picture breaks down (see the
discussion below).
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We are only interested in an approximation for momenta around the momentum-space caustic. For
fixed px and a given time tf, we first consider the final positions of the trajectories that belong to
the momentum-space caustic (see Fig. 10.10(e)). The final positions form approximately a circle with
nonzero radius r0

px
and with its center being displaced in the light-propagation direction to z0

px
. A slice

at y = 0 through this circle is shown as a function of px in Fig. 10.10(f). To simplify the integration in
Eq. (10.26), it is advantageous to shift the origin of the coordinate system for each fixed px to the center
of the circle z0

px
and introduce polar coordinates (r,φ) with

y = r sin(φ) = y ′, z = z0
px

+ r cos(φ) = z0
px

+ z ′. (10.28)

In the next step, the phase in Eq. (10.26) is considered. We already found that both the central fringe in
the TDSE simulation and the classical caustic are displaced to finite momenta pz in the light-propagation
direction. This motivates us to introduce a new set of final momenta

py = p ′y, pz = p ′z + δpz. (10.29)

The unknown δpz depends on the fixed final px and will be determined later. In addition, we define a
modified phase

S̃(px, r,φ) = Re(S0
↓) + Ip(t

′
r − tA) + S→ + kcl,y(tf)y+ kcl,z(tf)z− δpzz

′ (10.30)

such that the associated momentum fields p ′y and p ′z are approximately given as the derivatives10 of S̃

p ′y ≈ ∂S̃/∂y ′ and p ′z ≈ ∂S̃/∂z ′. (10.31)

Using these definitions, we rewrite Eq. (10.26) as

M(p) =
1

2πi
e−ipzz0

px

∫
dr r
∫

dφP(px, r,φ) eiS̃(px,r,φ)e−i(p′yy′+p′zz′). (10.32)

Here, we use also the new coordinates for the preexponential factor P(px, r,φ) of Eq. (10.27).
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Figure 10.11: (a) Transformed phase S̃ of Eq. (10.30) for fixed δpz at the end of the laser pulse as function of final positionsy and z
at fixed px = 1.5 a.u. (see main text). S̃ is shifted to zero at the minimum. The black line indicates the positions of trajectories
with vanishing momentum-space Jacobian J(tf) and approximately marks the circle of minimal phase. (b) Slice through the
phase map S̃ at fixed z = z0

px . The solid line corresponds to the branch shown in panel (a) whereas the dashed line shows the
other branch that is important for the formation of holographic interference. (c) Corresponding prefactor P of Eq. (10.27) for the
two branches shown in panel (b). Figure is adapted from Brennecke et al. [245].

10The relation would be exact [229], if we had not assumed a correlation for the initial conditions.
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The idea of glory scattering

For photoelectron holography, there are two relevant branches of trajectories. Their phases S̃ and the
preexponential factor P are shown in Figs. 10.11(b) and (c) for fixed z ′ = 0, respectively. Here, small

lateral momenta p ′⊥ =
√
p ′2y + p ′2z are only studied which are mostly determined by the vicinity of the

minimum of S̃ (see also Eq. (10.31)). This motivates us to take only the branch with a minimum of S̃ into
account (blue solid line in Fig. 10.11(b)).

In the dipole approximation, the prefactor P as well as the phase S̃ are rotationally symmetric and,
thus, independent ofφ such that theφ-integration in Eq. (10.32) can be analytically performed [158]. The
idea is now to choose the parameter δpz in a way that this is also possible beyond the dipole approxima-
tion. To this end, for each px, the constant δpz is fixed by minimizing the variation of the phase S̃ on the
circle r = r0

px
of vanishing Jacobian.11 The resulting phase S̃ is shown in Fig. 10.11(a) for px = 1.5 a.u.

The special choice of δpz ensures that the phase S̃ is indeed approximately constant for fixed r in the
vicinity of the minimum of S̃, i.e., S̃ is approximately a rotationally symmetric in the y ′-z ′-plane. In
the relevant region, the preexponential factor P also depends only weakly on the angle φ. Hence, simi-
lar to the dipole approximation, the φ-integration reduces to an integration of the plane-wave factor in
Eq. (10.32) and the result is proportional to the zeroth-order Bessel-function J0(rp ′⊥).

For small p ′⊥, the remaining r-integration is approximated by means of the saddle-point method. In
this special case, the saddle-point equation is also known as the glory condition. It defines the impact
parameter rg [158, 515]

∂S̃(px, r)
∂r

∣∣∣∣
r=rg

= 0, (10.33)

where the phase S̃ has a minimum (see Fig. 10.11(b)). We find that the impact parameter rg is approxi-
mately the same as the radius r0

px
corresponding to vanishing Jacobian J(tf). Thus, rg depends on the

momentum px (see also Fig. 10.10(f)). In the vicinity of the central maximum of the PMD in 3D, the
probability amplitude is approximated as (up to an overall phase factor)12

M(p) ≈ e−ipzz0
px rgP(px, rg)J0

(
rg

√
p2
y + (pz − δpz)2

)√ 2π
∂2
rS̃(px, rg)

eiS̃(px,rg). (10.34)

Similar to the dipole approximation [158], the result can be interpreted as the constructive interference
of an infinite number of Coulomb-focused semiclassical paths with glory impact parameter rg that give
rise to a Bessel-type interference pattern with a pronounced maximum located at δpz. In Fig. 10.9(b), the
result of Eq. (10.34) is compared to the TDSE result in 3D for a 1D slice through the PMD at py = 0 and
px = 1.5 a.u. Here, the same normalization is used for the glory model and the semiclassical model. We
find that the overall shape of the central maximum is well reproduced by the glory model. However,
for larger lateral momenta, the glory approximation breaks down and the model of Section 10.3 should
be used.

As described above, the simplification of the φ-integration was only possible by fixing the param-
eter δpz for each px individually. Interestingly, we find that the position pcusp

z of the caustic of the
(momentum-space-based) semiclassical model and the maximum’s position δpz of the glory model only
hardly differ (see Fig. 10.9(c)). For comparison, the maximum’s position is also extracted from a slice
at fixed py = 0 through PMD obtained by the numerical solution of the TDSE in 3D (see the gray
dashed line). Similar to the 2D situation, all levels of theory perfectly agree for momenta lower than
px ≈ 0.45 a.u. However, for higher momenta, deviations between the model results and the TDSE re-
sult are visible. In this region, the slight asymmetry in the preexponential factor (neglected in the glory
model) and the effect caused by nonscattered electrons from branches b±1 influence the maximum’s po-
sition. In 3D compared to 2D, Coulomb focusing leads to an increased relative weight of the trajectories

11The remaining phase variation at constant r = r0
px is smaller than 10−3 for all considered px.

12Strictly speaking, the prefactor P is singular in the vicinity of r = 0, but the factor r in the integral of Eq. (10.32) strongly
damps the integrand in this region. In addition, for larger lateral momenta p ′⊥, the other branch of trajectories needs to be
considered in the formation of the holographic pattern.
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of branch b0 compared to the nonscattered trajectories of branches b±1. However, at the same time, the
central maximum is broader in 3D and, hence, more easily perturbed by the mentioned influences.

10.6 Conclusion

In this chapter, strong-field photoelectron holography in linearly-polarized fields was studied beyond
the electric dipole approximation. To this end, photoelectron momentum distributions from the numer-
ical solution of the TDSE including leading-order nondipole corrections were first presented. In agree-
ment with previous works [153, 156], we observed a nonuniform displacement of the holographic pat-
tern along the light-propagation direction, i.e., the shift depends on the momentum component px along
the polarization axis. The fringes are shifted backward for low and forward for high momenta px. As-
tonishingly, when considering only the dynamics in reduced dimensionality (2D) or using short-range
potentials, we found nearly the same nondipole shifts of the holographic pattern as in 3D simulations
for long-range potentials.

To model photoelectron holography, the superposition of the signal and reference electron wave
packets needs to be considered. It turned out that the nondipole modification of their phase difference
is crucial to describe the interference. We derived an analytical Coulomb-free model based on the three-
step picture which is able to qualitatively explain the nondipole shifts of the fringes. The displacement
increases as a function of the intensity and the wavelength of the laser. Hence, especially for mid-
infrared light sources, the nondipole shift is on the same momentum scale as the fringe spacing, resulting
in high contrast of the normalized forward-backward difference. We can already conclude that in this
range of laser parameters nondipole effects must be included for a faithful description.

We extended the semiclassical model of Chapter 3 beyond the electric dipole approximation to de-
scribe the nondipole modifications of the interference pattern in the presence of a long-range Coulomb
potential. This trajectory-based description treats the influence of the electromagnetic field and Coulomb
effects on the same footing, thus covering also (multiple) soft recollisions of the electrons. Compared
to models in the dipole approximation [121, 122], the semiclassical phase associated with each electron
trajectory contains an additional term. The correct phase from the strong-field approximation is only re-
trieved in the Coulomb-free situation if this term is included. Furthermore, the term is important for the
full agreement of the semiclassical model with the numerical TDSE simulations in 2D. We can conclude
that the semiclassical model allows a quantitative investigation of the interplay between nondipole ef-
fects and the Coulomb effects for interference structures in strong-field ionization. The trajectory-based
description may allow in the future a simple study of other geometries of the laser field, e.g., for different
ellipticities or two-color fields. This is especially interesting for strong-field ionization in mid-infrared
fields (such as those used in Refs. [152, 157, 435, 513]), where the numerical TDSE simulations are quite
challenging. In our model, we used tunnel-exit positions including nondipole modifications (see also
Ref. [479]). In future work, it could be interesting to study its influence on interference patterns. To
this end, an analysis of the HASE interferometer of Chapter 6 as a function of the momentum in the
light-propagation direction could be promising.

The simple two-path-interference picture of holography breaks down in the vicinity of the polariza-
tion axis for systems in full dimensionality (3D). There, Coulomb focusing causes an enhancement of the
yield in the TDSE simulations and induces a caustic in semiclassical simulations. We investigated the
nondipole modifications of the geometry of the caustic and of the underlying classical trajectories. This
enabled us to regularize the nonphysical divergence by extending the glory-rescattering approach [158]
beyond the dipole approximation. The glory approach explains the enhancement and the broadening of
the central holographic maximum and it allows the description of the nondipole shift of this maximum
without invoking any (nonphysical) divergent structures.



Chapter 11

Summary and Conclusion

Strong-field physics offers the promise to investigate the quantum dynamics of atoms and molecules
with attosecond time resolution and angstrom spatial resolution. To reach this longstanding goal, novel
schemes need to be developed and existing approaches need to be tested. From a theoretical point
of view, the basis for such innovations is an in-depth understanding and a faithful modeling of the
underlying physical phenomena. Contributing to this development, this thesis provides a theoretical
study and an explanation of selected aspects of strong-field ionization.

Simulations of the time-dependent Schrödinger equation (TDSE) for one electron interacting with
an external electromagnetic field in the presence of the ionic potential formed the foundation of our
investigations by providing “numerically-exact” reference solutions. We mainly considered the final
photoelectron momentum distributions. Various observables were compared to experimental measure-
ments, kindly provided by several researchers. The occurring phenomena were interpreted intuitively
using simplified models. To this end, we developed and refined several approaches that are either
based on the strong-field approximation or rely on a trajectory-based description of the electron dy-
namics within a semiclassical approximation. In particular, the second part of this work considered a
theoretical description of strong-field ionization beyond the electric dipole approximation.

Several combinations of ionizing targets and external electromagnetic fields were studied. This en-
abled us to investigate processes that show the electron’s particle character—as in the acceleration of
the released electron by the electromagnetic field and the appearance of recollisions—as well as the
electron’s wave character—as in tunnel ionization, focusing, interference, and diffraction. The aspects
studied in the main chapters can be summarized as follows.

In Chapter 3, we studied the focusing of electron waves in strong-field ionization. Coulomb focusing
caused by the interplay between the external electromagnetic field and the electron-ion attraction acts
similar to a lens in optics and forces scattered electron wave packets through focal points. In agree-
ment with Gouy’s phase anomaly for light waves, the phases of the electron wave packets change when
passing through focal points. We demonstrated that these additional phases become observable when
considering interference between different kinds of electron waves such as in photoelectron holography
or intracycle interference. The phase anomaly does not only appear in linear polarization but also in
other waveforms that give rise to rescattering. As a result, the focal-point structure of a system influ-
ences decisively the formation of interference structures in photoelectron momentum distributions. For
a quantitative interpretation, we refined the trajectory-based semiclassical description of strong-field
ionization. There, the focusing effects of electron waves are encoded in a prefactor of the exponentiated
action. Its proper inclusion is crucial for the excellent agreement of our model with TDSE results.

In Chapter 4, we demonstrated the control of electron wave packets at the continuum threshold by
means of near-single-cycle terahertz pulses. The wave packets are prepared by multiphoton absorption
in a femtosecond laser pulse and they comprise both low-energy continuum and Rydberg contributions.
The precise timing of the laser pulse on the scale of an optical cycle of the terahertz field enabled us to
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switch between various regimes of dynamics that were imaged by the photoelectron momentum dis-
tributions. We identified regions of recollision-free motion where the momentum distributions encode
information on the energy distribution and the angular structure of the prepared wave packet. In ad-
dition, various recollision phenomena were observed and intuitively explained by means of a classical
trajectory model. These effects, such as Coulomb focusing, photoelectron holography, or large-angle
scattering, are reminiscent of well-known strong-field processes, but in terahertz fields, they occur on
much larger time and length scales. Furthermore, we considered the yield of zero-energy electrons and,
especially, the influence of a tail of the terahertz pulse on their dynamics.

In Chapter 5, we applied the attoclock scheme to study recollision-free strong-field ionization in two-
dimensional fields. The Coulomb force on the outgoing electrons modifies the photoelectron momentum
distributions. We found that the resulting attoclock offset depends on the lateral electron momentum,
i.e., on which slice of the momentum distribution is analyzed. Within a trajectory-based modeling,
this momentum-dependent attoclock offset is sensitive to the exit position at the instant of tunneling.
For close-to-circularly-polarized fields, the attoclock angles are also strongly influenced by the shape
of the released wave packet and by a nonadiabatic decrease of the tunnel-exit position. To avoid these
complications, a bicircular laser pulse was applied, resembling linear polarization around the time of
peak field strength. In this quasilinear setup, we investigated the adiabatic limit of strong-field ioniza-
tion. We compared TDSE simulations and various models to reveal their weaknesses. To explore the
initial-velocity dependence of the tunnel-barrier width, a momentum-space-based implementation of
the classical backpropagation method was considered as an improvement to the previously-used real-
space-based backpropagation.

In Chapter 6, we investigated the influence of the molecular structure on the electron wave packet
created by recollision-free strong-field ionization of the hydrogen molecule H2. In contrast to most
earlier works, the phase of the momentum-space wave function was considered, carrying spatial in-
formation on the electron wave packet. We extracted the phase from TDSE simulations and found a
spatial offset of the electron’s birth position after tunneling, which depends on the electron’s emission
direction relative to the molecular axis. For circular polarization, the modulation of the position offsets
is influenced strongly by nonadiabaticity and depends weakly on the long-range part of the molecu-
lar potential. In experiments, the phase information is only accessible by interferometric approaches
as recently suggested in Ref. [69]. Based on the strong-field approximation, we refined this interfer-
ometric scheme and retrieved position offsets from numerical TDSE experiments for short-range and
long-range potentials. The excellent agreement of the results from the interferometric approach and the
theoretically-accessible phase is an important benchmark, demonstrating that the orbital imprint on the
spatial structure of the emitted electrons is experimentally accessible.

In Chapter 7, we studied the structure of (nonresonant) above-threshold ionization rings beyond
the electric dipole approximation. In the dipole approximation, the multiphoton generalization of Ein-
stein’s photoeffect law predicts kinetic electron energies that are independent of the electron’s emission
direction. Beyond the dipole approximation, however, we confirmed a displacement of the ATI rings
in TDSE simulations. The rings are shifted against the light-propagation direction, i.e., opposite to the
radiation pressure. We identified a nondipole modification of the ac Stark effect for electron continuum
states as the reason.

In Chapter 8, we explored nondipole effects in recollision-free and interference-free strong-field ion-
ization. Whereas previous works mostly focused on the total average momentum transfer in the light-
propagation direction, we found that the momentum transfer depends in general on the momentum
component of the electron in the polarization plane. Studying this differential observable allowed us to
reveal the microscopic mechanisms of nondipole effects and to identify their imprint on measurable pho-
toelectron momentum distributions. First, we theoretically investigated the attoclock protocol to time
resolve the momentum transfer on a subcycle time scale [435] and to consider the interplay between
Coulomb and nondipole effects. Furthermore, the classical backpropagation approach was applied to
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disentangle nondipole effects during tunnel ionization and the subsequent continuum motion. A classi-
cal description of the continuum propagation allowed us to separate the imprint of magnetic-field effects
from those due to the spatially-dependent electric field on the photoelectron momentum distributions.
TDSE results for a quasilinear field and a circularly-polarized field confirmed these findings.

In Chapter 9, we focused on beyond-dipole modifications of high-order above-threshold ionization.
This process relies on large-angle scattering of recolliding electrons such that the nondipole effects ob-
served in the photoelectron momentum distributions are highly target sensitive. As prototypical atomic
and molecular targets, we studied xenon and the hydrogen molecular ion H +

2 . For H +
2 , the nondipole

modifications of the molecular-interference pattern depend on the molecular orientation relative to the
polarization axis. The high-energy photoelectron momentum distributions for xenon and H +

2 at perpen-
dicular alignment show a pronounced maximum close to the polarization axis. While the peak positions
in the light-propagation direction are displaced for both targets, the magnitude of the shift is different
for atoms and molecules. For an intuitive interpretation, we presented a three-step model, including an
accurate description of the rescattering step using a target-specific differential scattering cross section.
For xenon, the shift is related to backscattering electrons that transfer a considerable amount of their
momentum to the ion during recollision. In contrast, the maximum in H +

2 arises from the molecular
interference and the nondipole shift is determined by the total momentum gain of the electron before
and after scattering.

In Chapter 10, we investigated the nondipole modifications of the interference pattern in strong-field
photoelectron holography. TDSE simulations revealed that the nonuniform displacement of the interfer-
ence fringes in the light-propagation direction is nearly independent of the considered dimensionality
and the details of the ionic potential. We explained these beyond-dipole shifts qualitatively by an intu-
itive Coulomb-free two-path-interference model. For an interpretation in the presence of the long-range
Coulomb potential, we extended our semiclassical model beyond the dipole approximation. To reach
quantitative accuracy compared to TDSE simulations, it is not sufficient to consider only the nondipole
modifications of the classical trajectories, but instead a nondipole contribution to the semiclassical phase
must be accounted for. Furthermore, Coulomb focusing in 3D leads to a changed physical mechanism
for the formation of the central holographic maximum, requiring a beyond-dipole regularization pro-
cedure based on the concept of glory scattering. For mid-infrared laser fields, our results showed that
the displacement of the interference fringes is in the same order as the fringe spacing and, thus, must be
taken into account for a faithful interpretation.

In this thesis, a variety of experimental observations in strong-field ionization were theoretically
reproduced and explained. For example, we considered the influence of focal-point phases on the fringe
positions in photoelectron holography, provided a theoretical benchmark for the attoclock offsets for
nonadiabatic ionization of atomic hydrogen, and investigated several signatures of nondipole effects.
Furthermore, we revealed interesting phenomena which were later experimentally observed, such as
the nondipole modifications in high-order above-threshold ionization or the linear dependence of the
nondipole shift on the initial electron velocity in recollision-free strong-field ionization. Even though the
foundations of strong-field physics were already laid 30 years ago, there are various unexplored aspects
in the interaction of intense laser pulses with different types of matter. At the end of each chapter, specific
ideas for future research were given. In general, interesting directions are for sure the applications of
more complex tailored laser fields, the investigation of the rich dynamics in molecules, and the study of
entanglement between electronic and nuclear degrees of freedom on an ultrafast timescale.





Appendix A

Methods

A.1 Introduction to scattering theory

In this thesis, phenomena in strong-field ionization are discussed. However, we often face one of the
following two situations:

(a) A light pulse of finite duration induces ionization. After the end of the pulse at time tf, the motion
of the created electron wave packet is only governed by the field-free Hamiltonian H0 = K + V(r)
with K = 1

2 p̂2. However, the experimentally-accessible photoelectron momentum distribution
needs to be evaluated at large times t → ∞. Hence, in principle, the out-spreading electron wave
packet must be covered up to large distances.

(b) A light pulse creates an electron wave packet that is driven back to the parent ion and may rescat-
ter. Under certain circumstances, we can treat this as a light-field-free scattering process and are
interested in the distribution of the scattered electrons.

In this section, we introduce certain aspects of scattering theory (based on the book [516]) that are used
to simplify the treatment of both scenarios. To keep the discussion simple, we first assume a short-range
potential.1

For a proper state
∣∣ψ〉 at time t = 0, the time evolution under the field-free Hamiltonian H0 is given

by the time-evolution operator U0(t) = e−iH0t. Suppose that the orbit U0(t)
∣∣ψ〉 describes the time

evolution in some scattering experiment. After the collision, the wave packet is localized far away from
the scattering center and behaves like a free wave packet. We have

U0(t)
∣∣ψ〉 −−−→

t→∞ e−iKt
∣∣ψout

〉
(A.1)

for some vector
∣∣ψout

〉
that is called out asymptote of the actual state

∣∣ψ〉. Similarly, an in asymptote
∣∣ψin

〉
can be defined by considering early times t→ −∞. Each vector

∣∣ψout
〉
∈ H is an out asymptote of some

actual orbit with a state
∣∣ψ〉 at t = 0 and the same applies for in asymptotes. It is possible to define

so-called Møller operatorsΩ± as follows∣∣ψ〉 = lim
t→+∞U†0(t)e−iKt

∣∣ψout
〉
= Ω−

∣∣ψout
〉
,∣∣ψ ′〉 = lim

t→−∞U†0(t)e−iKt
∣∣ψin

〉
= Ω+

∣∣ψin
〉
.

(A.2)

Due to the appearance of bound states, not every
∣∣ψ〉 ∈ H defines an orbit that has in and out asymp-

totes. Instead, the image C = {Ω±
∣∣ψ〉, ∣∣ψ〉 ∈ H} of the Møller operators is orthogonal to the subspace

of bound B states and can be identified with the continuum states. Both spaces span the whole Hilbert
space H = C

⊕
B. For a state

∣∣ψ〉 in the continuum C, the out asymptote is given by∣∣ψout
〉
= Ω†−

∣∣ψ〉 = Ω†−Ω+

∣∣ψin
〉
. (A.3)

1More precisely, the potential should fulfill V(r) = O
(
r−3) for r→∞ and V(r) = O

(
r−3/2

)
for r→ 0.
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For the further analysis, it is useful to introduce (improper) stationary scattering states∣∣k(±)〉 = Ω±∣∣k〉 with plane-wave states
∣∣k〉. (A.4)

Using Eqs. (A.3) and (A.4), the expansion of an out asymptote can be written as〈
k
∣∣ψout

〉
=
〈
k
∣∣Ω†−∣∣ψ〉 = 〈k(−)

∣∣ψ〉. (A.5)

Hence, the out asymptote
∣∣ψout

〉
has the same expansion in terms of plane waves

∣∣k〉 as the corre-
sponding state

∣∣ψ〉 at time t = 0 in terms of the scattering states
∣∣k(−)

〉
. In the simulation of electron

momentum distributions (see Section 2.2), we need to determine these expansion coefficients of the
out asymptote. Equation (A.5) allows us to calculate these coefficients based on the knowledge of the
state

∣∣ψ〉 at finite time. The question remains how to determine the stationary scattering states explicitly.
The stationary scattering states are orthogonal to each other,

〈
p(±)

∣∣k(±)〉 = δ(p−k), and form a basis
of the continuum C. They fulfill the time-independent Schrödinger equation

H0
∣∣k(±)〉 = Ek

∣∣k(±)〉 with Ek = k2/2. (A.6)

It can be shown that the stationary scattering states also be expressed as∣∣k(±)〉 =∣∣k〉+G0(Ek ± i0)V
∣∣k〉

=
∣∣k〉+GK(Ek ± i0)V

∣∣k(±)〉, (A.7)

with the Green’s operators defined by

G0(z) = (z−H0)
−1 and GK(z) = (z− K)−1. (A.8)

Equation (A.7) can be used to derive the asymptotic form of the wave function ψ(±)
k (r) =

〈
r
∣∣k(±)〉 at

large distances r (in 3D)

ψ
(±)
k (r) =

〈
r
∣∣k(±)〉 −−−→

r→∞ 1
(2π)3/2

[
eik·r − (2π)2〈± kr̂

∣∣V∣∣k(±)〉e±ikr

r

]
. (A.9)

The asymptotic form of the wave function ψ(+)
k (r) =

〈
r
∣∣k(+)

〉
is an “incident” plane wave plus a spher-

ically spreading scattered wave. Hence,
〈
r
∣∣k(+)

〉
is often interpreted as an infinite steady beam of parti-

cles scattering off V . In the context of potential scattering, it is useful to define a scattering amplitude

f(k ′ ← k) = −(2π)2〈k ′∣∣V∣∣k(+)
〉

(A.10)

that is related to the elastic scattering differential cross section (DCS) by

σ(k ′ ← k) = |f(k ′ ← k)|2 . (A.11)

In strong-field ionization, we usually deal with neutral systems of electrons and ions. Hence, for
positively-charged ions, the potentials V covering the electron-ion interaction are long range, i.e., V
behaves at large distances r like a Coulomb potential −Z/r. Hence, the potential influences the outgoing
electron even if it is far away. As a result, the concept of in and out asymptotes cannot be applied and the
rigorous mathematical description is complicated. Luckily, we are only interested in some asymptotic
quantities such as the momenta or energies. In this case, a weaker asymptotic condition than Eq. (A.1)
can be formulated and many of the results are still valid, if the plane waves are replaced by Coulomb
states. Here, we will only summarize the equations that are important for this thesis. For a bare Coulomb
potential VC(r) = −Z

r
, stationary scattering states ψ(+)

C,k (r) can be defined that need to fulfill the time-
independent Schrödinger equation (A.6) and behave asymptotically as

ψ
(+)
C,k (r) −−−−−−→

r−k̂·r→∞
1

(2π)3/2

[
ei[k·r+η ln(kr−k·r)] + fC(kr̂← k)

ei[kr−η ln(2kr)]

r

]
(A.12)
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with the Sommerfeld parameter η = −Z/k. Introducing the scattering angle θ = ](k, k ′), the Coulomb
scattering amplitude is given by

fC(k ′ ← k) =
2Z
q2 e

2iσ0(k)e−iη ln(sin2(θ/2)) = −
η

2k sin2(θ/2)
e2iσ0(k)e−iη ln(sin2(θ/2)) (A.13)

with q = k − k ′ and the Coulomb phase shifts defined by σl(k) = arg Γ (l+ 1 + iη). In general, we
consider potentials of the following form

V(r) = VS(r) −
Z

r
, (A.14)

where VS is a short-range part. In this case, an additional amplitude fSC appears that is related to the
additional scattering at the short-range part VS of the potential in the presence of the long-range poten-
tial −Z/r. Similar to Eq. (A.11), the DCS can be written as

σ(k ′ ← k) = |fC(k ′ ← k) + fSC(k ′ ← k)|2 . (A.15)

The following section describes the procedure for an explicit calculation of fSC and is based on Ref. [496].

A.1.1 Calculation of scattering states for rotationally-symmetric systems

For rotationally-symmetric potentials V(r) = V(r), the calculation of stationary scattering states is par-
ticularly simple. We consider potentials of the form (A.14) such that in the limit of vanishing asymptotic
charge Z → 0 the results for a short-range potential can be retrieved. The scattering states can be ex-
panded in terms of spherical harmonics Yml (θ,φ) (see for example Ref. [517])

ψ
(±)
k (r) =

√
2
π

1
kr

∑
l,m

ile±i[σl(k)+δl(k)]Rl,k(r)Y
m
l (r̂)Ym∗l (k̂) (A.16)

with real-valued radial functions Rl,k(r). Since ψ(±)
k fulfills the time-independent Schrödinger equa-

tion (A.6), the corresponding Rl,k(r) have to satisfy the radial Schrödinger equation(
−

1
2

d2

dr2 +
l(l+ 1)

2r2 + V(r) −
k2

2

)
Rl,k(r) = 0. (A.17)

This ordinary differential equation can be numerically integrated using Numerov’s method. The radial
functions can be written at large distances as

Rl,k(r) = AFl(kr) + BGl(kr) −−−→
r→∞ sin

(
kr−

π

2
l+ σl(k) + δl(k) − η ln(2kr)

)
. (A.18)

Here, we introduced the regular and irregular Coulomb wave functions (Fl and Gl). This equation can
be used to extract the phase δl by considering tan(δl(k)) = B/A. The phase δl is related to the additional
phase shift caused by the short-range deviation of the potential from a pure Coulomb potential −Z/r.
The phases σl(k) and δl(k) influence many properties of the scattering process such as the scattering
states (A.16), Wigner time delays or scattering amplitudes. For example, the short-range part of the
scattering amplitude reads

fSC(k, θ) =
1
k

∞∑
l=0

(2l+ 1)e2iσl(k)eiδl(k) sin δl(k)Pl(cos θ) (A.19)

with the Legendre polynomials Pl. For a given momentum k, the phase shift δl(k) converges usually to
zero as a function of l and, hence, the summation in Eq. (A.19) can be truncated at some finite lmax.
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A.2 Numerical solution of the time-dependent Schrödinger equation

The time-dependent Schrödinger equation (2.17) determines the time evolution of a quantum-mechanical
system from its initial state

∣∣ψ0
〉

at a time tA to its final state
∣∣ψ(tf)〉 at a time tf. Formally, the solution

can be expressed by means of the unitary time-evolution operator U∣∣ψ(tf)〉 = U(tf, tA)∣∣ψ0
〉
. (A.20)

However, for a time-dependent Hamiltonian H(t), the time-evolution operator is generally not analyti-
cally known. One way to tackle this problem is to divide the whole time window from tA to tf in small
time slices [tn, tn+1] of length ∆t. The full time evolution can be written as a time-ordered product of
short-time propagators ∣∣ψ(tf)〉 = T

(∏
n

Un

)∣∣ψ0
〉

(A.21)

with the time-ordering operator T. For sufficiently short intervals, the Hamiltonian can be approximated
as time-independent operatorH(n) = H(tn+∆t/2) on each interval. Thus, the corresponding short-time
propagator is approximately given by

Un = U(tn+1, tn) ≈ exp
(
−iH(n)∆t

)
. (A.22)

The explicit application of the short-time propagator to a given state is by no means trivial. To this end,
different schemes were used successfully in strong-field physics such as the split-operator methods [518,
519], the Cranck-Nicolson algorithm [520], the second-order differencing scheme [521], the Chebyshev
method [522] or the Lanczos method [523].

In this work, two approaches based on the split-operator technique are used. The idea is to split the
Hamiltonian as H(n) = H1 + H2 and approximate the short-time propagator by using a Trotter-Suzuki
decomposition as

Un ≈ e−iH(n)∆t = e−iH1
∆t

2 e−iH2∆te−iH1
∆t

2 + i
∆t3

24
[H1 + 2H2, [H1,H2]] + O

(
∆t4) . (A.23)

For an efficient propagation scheme, the splitting must be done in a way that there are representations
of the state such that the exponentials can be easily applied and that the conversions between the repre-
sentations can be efficiently implemented. These aspects are linked to the discretization schemes used
to represent the electronic state such as representations on numerical grids or expansions in basis sets.
A complication in strong-field physics is that usually both the bound states and the continuum must
be described properly. Hence, for the simulation of photoelectron momentum distributions, the dis-
cretization scheme has to satisfy two requirements: (i) close to the ionic core a high spatial resolution is
required and (ii) the spreading photoelectron wave packet needs to be covered (at least till the end of the
laser pulse). We use two different schemes to deal with these problems: (i) The generalized pseudospectral
method in spherical coordinates is based on a pseudospectral decomposition of the field-free Hamiltonian.
To this end, the angular dependence of the wave function is expanded in spherical harmonics and the
radial coordinate is discretized on a nonuniform grid. (ii) The Cartesian split-operator method is based on
a representation of the wave function on Cartesian grids and on efficient implementations of the Fourier
transformations to switch between position and momentum-space representations.

A.2.1 Generalized pseudospectral method in spherical coordinates

The method was originally developed to calculate the HHG signal in linearly-polarized fields [519].
Recently, it was extended to two-dimensional waveforms and to simulate photoelectron momentum
distributions [524, 525]. Here, however, we present a modified implementation that is especially well
suited to calculate photoelectron momentum distributions at low energies and to describe the dynamics
in moderately-strong light fields. To this end, we consider the system in the dipole approximation and
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use the length gauge with an interaction Hamiltonian HI = r · E(t). In addition, we restrict ourselves
to rotationally-symmetric potentials V(r). Hence, the main idea is to use the field-free Hamiltonian
H0 = p̂2/2+V(r) as one operator in the splitting of Eq. (A.23) and to apply the corresponding short-time
propagator by means of a spectral decomposition of H0.

Pseudospectral decomposition

The pseudospectral decomposition of the field-free Hamiltonian H0 is at the heart of this method. To
this end, the eigenstates of the Hamlitonian H0 are expanded in spherical harmonics Yml

φn,l,m(r) =
χn,l(r)

r
Yml (θ,φ) (A.24)

with l = 0, 1, 2, ...,Nl and |m| 6 l. The radial functions χn,l need to fulfill[
−

1
2

d2

dr2 +
l(l+ 1)

2r2 + V(r)

]
χn,l(r) = En,l χn,l(r) (A.25)

with eigenenergies En,l. We will disretize the radial coordinate r in a box with extension rmax. Then, the
boundary conditions are given by χn,l(0) = χn,l(rmax) = 0. The latter condition is artificial, but does not
influence the results as long as the extension rmax is sufficiently large. However, this condition ensures
that the spectrum is discrete and, hence, the states can be label by an integer n.

To deal with the different requirements on the representation of the radial coordinate at small and
large distances, the interval [0, rmax] is mapped to the finite domain [−1, 1] using the function r(x) (which
is specified later). In order to restore a symmetric eigenvalue problem, the radial wave functions are
transformed to

ζn,l(x) =
√
r ′(x)χn,l(r(x)) with r ′(x) =

dr
dx

and x ∈ [−1, 1]. (A.26)

The Legendre pseudospectral method is applied for discretization of the functions ζ(x) (see Ref. [526]
for an introduction). To this end, the wave functions are approximated by a finite number of Legen-
dre polynomials Pj(x), i.e., ζ(x) ≈ ζ(Nr)(x) =

∑Nr+1
j=0 = ajPj(x) with expansion coefficients aj. The

collocation points are defined by the Legendre-Lobatto grid

{xj : (1 − x2
j)P
′
Nr+1(xj) = 0} with j = 0, 1, 2, ...,Nr + 1, (A.27)

where P ′Nr+1 is the derivative of the (Nr+1)-th order Legendre function. Then the approximation ζ(Nr)

is exact at these collocation points xj, i.e., ζ(xj) = ζ(Nr)(xj). The function ζ(Nr)(x) can be entirely
represented by the values at collocation points

ζ(Nr)(x) =

Nr+1∑
j=0

gj(x)ζ(xj)

with some cardinal functions gj that are defined in Ref. [526]. Inserting Eqs. (A.26) and (A.2.1) in the
eigenvalue equation (A.25) and using the boundary condition ζ(x0) = ζ(xNr+1) = 0, the eigenvalue
problem reduces to the following discretized form

Nr∑
j=1

[
−

1
2

1
r ′(xi)

(D2)i,j
1

r ′(xj)
+
l(l+ 1)
2r2(xi)

δi,j + V(r(xi))δi,j

]
ζn,l(xj) = En,l ζn,l(xi) (A.28)

with i = 1, 2, ...,Nr. The derivatives of gj determine the representation of the second derivative

(D2)i,j =

{
− (Nr+1)(Nr+2)

3(1−x2
i)

, i = j

− 2
(xi−xj)2 , i 6= j.

(A.29)

Hence, for each quantum number l, a pseudoeigenbasis is computed via diagonalization of anNr ×Nr
matrix. This provides the eigenenergies En,l as well as the values of the wave functions at the collocation
points. The pseudoeigenbasis represents both bound states and continuum states. One of the bound
states serves usually as initial state of the time propagation.
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Propagation scheme

Starting point of the time evolution is an initial position-space wave function that is discretized on a grid
in spherical coordinates, i.e., represented by a tuple of complex-valued numbersψj,λ,µ = ψ(r(xj), θλ,φµ).
The radial mesh points r(xj) were defined above. Additionally, we choose the azimuth angles as

φµ =
2πµ

2Nl + 1
with µ = 0, 1, 2, ..., 2Nl (A.30)

and polar angles as

θλ =
πλ

Nl
with λ = 0, 1, 2, ...,Nl. (A.31)

The forward propagation of one time step, i.e., the application of the short-time propagator (A.23) with
the interaction operator H1 = HI = r · E(t) and the field-free Hamiltonian H2 = H0 = p̂2/2 + V(r), is
based on a successive application of the three exponentials:

1. Apply the exponential of the interaction operator in length gauge by multiplication

ψ
(1)
j,λ,µ = exp

(
−i r(r(xj), θλ,φµ) · E(t)

∆t

2

)
ψj,λ,µ for each j, λ,µ. (A.32)

This has a numerical complexity ∼ NrN
2
l.

2. Consider the decomposition in terms of spherical harmonics

ψ
(1)
j,λ,µ =

∑
l,m

ρ
(1)
l,m(xj)

r(xj)
√
r ′(xj)

Yml (θλ,φµ), (A.33)

i.e., determine the expansion coefficients ρ(1)
l,m(xj) (for each j). This is efficiently possible by using

a spherical harmonic transform (SHT)2 and has a numerical complexity ∼ NrN
3
l.

3. Appy the field-free time evolution by using the spectral decomposition introduced above. The
time-evolved expansion coefficients can be calculated as

ρ
(2)
l,m(xj) =

Nr∑
i=1

(Sl)j,iρ
(1)
l,m(xi) for each j, l,m. (A.34)

The (time-independent) symmetric matrix Sl is given by

(Sl)j,i =

Nr∑
n=1

ζn,l(xj)ζn,l(xi)e
−i∆tEn,l for each l. (A.35)

The evaluation of Eq. (A.34) is the slowest step in the simulation with a complexity ∼ N2
rN

2
l.

3

When the initial state has defined quantum numbers (l,m), the dipole selection rules can be used
to identify the nonvanishing expansion coefficients and to simplify the calculation.

4. Use a spherical harmonic synthesis

ψ
(2)
j,λ,µ =

∑
l,m

ρ
(2)
l,m(xj)

r(xj)
√
r ′(xj)

Yml (θλ,φµ) (A.36)

to regain the coordinate representation. This has also a numerical complexity ∼ NrN
3
l.

5. Apply the exponential of the interaction operator as in step 1.

2We use the open-source implementation by Schaeffer [527].
3For an efficient implementation of the matrix-vector multiplications, we use the ZSPMV routine of the Intel MKL library.
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A major disadvantage of the used length gauge compared to the velocity gauge is that states with
much higher angular momenta are populated in strong laser pulses [528]. Note that the spherical har-
monics are eigenstates of L2 and Lz with the angular momentum operator L = r × p̂ and p̂ being the
canonical momentum in the used gauge [528]. Thus, its values may differ for simulations in length and
velocity gauge. Usually, the computational capabilities limit the maximal orbital angular momentum
included in a simulation and, thus, put restrictions on the accessible range of intensities, wavelengths
and pulse durations.

Calculation of electron momentum distributions

After the end of the pulse, the contributions of deeply-bound states are removed from the state
∣∣ψ(tf)〉

via projection ∣∣ψ̃(tf)〉 = ∏
En,l<Ẽ

(
1 −

∣∣φn,l,m
〉〈
φn,l,m

∣∣) ∣∣ψ(tf)〉, (A.37)

where we used the eigenstates (A.24) of field-free Hamiltonian. Usually, the constant Ẽ is arbitrarily
chosen as Ẽ = −0.03 a.u. To determine electron momentum distributionsw(p) = |M(p)|2, the probability
amplitude (2.19) must be evaluated

M(p) =
〈
p(−)

∣∣ψ̃(tf)〉 (A.38)

with the field-free stationary scattering states
∣∣p(−)

〉
introduced in Section A.1. For the considered

rotationally-symmetric potentials, the scattering wave functions have the form of Eq. (A.16) and the
final wave function can also be expanded in spherical harmonics

ψ̃(tf, r) =
∑
l,m

R̃l,m(r)

r
Yml (θ,φ). (A.39)

We define the following matrix elements

al,m(p) =

√
2
π

1
p
(−i)lei[σl(p)+δl(p)]

〈
Rl,p

∣∣R̃l,m〉r (A.40)

for the radial wave functions Rl,p introduced in Section A.1.1. The probability amplitude M is then
given by a spherical harmonic synthesis

M(p) =
∑
l,m

al,m(p)Yml (p̂). (A.41)

An important observable is the electron energy spectrum which can be evaluated as

w(E) =
√

2E
∑
l,m

|al,m(
√

2E)|2. (A.42)
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Figure A.1: Energy spectrum for multiphoton ionization of xenon atoms by linearly-polarized laser pulses for the same parameters
as in Fig. 4.2 (795 nm wavelength, cos2 envelope of 26 optical cycles duration, 7 × 1012 W/cm2): (a) full energy range and (b)
magnification of the low-energy region. The result of Eq. (A.42) based on scattering states is shown as gray line and the result
obtained by population analysis using the pseudoeigenbasis is shown as red dashed line (see main text).



220 APPENDIX A. METHODS

In order to test the calculation of scattering states, we consider multiphoton ionization of xenon as in
Chapter 4 and analyze the energy spectra (see Fig. A.1). In addition to Eq. (A.42) based on the scattering
states of Section A.1.1, we alternatively determine the energy spectrum by analyzing the populations of
the eigenstates in the pseudospectral method and by using the density of states approximated for each l
as D(En,l) = 2/(En+1,l − En−1,l). The results of both methods are in perfect agreement with each other
(see Fig. A.1).

Mapping of the radial coordinate

In strong-field physics the appearing length, momentum and time scales pose a challenge for the dis-
cretization of the radial coordinate. Close to the ionic core (here termed region I), the ionic potential
varies strongly, i.e., the deeply-bound states are localized here and hard scattering of continuum elec-
trons may take place. To represent the wave functions properly, dense grids with a spacing ∆r� 1 a.u.
are usually required. However, when going outside, the strength of the potential decreases and disturbs
the electronic motion less. Hence, at large distances (here termed region III), only the variation of the
wave function with a certain maximal momentum pmax must be resolved properly. At the same time,
the grid extension rmax must be sufficiently large to cover the relevant part of the photoelectron wave
packet till the end of the light pulse.

Nonuniform grids are used here to meet these challenges. In the pseudospectral method the map-
ping r(x) can be adjusted to tailor the numerical grid on which the radial coordinate is represented. Two
different kind of mappings are used in this thesis. Similar to earlier works [270, 524], a mapping can be
defined by

r(x) = L
1 + x(

1 − x+ (2L/rmax)1/β
)β (A.43)

with parameters L and β. However, especially for the simulation in THz fields of Chapter 4, the different
regions have to be sampled more efficiently. To this end, the space is divided in three parts

r(x) =


1+x
1+x0

rcenter , −1 6 x < x0 (region I)

pinter(x) , x0 6 x 6 x1 (region II)

rout +
arccos(−x)−arccos(−x1)

π−arccos(−x1)
(rmax − rout) , x1 < x 6 1 (region III).

(A.44)

Here, pinter(x) is a polynomial of degree 5. This choice ensures a high density of points around the
core (region I) and an approximately uniform grid at large distances (region III). The parameters rcenter

and rout determine the extension of region I and the beginning of region III, respectively. The parameters
x0 and x1 control the number of points in the different regions. For the choice of the parameters used in

10−2

10−1

100

101

10−2 10−1 100 101 102 103 104
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6

∆
r
=
r
(x
i+

1)
−
r
(x
i
)

[a
.u

.]

Position r(xi) [a.u.]

(a) (b)

region I II III

1/
D
(E
n

,l
)

[1
0−

4
a.

u.
]

Energy En,l [a.u.]

l = 0
l = 200
l = 400

Figure A.2: (a) Local position spacing ∆r as a function of the radial distance r for the grid of Eq. (A.44) used to simulate the
dynamics in THz fields (rmax = 19000 a.u., rcenter = 100 a.u., rout = 400 a.u., x0 = −0.989, x1 = −0.973,Nr = 6000). (b) Inverse
density of states versus energy E for a Coulomb potential V(r) = −1/r and three values of angular momentum l indicated in
the legend. The dotted line indicates an estimate Emax = π2

2∆r2
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for the highest represented energy, where the inverse density of
states strongly increases.
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Figure A.3: Radial wave function of the hydrogen atom: (a) ground state (n = 1, l = 0) and (b) selected Rydberg state (n = 90,
l = 0). The gray thick lines indicate the results of the pseudospectral method for the mapping r(x) shown in Fig. A.2 and the red
dotted lines are the analytical solutions.

Chapter 4, the local grid spacing ∆r as a function of the distance r is shown in Fig. A.2(a). Here, ∆r is
determined by the mapping r(x) and the nonuniform collocation points xi.

The highest energy of continuum electrons that can be accurately represented on the grid is restricted
by the largest grid spacing ∆rmax. Using the Nyquist–Shannon sampling theorem, we can estimate
Emax = π2

2∆r2
max

. To monitor the accuracy of the representation of states, the density of states in the pseu-
dospectral method can be considered. An example of the inverse density of states 1/D(En,l) is shown
in Fig. A.2(b) for three selected values of the angular momentum l. For energies below Emax, the results
are proportional to

√
E. However, for energies above Emax, the continuum is not described well.

To consider the representation of bound states, the ground state (n = 0, l = 0) as well as a Rydberg
state (n = 90, l = 0) are shown in Fig. A.3 for the hydrogen atom. The results of the pseudospectral
method are in perfect agreement with the analytical wave functions. The bound state with highest
energy EB

max that can be accurately represented on the grid is mostly determined by the extension rmax.
A rough estimate EB

max = −Z/rmax can be obtained by considering the classical turning point of a bound
electron. For the grid with rmax = 19000 a.u. used in Fig. A.2, we estimate EB

max ≈ −5.2 × 10−5 a.u.
corresponding to n ≈ 98 what is in good agreement with the numerical findings.

A.2.2 Cartesian split-operator method

In this method the short-time propagator of Eq. (A.23) is used for the following splitting of the Hamil-
tonian H = H1 + H2 = Hr(t) + Hp(t) with a position-dependent part H1 = Hr(t) and a momentum-
dependent part H2 = Hp(t) [447, 518]. The electronic wave function is represented on equally-spaced
Cartesian grids. The exponentials in the short-time propagator (A.23) can be successively applied, be-
cause they are either multiplication operators in position space or in momentum space. Fast Fourier
transformations are applied to efficiently change between position-space and momentum-space repre-
sentations.4 Thus, inD dimensions and withN points per dimension, the numerical complexity is given
by ∼ ND log(ND). Even though this split-operator method is by far not the most efficient approach to
solve the TDSE, it is easy to implement and very versatile. For example, arbitrary shapes of the light field
and ionic potentials without symmetries such as for complex molecules can be treated. More detailed
descriptions of this well-established method can be found in Refs. [159, 161, 201].

In simulations of the TDSE beyond the dipole approximation, we consider the unitary-transformed
Hamiltonian of Eq. (2.29) which reduces to the common velocity gauge in the dipole approximation
(1/c→ 0). In three-dimensional simulations, even the numerical calculation of the exponentials at each
time step is expensive. However, since the momentum-dependent part has the following form

Hp(t) =
1
2

(
p̂ + A(t) +

ez
c

(
p̂ ·A(t) +

1
2

A2(t)

))2

=

D∑
i,j=1

bi,j(t)p̂ip̂j +

D∑
i

di(t)p̂i + e(t) (A.45)

4We use the open-source FFTW library which is parallelized via OpenMP or Intel MKL.
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with some time-dependent functions bi,j(t), di(t) and e(t), the exponentials can be written as products
of exponentials that contain at most two momentum components

exp (−i∆tHp(t)) =

 D∏
i,j=1

exp (−i∆tbi,j(t)p̂ip̂j)

( D∏
i=1

exp (−i∆tdi(t)p̂i)

)
(exp (−i∆te(t))) . (A.46)

This procedure decreases the computed number of exponentials from ∼ ND to ∼ D2N2. When nondipole
corrections are included, the position-dependent part Hr(t) is also time dependent, but no simple sepa-
ration can be applied due to the appearing potential. However, we are only interested in the first-order
nondipole corrections in 1/c. Thus, the shifted potential is expanded as

Hr(t) = V
(

r −
z

c
A(t)

)
≈ V(r) − z

c
A(t) · ∇V(r). (A.47)

The time-independent part V(r) is fully considered via an exponential short-time propagator that must
be calculated only once. In contrast, the small nondipole correction is implemented via a Crank-Nicolson
propagator, i.e.,

exp (−i∆tHr(t)) ≈ exp (−i∆tV(r))
1 + i∆t2

z
c

A(t) · ∇V(r)
1 − i∆t2

z
c

A(t) · ∇V(r)
. (A.48)

For the evaluation of the second term, a number of multiplications proportional toND is needed in each
time step.

The major problem of Cartesian grids is that for given number of grid points N per dimension (that
is typically limited by the available numerical capacities) and for a given spacing ∆x (that must be
sufficiently small to resolve the structures close to the ionic core) the spatial extension of the grid is
fixed: L = N∆x. Thus, in order to keep the outgoing electron wave packet confined to the simulation
volume till the end of the light pulse, a huge number of points per dimension is required.

Single-grid simulations

In one or two spatial dimensions and for short laser pulses, our numerical capabilities allow to choose
a large grid which is enough to contain the wave function till the end of the pulse. Then, the TDSE
is simply solved till the end of the light pulse as described above. Afterwards, the contribution of the
initial state is removed (similar to Eq. (A.37)). Additionally, a mask function is applied to remove the
region around the origin (r < 30 a.u.) that contains contributions of localized bound states, resulting
in a state

∣∣ψ̃(tf)〉. To calculate electron momentum distributions w(p) = |M(p)|2, we use an eikonal
approximation for the scattering states

ψ
(E)
p (r) =

1
(2π)D/2 exp

[
ip · r + i

∫∞
0

dζV(r + pζ)
]

. (A.49)

To calculate the integral in Eq. (A.49), we divide the potential in a long-range Coulomb part −Z/r and
a short range part VS(r) as in Eq. (A.14). The integral for the short-range part is calculated numerically,
whereas the result for a Coulomb potential can be given in closed form∫∞

0
dζ

−Z√
(r + pζ)2

=
Z

p
ln(p · r + pr), (A.50)

where the divergent position-independent contribution of the upper limit is omitted. The probability
amplitude M(p) ≈

〈
ψ

(E)
p
∣∣ψ̃(tf)〉 is calculated by numerical integration. This single-grid approach in-

corporates the effect of the long-range potential on the outgoing electrons in eikonal approximation and,
hence, allows for a good quality of electron momentum distributions at low energies.

Two-grid simulations

For long laser pulses or simulations in 3D, the brute-force numerical approach on a single grid is not
possible. In order to simulate electron momentum distributions more efficiently, we follow a scheme
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where an inner space around the ionic core and an asymptotic outer space are treated differently [15].
The main idea is to neglect the variation of the ionic potential in the outer part such that the corre-
sponding Hamiltonian is diagonal in momentum representation and, thus, we do not need to access the
position information in the outer space.

Formally, the scheme can be described as follows. The electronic state is separated in an inner
part

∣∣ψin(t)
〉

and an outer part
∣∣ψout(t)

〉
, i.e., the full state is

∣∣ψ(t)〉 =
∣∣ψin(t)

〉
+
∣∣ψout(t)

〉
. We intro-

duce an absorbing potential VA that introduces probability transfer from the inner part to the outer part.
To this end, the Schrödinger equation (2.17) is written in two separate equations

i
∂

∂t

∣∣ψin(t)
〉
= H(t)

∣∣ψin(t)
〉
− iVA

∣∣ψin(t)
〉

(A.51)

for the inner part and

i
∂

∂t

∣∣ψout(t)
〉
= H(t)

∣∣ψout(t)
〉
+ iVA

∣∣ψin(t)
〉

(A.52)

for the outer part, respectively. For the whole state
∣∣ψ(t)〉, the terms with absorbing potential cancel each

other and the common Schrödinger equation (2.17) is retrieved. The initial states are usually located
close to the ionic core, i.e., the initial conditions are chosen as

∣∣ψin(tA)
〉
=
∣∣ψ(tA)〉 and

∣∣ψout(tA)
〉
= 0.

Equation (A.51) for the inner part can be solved using the split-operator method on Cartesian grids as
described above.

The absorbing potential should fulfill two requirements: (i) It should not disturb the dynamics at
small distances. (ii) It should provide for efficient absorption and negligible reflection of outgoing elec-
tron wave packets. In this work, we use a fourth-order polynomial as absorbing potential [161]

VA(r) =

{
0 , r < rA
α(r− rA)

4 , r > rA
with α =

(4 + 1)pmax

2(∆rA)4+1 (− log ε). (A.53)

The absorbing potential starts at a radial distance rA and over a distance of ∆rA (typically chosen
between 30 a.u. and 50 a.u.) outgoing wave packets with momenta specified by pmax are efficiently
damped. The parameter ε controls the possible transmission and is usually chosen as ε = 10−10. The
absorbing potential ensures that the inner wave function ψin(r) =

〈
r
∣∣ψin

〉
approximately vanishes at

distances r > rA+∆rA for all times t. Hence, the inner state can be represented on a Cartesian grid with
extension L = 2(rA + ∆rA). A schematic illustration of the setup is shown in Fig. A.4.
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Figure A.4: (a) Sketch of the inner grid in a two-grid simulation. Shown is a snapshot of the position-space probability distribution
in the presence of a laser pulse, illustrating the absorption of outgoing electron flux. (b) Slice at y = 0 through the corresponding
absorbing potential VA.

For the outer state
∣∣ψout(t)

〉
, the last term iVA

∣∣ψin(t)
〉

in Eq. (A.52) acts as a source term. Up to this
point no approximation has been made. In principle, Equation (A.52) could also be solved numerically.
In this case, however, the two-grid scheme would be even less efficient than single-grid simulations.
The calculations can be simplified, if we assume that (i) the potential V is constant for distances r > rA
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and (ii) the outer wave function vanishes at distances r < rA. Then, the explicit solution for the time
evolution of

∣∣ψout(t)
〉

is given by [161]

∣∣ψout(t)
〉
= −i

∫t
tA

dt ′UF(t, t ′)e−iV(rA)(t−t′)iVA
∣∣ψin(t

′)
〉

(A.54)

with the Volkov propagator UF of Eq. (2.34). Condition (ii) is in good approximation fulfilled for
recollison-free ionization. In contrast, in field shapes allowing for recollisions such as linearly-polarized
mid-infrared fields, outer parts can be driven back and, hence, Equation (A.54) is only an approximation.

In natural gauge of Section 2.2.2, the momentum-space representation of the outer state has the from

ψ̃out(p, t) =
〈
p
∣∣ψout(t)

〉
=

∫t
tA

dt ′e−i( 1
2

∫t
t′ dζv2(p,ζ)+V(rA)(t−t′)) J(p, t ′)

(A.55)

with a source term

J(p, t ′) =
1

(2π)D/2

∫
dr e−ip·r VA(r)ψin(r, t ′). (A.56)

In practice, the time integral in Eq. (A.55) is evaluated on-the-fly during the numerical propagation of
the inner part (see Eq. (A.51)). The propagation of one time step ∆t is given by

ψ̃out(p, t+ ∆t) ≈ e−i( 1
2 v2(p,t+∆t/2)+V(rA))∆tψ̃out(p, t) + ∆t J(p, t+ ∆t). (A.57)

The source term (A.56) is efficiently calculated using a Fast Fourier transformation on Cartesian grids.
An advantage of the scheme is that the position representation of the outer state is not required. In
addition, the grid in momentum space can be independently chosen. By default, the same grid as for
the inner state is used. However, especially in 3D simulations, it is advantageous to calculate additional
slices with high resolution [529].

For very long simulation times, all continuum electrons have left the inner region and the proba-
bility amplitude for electrons with asymptotic momentum p is simply given by the momentum-space
wave function ψ̃out(p, t → ∞) of the outer state. However, for finite final times tf, only electrons with
momenta pmin = rA/tf have classically reached the absorber region. To extract the remaining photo-
electrons from the inner state at a finite time tf, it can be beneficial to use a projection on eikonal states
as described for the single-grid scheme.

In solution of the TDSE beyond the dipole approximation, we considered a 1/c-expansion of the
Hamiltonian (see Eq. (2.24)). However, in principle, in multi-cycle laser pulses as used in Chapter 7 re-
tardation effects could accumulate. Here, we give a brief sketch how to estimate the importance of these
higher-order effects by using the two-grid scheme. Up to Eq. (A.54) no explicit form of the Hamiltonian
has been used. The inner part is restricted to a length scale of rA + ∆rA. Hence, if rA + ∆rA � λ, retar-
dation effects can be neglected and it is appropriate to approximate the Hamiltonian in 1/c. However,
in the outer part, the released electron wave packets travel large distances. Thus, a 1/c approximation
seems at first questionable and instead the Hamiltonian of Eq. (2.20) should be considered. In the two-
grid scheme, this changes only the Volkov propagator UF in Eq. (A.54). For the Hamiltonian (2.20) with
V = 0, a construction of this “full” propagator was given in Ref. [190]. Importantly, the “full” solution
depends on the light-cone coordinate η = t − z/c whereas the solution of Eq. (2.34) depends on the
time t. Hence, at large distances z, both solutions will differ when the light pulse is present. However,
after the end of this pulse (when the electron momentum distributions are evaluated), this problem is
cured. We find that, for pz � c and sufficiently small rA + ∆rA, the “full” propagator results only in
an additional function G(p, t ′ − z/c) in Eq. (A.56) compared to the 1/c expansion. For selected laser
conditions, we explicitly calculated G as introduced in Ref. [190] and found much smaller higher-order
corrections than the nondipole corrections that are already included in the Hamiltonian of Eq. (2.24).
Hence, we expect that when the electron does not interact with an ionic potential over large distances
(in the order to the wavelength), the higher-order corrections due to retardation effects can be neglected.
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Calculation of eigenstates states

Typically, the electronic system starts out in an energy eigenstate before the light pulse arrives. In such a
situation, the initial states should be stationary in the absence of external fields, i.e., this means that the
states should only change by a purely time-dependent phase factor. Thus, for vanishing electric-field
strength, there should not be any outgoing electron flux which could spoil an actual electron momentum
distribution. This is in particular important for simulations of regions in the momentum distributions
with low probability such as the high-energy rescattering region.

One frequently-used approach to determine the initial states is to propagate an (almost) arbitrary
state

∣∣ψtrial
〉

in imaginary time. Since the trial state can be expanded in terms of eigenstates
∣∣n〉 of the

field-free Hamiltonian H0 ∣∣ψtrial
〉
=
∑
n

cn
∣∣n〉 with H0

∣∣n〉 = En∣∣n〉, (A.58)

the imaginary time propagation is given by

e−τH0
∣∣ψtrial

〉
=
∑
n

cne
−τEn

∣∣n〉. (A.59)

Hence, the contributions of the different eigenstates are suppressed according to their energy eigen-
value En. For large times τ, the eigenstate with the lowest energy5 dominates the expansion in Eq. (A.59).
By repeating iteratively this approach, excited states can be found in the orthogonal complement of the
known bound states with lower or equal energy. Usually, an implementation is based on the repeated
application of the short-time propagator (with an imaginary time step ∆t = −i∆τ).

However, as pointed out in Ref. [530] for the Fourier split-operator method, the eigenstates of the
HamiltonianH0 and also the states resulting from imaginary-time propagation are not exactly stationary
under numerical real-time propagation based on the approximated short-time propagator of Eq. (A.23).
To circumvent this difficulty, the eigenstates of the approximated real-time short-time propagator (A.23)
with nonzero time step ∆t can be used as initial states of the subsequent real-time propagation in the
presence of the field [530]. To this end, the power method can be applied with the operator e−i∆tH0 + i1,
i.e., this operator is repeatedly applied to the trial state. Here, 1 is the identity operator. The resulting
“eigenstates” depend on the used time step ∆t. They are different from the eigenstates of H0 which
are only retrieved in the limit of a vanishing time step ∆t → 0. For nonzero time steps ∆t, we found
that the results of time-dependent simulations with initial states chosen as eigenstates of the short-time
propagator resemble the limit of vanishing time step best. In the actual implementation, we first prepare
roughly an initial state by using the imaginary-time propagation. Afterwards, this result is refined by
means of the power method with the operator e−i∆tH0 + iI.
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Figure A.5: (a) Radial momentum distribution in the polarization plane and (b) corresponding angular distribution for hydrogen
ionized by short circularly-polarized laser pulses (800 nm central wavelength, 1 × 1014 W/cm2 intensity, cos2 envelope of two
cycles duration). The lines correspond to results from different schemes for the numerical solution of the TDSE (see main text).

5It is important that the corresponding coefficient c0 is nonzero.
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Comparison of results from different propagation schemes

To test the propagation schemes, we consider the circularly-polarized attoclock setup of Chapter 5 and
performed simulations based on the pseudospectral method (see Section A.2.1) and the Fourier split-
operator method on two Cartesian grids (see Section A.2.2). The result of the pseudospectral method is
stable against changes of the numerical parameters and, thus, serves as a benchmark. For the Fourier
split-operator method, we choose common numerical parameters with an inner grid spanning 409.6 a.u.
in each dimension, a spacing of ∆x = 0.4 a.u. and a time step of 0.03 a.u. Except for a slightly too small
yield, the angular distributions are in perfect agreement with the benchmark results (see Fig. A.5(b)).
We performed two simulations using the Fourier split-operator method. The same radius rA = 150 a.u.
was used in both cases, but the ionic potential was treated differently at large distances:

• For the “flat” choice, the variation of the potential is considered at distances r 6 rA, but the
potential is set to a constant V(rA) < 0 for r > rA. Hence, the deceleration of the electron wave
packet by the Coulomb tail is neglected, introducing an error of about ∆E = −Z/rA in the final
electron kinetic energy. As a result, the radial momentum distribution in Fig. A.5(a) is centered at
slightly too large momenta.

• For the “truncated” choice, the true potential is turned off using a sin2 function at a short distance
before the absorber starts. Hence, in principle, the wave packet is decelerated. However, depend-
ing on the exact laser field, we find that the field-induced motion can change the direction of the
electrons at distances r > rA such that the deceleration happens effectively in a wrong direction.

These effects are also visible in electron momentum distribution from a bicircular attoclock configu-
ration as introduced in Section 5.3 (Fig. A.6). However, for common choices of the absorber distance rA,
we find that the “truncation” of the potential artificially deforms the shape of the outgoing wave packets.
Hence, numerical errors in highly-differential observables such as the momentum-dependent attoclock
shift are enhanced. For selected laser conditions, we verified that this error vanishes with increasing
distance rA. Overall, depending on the concrete physical observable and laser parameters under study,
it can be advantageous to either use the “flat” or the “truncated” choice of the potential.
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Figure A.6: (a) Slice through the photoelectron momentum distribution (at py = 0) and (b) momentum-dependent attoclock shift
as a function of px +Ax(0) for ionization of 2D helium in a bicircular attoclock configuration with 4 × 1014 W/cm2 intensity
and 800 nm effective wavelength (see Section 5.3). The shown results are calculated using the single-grid method or the two-grid
method. In the latter cases, a distance of rA = 150 a.u. is used. For the “truncated” choice, the potential is damped out over a
distance of 50 a.u. before the absorber starts.

A.2.3 Choice of the potential

The effective potential used in single-active-electron simulations describes the interaction of the active
electron with the nuclei (or nucleus for an atom) as well as an averaged effect of other electrons in
multielectron systems. In strong-field physics, two basic requirements on the potential are that (i) the
correct ionization energy of the real electronic system is retrieved and (ii) the correct behavior of the
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Z a1 a2 a3 a4 a5 a6 Ip

H 1.0 0.000 0.000 0.000 0.000 0.000 0.000 0.500
He 1.0 1.231 0.662 −1.325 1.236 −0.231 0.480 0.904
Ne 1.0 8.069 2.148 −3.570 1.986 0.931 0.602 0.793
Ar 1.0 16.039 2.007 −25.543 4.525 0.961 0.443 0.580
Xe 1.0 51.356 2.112 −99.927 3.737 1.644 0.431 0.445

Table A.1: Parameters for the Tong-Lin potential (A.60) reprinted from [326].

potential is resembled for large distances r. In addition, depending on the studied physical processes,
other potential-dependent quantities such as the eigenenergies of excited states or the field-free differ-
ential cross section for electron scattering can be important. For atoms, a common choice is the Tong-Lin
potential

V(r) = −
Z+ a1e

−a2r + a3re
−a4r + a5e

−a6r

r
(A.60)

that is obtained by approximation of the single-particle potentials from density functional theory [531].
The chargeZ determines the behavior −Z/r at large distances rwhereas the potential reduces to −Zcore/r

at small distances rwith the core charge Zcore = Z+a1+a5. The parameters for atoms used in this thesis
are reprinted in Table A.1.

The singularity at r → 0 of the potential causes difficulties in the numerical solution of the TDSE
with the Fourier split-operator method and, hence, should be avoided. Similar to Ref. [161], we convert
the potential into a pseudopotential as described in Ref. [532]. The pseudopotential matches the original
potential at distances larger than a cutoff radius rcl, but it is approximated by polynomials at shorter
distances. To this end, a bound state φn,l,m(r) = Rn,l(r)Y

m
l (θ,φ) is selected whose binding energy En,l

shall be exactly retrieved in the pseudopotential. For the pseudopotential, a modified radial part of this
wave function is then defined as

RPP
n,l(r) =

{
Rn,l(r) , r > rcl
rl exp(pn,l(r)) , r 6 rcl,

(A.61)

with a polynomial

pn,l(r) = c0 + c2 r
2 + c4 r

4 + c6 r
6 + c8 r

8 + c10 r
10 + c12 r

12. (A.62)

The coefficients are determined by the conditions that (i) the norm of the wave function is conserved, (ii)
the curvature of the screened pseudopotential at the origin vanishes and (iii) the pseudo wave function is
continuous up to the fourth derivative at rcl. The assumption that the constructed wave function RPP

n,l(r)

should be an eigenstate of the pseudopotential VPP
n,l(r) with the correct eigenenergy En,l fully determines

this potential. Hence, using the pseudo wave function (A.61) and the radial Schrödinger equation (A.25),
the potential is derived

VPP
n,l(r) =

V(r) , r > rcl

En,l +
l+1
r
p ′n,l(r) +

p′′n,l(r)+(p′n,l(r))
2

2 , r 6 rcl.
(A.63)

By construction the pseudopotentials depend on the selected state and the cutoff radius rcl. The
coefficients of the potentials are given in Table A.2 for the targets used in this thesis. Unfortunately,
with the coefficients presented in Ref. [161], the fourth-order derivatives of the radial functions and,
hence, the second-order derivatives of the potentials were not continuous. Except for the simulations
on xenon discussed in Chapter 8, the coefficients of Ref. [161] are used throughout this thesis. For
completeness, the corrected coefficients are shown in Table A.2. For light targets such as helium and
neon, the differences in the coefficients can be neglected. For heavier targets such as argon and xenon, we
only considered recollision-free ionization and, hence, expect negligible modifications of the observables
for the corrected coefficients.
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state rcl c2 c4 c6 c8 c10 c12 comments
H 1s 1.5 −7.262 10−1 −1.055 10−1 2.862 10−1 −1.549 10−1 3.722 10−2 −3.444 10−3

He 1s 1.5 −1.227 10+0 −3.013 10−1 6.555 10−1 −3.498 10−1 8.376 10−2 −7.736 10−3 from [161]
He 1s 1.5 −1.229 10+0 −3.021 10−1 6.597 10−1 −3.533 10−1 8.487 10−2 −7.864 10−3

Ne 2p 1.5 −2.129 10+0 −6.473 10−1 1.336 10+0 −7.055 10−1 1.676 10−1 −1.537 10−2 from [161]
Ne 2p 1.5 −2.138 10+0 −6.533 10−1 1.359 10+0 −7.233 10−1 1.731 10−1 −1.599 10−2

Ar 3p 1.5 −5.270 10−1 −3.967 10−2 −5.400 10−2 5.302 10−2 −1.520 10−2 1.503 10−3 from [161]
Ar 3p 1.5 −5.030 10−1 −3.614 10−2 −8.000 10−2 7.164 10−2 −2.063 10−2 2.088 10−3

Xe 5p 2.0 1.423 10−1 −2.893 10−3 −6.711 10−2 2.238 10−2 −2.970 10−3 1.467 10−4 from [161]
Xe 5p 2.0 1.712 10−1 −4.185 10−3 −7.401 10−2 2.538 10−2 −3.472 10−3 1.774 10−4

Table A.2: Relevant parameters for the pseudopotential of Eq. (A.63) calculated based on the indicated states. The
coefficients obtained in Ref. [161] are reprinted.

We consider the Coulomb potential for hydrogen and the Tong-Lin potential for xenon as examples.
The original potentials and their corresponding pseudopotentials are shown in Fig. A.7(a). The radial
wave functions for the 1s state in hydrogen and the 5p state in xenon as well as the corresponding
pseudo wave functions are depicted in Fig. A.7(b). For hydrogen, both functions have the same overall
shape. In contrast, we use a cutoff radius rcl larger than the outermost node of the radial wave function
for xenon, resulting in a pseudo wave function without nodes. By construction, both wave functions
agree for distances larger than the cutoff radius. Hence, for nonresonant recollision-free strong-field
ionization, the correct physical properties are reproduced by the pseudopotentials. To illustrate this, we
consider the attoclock offset angles as well as the ionization probabilities for strong-field ionization of
hydrogen by short circularly-polarized laser pulses as discussed in Chapter 5. For a fixed wavelength
of 800 nm, the results are shown as a function of the intensity in Fig. A.8. For all intensities, reaching
from the high-intensity region dominated tunneling down to nonadiabatic ionization in weaker fields,
the results for the Coulomb potential and the pseudopotential are in perfect agreement. Even for the
lowest considered intensity of 0.14× 1014 W/cm2, the attoclock angles differ by less than 0.2◦.

A.2.4 Focal-volume averaging

In a typical strong-field experiment, a laser beam is focused onto a gas target. Hence, the field strength
experienced by the electrons depends on the position of the target atom in the laser focus. Usually, the
length scale of intensity change over the focus is much larger than the distance traveled by the photo-
electrons during their propagation in subpicosecond laser pulses. Hence, on a microscopic scale, the
laser beam can be approximated as a plane wave with spatially constant intensity. The intensity volume
effect can then be considered by averaging the observables over the different intensities contained in the
focus (see for example Ref. [533]).
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Figure A.7: (a) Coulomb potential for hydrogen and Tong-Lin potential for xenon and corresponding pseudopotentials with cutoff
radii rcl = 1.5 a.u. and rcl = 2.0 a.u., respectively. (b) Radial wave functions χ(r) = rR(r) for the 1s state in hydrogen and the
5p state in xenon as well as their corresponding pseudo wave functions.
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Figure A.8: (a) Offset angles and (b) total ionization probability as a function of the intensity for ionization of hydrogen in a circular
attoclock configuration based on a two-cycle circularly-polarized laser pulse (800 nm central wavelength) similar to Fig. 5.1(b).
The TDSE results for a bare Coulomb potential −1/r and for the corresponding pseudopotential with cutoff radius rcl = 1.5 a.u.
are calculated using the pseudospectral method. For comparison, the results of Ref. [352] as well as the set of results labeled H2
in Ref. [213] are reprinted in panel (a) (gray points).

A photoelectron momentum distribution at a given laser intensity I is denoted asw(p; I). For a given
spatial peak intensity Ipeak, the focal-volume-averaged distribution is then given by

wav(p) =
∫ Ipeak

0
w(p; I)

[
−
∂V(Ipeak, I)

∂I

]
dI. (A.64)

Here, V(Ipeak, I) is the cumulated volume function, defined as the spatial volume in the laser focus
occupied by intensities between I and Ipeak. For a Gaussian focus in 3D, the cumulated volume function
can be written analytically as (up to a multiplicative factor)

V(Ipeak, I) ∝ 4
3

[
Ipeak

I
− 1
]1/2

+
2
9

[
Ipeak

I
− 1
]3/2

−
4
3

arctan
[
Ipeak

I
− 1
]1/2

(A.65)

and, thus, the weight in Eq. (A.64) reads [534]

−
∂V(Ipeak, I)

∂I
∝
√
Ipeak − I

[
2I+ Ipeak

] 1
I5/2 . (A.66)

A.3 Strong-field approximation beyond the dipole approximation

The strong-field approximation offers a simplified description of recollision-free strong-field ionization.
This can help to understand qualitatively the underlying physical mechanism. The aim of this sec-
tion is to derive an analytical expression for the released electron wave packet based on strong-field
approximation beyond the dipole approximation. To this end, the results from SFA in saddle-point ap-
proximation are expanded in powers of the Keldysh parameter γ. We consider only direct ionization as
introduced in Section 2.3 and an initial 1s state of the electron. All equations are only consistent to first
order in 1/c.

The probability amplitude of Eq. (2.40) in length gauge is evaluated in saddle-point approximation
(see Section 2.3.1). For each final momentum p, only a single saddle-point time t ′s = t ′r+it ′i is considered.
The corresponding saddle-point equation reads

1
2

[
p + A(t ′s) +

ez
c

(
p ·A(t ′s) +

1
2

A2(t ′s)

)]2

+ Ip = 0. (A.67)

Under these assumptions, the photoelectron momentum distribution has the following form

wSFA(p) ∝
1

|S̈SFA(p, t ′s)|α
e−2 ImSSFA(p,t′s) (A.68)
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with the nondipole action of Eq. (2.41) given by

SSFA(p, t ′) = −

∫tf
t′

dt
1
2

[
p + A(t) +

ez
c

(
p ·A(t) +

1
2

A2(t)

)]2

+ Ip(t
′ − tA). (A.69)

The power α depends on the chosen gauge. Following the recipe in Ref. [194] to treat the pole in the
matrix element, we have α = 1 + Z/

√
2Ip in length gauge (2.26) with Z being the asymptotic charge.

The initial probability distribution at the tunnel exit can be extracted based on the classical back-
propagation method (introduced in Section 5.2.4). To this end, the asymptotic phase-space distribution
is classically propagated back in time until the time t ′r is reached for each trajectory.6 In this potential-
free setting, the classical mapping between the initial velocities v0 at the tunnel-exit position and the
final momenta p is given by (see Eqs. (8.2) and (8.3))

v0 = p + A(t ′r) +
ez
2c
[
(p + A(t ′r))

2 − p2] = p + A(t ′r) +
ez
2c
[
v2

0 − p2] . (A.70)

In addition, the relation between the times t ′r and the momenta p is defined by the saddle-point equa-
tion (A.67). Hence, a mapping between the final momenta p and the initial coordinates is established:
(t ′r, v0,⊥, v0,z) = D(p). The probability distribution of the initial coordinates (t ′r, v0,⊥, v0,z) is defined as
(see Eq. (5.16))

wini(t
′
r, v0,⊥, v0,z) =

wSFA(p)
|det D ′(p)|

. (A.71)

Here, we introduced the Jacobi matrix D ′ of the mapping D with respect to p. The distribution of
Eq. (A.71) can be used to calculate observables at the tunnel exit such as the average 〈v0,z〉(t ′r, v0,⊥) of
the initial velocity in the light-propagation direction as a function of the release time t ′r and the velocity
component in the polarization plane v0,⊥ (see Eq. (8.15)).

A.3.1 Adiabatic expansion of the saddle-point times

It is advantageous to measure the different quantities in the natural scales of strong-field ionization (see
Section 2.1). Two different time scales appear: (i) the Keldysh time

√
2Ip/E0 for a characteristic field

strength E0 and (ii) an optical cycle of the laser field Tω = 2π/ω. Their ratio indicates the ionization
regime and is usually represented by the dimensionless Keldysh parameter γ =

√
2Ipω/E0. Here, we

use the same system of units as in Ref. [161].7 Real times are measured in units of the inverse frequency
(t ′r = t̃ ′r/ω), but imaginary times in units of the Keldysh time (t ′i =

√
2Ip/E0t̃

′
i). A dimensionless

velocity is defined as v =
√

2Ipṽ. If we denote the nth derivative of the electric field as E(n)(t), we write
E(n)(t) = E0ω

nẼ(n)(t). Following the ideas in Refs. [161, 209–211, 535], we derive a simplification of
the SFA expressions close to the adiabatic limit.

To this end, we expand the vector potential around the real part t ′r of the saddle-point time [536]

A(t ′r + iτ) = A(t ′r) −
√

2Ip
∞∑
n=1

γn−1Ẽ(n−1)(t ′r)

n!
(iτ̃)n for τ ∈ R. (A.72)

In the sum, we expressed the various quantities in the new system of units. Hence, an expansion in
imaginary time can also be viewed as an expansion in the Keldysh parameter γ. This opens the pos-
sibility to derive expressions for different observables in the adiabatic limit (γ → 0), and to include
successively leading-order nonadiabatic corrections in γ. For simplicity, we omit the argument t ′r of the
fields. In addition, we define an auxiliary velocity

w̃ = ṽ0 +
1
2
γẼ ′t̃ ′2i . (A.73)

6Here, we identify the release time t0 with the real part t ′r of the saddle-point time.
7Note that the used time and velocity scales differ by a factor of two compared to Section 5.3.1. In addition, we use Ė = E ′.
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Even though this has no direct physical meaning, it simplifies the calculations. Inserting the expan-
sion (A.72) in the saddle-point equation (A.67) and keeping only terms up to first order in γ (and to first
order in 1/c), we find

1 + w̃2 − t̃ ′2i Ẽ2
(

1 +
wz

c

)
+
wz

c
γt̃ ′2i w̃ · Ẽ ′ − 2it̃ ′iw̃ · Ẽ

(
1 +

wz

c

)
≈ 0. (A.74)

Separation into real part and imaginary part, the saddle-points have to fulfill

w̃ · Ẽ = 0 (A.75)

as well as

t̃ ′i =

√
1 + w̃2(

1 + wz
c

)
Ẽ2 − γwz

c
w̃ · Ẽ ′

≈

√
1 + w̃2(

1 + wz
c

)
Ẽ2

(
1 +

1
2
γ
wz

c

w̃ · Ẽ ′

Ẽ2

)
. (A.76)

For a given real part t̃ ′r of the saddle-point time, Equation (A.75) selects all possible auxiliary mo-
menta w̃. For each possible w̃, the corresponding imaginary part of the saddle-point time is then given
by Eq. (A.76). To reconstruct the associated physical initial velocity ṽ0, Equation (A.73) is used.

Implicitly, the expansion contains higher-order terms in the Keldysh parameter γ. However, the
solutions are only correct to first order in γ. In the adiabatic limit γ → 0, the auxiliary velocity w
approaches the initial velocity v0 and the saddle-point solutions are defined by

v0 · E(t ′r) = 0, t ′i =

√
v2

0 + 2Ip(
1 +

v0,z
c

)
E2(t ′r)

. (A.77)

The first equation is the well-known condition for the initial velocity in adiabatic tunneling (see Eq. (2.47)).
It is unaffected by the nondipole corrections.

A.3.2 Adiabatic expansion of the wave packet

The ionization probability in Eq. (A.68) is dominated by the imaginary part of the action (A.69). To
derive an approximation for ImSSFA, we measure the imaginary part of the action in (2Ip)3/2/E0, i.e.,
ImSSFA = (2Ip)3/2/E0 ImS̃SFA. The imaginary part of the action is then approximately evaluated by
inserting the expansion of Eq. (A.72) into Eq. (A.69). Keeping only terms to first order in the Keldysh
parameter γ and in 1/c, we find

2ImS̃SFA = t̃ ′i +
E0

(2Ip)3/2 Re
∫t′i

0
dτ
[

p + A(t ′r + iτ) +
ez
c

(
p ·A(t ′r + iτ) +

1
2

A2(t ′r + iτ)
)]2

= t̃ ′i +

∫ t̃′i
0

dτ̃
(

ṽ2
0 −

(
1 +

v0,z

c

) [
Ẽ2 − γṽ0 · Ẽ ′

]
τ̃2
)
+ O

(
γ2,

1
c2

)
=
[
1 + ṽ2

0
]
t̃ ′i −

1
3

(
1 +

v0,z

c

) [
Ẽ2 − γṽ0 · Ẽ ′

]
t̃ ′3i + O

(
γ2,

1
c2

)
.

(A.78)

This expression is then evaluated at the approximate saddle-point times of Eq. (A.76). Since we are only
interested in the first-order nonadiabatic corrections, the relation (A.73) between w̃ and ṽ0 can be used
to eliminate w̃. The imaginary part of the action is approximated as

2ImS̃SFA =
2
3

[
1 + ṽ2

0

]3/2√(
1 +

v0,z
c

) [
Ẽ2 − γṽ0 · Ẽ ′

] + O

(
γ2,

1
c2

)
. (A.79)

To be consistent, the result is expanded to first-order in γ and expressed again in atomic units

2ImSSFA =
2
3

[
2Ip + v2

0

]3/2√(
1 +

v0,z
c

)
E2

(
1 +

1
2

v0 · Ė
E2

)
+ O

(
γ2,

1
c2

)

=
2
3

[
2Ip + v2

0,⊥ +
(
v0,z −

1
3c

[
Ip + v2

0/2
])2
]3/2

√
E2

(
1 +

1
2

v0 · Ė
E2

)
+ O

(
γ2,

1
c2

)
.

(A.80)
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Typically, it is a good approximation to neglect the prefactor in the momentum distribution in Eq. (A.68).
Its influence on nondipole observables was discussed in Ref. [474].

The final momentum distribution and the initial probability distribution differ by the Jacobian in
Eq. (A.71). In the approximation shown in Eq. (A.77), the real part t ′r of the saddle-point time and also
v0,⊥ are independent of the moment pz in the light-propagation direction. According to Eq. (A.70), we
find ∂v0,z/∂pz = 1 to first order in 1/c. Hence, the Jacobian in Eq. (A.71) can be written as

det D ′(p) = det


∂t′r
∂px

∂v0,⊥
∂px

∂v0,z
∂px

∂t′r
∂py

∂v0,⊥
∂py

∂v0,z
∂py

0 0 1

 = det

(
∂t′r
∂px

∂v0,⊥
∂px

∂t′r
∂py

∂v0,⊥
∂py

)
(A.81)

and it does not depend on pz. For further simplification, we neglect its influence on the initial probability
distribution. The wave packet at the tunnel exit is then given by Eq. (8.16) (for small v0,z).

A.4 Analytic approximations for tunnel-exit positions

A.4.1 Adiabatic expansion of the tunnel-exit position in the SFA

For an initial 1s state, the tunnel-exit position from classical backpropagation with SFA input coincides
with the common SFA tunnel-exit position in the dipole approximation (see Section 5.2.4)

r0 = Re

(∫t′r
t′s

dτ(p + A(τ))

)
, (A.82)

where t ′s is the complex-valued saddle-point time and t ′r is its real part. To derive an approximation
for r0, we define a scaled position r0 = 2Ip/E0r̃0. Inserting the expansion of the vector potential (A.72)
in Eq. (A.82) and keeping only first-order terms in γ, we find

r̃0 =
E0

2Ip
Im

(∫t′i
0

dτA(t ′r + iτ)

)
= Im

(∫ t̃′i
0

dτ̃ (−iτ̃Ẽ)

)
+ O(γ2) = −

1
2

Ẽt̃ ′2i + O(γ2). (A.83)

This expression is then evaluated at the approximate saddle-point times of Eq. (A.76). Since we are only
interested in the first-order nonadiabatic corrections, the relation (A.73) between w̃ and ṽ0 can be used
to eliminate w̃. To first order in γ, the tunnel-exit position becomes

r̃0 = −
1 + ṽ2

0

2Ẽ2

(
1 + γ

ṽ0 · Ẽ ′

Ẽ2

)
Ẽ + O(γ2), (A.84)

where the possible ionization times t ′r and initial velocities ṽ0 are selected by Eq. (A.75). Expressing
the results in in atomic units results in Eq. (5.25) of the main text. In linear polarization, the first-order
nonadiabatic correction for the exit position vanishes, because Ẽ ′ ‖ Ẽ ⊥ ṽ0. In contrast, for circular
polarization, it is Ẽ ′ ⊥ Ẽ ⊥ ṽ0 and the first-order nonadiabatic correction is present.

A.4.2 Tunnel-exit positions from the analytical R-matrix theory

The ARM theory offers a systematic approach to include the binding potential V as a first-order cor-
rection to the strong-field approximation (see Section 2.5). This allows us to derive a correction of the
SFA tunnel-exit positions induced by a long-range Coulomb potential. To this end, we apply the classi-
cal backpropagation method (see Section 5.2.4) to the electron wave packets from ARM theory. Hence,
the aim is to determine initial position r0 for a fixed release time (here denoted as t̃) and a given initial
velocity v0 = v0,⊥e⊥ + v0,zez.

When the binding potential is neglected, the ARM theory results in the same tunnel exit as the SFA
approach (see Section 5.2.4). Thus, to zeroth order in V , the tunnel-exit position is given by

r00 = Re

(∫ t̃
t′s0

dτ (p0 + A(τ))

)
. (A.85)
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The auxiliary momentum p0 is defined in a way that the velocity criterion in classical backpropagation,
E(t̃) · (p0 + A(t̃)) = 0, is fulfilled and that the correct initial velocity v0 = p0 + A(t̃) is obtained. The
corresponding saddle-point time is determined by

1
2
(p0 + A(t ′s0))

2
= −Ip. (A.86)

In this potential-free scenario (and considering the velocity gauge), the momentum p0 is conserved
during the classical time evolution and the zeroth-order trajectory is given by

r(0)(t) = Re

(∫t
t′s0

dτ (p0 + A(τ))

)
. (A.87)

The long-range Coulomb attraction modifies the dynamics such that the momentum changes over
time. To determine its influence on the classical dynamics during the backpropagation, we consider
the Coulomb force as a perturbation. In a backpropagation simulation, the trajectories start at the final
time tf with a momentum p at a position rf. In order to still fulfill the velocity criterion at the fixed
release time t̃, the final momentum p needs to be chosen as p = p0 + ∆p with the correction

∆p =

∫ t̃
tf

dt ′∇V(r(0)(t ′)). (A.88)

The tunnel-exit position is then determined by classical propagation backwards in time. To first order
in the potential, it is given by

r01 = rf +
∫ t̃
tf

dt ′ (p0 + A(t ′)) + ∆p(t̃− tf) −
∫ t̃
tf

dt ′′
∫t′′
tf

dt ′∇V(r(0)(t ′)) (A.89)

In the backpropagation method, the final position rf is determined by the negative phase gradient
of the momentum-space wave packet (see Eq. (5.14)). Using the ARM action of Eq. (2.59), this position
position can be estimated as

rf = −∇p ReSARM(p) =Re
(∫tf
t′s

dτ (p + A(τ))

)
+ Re

(∫tf
t′κ

dτ∇rV(rL(τ; p, t ′s))(τ− t
′
s)

)
+ Re

(
−∇pts

[
V(rL(t ′κ; p, t ′s)) + (p + A(t ′s))

∫tf
t′κ

dτ∇rV(rL(τ; p, t ′s))
]) (A.90)

with the ARM orbit rL of Eq. (2.56). We express the final momentum p by the potential-free momen-
tum p0 and the momentum correction ∆p. Hence, to first order in the potential, the tunnel-exit position
(from backpropagation) can be written as r0 = r00 + ∆r0 with the potential-free result r00 of Eq. (A.85)
and the correction

∆r0 =∆p(t̃− t ′r0) −

∫ t̃
tf

dt ′′
∫t′′
tf

dt ′∇V(r(0)(t ′)) − Re
(
(p0 + A(t ′s0))(∆p · ∇pt

′
s0)
)

+Re

(∫tf
t′κ0

dτ∇rV(rL(τ; p0, t ′s0))(τ− t
′
s0)

)

+Re

(
−∇pt

′
s0

[
V(rL(t ′κ0; p0, t ′s0)) + (p0 + A(t ′s0))

∫tf
t′κ0

dτ∇rV(rL(τ; p0, t ′s0))

])
.

(A.91)

The first term is an artifact of the chosen velocity criterion in backpropagation. In the cases considered
in this work, the times t̃ and Re t ′s0 agree and the term vanishes. The second term is related to the
position offset picked up during the classical motion backwards in time. The third term is caused by
the difference of the final momentum p (where the phase gradient is calculated in backpropagation)
compared to the initial momentum p0. The last terms are the corrections of the final positions due to the
ionic potential.
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A.5 Low-frequency approximation beyond the dipole approximation

In Section 9.4, the rescattering amplitude in strong-field ionization is studied. In this context, the laser-
assisted scattering amplitude appears [497]

Rk,m(t, t ′) = 〈ψFk(t)|VU(t, t ′)|ψFm(t ′)〉 (A.92)

with Volkov states
∣∣ψFm(τ)

〉
of Eq. (2.32) in generalized length gauge of Eq. (2.26). The low-frequency ap-

proximation (LFA) [495] is an approximation to this laser-assisted scattering amplitude. Here, we follow
the derivation in Ref. [497] and include leading-order nondipole corrections. To this end, it is convenient
to introduce the retarded Green’s operator G with U(t, t ′′) = iG(t, t ′′) for t > t ′′ and G(t, t ′′) = 0 for
t < t ′′. By using a Dyson representation, the laser-assisted scattering amplitude can be written as

Rk,m(t, t ′) = 〈ψFk(t)|V |ψFm(t)〉+
∫∞
t′

dt ′′〈ψFk(t)|VG(t, t ′′)V |ψFm(t ′′)〉. (A.93)

In first Born approximation (1BA) only the first term is included. To consider corrections of the second
term, the Green’s operator is studied. This operator satisfies the equation[

i
∂

∂t
−H(t)

]
G(t, t ′′) = δ(t− t ′′). (A.94)

For an approximation, we parameterize the two times by means of the collision time t = t1 and the time
interval t− t ′′ = t2, i.e., t = t1 and t ′′ = t1 − t2. Using the chain rule and Eq. (A.94), the reparameterized
operator Ĝ(t1, t2) = G(t1, t1 − t2) has to fulfill[

i
∂

∂t1
+ i

∂

∂t2
−H(t1)

]
Ĝ(t1, t2) = δ(t2). (A.95)

In order to approximate this Green’s operator in a series of the light frequency ω, it is advantageous to
study the “Fourier-transformed” operator G̃(t1, z) that is implicitly defined by

Ĝ(t1, t2) =
1

2π

∫
dE G̃(t1, z)e−izt2 (A.96)

with z = E+ i0. Using δ(t2) =
1

2π

∫
dEe−izt2 , Eq. (A.95) can be written as∫

dE
([

i
∂

∂t1
+ z−H(t1)

]
G̃(t1, z) − 1

)
e−izt2 = 0. (A.97)

Hence, it follows [
i
∂

∂t1
+ z−H(t1)

]
G̃(t1, z) = 1. (A.98)

This is an exact expression and it is the same as Eq. (27) in Ref. [497]. However, we are only interested
in the time evolution in the special situation defined in Eq. (A.93). We apply a unitary transformations
that somehow accounts for “the potential-free” dynamics in the electromagnetic field:

Ũ = Û e−i(SF(m,t1)+Et1) with Û = e−iχU(t1)e−iA(t1)·r (A.99)

with the action SF defined in Eq. (2.33) and the generating operator χU(t1) = z
c

(
p̂ ·A(t1) +

1
2 A2(t1)

)
.

We can rewrite Eq. (A.98) as

1 =Ũ†Ũ

[
z−H(t1) + i

∂

∂t1

]
Ũ†Ũ G̃(t1, z)

=Ũ†
[
z− E+ Ẽ(m, t1) − ÛH(t1)Û

† + iÛ
(
∂

∂t1
Û†
)
+ i

∂

∂t1

]
Ũ G̃(t1, z)

(A.100)

with the “kinetic energy" of the light-driven electron

Ẽ(m, t) =
v2(m, t)

2
. (A.101)



A.5. LOW-FREQUENCY APPROXIMATION BEYOND THE DIPOLE APPROXIMATION 235

The unitary transformation Û transforms the generalized length gauge to the natural gauge introduced
in Section 2.2.2. Hence, we find

iÛ
(
∂

∂t1
Û†
)
− ÛH(t1)Û

† = −ÛH0Û
†, (A.102)

where H0 is the field-free Hamiltonian. Thus, Equation (A.100) can be expressed as

1 =Ũ†
[
+i0 + Ẽ(m, t1) − ÛH0Û

† + i
∂

∂t1

]
Ũ G̃(t1, z)

=Ũ†
[
ÛG−1

0 (Ẽ(m, t1) + i0)Û† + i
∂

∂t1

]
Ũ G̃(t1, z)

(A.103)

with the field-free Green’s operator defined in Eq. (A.8).
In the first term in brackets, the dependence on the time t1 appears solely through the vector poten-

tial A. Hence, it is advantageous to measure time in units of 1/ω for a characteristic frequency ω of the
electromagnetic field, i.e., we define τ = ωt1. In addition, we define the operator (see Ref. [497])

Γ(τ) = ÛG0(Ẽ(m, τ/ω) + i0)Û†. (A.104)

Equation (A.103) can be rephrased as

1 = Ũ†
[
Γ−1(τ) + iω

∂

∂τ

]
Ũ G̃(t1, z). (A.105)

This equation can be solved by expanding G̃ in terms of the frequency ω and determining the full so-
lution iteratively. The low-frequency approximation considers only the zeroth-order term of this series,
i.e., the Fourier-transformed Green’s operator is approximated as G̃LFA(t1, z) = G0(Ẽ(m, t1) + i0). The
time-dependent Green’s operator of Eq. (A.96) reduces to

ĜLFA(t1, t2) =
1

2π

∫
dE G̃LFA(t1, z)e−izt2 = G0(Ẽ(m, t1) + i0)δ(t2), (A.106)

where a Fourier representation of the Delta distribution is used. Transforming back to the times t and t ′′,
we find the result GLFA(t, t ′′) = G0(Ẽ(m, t) + i0)δ(t − t ′′). Thus, as expected, the LFA neglects the
light-field-induced change of the electron’s velocity during the scattering process. Inserting this ap-
proximation in Eq. (A.93) (similar to Ref. [497]), the Delta distribution resolves the time integral and the
laser-assisted scattering amplitude is given by

RLFA
k,m (t, t ′) =〈ψFk(t)|V |ψFm(t)〉+ 〈ψFk(t)|VG0(Ẽ(m, t) + i0)V |ψFm(t)〉

=〈ψFk(t)|V + VG0(Ẽ(m, t) + i0)V |ψFm(t)〉.
(A.107)

This result is equal to Eq. (9.17) of the main text.
On the first glance, the derived approximation seems arbitrary due to the choice of the transfor-

mation Ũ. However, a strength of the presented derivation is that it could be extended to estimate
leading-order errors in the expansion of Eq. (A.105). In the context of laser-assisted potential scattering
such an error estimation was performed (see for example Refs. [537, 538]) and the relevant parameters
that limit the applicability of LFA were identified.8 In Ref. [539] the same conditions were given for the
HATI process in the dipole approximation. When replacing the quantities in the dipole approximation
by the generalized quantities beyond the dipole approximation, the expressions in our derivation have
the same form as in Ref. [497]. Hence, we are confident that the same range of applicability can be
expected for LFA beyond the dipole approximation.

8For high intensities (with |m| < A0), the relevant parameter is given by ω/Up whereas the relevant parameter is given
by (ω/Em)(A0/|m|) for low intensities (with |m| > A0) [539].
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[459] F. H. M. Faisal and T. Radożycki, “Three-dimensional relativistic model of a bound particle in an
intense laser field,” Phys. Rev. A 47, 4464–4473 (1993).

[460] V. S. Popov, V. D. Mur and B. M. Karnakov, “The imaginary-time method for relativistic problems,”
J. Exp. Theor. Phys. 66, 229–235 (1997).

[461] N. Milosevic, V. P. Krainov and T. Brabec, “Relativistic theory of tunnel ionization,” J. Phys. B 35,
3515 (2002).

[462] V. S. Popov, B. M. Karnakov and V. D. Mur, “On the relativistic theory of tunneling,” J. Exp. Theor.
Phys. 79, 262–267 (2004).

[463] V. P. Krainov and S. P. Roshupkin, “Relativistic effects in the angular distribution of ejected elec-
trons in tunneling ionization of atoms by strong electromagnetic fields,” J. Opt. Soc. Am. B 9,
1231–1233 (1992).

[464] V. Krainov, “Energy distribution of relativistic electrons in the tunneling ionization of atoms by
super-intense laser radiation,” Opt. Express 2, 268–270 (1998).

[465] V. P. Krainov, “Energy and angular distribution of relativistic electrons in the tunnelling ionization
of atoms by circularly polarized light,” J. Phys. B 32, 1607 (1999).

[466] J. Ortner and V. M. Rylyuk, “Relativistic semiclassical approach in strong-field nonlinear pho-
toionization,” Phys. Rev. A 61, 033403 (2000).

[467] J. Ortner, “Relativistic photoelectron spectra in the ionization of atoms by elliptically polarized
light,” J. Phys. B 33, 383 (2000).

[468] H. K. Avetissian, A. G. Markossian and G. F. Mkrtchian, “Relativistic theory of the above-threshold
multiphoton ionization of hydrogenlike atoms in ultrastrong laser fields,” Phys. Rev. A 64, 053404
(2001).

http://dx.doi.org/10.1103/PhysRevLett.74.2439
http://dx.doi.org/10.1103/PhysRevLett.74.2439
http://dx.doi.org/10.1364/JOSAB.13.000113
http://dx.doi.org/10.1088/0305-4470/21/24/013
http://dx.doi.org/10.1103/PhysRevA.42.1476
http://dx.doi.org/10.1103/PhysRevA.47.674
http://dx.doi.org/10.1364/OE.2.000289
http://dx.doi.org/10.1103/PhysRevA.73.053411
http://dx.doi.org/10.1103/PhysRevA.75.063413
http://dx.doi.org/ 10.1103/PhysRevA.56.4910
http://dx.doi.org/ 10.1103/PhysRevA.47.4464
http://dx.doi.org/10.1134/1.567459
http://dx.doi.org/10.1088/0953-4075/35/16/311
http://dx.doi.org/10.1088/0953-4075/35/16/311
http://dx.doi.org/10.1134/1.1759406
http://dx.doi.org/10.1134/1.1759406
http://dx.doi.org/10.1364/JOSAB.9.001231
http://dx.doi.org/10.1364/JOSAB.9.001231
http://dx.doi.org/10.1364/OE.2.000268
http://dx.doi.org/10.1088/0953-4075/32/6/021
http://dx.doi.org/10.1103/PhysRevA.61.033403
http://dx.doi.org/ 10.1088/0953-4075/33/3/308
http://dx.doi.org/10.1103/PhysRevA.64.053404
http://dx.doi.org/10.1103/PhysRevA.64.053404


BIBLIOGRAPHY 261

[469] V. P. Krainov and A. V. Sofronov, “High-energy electron-energy spectra of atoms undergoing
tunneling and barrier-suppression ionization by superintense linearly polarized laser radiation,”
Phys. Rev. A 69, 015401 (2004).

[470] J. Liu, Q. Z. Xia, J. F. Tao et al., “Coulomb effects in photon-momentum partitioning during atomic
ionization by intense linearly polarized light,” Phys. Rev. A 87, 041403 (2013).

[471] E. Yakaboylu, M. Klaiber, H. Bauke et al., “Relativistic features and time delay of laser-induced
tunnel ionization,” Phys. Rev. A 88, 063421 (2013).

[472] M. Klaiber, E. Yakaboylu and K. Z. Hatsagortsyan, “Above-threshold ionization with highly
charged ions in superstrong laser fields. ii. Relativistic Coulomb-corrected strong-field approxi-
mation,” Phys. Rev. A 87, 023418 (2013).

[473] A. Hartung, Der Photonenimpuls in der Starkfeldionisation (Johann Wolfgang Goethe-University,
Frankfurt, 2019).

[474] H. Ni, S. Brennecke, X. Gao et al., “Theory of Subcycle Linear Momentum Transfer in Strong-Field
Tunneling Ionization,” Phys. Rev. Lett. 125, 073202 (2020).

[475] J. Maurer and U. Keller, “Ionization in intense laser fields beyond the electric dipole approxima-
tion: Concepts, methods, achievements and future directions,” J. Phys. B 54, 094001 (2021).

[476] I. Barth and O. Smirnova, “Spin-polarized electrons produced by strong-field ionization,” Phys.
Rev. A 88, 013401 (2013).

[477] A. Hartung, F. Morales, M. Kunitski et al., “Electron spin polarization in strong-field ionization of
xenon atoms,” Nat. Photonics 10, 526–528 (2016).

[478] I. Barth and M. Lein, “Numerical verification of the theory of nonadiabatic tunnel ionization in
strong circularly polarized laser fields,” J. Phys. B 47, 204016 (2014).

[479] L. B. Madsen, “Nondipole effects in tunneling ionization by intense laser pulses,” Phys. Rev. A
105, 043107 (2022).

[480] M. Klaiber, K. Z. Hatsagortsyan and C. H. Keitel, “Subcycle time-resolved nondipole dynamics in
tunneling ionization,” Phys. Rev. A 105, 053107 (2022).

[481] P.-L. He, M. Klaiber, K. Z. Hatsagortsyan et al., “Nondipole coulomb sub-barrier ionization dy-
namics and photon momentum sharing,” Phys. Rev. A 105, L031102 (2022).

[482] P.-L. He, K. Z. Hatsagortsyan and C. H. Keitel, “Nondipole Time Delay and Double-Slit Interfer-
ence in Tunneling Ionization,” Phys. Rev. Lett. 128, 183201 (2022).
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